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Abstract Cells sense mechanical signals and forces to probe the external environment and
adapt to tissue morphogenesis, external mechanical stresses and a wide range of diverse
mechanical cues. Here, we propose a combination of optical tools to manipulate single cells
and measure the propagation of mechanical and biochemical signals inside them. Optical
tweezers are used to trap microbeads that are used as handles to manipulate the cell plasma
membrane; genetically encoded FRET-based force sensors inserted in F-actin and alpha-
actinin are used to measure the propagation of mechanical signals to the cell cytoskeleton,
while fluorescence microscopy with single-molecule sensitivity can be used with a huge array
of biochemical and genetic sensors. We describe the details of the setup implementation, the
calibration of the basic components and preliminary characterization of actin and alpha-
actinin FRET-based force sensors.

1 Introduction

The study of the mechanical regulation of biological systems has greatly expanded in the
last decade. There is a large body of evidence indicating that the mechanical properties of
the extracellular environment directly affect the mechanical properties of the cell and, in
turn, activate signalling pathways that switch specific genes and feedback programmes on or
off. A well-established example in this respect is the YAP (Yes-associated protein) and TAZ
(transcriptional co-activator with PDZ-binding motif) complex, whose transcriptional activity
and cell localization have been shown to be strictly related to the mechanical properties of
the extracellular environment [1]. In fact, it has been shown that when various cell types
are cultured on soft substrates, YAP-TAZ localizes in the cytoplasm and its transcriptional
activity is low and comparable to YAP-TAZ knockdowns. On the other hand, when cells are
cultured on stiff substrates, YAP-TAZ moves into the nucleus and its transcriptional activity
is greatly enhanced and similar to that of cells grown on plastic [1].

One important route for cell mechanical sensing occurs through adhesion complexes,
which bind to the extracellular matrix (through focal adhesions) and/or to neighbour cells
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in a tissue (through adherens or tight junctions). Although the membrane proteins involved
in the different adhesion complexes vary greatly both in structure and in function (integrins,
cadherins and ZO-1 for focal adhesions, adherens junctions and tight junctions, respectively),
all these complexes exhibit a dynamic interaction of their cytoplasmic domain with the actin
cytoskeleton. This interaction is mediated by numerous adaptor proteins that create a bridge
between the adhesion molecules and actin. The dynamic nature of this link is fundamental
in regulating the strength of cell adhesions to adapt to the changes in the mechanics of the
environment and during the different phases of cell’s life [2]. For example, it has been recently
shown that, during tissue growth, a fluid-to-solid transition (usually named unjammed-to-
jammed transition) occurs in cultured epithelial monolayers [3] and in vivo [4]. Jamming in
epithelial monolayers occurs at a critical cell density, and it is associated with changes in
cell shape and mechanical forces between adjacent cells. Cell unjamming has been shown to
be associated with RAB5A-induced reawakening of collective cell motility [5]. Jamming-to-
unjamming transitions are also critical in tumour progression and cancer invasion. In cancer,
tumour tissue is generally stiffer than the surrounding healthy tissue; however, tumour cells
are softer than healthy cells. The mechanical properties of cancer cells and their extracellular
matrix have been shown to play a critical role in unjamming transitions and metastasis
[6]-[8]. The complexity of these mechanisms and the involvement of different mechanical,
biochemical and genetic signals make its study extremely complex and virtually impossible
by using a single experimental technique or approach.

Therefore, it has become increasingly important to develop and combine advanced exper-
imental methodologies and set-ups to uncover how mechanical signals are sensed by cells,
how they propagate inside the cell and to the cell’s cytoskeleton, and how they eventually
lead to changes in biochemical signalling and gene expression. To this end, we have imple-
mented an all-optical experimental apparatus that combines manipulation of the cell, imaging
of intracellular tension on specific proteins, and detection and tracking of biochemical and
genetic signals with single-molecule sensitivity.

Optical manipulation is obtained by using optical tweezers. Optical tweezers are made of a
laser beam tightly focussed by the microscope objective [9]-[11]. Gradient forces acting near
the laser focus attract micrometre-sized particles that can be used as handles to manipulate
single molecules [12] and/or cells [13]. Optical tweezers are a versatile tool that allows
manipulation as well as measurement of forces, which can be applied from both the outer
plasma membrane and inside the cell. By coating the trapped microsphere with adhesion
molecules such as fibronectin or cadherin, focal adhesions or adherens junctions, respectively,
can be specifically stimulated on the plasma membrane with mechanical forces of different
intensity and frequency (Fig. 1). The relative ease of applying and measuring physiologically
relevant forces has made optical tweezers one of the ideal tools to study cell mechanics.

On the other hand, the transmission of mechanical forces within the cell can be probed
by using genetically encoded fluorescence resonance energy transfer (FRET)-based force
sensors. FRET-based force sensor modules are usually made by a donor—acceptor fluores-
cent protein pair linked together by an elastic peptide [14]-[16]. The DNA sequence coding
for the force sensor module is inserted within the coding sequence of the protein of interest
and transfected in living cells. When the recombinant protein is expressed by the cell and
set under tension, the elastic peptide extends under force, the distance between the donor
and the acceptor increases, and the FRET efficiency consequently decreases, allowing the
measurement of tension changes in different regions of the cell and/or under different con-
ditions of mechanical stimuli (Fig. 1). Force sensors for several proteins (such as actin [17],
spectrin [18], alpha-actinin [ 18], alpha-catenin [19], nesprin [20] and vinculin [21]) and force
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Fig. 1 Schematic of the experimental approach used in mechanotransduction experiments. a Optical tweezers
are used to apply and measure mechanical load on specific adhesion molecules on the cell plasma membrane.
Genetically encoded FRET-based force sensors measure the propagation of mechanical signals in the cell.
Fluorescent gene reporters detect mechanically induced changes in gene expression. b The various components
used in a mechanotransduction experiment

sensors modules based on different linkers have been developed [18, 21]-[23], allowing the
measurement of different ranges of forces from few pN to several tens of pN per molecule.

Eventually, mechanical signals are converted into biochemical and genetic signals. Our
set-up is designed to allow detection of fluorescent signals with single-molecule sensitivity.
This capability can be exploited to detect several kinds of biochemical signals triggered by
mechanical cues (i.e. ion fluxes such as Ca>* or nuclear shuffling of transcription factors such
as YAP/TAZ). Alternatively, fluorescent reporters of gene expression can be used to monitor
changes induced by mechanical stimuli in real time, both for protein [24] and for mRNA
[25]-[27] expression, with sensitivity up to the single molecule (Fig. 1).

Here, we describe the details of the set-up implementation and how to efficiently combine
the different techniques; the calibration of the basic components; as well as preliminary
characterization of cell manipulation by optical tweezers, intracellular tension measurement
using actin and alpha-actinin FRET-based force sensors, and detection of chromophores with
single-molecule sensitivity.

2 Experimental set-up design

In order to directly observe and image the response of biological systems to mechanical
stimulation, the experimental arrangement combined the optical tweezers and fluorescence
microscopy. A schematic of the apparatus is shown in Fig. 2. The system allowed for the
simultaneous manipulation of specific cell membrane receptors and detection of intracellular
signals, with sensitivity down to the single molecule. The set-up was realized around a
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Fig. 2 Schematic of the experimental set-up used in mechanotransduction experiments. The apparatus com-
bined dual-colour fluorescence microscopy and optical manipulation by optical tweezers

commercial infinity corrected microscope (Nikon Eclipse Ti-U) which could be adjusted
to accommodate different excitation and emission wavelengths as well as highly inclined
laminated optical sheet (HILO) and total internal reflection fluorescence (TIRF) microscopy
techniques through custom components mounted on an optical table [28]. The microscope
objective (Nikon CFI Apochromat TIRF, 60 x magnification and numerical aperture NA =
1.49) provided high transmission and efficient correction of chromatic aberrations in the
range from 435 to 1064 nm, which enabled optimal combination of the imaging of single
molecules in the visible spectrum and trapping particles with a near-infrared laser (808 nm
wavelength) on the same focal plane. The microscope was equipped with a piezoelectric stage
(PI PInano P-545) with the capability to translate the sample along the three spatial directions
(200 pm x 200 pm x 200 pm) with sub-nanometric resolution and step times of the order of
a millisecond, which enabled precise positioning and nanometre stabilization of the sample
[29]. In addition, the piezoelectric stage was mounted on top of a high stable stage (P M-545),
capable of long-range displacements of 25 mm x 25 mm. The optical trap could be moved
independently from the sample stage by steering the laser source using a piezoelectric mirror,
thus allowing the decoupling of fluorescence imaging from optical trapping. Furthermore,
the nanometric trap positioning combined with three-dimensional position detection using
a quadrant detector photodiode (QPD) allowed for the precise application and measurement
of external forces on cell membranes. The movement of the stage, the operation of the
laser sources and collection of data via the various detectors could be controlled remotely
by a custom-made computer software package. For data acquisition, an acquisition board
(National Instruments PCle-6343) was used, consisting of 32 analogue inputs with 16-bit
resolution and sampling rate of 500 kS/s, as well as 4 analogue outputs with the same
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resolution and sampling rate of 900 kS/s. The optical set-up was positioned on an anti-
vibration optical table (Melles Griot) to minimize mechanical vibrations.

2.1 Fluorescence microscopy

The fluorescence microscopy part of the experimental apparatus consisted of five excitation
semiconductor TEMOO laser sources (Fig. 3a). In particular, from right to left, an OBIS
445X laser at 448 nm, with a maximum output power Ppax = 75 mW and a collimated
beam waist w = (0.6 4+0.1) mm, an OBIS 488LX at 488 nm, with Pp,x = 150 mW and w
= (0.7£0.1) mm, an OBIS 514LX at 518 nm, with Pp,x = 40 mW and o = (0.640.1)
mm, an OBIS 552LS at 552 nm, with Py,x = 150 mW and w = (0.70+0.05) mm, and
finally an OBIS 640LX laser at 643 nm with Ppax = 110 mW and w = (0.8 +0.1) mm.
Telescope systems were placed after each laser source output, in order to enlarge the laser
beams to a common size of roughly 4 mm and optimize their spatial profile through a pinhole
placed in the focal plane between the two lenses of the telescope. Narrow band-pass filters
(Semrock FF01-445/20-25, FF01-488/6-20, FF01-513/13-25, FF01-542/27-25 and FFO1-
640/14, respectively) were also positioned at the output of all diode laser sources to eliminate
undesired wavelengths that exist due to the spurious emission outside the emission bandwidth.
It is noted that in the absence of the filters, the spurious emissions constituted an important
source of noise in single-molecule fluorescence microscopy experiments. Each beam was
directed to the microscope by dichroic mirrors (Semrock Di02-R442, LM01-503-25, Di02-
R514 and Chroma ZT568rdc) allowing for the consecutive excitation of samples by the
different wavelengths. Moreover, two achromatic telescope systems were introduced. The
two telescopes enlarged the excitation beams to allow for full-field (200 mm x 200 mm)
excitation at low powers, suitable for cell imaging. The second telescope system was placed
on flip mounts to provide the option for half-field view at 4 x power when removed, optimal
for single-molecule imaging. An additional achromatic lens focused the excitation beam into
the back aperture of the objective lens. This achieved constant intensity illumination since
the focussing lens and the objective were in a telescope configuration. An iris was placed
on the back focal plane of the focussing lens and, thus, conjugated to the objective’s focal
plane to spatially limit the excitation beam and regulate the field of illumination. By placing a
mirror before the focussing lens, and the focussing lens itself on motorized translators, it was
possible to translate the excitation beam at the entrance of the objective to switch between
different illumination schemes such as wide field, HILO and TIRF.

The commercial microscope contained a microscope wheel which could accommo-
date several dichroic mirrors (DMS5) (e.g. Chroma ZT440/488/561/635rpc-uf2, Chroma
ZT488/561rpc-uf2 and Chroma ZT440/514/561/640rpc-ufl) reflecting the excitation beams
to the objective, as well as transmitting the emitted fluorescence to the detection system. This
made it easy to adapt to different excitation wavelengths for samples characterized by the
presence of a combination of fluorophores. The detection apparatus was able to image two
emission channels of the fluorophores on a single sSCMOS camera (Hamamatsu Orca-Flash4.0
V2) (Fig. 3b). This was particularly beneficial for the realization of FRET experiments since it
was essential to concurrently display the emission from both donor and acceptor fluorophores.
Simultaneous bright-field imaging was achieved by a CMOS camera (Thorlabs DCC1545M).
This can be particularly useful to perform combined trapping and fluorescence experiments.
In order to achieve this, the halogen illumination was filtered with a long-pass filter (Thorlabs
FEL0700) to allow the transmission of wavelengths longer than 700 nm to minimize inter-
ference with fluorescence microscopy. The light exiting the microscope arrived at a dichroic
mirror (Chroma ZT775sp-2p), which was transparent to wavelengths shorter than 730 nm

@ Springer



316 Page 6 of 19 Eur. Phys. J. Plus (2021) 136:316

(@) = | ()

DM6,

Dichroic
mirror cube
Condenser

sample F10

A ‘
Objective
! 7

MM |
Telescope — pinhole

CMOS camera

", o]
%, o]
:
;

F F F F F5 / systems sCMOS camera
- e = h bm8
b < <P <P T V) | S,
b A - '—'. ‘—'I iris | Detection |
[l | 3 3
v v TV e e

DM1 DM2 DM3 DM4

Fig. 3 a Schematic of the fluorescence excitation part of the experimental apparatus containing five laser
sources. After each laser system, narrow band filters F1-F5 were placed to eliminate undesired wavelengths.
Telescope/pinhole systems were also placed to enlarge the excitation beams to a common size of roughly
4 mm and optimize their spatial profile. With the use of dichroic mirrors DM1-DM4, the excitation beams
were directed to the microscope after passing through two telescope systems, T1 and T2, which allowed for
different fields of excitation. Motorized mounts were used for mirror MM 1 and focusing lens ML1 providing the
possibility to switch between different illumination schemes (wide field, HILO and TIRF). The dichroic mirror
DMS could be selected as such with the aid of the microscope wheel to match the excitation and emission
wavelengths necessary. Filter F9 was used to allow wavelengths longer than 700 nm to reach the sample,
making possible bright-field imaging via the detection system. b The detection part of the system allowed for
simultaneous imaging of the bright field and fluorescence emission. The light exiting the microscope set-up
was split into two parts by a dichroic mirror cube. Wavelengths longer than 700 nm were reflected on a CMOS
camera for bright-field imaging. Shorter wavelengths passed through a slit in order to split the fluorescence
image to two parts. Dichroic mirror DM7 transmitted wavelengths longer than 506 nm and reflected shorter
ones. The two paths were then recombined by DMS identical to DM7 and focused on the sSCMOS camera
side by side by the achromatic doublet telescope system consisting of lenses L1 and L2. Emission filters F6
and F7 were placed in each arm to filter out wavelengths other than desired emission signal. ¢ Live HEK cells
transfected by the cpstFRET sensor imaged in two emission channels simultaneously. On the left, the “donor”
channel is shown corresponding to 542 nm emission and on the right the “acceptor” channel corresponding
to 479 nm emission

and reflective for longer wavelengths. The reflected light was focused on the CMOS cam-
era after passing through a notch filter (Thorlabs NF808-34) to block the optical tweezers
beam. The transmitted light passed through the centre of a slit positioned on the image plane
produced by the microscope tube lens. This was done to divide the image into two identical
halves centred side by side on the SCMOS camera chip. Following the slit, a 1:1 telescope
system was devised consisting of two achromatic doublet lenses with the same focal length.
The first lens of this system was placed at a distance equal to its focal length from the slit,
while the second one was placed at the same distance from the SCMOS camera. A dichroic
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mirror (Semrock FF506-Di03) reflected wavelengths shorter than 506 nm, thus giving the
possibility to divide the optical path into two different wavelength groups. The distance the
two new beam components had to travel was ensured to be equal. Finally, the two beams
were recombined by an identical dichroic mirror as the one splitting them and focused on
the sSCMOS chip side by side by the second achromatic doublet. The choice of achromatic
doublets was made to reduce chromatic aberrations and focus different wavelength rays at
the same point. It is noted that additional emission filters (e.g. Semrock, FF01-479/40 and
FF01-542/27 for FRET experiments) were introduced in each path to narrow the transmit-
ted wavelengths around the peak value of the desired emission spectra of the fluorophores
used in experiments. Furthermore, the two dichroic mirrors were mounted on flip supports
to easily switch to a single image detection scheme, also thanks to the possibility to enlarge
the slit through a micrometre screw. Figure 3 shows a detailed schematic of the fluorescence
microscopy part of the apparatus as well as the simultaneous acquisition of the “acceptor”
and “donor” image channels in a sample containing human embryonic kidney (HEK) cells
which were transfected with an actin FRET force sensor (cpstFRET).

2.2 Optical manipulation

An optical tweezers system was integrated to the set-up (Fig. 4) to precisely apply external
forces on cell membranes by trapping microscale beads and bring them in contact with
the cells. Optical manipulation was accomplished by a diode laser (Lumics LUS08M250),
emitting at 808 nm with FWHM of 0.5 nm and maximum power Pyax = 250 mW. This choice
of wavelength was to minimize photodamage effects in living cells which are significantly
reduced in the near-infrared region where the absorption coefficient is of the order of 10~*
[30, 31]. In experiments involving cells in vivo, it is essential to prevent the increase in the
reactive oxygen species (ROS) level. Even though these molecules are fundamental for cell
homeostasis and signalling, an increase in their levels originating from the interaction between
light and the aqueous environment of a cell can dramatically damage the cell structure. After
the writing of this paper, the laser was exchanged with a laser (Thorlabs BL976-PAG900) of
comparable cost and quality, slightly longer wavelength (976 nm), but considerably higher
power (900 mW). The diode laser was driven by a compact laser diode driver (Thorlabs
CLD1015). The trapping beam was directed to the microscope by being reflected by a piezo-
driven steerable mirror. The piezoelectric mirror mount (PI N-480 PiezoMike) had an angular
range of ¥ = +5° (87 mrad) and minimum angular resolution of 0.3 prad. This was
conjugated to the back-conjugate focal plane of the microscope objective through a M =
10X magnifying telescope. In this way, the beam size was adjusted to slightly overfill the
back aperture of the objective and the rotational movement of the mirror translated to linear
movements of the trap in the sample plane. The lateral movement of the trap x ~ 9 -
fo/M, where fo = 3.33 mm is the focal length of the objective [11], could then span
from a minimum lateral displacement of 0.1 nm to a maximum displacement of +29 pm.
Finally, the trap beam was directed to the microscope objective by a dichroic mirror (Chroma
ZT775sp-2p). The Nikon Eclipse Ti-U microscope stative allowed the installation of an
extension turret in between the fluorescence dichroic wheel and the microscope objective,
which conveniently accommodated the tweezers’ dichroic mirror. Measurements were taken
to produce a calibration curve describing the relation between the diode current and optical
power of the beam, before and after the microscope objective. The power measured after the
objective set the power incident on the sample and, thus, the stiffness of the trap. Typically,
the power used in living cell experiments was 175 mW at the source output or 20 mW incident
at the sample by setting a diode current at 250 mA.
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Fig. 4 Schematic of the optical manipulation part of the experimental apparatus. An 808 nm laser source was
used for the optical tweezers system. The piezoelectric mirror PM1 was used to stir the trapping beam to move
the optical tweezers in the sample plane. The bottom grey area shows how the rotation of the piezoelectric
mount and the placement of the optics can result to a new trap position. f3.1 and £3.2 denote the focal lengths of
the lenses consisting of the telescope T3, fo is the focal length of the microscope objective, fc of the condenser
and f4.1 and f4.2 the focal lengths of the lenses creating telescope system T4. The beam was passed through
the telescope system T3 to enlarge the beam to overfill the microscope objective back aperture. A dichroic
mirror DM9 directed the trap beam to the microscope objective. After passing through the sample, the beam
light was collected by the condenser and reflected by the dichroic mirror DM6 toward the QPD. The beam
was first passed through telescope T4, an ND filter and notch filter F8 before finally reaching the QPD. Inset:
Interaction of scattered and unscattered light creates an interference pattern depending on the relative position
of the trapped sphere with respect to the trap. The intensity distribution can be measured by means of the
differential voltage signals by the QPD

A quadrupole detector (QPD) (OSI Optoelectronics SPOT-15-YAG) with custom-built
30 kHz bandwidth electronics was used to detect and record the position of the trapped beads
by collecting the interference pattern formed at the condenser back focal plane [11]. The
light was directed to the QPD by means of a dichroic mirror (Chroma ZT775sp-2p) reflecting
wavelengths between 775 and 1200 nm mounted on the top of the condenser lens. We used a
condenser lens with a relatively low numerical aperture (NA = 0.52), to allow the use of cell
culture dishes and a microscope incubator for live cell imaging (Okolab H301 chamber with
UNO-T-H-CO?2 all-in-one controller). The detector was conjugated to the back focal plane
of the condenser through a demagnifying telescope (T4) to reduce the beam dimension to
the detector active area and maintain detector alignment when the beam was steered by the
piezo mirror (see Fig. 4, bottom). The later position of the trapped objects was obtained from
the differential signals Vx and Vy, while the axial position from the total intensity [32].

Calibration of the optical tweezers system was performed by analysing the trapped bead
position frequency spectra [33]. This was essential to quantify forces and displacements
experienced by living cells. The calibration allowed to determine both the trap stiffness k
and voltage-to-position photodetector conversion factor 8 [33]. Determining the conversion
coefficient is equivalent to measuring the sensitivity of the photoelectric detector: o = 1/p.
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Fig. 5 Example of a power
spectrum (blue) for a
1-pwm-diameter polystyrene
sphere immersed in aqueous
solution at room temperature and
trap laser power 28 mW. The red
dashed line represents the fit
function used for the optical
tweezers calibration. The trap
stiffness k and the conversion
factor B in this case were found
to be 0.1 pN/nm and 24.0 nm/V
in this case. Data were limited to
the 30 kHz cut-off frequency of
the detectors before fitting
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Since B = x/V, the power spectrum of the output voltage V(¢) of the photoelectric detector
can be obtained from the power spectrum of the position x of the trapped bead. Using the
following formula:
Sy(f) = 1 kpT
v 52 ynz(fchrfz)’
where kg is the Boltzmann constant, T is the temperature, y = 6mnR is the viscous drag
coefficient, for a sphere of radius R immersed in a fluid of viscosity n, and f . is the cut-off
frequencys; trap calibration can be obtained by fitting the voltage power spectra recorded while
a particle is stably trapped by the optical tweezers with the above equation, using the least
squares method. An example of frequency spectra obtained for a trapped 1-pwm polystyrene
bead suspended in water at room temperature is shown in Fig. 5. The cut-off frequency f .
and the conversion factor f are the parameters that are chosen as free parameters in the fitting
procedure. The obtained f. value can be then used to obtain the trap stiffness k by:

k=2myf.. 2

We tested the linearity of the trap stiffness and the independence of the voltage-to-position
conversion factor with the laser power, both for polystyrene and for silica beads. A more
accurate calibration procedure could be performed that leaves also y as a free parameter, thus
avoiding uncertainties in the bead radius and viscosity of the medium [34].

ey

3 Characterization of the experimental set-up
3.1 Single-molecule detection

Fluorescence excitation of organic chromophores and fluorescent proteins was obtained using
total internal reflection fluorescence (TIRF) to follow processes occurring near the cell mem-
brane, or with an optimized highly inclined light optical (HILO) sheet to image intracellular
or nuclear events with high signal-to-noise ratio [35]. In order to follow mechanotransduction
signal at the molecular scale, the sensitivity of the apparatus owned to be able to detect single
chromophores and localize them with few nanometre resolution. To establish the resolution
of the apparatus, measurements based on single chromophore localization were performed
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aiming to accurately extract the coordinates of each dye in the sample plane. The localization
of single fluorescent molecules was determined through fitting of the point spread function
(PSF) with a bidimensional Gaussian [36, 37] centred at (xg, yo):

1
I(x.y) :b+loexp{—@[<x—xo)2+(y—yo)z]}, 3)

where b is the background intensity, s is the two-dimensional standard deviation, and [y is
the peak intensity.

The localization uncertainty can be reduced by the increase in collected photons and by
minimizing noise factors [36]. The nanometre localization capability of the set-up was demon-
strated by using Alexa Fluor 568 and Alexa Fluor 647, with absorption and emission maxima
at 578 nm and 603 nm, and at 650 nm and 665 nm, respectively. All samples were incubated
in specific flow chambers (Fig. 6a). First, a microscope slide and an 18 mm x 18 mm glass
coverslip with a thickness of 170 wm were cleaned with pure ethanol and then dried under
nitrogen flow. Two flow chambers were then created by adding three stripes of double-stick
tape to the slide surface and attaching the coverslip to the tape. Each chamber measured ~ 15
L of volume. 20 pL of biotin-conjugated bovine serum albumin (bio-BSA) 1 mg/ml was
flowed in each chamber and incubated for 5 min. Next, the chambers were washed with 60
KL of phosphate buffer (PB) 50 mM. Subsequently, 20 L of the two streptavidin-conjugated
alexa fluor dyes was separately flowed in the two chambers and incubated for 3 min. The
concentration chosen for Streptavidin-Alexa Fluor 647 was 0.2 ng/mL, and for Streptavidin-
Alexa Fluor 568, 0.7 ng/mL, to obtain separated single emitters attached on the coverslip
surface. Finally, the chambers were washed with 100 pL of imaging buffer (928 wL PB,
10 pL DTT 1 M, 40 pL glucose oxidase 5 mg/ml, 10 pL catalase enzyme 5 mg/ml, 12
L glucose 250 ng/ml). Careful wash is essential in preventing the presence of background
fluorescent molecules during the imaging process, while the oxygen scavenger enzymes in
the imaging buffer assure reduced oxygen levels in the sample to minimize blinking and
photobleaching phenomena.

The sCMOS camera was set to acquire 200 consecutive frames with 500 ms integration
time. The acquisition of data was carried out for the three different illumination configu-
rations: wide field, HILO and TIRF. The chromophores were illuminated with excitation
intensity at / = 100 W/cm?. HILO and TIRF are considered as high signal-to-noise ratio
fluorescence microscopy techniques due to the reduction in background noise rising from
out-of-focus fluorescence. These illumination schemes provide higher excitation intensities
compared to wide-field microscopy. Optimized TIRF microscopy, i.e. when the incident angle
0; equals the critical angle for total internal reflection, results in /Tirr = 4/ = 400 W/cm?
which was comparable to intensities produced by optimized HILO microscopy.

In order to ensure that the localization analysis was conducted on single chromophores, the
temporal evolution of fluorescence emission was studied. In some cases, emission intensity
dropped in a step-like fashion with time, thus implying that the source of emission was a group
of agglomerated dyes instead of a single molecule (Fig. 6b). Each step, in decreasing intensity,
denoted the photobleaching of a chromophore belonging to these groups. Furthermore, in
these situations quenching and blinking effects originating from the interaction between the
different chromophores also resulted in irregular intensity readings. Parts of the collected
data that contained such dye groups were not considered for localization analysis. Moreover,
the absolute position of each dye had to be corrected to account for thermal drifts. Therefore,
we used as a reference the coordinates (xref, yref) Of a single chromophore in the field of view
which emitted at constant average intensity during all frames and calculated the position of
the other chromophores as the relative position (x" = x — Xref, ¥ = ¥ — Vref)-
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Fig. 6 a Top: Flow chamber. Bottom: streptavidin-Alexa Fluor molecules were specifically bound to the
coverslip through biotinylated BSA. b Emission intensity dropping in step-like fashion implying that the
source of emission consisted of a cluster of multiple dyes, each one photobleaching in time. ¢ Time evolution
of FIONA algorithm tracking of single chromophores. The green colour represents the recorded data, while
red is the Gaussian fit providing the centre of mass coordinates. The intensity drops observed between frames
are due to the photobleaching of one dye

We then evaluated the localization accuracy for each chromophore as the standard devi-
ation of its relative position, and the mean localization accuracy for all the Alexa Fluor 647
chromophores analysed was evaluated to be 5, = (8 &=3) nm and 5, = (8 &2) nm for wide-
field microscopy, 5, = (7£2) nm and 5, = (742) nm for HILO and 5, = (742) nm and
Sy = (7£2) nm for TIRF. For Alexa Fluor 568 were found 5, = (154+7) nm and 5y =
(I5£7)nm, s, =(12+3)nmand sy = (12+6) nm, and 5, = (10£4)nmand sy = (10+3)
nm for the different illumination schemes, respectively. The errors given here are standard
deviations from the average value.

3.2 Cell membrane stimulation

In mechanotransduction experiments, optical tweezers can be used to manipulate specific
receptors on live cells’ membrane by applying force through a trapped bead. Consequently,
this can induce structural modifications in the membrane receptor and trigger intercellular
processes. Figure 7a shows an illustrative cell manipulation experiment in which a fibronectin-
coated polystyrene bead is attached to the cell membrane and being pulled away from it. A
cell membrane tether is clearly visible, connecting the bead to the cell while a force is
applied [13]. The QPD signal was recorded through this process, and the applied force on the
membrane during pulling the tether was calculated (Fig. 7b). The trapped bead displacement
was determined by B obtained from fitting Eq. 1 to the power spectra, and the difference in
voltage signal as recorded by the QPD for each step, i.e. x; = BAV,;. The force was then
calculated for each step by using the trap stiffness as also obtained by the power spectra
fitting. Finally, the mean force and displacement were calculated for all steps revealing a
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Fig. 7 a Fibronectin-coated 1.2-pum polystyrene bead comes to contact with the cell membrane via the optical
tweezers. The bead is then pulled away from the cell creating a membrane tether while applying force to the
membrane. b The QPD signal as recorded during stepwise motion of the trap, beam power 28 mW. The bead
follows the movement of the trap with some delay. ¢ Mean force vs mean bead displacement revealing a linear
response. Tether stiffness keg,. was found to be 0.139£0.001 pN/nm in this case

linear relationship between the two. The tether stiffness could be calculated with an error by
a linear fit (Fig. 7c).

Cell manipulation experiments can be then combined with the imaging of intracellular sig-
nals by exploiting the single-molecule sensitivity of our set-up. Examples include the imaging
of mechanically triggered intracellular Ca*? fluxes [38], mechanically induced changes in
protein expression using a fluorescent reporter [24] or changes in mRNA expression that
can be visualized with single-molecule sensitivity using specific reporter such as the MS2
system [26, 27]. As reported in the next paragraph, we can also exploit the combined fluo-
rescence imaging to image mechanical signals and changes in intracellular tension by using
FRET-based force sensors inserted in specific cytosolic proteins.

3.3 Force imaging through FRET-based genetically encoded force sensors
3.3.1 FRET calibration using FRET standards

The phenomenon of fluorescence resonance energy transfer (FRET) can be used to study
protein—protein or protein—cell membrane interactions inside living cells. There are a relevant
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number of different methods to measure FRET using a multitude of FRET indexes that
relates to the actual FRET efficiency. Since the FRET efficiency is usually undefined or
subject to relevant systematic errors, it is very difficult to compare FRET measurements
obtained with different methods and set-ups. A possible solution to this problem comes from
the development of genetic constructs encoding fluorescent proteins (FPs) pairs with known
FRET efficiency, which can be used as “standards” to validate and calibrate FRET in different
imaging systems with high reproducibility [39].

Koushik et al. used a Cerulean/Venus donor/acceptor pair to engineer three FRET standards
with growing distance between the donor and acceptor pair: C5V, C17V and C32V [39]. C
stands for Cerulean (donor, Aexe = 433 nm; Aemy = 475 nm) and V stands for Venus
(acceptor, Aexe = 515 nm; Aen = 528 nm), while the number indicates how many amino
acids are placed in the linker between the FPs. We used these FRET standards to calibrate
our FRET imaging system and relate our measurements of FRET index to FRET efficiency
values obtained by Koushik et al. [39].

In the measurements presented here, C5V, C17V and C32V were transfected inside HEK
cells, which were allowed to adhere on a glass coverslip. Images were taken sequentially: first,
by exciting the sample with the 445 nm laser with a 50 ms exposure time to acquire the FRET
and donor channels, and then, by illuminating with the 514 nm laser with 50 ms exposure time
to image the acceptor channel. A custom-made MATLAB script was prepared to readjust the
images and correct for chromatic aberrations. The script allows to select the region of interest
in the donor channel on which the user wants to perform the correlation process. This is done
through a specific MATLAB algorithm which performs a 2-D cross-correlation between two
images, A (in the donor channel) and B (in the acceptor channel). This was done to find the
exact point where a section of the first image is superimposed onto the same section in the
second image, in order to find the regions where the two signals are identical. The script also
scales the images to readjust the dimensions of each channel by using the bright-field image
as reference. Finally, as a result, the script automatically builds an image stack composed
of the three channels aligned (Fig. 8). After cross-correlation and scaling, all images were
analysed using the ImageJ PixFRET plug-in [40]. This plug-in returns a final image where a
FRET index is calculated and displayed in each pixel with a colour map (Fig. 8). The FRET
index is then normalized to find a ratiometric FRET index which is independent from the
density of the FPs and is given by the formula:

Ipa —algs —dI
NFRET = -RA—4AA DD ¢ 4)

VIpp x Iaa

where I p4 is the fluorescence intensity obtained through excitation of the donor and measured
in the acceptor channel, /44 is the intensity measured in the acceptor channel when excitation
wavelength of the acceptor is used, and Ipp is the intensity measured in the donor channel
upon donor excitation. The parameters a and d are the spectral bleed-through ratios, which
represent the portion of fluorescence emission collected in the FRET channel which is not
produced by the energy transfer. In particular, a is the emission of the donor in the acceptor
channel, while d is the excitation of the acceptor using the donor excitation wavelength. The
final FRET index of each cell is found by using the “Analyse Particles” function in ImageJ
which returns the particle (cell) area, the mean value of FRET index of the cell, its standard
deviation and standard error. The FRET index of each standard construct is then calculated
simply as the mean FRET index value of all the cells of that specific construct, with the
associated standard error.

FRET indexes measured as described above are shown in Fig. 9a. The linear trend observed
in both our measurements of FRET index and the FRET efficiencies obtained in [39] (Fig. 9b)
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Fig. 8 Images of FRET standards and FRET index. The image shows HEK cells transfected with the C32V
FRET standards. a The donor channel (excitation with the 445 nm laser and emission in the range 460 nm < hem
<500 nm. b The acceptor channel (excitation with the 514 nm laser and emission in the range 530 nm<\em
<560 nm. ¢ The FRET channel (excitation with the 445 nm laser and emission in the range of the acceptor
channel). d Ratio metric FRET index image calculated through Eq. (3). The power of both lasers on the sample
plane was 2.5 mW, 50 ms integration time
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Fig. 9 Characterization of FRET standards. a FRET index of C5V, C17V and C32V standards vs calibrated
FRET efficiency (N = 10 cells per construct). The linear fit of FRET index gives an adjusted R-square value
of 0.933. b Calibration curve to relate FRET index measurements with the calibrated FRET efficiency. The
linear fit between FRET efficiency and FRET index gives a slope of 0.7 +0.2 and an intercept of 17 6 with
a Pearson’s coefficient value of 0.98

within the measured range allowed for a calibration curve relating the measured FRET index
with the calibrated FRET efficiency, for a better comparison with experiments performed
with different methods (Fig. 9c¢).

3.3.2 Measuring tension on the actin cytoskeleton
After calibration, a study of a specific sensor inserted into F-actin was conducted [17]. The

sensor used in these experiments was based on the donor—acceptor relative orientation, unlike
the FRET standards used previously which were modulated by the distance between the
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two. This sensor is called cpstFRET (circularly permuted stress-sensitive FRET), and it was
developed based on the existing sStFRET sensor [18]. cpstFRET is composed of five amino
acids that link two circularly permuted FPs that are parallel at zero force and are supposed to
twist toward a perpendicular configuration under tension, decreasing FRET efficiency values.
As a consequence, this sensor is much smaller than the ones based on linear springs [16].

The actin probe used, named actin-cpstFRET-actin (AcpA), is shown in Fig. 10a, and
it is constituted by the dipole orientation-based sensor cpstFRET flanked by two p-actin
monomers, which label F-actin efficiently. A zero-force control sensor called cpstFRET-
actin (cpA) was also used (Fig. 10a). This sensor has only one actin monomer, leaving the
other end of the probe free to move and not be subjected to forces [17]. Both sensors were
successfully transfected into HEK cells which were grown on different substrates.

First, the FRET efficiencies of our sensors (both the sensor and the control) transfected into
HEK cells and grown on bare microscope coverslips were evaluated. All measurements were
taken while keeping all experimental parameters constant compared to the previous mea-
surements on the FRET standards. Consequently, the data were analysed using the PixFRET
plug-in, from which the mean values of normalized FRET indexes were obtained along with
the calculated standard errors. As expected, a high FRET index of (89 £ 1)% for the force-
free actin sensor (cpA) was obtained, while this value decreased to (58 &£ 1)% for the AcpA
sensor, which is subject to tension (Fig. 10b). Next, cells with actin sensors were grown
on microscope glass slides covered with polylysine, which facilitates cell adhesion, and
fibronectin, which stimulates focal adhesion (FA) formation and possibly stimulates higher
mechanical tension on the actin cytoskeleton.

The results (Fig. 10b) revealed that there was no significant difference between the actin
sensors grown on different substrates. A possible explanation derives from the fact that in these
series of measurements, the microscope objective was not focused at the glass—cell interface
where FAs form, but instead deeper into the cell. Thus, observations made originated from
parts of the cytoskeleton that were possibly not significantly influenced by focal adhesions.

3.3.3 Measuring tension on a-actinin

a-actinin is a cross-linking and bundling protein that constitutes the backbone of contractile
actin bundles and stress fibres. An a-actinin force sensor was also investigated. In this sen-
sor, called Actinin-M-cpstFRET, the cpstFRET cassette is inserted between spectrin repeat
domains 3 and 4 toward the middle of a-actinin. On the other hand, the zero-force control
called Actinin-C-cpstFRET is created by binding the cpstFRET construct to the C-terminal
of a-actinin. A scheme of these two sensors is shown in Fig. 11a [17].

Initially, the FRET indexes of the sensors were characterized in HEK cells grown on micro-
scope coverslips by TIRF microscopy. Measurements were taken with the same parameters
as the previous experiments. The images obtained were analysed as usual with the PixFRET
plug-in. The results obtained are shown in Fig. 11b (blue). With 0.05 confidence level, there
was no significant difference between the sensor under tension and the force-free control
(p > 0.05) from the standard statistical two-sample t-test. However, through a more careful
inspection of the images acquired (Fig. 11c¢), it was found that the actinin fluorescence was
prevalently localized along cell—cell junctions in this case. For this reason, a new analysis
was performed by selecting only the junctions’ area as the region of interest, where a-actinin
was highly concentrated and probably under tension. As it can be seen by the results shown
in Fig. 11b (light blue), the difference between the zero-force control and the sensor is sig-
nificant (p < 0.05 with standard two-sample t-test). As expected, the FRET index of the
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Fig. 10 a Sketch of the cpstFRET sensor and how it is inserted into F-actin. “cpA” is a cpstFRET-B-actin
construct, where one actin monomer is bound to the C-terminal of the cpstFRET sensor. “AcpA” stands for
“Actin-cpstFRET-Actin” and is a construct where two actin monomers are linked by the cpstFRET sensor.
“f” represents an external force, which induces rotation of the emission dipoles of the FPs, thus resulting in
lower FRET [17]. b FRET indexes of cpA and AcpA in HEK cells grown on glass slides (red), glass slides
covered with fibronectin (orange) and glass slides covered with polylysine (yellow). All the force-free cpA
sensors have significantly higher indexes compared to the AcpA sensor. According to a two-sample t-test,
FRET index of AcpA on glass (N = 20) is not significantly different from FRET indexes of AcpA grown on
fibronectin (N = 23, p = 0, 43) and polylysine (N = 20, p = 0.79). ¢ Example of a HEK cell transfected
with the AcpA sensor. Images were taken in the three channels with an integration time of 50 ms, and the
power of both lasers at the sample plane was 8 mW. Last image of panel C is the FRET index image calculated
by the PixFRET plug-in as described above

Actinin-M-cpstFRET sensor is lower than the Actinin-C-cpstFRET sensor, underlying that
a-Actinin is affected by tension near cell—cell junctions.
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Fig. 11 a Sketch of the two a-actinin sensors used. “Actinin-C-cpstFRET” is the zero-force control sensor,
where cpstFRET is linked to the C-term of a-actinin. “Actinin-M-cpstFRET” is the force sensor, where
cpstFRET is inserted in the middle of the a-actinin protein and is subjected to stress under tension [17].
b FRET indexes of Actinin-C-cpstFRET and Actinin-M-cpstFRET grown on microscope glass slides and
measured through TIRF microscopy in the whole cell (blue, N = 123 for Actinin-C-cpstFRET, N = 140
for Actinin-M-cpstFRET) and only along cell—cell junctions (light blue, N = 131 for Actinin-C-cpstFRET,
N = 103 for Actinin-M-cpstFRET). Analysis of cell junctions only reveals a significant difference between
the zero-force sensor and the sensor subjected to tension (two-sample t-test, p < 0, 05). ¢ Image of Actinin-
M-cpstFRET sensor in HEK cells acquired through TIRF illumination. Fluorescence emission is concentrated
mainly along cell—cell junctions. Images were taken in the three channels with an integration time of 50 ms,
and the power of both lasers at the sample plane was 8 mW. Last image of panel C is the FRET index image
calculated by the PixFRET plug-in as described above

4 Conclusions

The study of mechanotransduction in living cells involves the measurement of force in mul-
tiple cell locations with molecular specificity, as well as the simultaneous imaging of bio-
chemical and genetic signals transduced by the cell. The complexity of these measurements
requires specialized set-ups combining multiple techniques. Here, we propose a combination
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of optical tweezers, FRET-based molecular tension microscopy and fluorescence imaging
with single-molecule sensitivity to mechanically stimulate cells and simultaneously image
the propagation of mechanical and biochemical signals inside the cell. We give details on the
set-up implementation to allow other researchers to reproduce the set-up performance, and
we give protocols to test and calibrate the different components. The developments reported
here will allow future studies on the transmission of mechanical forces from the outer cell
membrane to the cell’s cytoskeleton and nucleus, and how those forces are transduced into
other types of signals and cell responses, hopefully opening new possibilities for the under-
standing of mechanotransduction mechanisms in living systems.
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