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ABSTRACT. Log-Brunn-Minkowski inequality was conjectured by Boröczky, Lutwak, Yang
and Zhang [7], and it states that a certain strengthening of the classical Brunn-Minkowski
inequality is admissible in the case of symmetric convex sets. It was recently shown by Na-
yar, Zvavitch, the second and the third authors [27], that Log-Brunn-Minkowski inequal-
ity implies a certain dimensional Brunn-Minkowski inequality for log-concave measures,
which in the case of Gaussian measure was conjectured by Gardner and Zvavitch [17].

In this note, we obtain local statements for both Log-Brunn-Minkowski and dimensional
Brunn-Minkowski inequalities for rotation invariant log-conave measures near a ball. Re-
markably, the assumption of symmetry is only necessary for Log-Brunn-Minkowski sta-
bility, which emphasizes an important difference between the two conjectured inequalities.

Also, we determine the infinitesimal version of the log-Brunn-Minkowski inequality.
As a consequence, we obtain a strong Poincaré-type inequality in the case of unconditional
convex sets, as well as for symmetric convex sets on the plane.

Additionally, we derive an infinitesimal equivalent version of the B-conjecture for an
arbitrary measure.

1. INTRODUCTION

1.1. History and background. The classical Brunn-Minkowski inequality states that for
a scalar λ ∈ [0, 1] and for Borel measurable sets A and B in Rn, such that (1− λ)A+ λB
is measurable as well,

(1) |λA+ (1− λ)B|
1
n ≥ λ|A|

1
n + (1− λ)|B|

1
n .

Here | · | denotes the Lebesgue measure, the addition between sets is the standard vector ad-
dition, and multiplication of sets by non-negative reals is the usual dilation. This inequality
has found many important applications in Geometry and Analysis (see e.g. Gardner [16]
for an exhaustive survey on this subject).

For example, the classical isoperimetric inequality, which states that Euclidean balls
maximize the volume at fixed perimeter, can be deduced in a few lines from (1). Also,
Maurey [29] deduced from this inequality the Poincaré inequality for the Gaussian measure
and Gaussian concentration properties. Based on Maurey’s results, Bobkov and Ledoux
proved that the Brunn-Minkowski inequality implies Brascamp-Lieb and log-Sobolev in-
equalities [3]; they also deduced sharp Sobolev and Gagliardo-Nirenberg inequalities [4].
A different argument was developed by the first named author in [11] to deduce Poincaré
type inequalities on the boundary of convex bodies from the Brunn-Minkowski inequality.

Recall that a set in Rn is called convex if together with any two points it contains an
interval containing them. A convex body is a convex compact set with non-empty interior.
The family of convex bodies of Rn will be denoted by Kn.
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A measure γ on Rn is called log-concave if for any pair of sets A and B and for any
scalar λ ∈ [0, 1],

(2) γ(λA+ (1− λ)B) ≥ γ(A)λγ(B)1−λ.

Borell showed [6] that a measure is log-concave if it has a density (with respect to the
Lebesgue measure) which is log-concave (see also Prékopa [34], Leindler [24]). In partic-
ular, Lebesgue measure on Rn is log-concave:

(3) |λA+ (1− λ)B| ≥ |A|λ|B|1−λ.

Note that (1) implies (3) by the arithmetic-geometric mean inequality. Conversely, a simple
argument shows that (3) implies (1) (see, for example, Gardner [16]). This argument is
based on the homogeneity of the Lebesgue measure, therefore, a property analogous to (1)
may not hold for log-concave measures which are not homogeneous. The transposition of
(1) to a measure γ,

(4) γ(λA+ (1− λ)B)
1
n ≥ λγ(A)

1
n + (1− λ)γ(B)

1
n , ∀λ ∈ [0, 1],

as A and B vary in some class of sets, will be called a dimensional Brunn-Minkowski
inequality. Note that if γ is the Gaussian measure and if A = {p} is a one-point set, while
B is any measurable set (with positive measure), then the set A+B is the translate of B by
p. Hence, letting |p| → ∞, and keeping B fixed, one may check that (4) fails. This could
suggest to focus on convex sets containing the origin. On the other hand, Nayar and Tkocz
[32] constructed an example in which (4) fails for the Gaussian measure while both A and
B contain the origin. Gardner and Zvavitch [17] studied inequality (4) for the Gaussian
measure under special assumptions on the sets A and B, and they showed that it holds if
the sets A and B are convex symmetric dilates of each other. Gardner and Zvavitch [17]
proposed the conjecture below in the case of the Gaussian measure; we shall state it in a
more general form which is believed to be natural.

Conjecture 1.1 (Gardner, Zvavitch (generalized)). Let n ≥ 2 be an integer. Let γ be a
log-concave symmetric measure (i.e. γ(A) = γ(−A) for every measurable set A) on Rn.
Let K and L be symmetric convex bodies in Rn. Then

(5) γ(λK + (1− λ)L)
1
n ≥ λγ(K)

1
n + (1− λ)γ(L)

1
n .

Next, we pass to describe the log-Brunn-Minkowski inequality. For a scalar λ ∈ [0, 1]
and for convex bodiesK andL containing the origin in their interior, with support functions
hK and hL, respectively (see section 3 for the definition), define their geometric average as
follows:

(6) KλL1−λ := {x ∈ Rn : 〈x, u〉 ≤ hλK(u)h1−λL (u) ∀u ∈ Sn−1},

where 〈·, ·〉 is the standard scalar product in Rn (note that the fact that the origin lies in
the interior of a convex body implies that its support function is strictly positive). This set
is again a convex body, whose support function is, in general, smaller than the geometric
mean of the support functions of K and L. The following conjecture is widely known as
log-Brunn-Minkowski conjecture (see Böröczky, Lutwak, Yang, Zhang [7]).

Conjecture 1.2 (Böröczky, Lutwak, Yang, Zhang). Let n ≥ 2 be an integer. Let K and L
be symmetric convex bodies in Rn. Then

(7) |KλL1−λ| ≥ |K|λ|L|1−λ.
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Important applications and motivations for Conjecture 1.2 can be found in Böröczky,
Lutwak, Yang, Zhang [8], [9].

It is not difficult to see that the condition of symmetry is necessary (see Böröczky, Lut-
wak, Yang, Zhang [7] or Remark 1.11 below). As for the positive direction, Böröczky,
Lutwak, Yang and Zhang showed that this conjecture holds for n = 2. Saroglou [36] and
Cordero, Fradelizi, Maurey [15] proved that (7) is true when the sets K and L are uncon-
ditional (i.e. they are symmetric with respect to every coordinate hyperplane). Rotem [35]
showed that Log-Brunn-Minkowski conjecture holds for complex convex bodies. Saroglou
showed [37] that the validity of Conjecture 1.2 would imply the same statement for every
log-concave symmetric measure γ on Rn: for every symmetric K,L ∈ Kn and for every
λ ∈ [0, 1],

(8) γ(KλL1−λ) ≥ γ(K)λγ(L)1−λ.

By definition and by the arithmetic-geometric mean inequality, the support function of
KλL1−λ is smaller than the convex linear combinations of the support functions of K and
L. In other words, we have the inclusion:

KλL1−λ ⊂ λK + (1− λ)L.

Therefore, (8) is stronger than (2), for every measure.
In [27] the second and third named authors, Nayar and Zvavitch showed that (8) implies

(5) for every ray-decreasing measure γ on Rn and for every pair of convex sets K and L.
Therefore, Conjecture 1.1 holds on the plane and for unconditional sets.

We conclude the overview of the open questions of this framework with the so called
B-conjecture, proposed by Banaszczyk and popularized by Latała [23].

Conjecture 1.3 (B-conjecture). Let n ≥ 2 be an integer, and let γ be a log-concave sym-
metric measure on Rn. Then for every symmetric convex body K ⊂ Rn, the function
t → γ(etK) is log-concave on R+.

The B-conjecture was proved in the case of Gaussian measure by Cordero-Erausquin,
Fradelizi and Maurey [15]. Their results were extended by Livne Bar-on [25]. Notice
that applying inequality (8) to symmetric convex bodies K,L that are dilates of each other
yields the B-conjecture, and therefore Conjecture 1.2 is stronger than Conjecture 1.3.

1.2. Infinitesimal versions of inequalities. We present the core idea of this paper, i.e.
how to derive the infinitesimal version of concavity inequalities of Brunn-Minkowski type.
We follow a method which has been studied by the first named author, Hug and Saorin-
Gomez in [11], [12] and [14]. A similar circle of ideas was used by Kolesnikov, E. Milman
in [22] to study Brunn-Minkowski type inequalities, and in [21] to obtain an infinitesimal
version of Ehrhard’s inequality. We illustrate this approach first in the case of the dimen-
sional Brunn-Minkowski inequality for an arbitrary measure.

We need to introduce some notation. We say that a convex body K is C2,+ if ∂K is of
class C2 and the Gauss curvature is strictly positive at every x ∈ ∂K.

The first key point of the method we use here, is that the property of being C2,+ is stable
under small “additive” perturbations (with respect to either the Minkowski addition, or the
log-addition). This can be expressed in more precise terms using support functions (see
Section 3 for the definition). Let K ∈ Kn and let hK : Sn−1 → R be its support function.
When no ambiguity is possible, we will write h instead of hK . Then K is of class C2,+ if
and only if h ∈ C2(Sn−1) and the following matrix inequality is verified

(9) (hij(u) + h(u)δij) > 0 ∀u ∈ Sn−1,
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where hij , i, j = 1, . . . , n− 1, stand for the second covariant derivatives with respect to an
orthonormal coordinate frame on Sn−1, and δij , i, j = 1, . . . , n−1 are the usual Kronecker
symbols (more details on condition (9) will be given in Section 3). We will denote by
C2,+(Sn−1) the class of support functions of convex bodies of class C2,+.

We will denote the family of centrally symmetric convex bodies byKns . Central symme-
try of a convex body K is easily readable on its support function h: K ∈ Kns if and only
if h is even. Notice, moreover, that K ∈ Kns implies that 0 ∈ K and consequently h ≥ 0;
if, moreover, K is of class C2,+ then the origin is an interior point, and this implies h > 0
on Sn−1. C2,+

e (Sn−1) will denote the set of support functions of centrally symmetric C2,+

convex bodies, i.e. functions from C2,+(Sn−1) which are additionally even.
Due to the strict inequality (and to the compactness of Sn−1), (9) is stable under small

perturbations of h. More precisely, let h be the support function of a C2,+ convex body K,
and let ψ ∈ C2(Sn−1); then the function

(10) hs := h+ sψ

still verifies (9) if the parameter s is sufficiently small, say |s| ≤ a for some appropriate
a > 0. Hence for every s in this range there exists a unique convex body Ks with the
support function hs.

Definition 1.4. Let h ∈ C2,+(Sn−1), ψ ∈ C2(Sn−1) and let I ⊂ R be an interval contain-
ing the origin, such that h+sψ ∈ C2,+(Sn−1) for every s ∈ I . We define the one-parameter
family of convex bodies:

K(h, ψ, I) := {Ks : hKs = h+ sψ, s ∈ I}.

The next step is, given a sufficiently regular measure γ on Rn, to express γ(K), for every
K of class C2,+, in terms of the support function of h. In section 3.3 we derive the equality

(11) γ(K) =

∫
Sn−1

h(y) detQ(h; y)

∫ 1

0

tn−1F (t∇H(y)) dtdy.

Here F is the density of γ, Q(h, ·) is the matrix involved in condition (9) and H is the
1-homogeneous extension of h.

Hence γ(K) can be seen as a functional depending on h, and the same can be said for
the functional γ(K)1/n. Now let K be a C2,+ centrally symmetric convex body, and let
ψ ∈ C2(Sn−1) be even. Let K(h, ψ, I) be the corresponding one-parameter family; note
that Ks is centrally symmetric for every s. If the measure γ verifies Conjecture 1.1, then
the function

s → [γ(Ks)]
1
n

is concave. Hence (if the following derivative exists):

(12)
d2

ds2
[γ(Ks)]

1
n

∣∣∣∣
s=0

≤ 0.

The previous inequality is what we call infinitesimal form of the Brunn-Minkowski type
inequality (5). In particular this is the infinitesimal form at the body K: the inequality
(12) means that the second variation of γ1/n is negative semi-definite at K. The way we
achieved it shows that it is a consequence of (5); on the other hand we will prove that (12)
is in fact equivalent to (5), under fairly reasonable assumptions on γ.

Lemma 1.5. Assume that γ is a symmetric log-concave measure with continuously differ-
entiable density. Conjecture 1.1 holds for γ if and only if for every one-parameter family
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K(h, ψ, I), with h and ψ even, condition (12) is verified, that is

d2

ds2
[γ(Ks)]

∣∣∣∣
s=0

· γ(K0) ≤
n− 1

n

(
d

ds
[γ(Ks)]

∣∣∣∣
s=0

)2

.

Using the representation formula (11), the left hand-side of (12) can be explicitly com-
puted, and this inequality turns out to be an integral inequality, depending on F , h and ψ;
the details are carried out in Section 7. If we fix the measure, we are left with a family of in-
equalities, parametrized by h, involving the test function ψ, along with its first and second
covariant derivatives. A reference model for these inequalities is the Poincaré inequality
(1) on Sn−1 (see Groemer [18] for the details).

The fact that the infinitesimal forms of concavity inequalities are inequalities of Poincaré
type is a general phenomenon; we refer for instance to the first named author’s paper [13]
for a brief discussion on this subject, and for references to related literature. This approach
gives a new point of view to the problem, and it can be fruitfully used in some cases. For
instance, when the convex body K is the ball of radius R centered at the origin, (12) is
equivalent to

(13) α

∫
Sn−1

ψ2du− β
(∫

Sn−1

ψdu

)2

≤
∫
Sn−1

|∇σψ|2du,

where α and β are constants depending on the density of γ, R, and n. The validity of this
inequality is proved in Section 7 via classical harmonic analysis. More specifically, we
show:

Theorem 1.6 (Dimensional Brunn-Minkowski near a ball). Let γ be a rotation invariant
log-concave measure on Rn. Let R ∈ (0,∞). Let ψ ∈ C2(Sn−1). Then there exists a
sufficiently small a > 0 such that for every ε1, ε2 ∈ (0, a) and for every λ ∈ [0, 1], one has

γ(λK1 + (1− λ)K2)
1
n ≥ λγ(K1)

1
n + (1− λ)γ(K2)

1
n ,

where K1 is the convex set with the support function h1 = R + ε1ψ and K2 is the convex
set with the support function h2 = R + ε2ψ.

A similar approach can be used for the log-Brunn-Minkowski inequality. In order to do
this we introduce a corresponding type of one-parameter families of convex bodies. In this
case, additive perturbations (10) are replaced by multiplicative perturbations.

Remark 1.7. Let h ∈ C2,+(Sn−1) and ϕ ∈ C2(Sn−1), with ϕ > 0 on Sn−1. Then there
exists a > 0 such that

hs := hϕs ∈ C2,+(Sn−1) ∀ s ∈ [−a, a].

In particular for every s ∈ [−a, a] there exists a C2,+ convex body Qs whose support
function is hs. This follows again from condition (9).

On the base of the previous remark we define the corresponding 1-dimensional systems.

Definition 1.8. Let h ∈ C2,+(Sn−1) and ϕ ∈ C2(Sn−1) be strictly positive on Sn−1. Let
I ⊂ R be an interval containing the origin, such that hϕs ∈ C2,+(Sn−1) for every s ∈ I .
We define the one-parameter system of convex bodies:

Q(h, ϕ, I) := {Qs ∈ Kn : hQs = hϕs, s ∈ I}.

1The Poincaré inequality on Sn−1 provides an optimal upper bound for the L2(Sn−1)-norm of a function
in terms of the L2(Sn−1)-norm of its (spherical) gradient, under a zero-mean type condition.
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As before, we assume that a measure γ is given in Rn such that for every one-parameter
family Q(h, ϕ, I) the function s → γ(Qs), s ∈ I , is twice differentiable in I .

Lemma 1.9. Assume that Conjecture 1.2 holds for a measure γ, i.e. for every pair of
symmetric convex sets K and L and for every λ ∈ [0, 1],

(14) γ(KλL1−λ) ≥ γ(K)λγ(L)1−λ.

Then for every one-parameter family Qs ∈ Q(h, ϕ, I), with h and ϕ even, the function
γ(Qs) is log-concave in I , and more precisely

(15)
d2

ds2
log(γ(Qs))

∣∣∣∣
s=0

≤ 0.

We check the validity of the infinitesimal form of the log-Brunn-Minkowski inequality
when h ≡ R, R > 0, for arbitrary log-concave and rotation invariant measures (hence
including the Lebesgue measure).

Theorem 1.10 (Log-Brunn-Minkowski near a ball). Let γ be a rotation invariant log-
concave measure on Rn. Let R ∈ (0,∞). Let ϕ ∈ C2(Sn−1) be even and strictly positive.
Then there exists a sufficiently small a > 0 such that for every ε1, ε2 ∈ (0, a) and for every
λ ∈ [0, 1], one has

γ(Kλ
1K

1−λ
2 ) ≥ γ(K1)

λγ(K2)
1−λ,

where K1 is the convex set with the support function h1 = Rϕε1 and K2 is the convex set
with the support function h2 = Rϕε2 .

Theorem 1.10 can be used to obtain a local uniqueness result for Log-Minkowski prob-
lem (see Böröczky, Lutwak, Yang, Zhang [7], [8] and the references therein), and the
corresponding investigation shall be carried out in a separate manuscript.

Remark 1.11. Theorems 1.6 and 1.10 indicate an important difference between the Brunn-
Minkowski conjecture for log-concave measures and the log-Brunn-Minkowski conjecture.
While the second conjecture is stronger than the first one, their local behavior is surpris-
ingly different. Indeed, one can see that the log-Brunn-Minkowski inequality necessarily
fails for the simplest possible odd perturbation: the shift. Therefore, the inequality (7)
is never correct when K = RBn

2 and L = RBn
2 + a, for any a ∈ Rn and R > 0. In

contrast, Theorem 1.6 tells us that the Brunn-Minkowski inequality for radially symmetric
log-concave measures holds when K and L are obtained via perturbating RBn

2 , and the
perturbation does not have to be even.

Similarly to the previous case, we may use the representation formula for the volume to
compute the second derivative of log(γ(Ks)). In the case of Lebesgue measure we prove
the following Theorem.

Theorem 1.12 (Infinitesimal form of Log-Brunn-Minkowski conjecture). Let n ≥ 2 be an
integer. If Conjecture 1.2 is true, then for every h ∈ C2,+

e (Sn−1), ψ ∈ C2(Sn−1), ψ even
and strictly positive,
(16)∫

Sn−1

ψ21 + tr(Q−1(h))h

h2
dV̄h − n

(∫
Sn−1

ψ

h
dV̄h

)2

≤
∫
Sn−1

1

h
〈Q−1(h)∇ψ,∇ψ〉dV̄h.

Here dV̄h stands for the normalized cone measure of the convex body K with support
function h and Q(h) is the curvature matrix of K (see definitions (9), (34) and (29)).
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A corresponding infinitesimal Brunn-Minkowski inequality for Lebesgue measure was
obtained by the first named author in [11] and reads as:
(17)∫

Sn−1

ψ2 tr(Q−1(h))

h
dV̄h − (n− 1)

(∫
Sn−1

ψ

h
dV̄h

)2

≤
∫
Sn−1

1

h
〈Q−1(h)∇ψ,∇ψ〉dV̄h.

Note that by the Cauchy-Schwarz inequality,∫
Sn−1

ψ2

h2
dV̄h ≥

(∫
Sn−1

ψ

h
dV̄h

)2

.

Hence, (16) is indeed a strengthening of (17).

The log-Brunn-Minkowski inequality has been proved in two special cases: when n =
2 (see Böröczky, Lutwak, Yang, Zhang [7]) and when K and L are unconditional (see
Saroglou [36]). The latter condition is equivalent to require, in (16), that both h and ϕ are
symmetric with respect to each coordinate hyperplane. Hence Theorem 1.12 implies the
validity of (16) in the unconditional and planar cases.

In particular, letting ϕ ≡ 1 we arrive to the following corollary of Theorem 1.12.

Corollary 1.13 (A strengthening of Minkowski’s second inequality.). Let K be a convex
symmetric set in the plane, or a convex unconditional set in Rn. Then,

(18) Vn(K)

(
Vn−2(K) +

∫
∂K

1

〈y, νK(y)〉
dσ(y)

)
≤ Vn−1(K)2,

where Vn−i are the intrinsic volumes of K, νK(y) stands for the unit normal at y ∈ ∂K
and dσ(y) is the surface area measure on ∂K.

Minkowski’s second inequality, which states that for every convex set K ⊂ Rn one has

Vn(K)Vn−2(K) ≤ n− 1

n
Vn−1(K)2,

is deduced from (18) by using the Cauchy-Schwarz inequality. For a more general version
of this inequality see, for example, Schneider [38, Chapter 4].

Additionally, the argument that we have described can be applied to obtain the following
equivalent form of the B-conjecture. Let γ be a log-concave measure on Rn, n ≥ 2.
Assume that γ is not supported on a lower-dimensional affine subspace of Rn, and let f be
its density.

Theorem 1.14 (Equivalent infinitesimal form of the B-conjecture). Conjecture 1.3 is true
for γ if and only if for every 1-homogeneous, even, convex function H defined in Rn we
have

(19)
n

∫
Sn−1

f(∇H)∫ 1

0
tn−1f(t∇H)dt

dV̄γ,K −

(∫
Sn−1

f(∇H)∫ 1

0
tn−1f(t∇H)dt

dV̄γ,K

)2

≤

−
∫
Sn−1

〈∇f(∇H),∇H〉∫ 1

0
tn−1f(t∇H)dt

dV̄γ,K .

Here dV̄γ,h is the normalized cone γ-measure of the convex body with support function H .

We remark that the result of Cordero-Erausquin, Fradelizi and Maurey implies that (19)
is true when γ is the Gaussian measure, as well as for every unconditional log-concave
measure γ whenever H is unconditional.
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This paper is structured as follows. In Section 2 we intend to engage the reader in
the method which we employ, presenting a new proof of the classical Brunn-Minkowski
inequality for convex sets on the plane, which uses its infinitesimal version. Section 3
contains some preliminary material for the subsequent part of the paper. In Section 4 we
establish the relations between dimensional Brunn-Minkowski inequality and log-Brunn-
Minkowski inequality and their infinitesimal forms (i.e. we prove Lemmas 1.5 and 1.9).
In Section 5 we prove Theorem 1.12. Theorem 1.14 is proved in Section 6. Theorems 1.6
and 1.10 are proved in Sections 7 and 8, respectively.

1.3. Acknowledgement. The second author would like to thank Fedor Nazarov and Artem
Zvavitch for useful discussions. The second author would also like to thank the University
of Florence, Italy for the hospitality. The third author would like to thank Georgia Institute
of Technology for the hospitality.

2. A PROOF OF THE BRUNN-MINKOWSKI INEQUALITY ON THE PLANE

In order to engage the reader with the method we shall employ in this manuscript, we
outline a proof of the classical Brunn-Minkowski inequality for convex sets in the plane,
i.e.

(20) |λK + (1− λ)L|
1
2 ≥ λ|K|

1
2 + (1− λ)|L|

1
2 , ∀K,L ∈ K2, ∀λ ∈ [0, 1].

Proof. Assume that K and L are convex bodies on the plane which belong to the class
C2,+. We identify the unit circle S1 with the interval [−π, π], so that every function on S1

is seen as a function on [−π, π], which can be extended to R as a periodic function with
period 2π. Note that if n = 2, the matrix Q(h) is 1 × 1 and its entry is h + ḧ. Therefore,
a function h defined in [−π, π] is the support function of a C2,+ convex body if and only if
it admits a 2π-periodic, C2 extension to R and

h(t) + ḧ(t) > 0 ∀ t ∈ [−π, π].

Let ψ be of class C2 and let h be the support function of a convex body L of class
C2,+, and assume that h > 0 (i.e. the origin belongs to the interior of L). According to a
well-known Santalo’s formula (see Schneider [38]), the area of L may be expressed as

(21) |K| = 1

2

∫ π

−π
(h2 − ḣ2)dt.

As the matter of fact, (11) implies (21) directly via integration by parts.
Let a > 0 be sufficiently small so that hs := h+ sψ, s ∈ [−a, a], is the support function

of a convex body Ks. Consider the function

(22) f(s) := |Ks| =
1

2

∫ π

−π

[
(h+ sψ)2 − (ḣ+ sψ̇)2

]
dt.

By Lemma 1.5, (20) is equivalent to the fact that f is 1
2
−concave (for all h and ψ as above).

The second derivative of
√
f at s = 0 is smaller or equal to zero if and only if

(23) 2f(0)f ′′(0) ≤ f ′(0)2.

Combining (22) and (23) we arrive to

(24)
(∫

(h2 − ḣ2)dt
)(∫

(ψ2 − ψ̇2)dt

)
≤
(∫

(hψ − ḣψ̇)dt

)2

.
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To prove (24), we introduce the Fourier coefficients ak = ĥ(k) and bk = ψ̂(k), k ∈ N,
of h and ψ, respectively. Then by Parseval’s identity, (24) is equivalent to

(25)

(
a20 −

∑
k 6=0

(k2 − 1)a2k

)(
b20 −

∑
k 6=0

(k2 − 1)b2k

)
≤

(
a0b0 −

∑
k 6=0

(k2 − 1)akbk

)2

.

Let

t =
∑
k 6=0

(k2 − 1)akbk, A =

√∑
k 6=0

(k2 − 1)a2k, B =

√∑
k 6=0

(k2 − 1)b2k.

By Cauchy’s inequality, |t| ≤ AB. Note that

a0 =

∫ π

−π
h(t)dt > 0.

Note also that

a20 − A2 =

∫ π

−π
(h2 − ḣ2)dt = 2|K| > 0,

and hence a0 ≥ A. The goal is to prove that

(26) (a20 − A2)(b20 −B2) ≤ (a0b0 − t)2

for all t ∈ [−AB,AB], provided that a0 ≥ A > 0, B > 0. The proof of (26) splits into
three cases.

Case 1: b0 > B. Then a0b0 > AB, and hence

min{(a0b0 − t)2 : |t| ≤ AB} = (a0b0 − AB)2.

Thus (26) amounts to the inequality

(a20 − A2)(b20 −B2) ≤ (a0b0 − AB)2,

which, in turn, is equivalent to the following true statement:

(a0B − b0A)2 ≥ 0.

Case 2: |b0| ≤ |B|. In this case the right hand side of (26) could be 0 but the left hand
side is necessarily non positive.

Case 3: b0 < −B. Then

min{(a0b0 − t)2 : |t| ≤ AB} = (a0b0 + AB)2,

and (26) follows from the inequality

(a20 − A2)(b20 −B2) ≤ (a0b0 + AB)2,

which, in turn, is true since

(a0B + b0A)2 ≥ 0.

This concludes the proof.
�
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3. PREPARATORY MATERIAL

We work in the n−dimensional Euclidean space Rn with norm | · | and scalar product
〈·, ·〉. We set Bn

2 := {x ∈ Rn : |x| ≤ 1} and Sn−1 := {x ∈ Rn : |x| = 1}, to denote the
unit ball and the unit sphere, respectively.

We shall denote the Lebesgue measure (the volume) in Rn by |·|. By σ we will denote the
uniform measure on Sn−1, i.e. the restriction to Sn−1 of the (n− 1)-dimensional Hausdorff
measure.

We say that a set A ⊂ Rn is symmetric if for every x ∈ A one has −x ∈ A.
The Minkowski addition of two subsets A and B of Rn is defined as

A+B = {x+ y : x ∈ A, y ∈ B}.
The multiplication of a set A by a scalar λ ≥ 0 is defined as the set

λA = {λx : x ∈ A}.

3.1. Measures. We will frequently consider measures on Rn different from the Lebesgue
measure. A generic measure will be denoted by γ. All measures under consideration will
be tacitly assumed to be Radon measures, and all sets will be assumed to be measurable.
We will write that a measure γ has a density F if it is absolutely continuous with respect
to the Lebesgue measure, and its Radon-Nikodym derivative with respect to the Lebesgue
measure is F .

A measure γ on Rn is called symmetric if for every set S ⊂ Rn, γ(S) = γ(−S). If the
measure has a density then it is symmetric whenever the density is an even function.

A measure γ on Rn is said to be rotation invariant if for every set A ⊂ Rn, and for every
rotation T , γ(A) = γ(TA). If a rotation invariant measure γ has a density F , we may write
F in the form:

F (x) = f(|x|),
for a suitable f : [0,∞)→ [0,∞).

We recall that a function f : Rn → [0,∞) is log-concave if − log(f) : Rn → (∞,∞]
is a convex function (with the convention log(0) = −∞).

3.2. Convex bodies. A set in Rn is called convex if together with every two points it
contains the interval connecting them. If a set in Rn is convex and compact with non-
empty interior, we call it a convex body. As mentioned before, the family of convex bodies
in Rn will be denoted by Kn. For the theory of convex bodies we refer the reader to the
books by Ball [1], Bonnesen, Fenchel [5], Koldobsky [20], Milman, Schechtman [30],
Schneider [38] and others.

Note that for every K,L ∈ Kn and α, β ≥ 0, we have αK + βL ∈ Kn.
For K ∈ Kn, the support function of K, hK : Sn−1 → R, is defined as

hK(u) = sup
x∈K
〈x, u〉.

By the geometric viewpoint, hK(u) represents the (signed) distance from the origin of the
supporting hyperplane to K with outer unit normal u. We shall use the notation HK(x) for
the 1-homogenous extension of hK , that is,

HK(x) =

 |x|hK
(
x

|x|

)
if x 6= 0,

0 if x = 0.

The function HK is convex in Rn, for every K ∈ Kn. Vice versa, for every continuous
1-homogeneous convex function H on Rn, there exists a unique convex body K such that
H = HK .
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Note that K ∈ Kn contains the origin (resp., in its interior) if and only if hK ≥ 0 (resp.
hK > 0) on Sn−1. It is easy to see that for a convex set K and a scalar λ ≥ 0, we have
hλK(u) = λhK(u) for every u ∈ Sn−1. It is also well known that for convex bodies K
and L, the support function of their Minkowski sum is the sum of their support functions.
Hence:

(27) hαK+βL(u) = αhK(u) + βhL(u) ∀K,L ∈ Kn, ∀α, β ≥ 0.

We recall that for k = 0, . . . , n, the k−th intrinsic volume of a convex bodyK is defined
as follows:

Vk = |K + εBn
2 |(n−k)

∣∣
0
,

where the upper index (n−k) stands for the (n−k)−th derivative. Note that Vn(K) is the
volume of K, while Vn−1(K) is the (n− 1)-dimensional Hausdorff measure of ∂K.

We say that a convex body K is C2,+ if ∂K is of class C2 and the Gauss curvature is
strictly positive at every x ∈ ∂K. In particular, if K is C2,+ then it admits outer unit
normal νK(x) at every boundary point x. Recall that the Gauss map νK : ∂K → Sn−1 is
the map assigning the unit normal to each point of ∂K. For K ∈ C2,+, the Gauss map is a
diffeomorphism. Moreover, for every x ∈ ∂K we have

(28) hK(νK(x)) = 〈x, νK(x)〉.

C2,+ convex bodies can be characterized through their support function. We recall that
an orthonormal frame on the sphere is a map which associates a collection of n − 1 or-
thonormal vectors to every point of Sn−1. Let ψ ∈ C2(Sn−1). We denote by ψi(u) and
ψij(u), i, j ∈ {1, . . . , n − 1}, the first and second covariant derivatives of ψ at u ∈ Sn−1,
with respect to a fixed local orthonormal frame on an open subset of Sn−1. We define the
matrix

(29) Q(ψ;u) = (qij)i,j=1,...,n−1 = (ψij + ψδij)i,j=1,...,n−1 ,

where the δij’s are the usual Kronecker symbols. On an occasion, instead of Q(ψ;u) we
writeQ(ψ). Note thatQ(ψ;u) is symmetric by standard properties of covariant derivatives.
The meaning of this matrix becomes particularly important when ψ is the support function
of a convex body K. In this case we shall call it curvature matrix of K (see the following
Remark 3.2). The proof of the following proposition can be deduced from Schneider [38,
Section 2.5].

Proposition 3.1. Let K ∈ Kn and let h be its support function. Then K is of class C2,+ if
and only if h ∈ C2(Sn−1) and

Q(h;u) > 0 ∀u ∈ Sn−1.

In view of the previous results it is convenient to introduce the following set of functions

C2,+(Sn−1) = {h ∈ C2(Sn−1) : Q(h;u) > 0∀u ∈ Sn−1}.

Hence C2,+(Sn−1) is the set of support functions of convex bodies of class C2,+.

Remark 3.2. Let K be a C2,+ convex body. Then νK : ∂K → Sn−1 is a diffeomorphism.
The matrix Q(h;u) represents the inverse of the Weingarten map at x = ν−1K (u), and its
eigenvalues are the principal radii of curvature of ∂K at x. Consequently we have

det(Q(h;u)) =
1

G(x)

where G denotes the Gauss curvature.
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Let K be a C2,+ convex body, with support function hK and its homogenous extension
HK . HK is of classC1(Rn\{0}). By∇HK we denote its gradient with respect to Cartesian
coordinates. The following useful relation holds: for every u ∈ Sn−1, ∇HK(u) is the
(unique) point on ∂K where the outer unit normal is u:

∇HK(u) = ν−1K (u) ∀u ∈ Sn−1.

Consequently,
〈∇HK(u), νK(u)〉 = HK(u) ∀u ∈ Sn−1.

Remark 3.3. Let ψ ∈ C1(Sn−1). The notation ∇σψ stands for the spherical gradient of
ψ, i.e. the vector (ψ1, . . . , ψn−1), where ψi are the covariant derivatives of ψ with respect
to the i-th element of a fixed orthonormal system on Sn−1. Let Φ be the 1-homogeneous
extension of ψ to Rn. Then we have

(30) |∇Φ(u)|2 = ψ2(u) + |∇σψ(u)|2

for every u ∈ Sn−1.

3.3. A formula expressing a measure of a convex set in terms of its support function.
Let γ be a probability measure on Rn; we assume without loss of generality that γ has
a density F with respect to the Lebesgue measure, and that F is sufficiently regular (e.g.
continuous).

Theorem 3.4. Let K be a C2,+ convex body, with support function h and its homogenous
extension H. Assume that the origin is in the interior of K. Then

(31) γ(K) =

∫
Sn−1

h(y) detQ(h; y)

∫ 1

0

tn−1F (t∇H(y)) dtdy.

Proof. Firstly, we consider a polar coordinate system associated with the body. Let

X : ∂K × [0, 1]→ Rn

be the map defined by
X(x, t) = tx.

Note that, by convexity of K, X establishes a bijection between ∂K × [0, 1] and K. A
simple computation shows that the Jacobian of this map, JX , is given by

JX(x, t) = tn−1〈x, νK(x)〉dσ(x) = tn−1hK(νK(x))dσ(x),

where dσ(x) is the area element of ∂K at x (see Nazarov [33] or the second named author
[26]). Hence, by the area formula,

γ(K) =

∫
K

F (x)dx =

∫
∂K

hK(νk(x))

∫ 1

0

tn−1F (tx) dtdσ(x).

Next, we make the change of variables y = νK(x). In view of Remark 3.2, its Jacobian is
equal to detQ(h; ·). The proof is complete. �

Remark 3.5. Though we will use the previous representation formula only for C2,+ convex
bodies, it is easy to see that it can be extended, by an approximation argument, to arbitrary
convex bodies. In the general case the integration term detQ(h; y)dy must be replaced by
dSn−1(K, y), where Sn−1(K, ·) is the area measure of K (see Schneider [38, Chapter 4]).
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Corollary 3.6. Let γ be a rotation invariant probability measure measure on Rn with
density F (y) = f(|y|). Let K be a convex body of class C2,+ and assume that the origin is
in the interior of K. Then

γ(K) =

∫
Sn−1

h detQ(h; y)

∫ 1

0

tn−1f(t|∇H(y)|)dtdy,

where h is the support function of K and H is its 1-homogeneous extension.

Remark 3.7. We note that the above implies a well known formula for Lebesgue measure
(corresponding to the case f ≡ 1) of a convex body:

|K| = 1

n

∫
Sn−1

h(u) detQ(h(u))du,

which we already encountered in Section 2, for n = 2.

For K ∈ C2,+ the cone-volume measure VK of K is a Borel measure on the unit sphere
Sn−1 defined for a Borel set A ⊂ Sn−1 via

(32) VK(A) =
1

n

∫
y∈ν−1

K (A)

〈y, νK(y)〉dσ(y),

where σ stands for the (n − 1)−dimensional Hausdorff measure (restricted to ∂K). We
refer, for instance, to Schneider [38, Section 9.1], Henk, Linke [19], Böröczky, Lutwak,
Yang, Zhang [7], Naor [31], for a more detailed presentation of this notion, and for its
definition for general convex bodies. As justified by Remark 3.7, the cone-volume measure
of a smooth convex set K has a density with respect to the Haar measure on the sphere,
and this density is expressible in terms of the support function of K as follows:

(33) dVK(u) =
1

n
hK(u) detQ(hK(u))du.

We shall use the notation dV̄K for a cone volume measure normalized to be a probability
measure on the sphere, that is

(34) dV̄K(u) =
1

|K|
1

n
hK(u) detQ(hK(u))du.

We will frequently identify a convex body K with its support function h and we shall
sometimes use the notation Vh instead of VK .

Additionally, given a measure γ on Rn with density f(x), and a C2,+ convex body K
with support function hK , we shall use the notion of cone γ-measure, defined on the sphere
by the following relation:

(35) dVγ,K(u) = hK(u) detQ(hK(u))

∫ 1

0

tn−1f(t∇HK(u))dtdu.

Here HK stands for 1-homogenous extension of hK to Rn. The expression (35) is justified
by Theorem 3.4.

We shall use the notation dV̄γ,K for a cone γ-measure normalized to be a probability
measure on the sphere, that is

(36) dV̄γ,K(u) =
1

γ(K)
hK(u) detQ(hK(u))

∫ 1

0

tn−1f(t∇H(u))dtdu.
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3.4. The co-factor matrix and related notions. In what follows we will need a lemma
due to Cheng and Yau (see [10]), which will be particularly useful for applying the diver-
gence theorem on Sn−1. To state the lemma we need some preparation. In particular we
will use some notions related to matrices.

Let M = (mij) be an N ×N symmetric matrix, N ∈ N. We define C[M ], the cofactor
matrix of M , as follows

C[M ] = (cij[M ])i,j=1,...,N where cij[M ] =
∂ det

∂mij

(M) i, j = 1, . . . , N.

C[M ] is an N ×N symmetric matrix. If M is invertible then

(37) C[M ] = det(M)M−1.

Taking the trace on both sides and using symmetry of the matrices M and C[M ], we get

(38)
N∑

i,j=1

cij[M ]mij = N det(M).

We shall also consider the second derivatives of the determinant of a matrix with respect
to its entries:

cij,kl[M ] =
∂2 det

∂mij∂mkl

(M).

By homogeneity we have that, for every i, j = 1, . . . , N

(39)
N∑

k,l=1

cij,kl[M ]mkl = (N − 1)cij[M ].

Throughout the paper we shall use the Einstein summation convention for repeated in-
dices.

3.5. The Cheng-Yau lemma and an extension. Let h ∈ C2,+(Sn−1), and assume addi-
tionally that h ∈ C3(Sn−1). Consider the cofactor matrix y → C[Q(h; y)]. This is a matrix
of functions on Sn−1. The lemma of Cheng and Yau asserts that each column of this matrix
is divergence-free.

Lemma 3.8 (Cheng-Yau.). Let h ∈ C2,+(Sn−1) ∩ C3(Sn−1). Then, for every index j ∈
{1, . . . , n− 1} and for every y ∈ Sn−1,

n−1∑
i=1

(cij[Q(h; y)])i = 0,

where the sub-script i denotes the derivative with respect to the i-th element of an orthonor-
mal frame on Sn−1.

For simplicity of notation we shall often write C(h), cij(h) and cij,kl(h) in place of
C[Q(h)], cij[Q(h)] and cij,kl[Q(h)] respectively.

As a corollary of the previous result we have the following integration by parts formula.
If h ∈ C2,+(Sn−1) ∩ C3(Sn−1) and ψ, φ ∈ C2(Sn−1), then

(40)
∫
Sn−1

φ cij(h)(ψij + ψ δij)dy =

∫
Sn−1

ψ cij(h)(φij + φ δij)dy.

The Lemma of Cheng and Yau admits the following extension (see the paper by the
first-named author, Hug and Saorin-Gomez [14]).
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Lemma 3.9. Let ψ ∈ C2(Sn−1) and h ∈ C2,+(Sn−1) ∩ C3(Sn−1). Then, for every k ∈
{1, . . . , n− 1} and for every y ∈ Sn−1

n−1∑
i=1

(cij,kl[Q(h; y)](ψij + ψδij))l = 0.

Correspondingly we have, for every h ∈ C2,+(Sn−1) ∩ C3(Sn−1), ψ, ϕ, φ ∈ C2(Sn−1)
and i, j ∈ {1, . . . , n− 1}∫

Sn−1

ψ cij,kl(h)(ϕij + ϕδij)((φ)kl + φ δkl)dy

=

∫
Sn−1

φ cij,kl(h)(ϕij + ϕδij)((ψ)kl + ψ δkl)dy.(41)

4. PROOF OF LEMMAS 1.5 AND 1.9

Proof of Lemma 1.5. Assume first that γ satisfies (5) for all pairs of symmetric convex sets
K and L. Consider a system K(h, ψ, I). Then the equality hKs = h + sψ, s ∈ I , and
the linearity of support function with respect to Minkowski addition, imply that for every
s, t ∈ I and for every λ ∈ [0, 1]

Kλs+(1−λ)t = λKs + (1− λ)Kt.

By (5),

γ(Kλs+(1−λ)t)
1
n = γ(λKs + (1− λ)Kt)

1
n ≥ λγ(Ks)

1
n + (1− λ)γ(Kt)

1
n ,

which means that the function γ(Ks)
1
n is concave on I .

Conversely, suppose that for every system K(h, ψ, I) the function γ(Ks)
1
n verifies (12).

We firstly observe that this implies concavity of γ(Ks)
1
n on the entire interval I . Indeed,

given s0 in the interior of I , consider h̃ = h + s0ψ, and define a new system K̃(h̃, ψ, J),
where J is a new interval such that h̃ + sψ = h + (s + s0)ψ ∈ C2,+ for every s ∈ J .
Then the second derivative of γ(Ks)

1
n at s = s0 is negative, so is the second derivative of

γ(K̃s)
1
n at s = 0.

Next, note that for every pair of C2,+ convex bodies K and L there exists a system
K(h, ψ, I) to which they both belong. Indeed, pick h = hK and ψ = hL − hK , then for
every s ∈ [0, 1],

Ks = (1− s)K + sL.

It is important to observe here that for every s ∈ [0, 1],

hs = hK + s(hL − hK) = (1− s)hK + shL,

and hence hs is a support function. Thus the system K(hK , hL−hK , [0, 1]) is well-defined.
Since γ(Ks)

1
n is concave on [0, 1], we get

γ((1− s)K + sL)
1
n = γ(Ks)

1
n ≥ (1− s)γ(K)

1
n + sγ(L)

1
n ,

which finishes the proof of (5) for convex bodies of classC2,+. The general case is achieved
by a standard approximation argument (see, for example, Schneider [38]).

�

Proof of Lemma 1.9. Let h ∈ C2,+(Sn−1) and ϕ ∈ C2(Sn−1) be strictly positive even
functions on Sn−1; by Remark 1.7 there exists a > 0 such that hs := hϕs is the support
function of a convex body Qs for all s ∈ [−a, a]. Note that for s, t ∈ [−a, a] we get

hλs+(1−λ)t = hλsh
1−λ
t ,
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and thus

Qλs+(1−λ)t = Qλ
sQ

1−λ
t .

Inequality (14) implies

γ(Qλs+(1−λ)t) = γ(Qλ
sQ

1−λ
t ) ≥ γ(Qs)

λγ(Qt)
1−λ,

which means that γ(Qs) is log-concave in [−a, a].

�

5. THE INFINITESIMAL FORM OF LOG-BRUNN-MINKOWSKI INEQUALITY, AND PROOF
OF THEOREM 1.12.

Let h ∈ C2,+(Sn−1) and ψ ∈ C2(Sn−1). As before, denote by K(h, ψ, I) = {Ks} the
collection of sets with support functions hs = h+ sψ. Consider the function f(s) = |Ks|.
Then, by Remark 3.7,

(42) f(s) = |Ks| =
1

n

∫
Sn−1

(h+ sψ)(u) detQ((h+ sψ)(u))du.

It was shown by the first named author [11] that

(43) f ′(0) =

∫
Sn−1

ψ detQ(h)du,

and

(44) f ′′(0) =

∫
Sn−1

ψ2tr(Q−1(h)) detQ(h)du−
∫
Sn−1

〈Q−1(h)∇ψ,∇ψ〉 detQ(h)du.

Theorem 1.12 will follow from the next Lemma.

Lemma 5.1. Let n ≥ 2. Let γ be a measure on Rn. Fix h ∈ C2,+(Sn−1), ϕ ∈ C2(Sn−1),
ϕ > 0 and set ψ = h logϕ. Let K(h, ψ, I), with I = [−a, a] and a > 0, be a one-parameter
family as in Definition 1.4, i.e. the collection of sets with support functions hs = h + sψ,
for s ∈ [−a, a]. Consider the function f(s) = γ(Ks). Introduce the additional notation
for the operator F (h, ψ) := f ′(0). Set

(45) A(h, ψ) :=
dF
(
h, h+sψ

h
ψ
)

ds

∣∣∣∣∣
s=0

.

Consider the one-parameter family Q(h, ϕ, [−a, a]), as in Definition 1.8, i.e. the collec-
tion of sets with support functions hs = hϕs, s ∈ [−a, a]. Let g(s) = γ(Qs). Then

• g(0) = f(0);
• g′(0) = f ′(0);
• g′′(0) = f ′′(0) + A(h, ψ).

The proof of the Lemma immediately follows from the fact that

hϕs = h+ sh logϕ+ o(s), as s→ 0,

with the selection ψ = h logϕ.
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5.1. Proof of Theorem 1.12. Suppose the Conjecture 1.2 holds. By Lemma 1.9 we get
that for every one-parameter family Qs ∈ Q(h, ϕ, I), with h and ϕ even,

d2

ds2
log(γ(Qs))

∣∣∣∣
s=0

≤ 0.

When γ is the Lebesgue measure on Rn, then, by (43),

F (h, ψ) =

∫
Sn−1

ψ detQ(h)du,

and hence, by (45),

(46) A(h, ψ) =
d

ds

(∫
Sn−1

h+ sψ

h
ψ detQ(h)du

)∣∣∣∣
s=0

=

∫
Sn−1

ψ2

h
detQ(h)du.

Theorem 1.12 then follows from (42), (43), (44), (46) and (34). �

6. THE PROOF OF THEOREM 1.14 ABOUT THE INFINITESIMAL FORM OF
B-CONJECTURE.

Proof. Let K ∈ Kn with support function h; as usual we denote its homogenous extension
by H . Let γ be a measure on Rn with density f . Consider the function B : [0,∞) → R+

defined as follows:

(47) B(s) = γ(esK) =

∫
Sn−1

hs detQ(hs)

∫ 1

0

tn−1f (t∇Hs) dtdu,

where hs = es · h, and Hs = es ·H . Thus,

B(s) =

∫
Sn−1

esnh detQ(h)

∫ 1

0

tn−1f (tes∇H) dtdu,

and

B′(s) =

∫
Sn−1

nesnh detQ(h)

∫ 1

0

tn−1f (tes∇H) dtdu

+

∫
Sn−1

esnh detQ(h)

∫ 1

0

tnes〈∇H,∇f(tes∇H)〉dtdu.

Integrating by parts in t, we get∫ 1

0

tnes〈∇H,∇f(tes∇H)〉dt = f(es∇H)−
∫ 1

0

ntn−1f (tes∇H) dt.

Hence,

B′(s) =

∫
Sn−1

esnh detQ(h)f(es∇H)du,

and,

B′′(s) =

∫
Sn−1

esnh detQ(h) [nf(es∇H) + es〈∇H,∇f(es∇H)〉] du.

Using (35), we obtain

(48) B′(0) =

∫
Sn−1

f(∇H)∫ 1

0
tn−1f(t∇H)dt

dVγ,K ,

and

(49) B′′(0) = n

∫
Sn−1

f(∇H)∫ 1

0
tn−1f(t∇H)dt

dVγ,K +

∫
Sn−1

〈∇f(∇H),∇H〉∫ 1

0
tn−1f(t∇H)dt

dVγ,K .
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The B-conjecture is equivalent to logarithmic concavity of B(s), and hence Theorem 1.14
follows from (47), (48) and (49). �

7. PROOF OF THEOREM 1.6, ABOUT THE STABILITY FOR DIMENSIONAL
BRUNN-MINKOWSKI INEQUALITY.

7.1. First and second variation of the measure. As usual, γ is a radially symmetric log-
concave measure on Rn, with density F with respect to Lebesgue measure; in particular,
we write F in the form:

F (x) = f(|x|).

We will assume that f is smooth, more precisely f ∈ C2([0,∞)). Let us fix h ∈ C2,+(Sn−1)
and let K be a convex body with support function h. Let ψ ∈ C2(Sn−1) and consider the
one-parameter system of convex bodies K(h, ψ, [−a, a]) for a suitably small a > 0. In
particular for every s ∈ [−a, a] there exists a convex body Ks such that hKs = hs. Hence
we may consider the function

g : [−a, a]→ R, g(s) = γ(Ks).

The aim of this subsection is to derive formulas for the first and second derivative of g(s)
at s = 0. We start from the expression:

g(s) =

∫
Sn−1

hs(u) det(Q(hs;u))

∫ 1

0

tn−1f(t
√
h2s(u) + |∇σhs(u)|2)dtdu,

where we used Theorem 3.4, the rotation invariance of γ, and Remark 3.3. To simplify
notations we set

Qs = Q(hs;u) , Q = Q0; Ds =
[
h2s(u) + |∇σhs(u)|2

]1/2
, D = D0;

As =

∫ 1

0

tn−1f(tDs)dt , A = A0; Bs =

∫ 1

0

tnf ′(tDs)dt , B = B0;

Cs =

∫ 1

0

tn+1f ′′(tDs)dt , C = C0.

Then

g′(s) =

∫
Sn−1

ψ det(Qs)Asdu+

∫
Sn−1

hscij(hs)(ψij + ψδij)Asdu

+

∫
Sn−1

hs det(Qs)Bs
hsψ + 〈∇σhs,∇σψ〉

Ds

du.(50)
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Passing to the second derivative (for s = 0) we get

g′′(0) = 2

∫
Sn−1

ψcij(h)(ψij + ψδij)Adu

+ 2

∫
Sn−1

ψ det(Q)B
hψ + 〈∇σh,∇σψ〉

D
du

+ 2

∫
Sn−1

hcij(h)(ψij + ψδij)B
hψ + 〈∇σh,∇σψ〉

D
du

+

∫
Sn−1

Ahcij,kl(h)(ψij + ψδij)(ψkl + ψδkl)du

+

∫
Sn−1

h det(Q)C

[
hψ + 〈∇σh,∇σψ〉

D

]2
du

+

∫
Sn−1

h det(Q)B

[
D(h2 + |∇σψ|2)−

[hψ + 〈∇σh,∇σψ〉]2

D

]
1

D2
du.(51)

We now focus on the fourth summand of the last expression. Applying formulas (41)
and (39) we get ∫

Sn−1

Ahcij,kl(h)(ψij + ψδij)(ψkl + ψδkl)du

=

∫
Sn−1

ψcij,kl(h)(ψij + ψδij)((Ah)kl + Ahδkl)du

=

∫
Sn−1

ψcij,kl(h)(ψij + ψδij)(A(hkl + hδkl) + 2Akhl + hAkl)du

=

∫
Sn−1

Aψcij,kl(h)(ψij + ψδij)(hkl + hδkl)du

+

∫
Sn−1

ψcij,kl(h)(ψij + ψδij)(2Akhl + hAkl)du

= (n− 2)

∫
Sn−1

Aψcij(h)(ψij + ψδij)du

+

∫
Sn−1

ψcij,kl(h)(ψij + ψδij)(2Akhl + hAkl)du.

Hence

g′′(0) = n

∫
Sn−1

ψcij(h)(ψij + ψδij)Adu+ 2

∫
Sn−1

ψ det(Q)B
hψ + 〈∇σh,∇σψ〉

D
du

+ 2

∫
Sn−1

hcij(h)(ψij + ψδij)B
hψ + 〈∇σh,∇σψ〉

D
du

+

∫
Sn−1

ψcij,kl(h)(ψij + ψδij)(2Akhl + hAkl)du

+

∫
Sn−1

h det(Q)C

[
hψ + 〈∇σh,∇σψ〉

D

]2
du

+

∫
Sn−1

h det(Q)B

[
D(ψ2 + |∇σψ|2)−

[hψ + 〈∇σh,∇σψ〉]2

D

]
1

D2
du.(52)
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7.2. The case of Euclidean balls. Let h ≡ R, R > 0. This choice considerably simplifies
the situation as:

Q = RIn−1; ∇σ ≡ R; D ≡ R; cij(h) ≡ Rn−2δij;

A =

∫ 1

0

tn−1f(Rt)dt, B =

∫ 1

0

tnf ′(Rt)dt, C =

∫ 1

0

tn+1f ′′(Rt)dt.

Here In−1 denotes the (n − 1) × (n − 1) identity matrix. In particular A does not depend
on the point u on Sn−1, so that

Ai ≡ Aij ≡ 0 on Sn−1.
Hence g(0) = |Sn−1|RnA, and

g′(0) = Rn−1A

∫
Sn−1

ψdu+Rn−1A

∫
Sn−1

(∆σψ + (n− 1)ψ)du+RnB

∫
Sn−1

ψdu

= Rn−1(nA+RB)

∫
Sn−1

ψdu.(53)

Here we used the fact that, by the divergence theorem on Sn−1,∫
Sn−1

∆σψdu = 0.

As for the second derivative, we have

g′′(0) = nRn−2A

∫
Sn−1

ψ(∆σψ + (n− 1)ψ)du+ 2Rn−1B

∫
Sn−1

ψ2du

+ 2Rn−1B

∫
Sn−1

ψ(∆σψ + (n− 1)ψ))du+RnC

∫
Sn−1

ψ2du

+ Rn−1B

∫
Sn−1

|∇σψ|2du.

By the divergence theorem,∫
Sn−1

ψ∆σψdu = −
∫
Sn−1

|∇σψ|2du,

and thus
(54)

g′′(0) = Rn−2(An(n−1)+2nRB+R2C)

∫
Sn−1

ψ2du−Rn−2(nA+RB)

∫
Sn−1

|∇σψ|2du.

Integrating by parts in t, we get

f(R) = nA+RB,

and
f ′(R) = (n+ 1)B +RC.

Thus we obtain

(55) g′(0) = Rn−1f(R)

∫
Sn−1

ψdu.

and

g′′(0) = Rn−2 [(n− 1)f(R) +Rf ′(R)]

∫
Sn−1

ψ2du−Rn−2f(R)

∫
Sn−1

|∇σψ|2du

= Rn−2f(R)

(
(n− 1)

∫
Sn−1

ψ2du−
∫
Sn−1

|∇σψ|2du
)

+Rn−1f ′(R)

∫
Sn−1

ψ2du.(56)
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The validity of (12) for h ≡ R is equivalent to the validity of the following inequality for
every ψ ∈ C2(Sn−1):

(57)

Af(R)

|Sn−1|

(
(n− 1)

∫
Sn−1

ψ2du−
∫
Sn−1

|∇σψ|2du
)

+
ARf ′(R)

|Sn−1|

∫
Sn−1

ψ2du ≤

n− 1

n
f(R)2

(
1

|Sn−1|

∫
Sn−1

ψdu

)2

.

Let us denote the quadratic operators appearing in the left-hand side and in the right-
hand side of the last inequality by B1(ψ) and B2(ψ), correspondingly. That is,

B1(ψ) =
Af(R)

|Sn−1|

(
(n− 1)

∫
Sn−1

ψ2du−
∫
Sn−1

|∇σψ|2du
)

+
ARf ′(R)

|Sn−1|

∫
Sn−1

ψ2du,

and

B2(ψ) =
n− 1

n
f(R)2

(
1

|Sn−1|

∫
Sn−1

ψdu

)2

.

The next step is to decompose ψ as the sum of a constant function and a function which is
orthogonal to constant functions. Let us write

ψ = ψ0 + ψ1

where
ψ0 =

1

|Sn−1|

∫
Sn−1

ψdu and
∫
Sn−1

ψ1du = 0.

Note that ∫
Sn−1

ψ2dσ =

∫
Sn−1

ψ2
0dσ +

∫
Sn−1

ψ2
1dσ.

Therefore,
B1(ψ) = B1(ψ0) +B1(ψ1),

as well as
B2(ψ) = B2(ψ0) +B2(ψ1).

Since γ is radially symmetric, one has f ′ ≤ 0. Moreover, by the standard Poincaré
inequality on the unit sphere, one has

(58) (n− 1)

∫
Sn−1

ψ2du−
∫
Sn−1

|∇σψ|2du ≤ 0,

for every ψ such that

(59)
∫
Sn−1

ψdu = 0.

Thus
B1(ψ1) ≤ 0 = B2(ψ1).

To prove (57) it remains to show that

(60) B1(ψ0) ≤ B2(ψ0).

This condition is equivalent to

(61) ngψ(0)g′′ψ(0) ≤ (n− 1)[g′ψ(0)]2

in the special case in which ψ is a constant function. The inequality (61) is nothing but the
dimensional Brunn-Minkowski inequality for spherically invariant measures when K and
L are Euclidean balls. As was shown in [27] (see also the third named author [28]), this
statement follows from Log-Brunn-Minkowski conjecture in the case of log-concave spher-
ically invariant measures when K and L are Euclidean balls. Indeed, spherically invariant
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case is a very partial case of the unconditional case, and the Log-Brunn-Minkowski for
the unconditional sets and measures was independently established by Cordero, Fradelizi,
Maurey [15], and Saroglou [36].

For the reader’s convenience we present the self-sufficient short proof of this fact in the
Appendix. �

8. PROOF OF THE THEOREM 1.10

Proof. When h ≡ R > 0, the additional term introduced in Lemma 5.1 can be written as
follows:

A(h, ψ) = f(R)

∫
Sn−1

ψ2du.

By Lemmas 1.9 and 5.1, and by the computations carried out in the previous section, the
claim of the theorem is equivalent to the following inequality:

(62)

A [nf(R) +Rf ′(R)]
1

|Sn−1|

∫
Sn−1

ψ2du− Af(R)
1

|Sn−1|

∫
Sn−1

|∇σψ|2du ≤

f(R)2
(

1

|Sn−1|

∫
Sn−1

ψdσ

)2

,

for every ψ ∈ C2(Sn−1).
We follow the argument of the previous section and split the proof into two cases.
Case 1. Consider an even ψ ∈ C2(Sn−1) such that

∫
ψ = 0. Then the inequality (62)

amounts to

(63)
1

|Sn−1|

∫
Sn−1

ψ2du ≤ f(R)

nf(R) +Rf ′(R)

1

|Sn−1|

∫
Sn−1

|∇σψ|2du.

Indeed, under these conditions ψ is orthogonal to the first and the second eigenfunctions of
the Laplace operator on Sn−1. The third eigenvalue of this operator is 2n. Hence

(64)
1

|Sn−1|

∫
Sn−1

ψ2du ≤ 1

2n

1

|Sn−1|

∫
Sn−1

|∇σψ|2du.

Since f is decreasing, we have f ′(R) ≤ 0, and hence

(65)
f(R)

nf(R) +Rf ′(R)
≥ 1

n
>

1

2n
.

The inequalities (64) and (65) imply (63).
Case 2. Let ψ be a constant function.The inequality (62) holds for constant functions

because, once again, the Log-Brunn-Minkowski inequality holds in the case of spherically
invariant measures and Euclidean balls (see the Appendix).

To summarize, we here established (62) separately for constant functions and centered
functions. A polarization argument analogous to the one presented in the proof of Theorem
1.6 finishes the proof. �

APPENDIX

We provide a direct proof of the fact that for a spherically invariant log-concave measure
γ on Rn and for a, b > 0 we have

(66) γ
(
(aBn

2 )λ(bBn
2 )1−λ

)
≥ (γ(aBn

2 ))λ (γ(bBn
2 ))1−λ .

To show it, we first state a well-known result proved by Borell [6] and rediscovered by
Uhrin [39] (see also Ball [2]).
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Proposition 8.1. Let f, g, h : [0,+∞)→ [0,+∞) be such that

h(x1−λyλ) ≥ f(x)1−λg(y)λ

for every x, y ∈ [0,+∞) and every λ ∈ [0, 1]. Then,∫ +∞

0

h ≥
(∫ +∞

0

f

)1−λ(∫ +∞

0

g

)λ
.

To prove the Proposition, apply the Prékopa-Leindler inequality (see Prékopa [34], Leindler
[24], or Gardner [16]) to f(x) = f(ex) ex, g(x) = g(ex) ex and h(x) = h(ex) ex, and per-
form the change of variables t = ex.

Corollary 8.2. Let φ be a log-concave non-increasing function defined in [0,∞). Set

F (R) =

∫ R

0

tn−1φ(t)dt, ∀R > 0.

Then F (ex) is log-concave.

Proof. Apply Proposition 8.1 to f(x) = 1[0,a](x)xn−1φ(x), g(x) = 1[0,b](x)xn−1φ(x) and
h(x) = 1[0,a1−λbλ](x)xn−1φ(x). Indeed, if x /∈ [0, a] or y /∈ [0, b], we have

h(x1−λyλ) ≥ 0 = f(x)1−λg(y)λ.

As the density φ is log-concave and non-increasing, we have

φ(x1−λyλ) ≥ φ((1− λ)x+ λy) ≥ φ(x)1−λφ(y)λ.

To obtain the first inequality above, we used the arithmetic mean - geometric mean inequal-
ity.

Hence in the case when x ∈ [0, a] and y ∈ [0, b] we have

h(x1−λyλ) = (x1−λyλ)n−1φ(x1−λyλ)

≥ (x1−λyλ)n−1φ(x)1−λφ(y)λ

= f(x)1−λg(y)λ.

It follows that ∫ +∞

0

h ≥
(∫ +∞

0

f

)1−λ(∫ +∞

0

g

)λ
,

which entails F (a1−λbλ) ≥ F (a)1−λF (b)λ. �

To conclude, we observe that for a spherically invariant log-concave measure γ with
density φ(x),

γ(RBn
2 ) = |Sn−1|

∫ R

0

tn−1φ(t)dt,

and, therefore, (66) follows from the Corollary 8.2. �
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