
21 September 2024

Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer / Phelan, Cm;
Kuchenbaecker, Kb; Tyrer, Jp; Kar, Sp; Lawrenson, K; Winham, Sj; Dennis, J; Pirie, A; Riggan, Mj;
Chornokur, G; Earp, Ma; Lyra, PC Jr; Lee, Jm; Coetzee, S; Beesley, J; Mcguffog, L; Soucy, P; Dicks, E; Lee, A;
Barrowdale, D; Lecarpentier, J; Leslie, G; Aalfs, Cm; Aben, Kk; Adams, M; Adlard, J; Andrulis, Il; Anton-
Culver, H; Antonenkova, N; study group, AOCS .; Aravantinos, G; Arnold, N; Arun, Bk; Arver, B; Azzollini, J;

Original Citation:

Identification of 12 new susceptibility loci for different histotypes of
epithelial ovarian cancer.

Published version:
doi: 10.1038/ng.3826

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1078030 since: 2021-03-30T11:38:31Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:



Identification of twelve new susceptibility loci for different 
histotypes of epithelial ovarian cancer

A full list of authors and affiliations appears at the end of the article.

#Correspondence to: PDPP, Departments of Oncology and Public Health and Primary Care, University of Cambridge, Cambridge, 
England.pp10001@medschl.cam.ac.uk; Tel +44 1223 740166.
*These authors contributed equally to this manuscript
§These authors jointly directed this work

Author Contributions
Writing group: C.M.P., K.B.K., J.P.T, S.P.K., K.L., S.W., D.H., M.A.E., A.N.M., G.C.-T., E.L.G., S.J.R., T.A.S., S.A.G., A.C.A. and 
P.D.P.P. Co-ordinated OCAC OncoArray genotyping: C.M.P., M.J. R., G.C. Coordinated CIMBA OncoArray genotyping: G.C.-T., 
L.McG, J.S., P.S. OncoArray genotyping: CIDR (M.A., T.S., K.F.D., J.Romm, E.P.), Mayo (J.M.C.), UCam (C.Luccarini). Oncoarray 
genotype calling and quality control: K.B.K, D.F.E., J.D., D.B., E.D., A.Pirie, A.Lee, J.L., G.L. Performed statistical analyses for 
OCAC: J.P.T., P.D.P.P. Performed statistical analyses for CIMBA: K.B.K., A.L., A.C.A. Performed the meta-analyses: K.B.K., A.C.A. 
OCAC database management: M.J.R., A.Berchuck. CIMBA database management and BRCA1/2 variant nomenclature and 
classification: L.McG., G.L, A.B.S.. Supervised OCAC statistical analyses: P.D.P.P. Supervised CIMBA statistical analyses: A.C.A. 
Conceived and coordinated the synthesis of the Oncoarray: P.D.P.P., D.F.E., C.A., S.Chanock, S.G., B.H., D.J.H., A.C.A., J.S.. 
Functional analyses: P.C.L Jr., S.Coetzee, M.A.E., S.A.G., E.L.G., D.H., S.P.K., K.L., J.M.L, G.M.-F., A.N.M., S.J.W, G.C-T., J. 
Beesley.
Provided DNA samples and/or phenotypic data: C.M.A., K.K.H.A., J.Adlard, I.L.A., H.A-C., N.Antonenkova, G.A., N.Arnold, 
B.K.A., B.A., J.Azzollini, J.Balmaña, S.N.B., L.Barjhoux, R.B.B., Y.B., M.W.B., A.B.-F., J.Benitez, A.Berchuck, M.Bermisheva, 
M.Bernardini, M.J.Birrer, M.Bisogna, L.Bjorge, A.Black, K.Blankstein, M.J.Blok, C.Bodelon, N.B., A.Bojesen, B.Bonanni, A.Borg, 
A.R.B., J.D.B, C.Brewer, L.Brinton, P.B., A.B.-W., F.B., J.Brunet, B.Buecher, R.B., S.S.B., J.Y.B., T.Caldes, M.A.C., I.C., R.C., 
M.E.C., T.Cescon, S.B.C., J.C.-C., X.Q. C., G.C-T., Y.-E.C., J.Chiquette, W.K.C., K.B.M.C., T.Conner, J.Cook, L.S.C., F.J.C., D.W.C., 
A.A.D., M.B.D., F.Damiola, S.D.D., A.D.-M., F.Dao, R.D., A.dF., C.D., O.D., Y.C.D., J.A.D., S.M.D., C.M.D., T.D., L.D., M.Duran, 
M.Dürst, B.D., D.E., T.E., R.E., U.E., B.E., A.B.E., S.E., M.E., K.H.E., C.E., D.G.E., P.A.F., S.F., S.F.F., J.M.F., T.M.F., Z.C.F., R.T.F., 
F.F., W.D.F., G.F., B.L.F., E.F., D.F., P.A.G., J.Garber, M.J.G., V.G.-B., S.A.G., A.G., A.G.-M., A.M.-G., G.Giles, R.G., G.Glendon, 
A.K.G., D.E.G., E.L.G., M.T.G., T.G., M.G., M.H.G., J.Gronwald, E.Hahnen, C.A.H., N.H., U.H., T.V.O.H., P.A.H., H.R.H., J.Hauke, 
A.Hein, A.Henderson, M.A.T.H., P.H., S.H., C.K.H., E.Høgdall, F.B.L.H., H.H., M.J.H., K.H., R-Y.H., P.J.H., J.Hung, D.G.H., T.H., 
E.N.I., C.I., E.S.I., L.I., A.I., A.Jakubowska, P.J., R.J., A.Jensen, M.J., U.B.J., E.M.J., S.J., M.E.J., P.K., B.Y.K., A.Karzenis, K.K., 
L.E.K., C.J.K., E.K., L.A.K., J.I.K., S.-W.K., S.K.K., M.K., R.K.K., T.A.K., J.K., A.Kwong, Y.L., D.Lambrechts, N.L., M.C.L., 
C.Lazaro, N.D.L., L.LeM., J.W.L., S.B.L., A.Leminen, D.Leroux, J.Lester, F.L., D.A.L., D.Liang, C.Liebrich, J.Lilyquist, L.Lipworth, 
J.Lissowska, K.H.L., J.Lubi ski, L.Lundvall, P.L.M., S. Manoukian, L.F.A.G.M., T.M., S.Mazoyer, J.McA., V.McG., J.R.McL., 
I.McN., H.E.J.M.-H., A.M., U.M., A.R.M., M.Merritt, R.L.M., G.M., F.M., J.M.-S., M.Moffitt, M.Montagna, K.B.M., A.M.M., J.M., 
S.A.N., K.L.N., L. N., R.B.N., S.L.N., H.N., D.N., R.L.N., K.Odunsi, K.Offit, E.O., O.I.O., H.O., C.O., D.M.O’M., K-R.O., N.C.O.-
M., N.O., S.O., A.O., L.O., D.P., L.Papi, S.K.P., T-W.P.-S., J.P., C.L.P., I.S.P., P.H.M.P., B.Peissel, A.Peixoto, T.Pejovic, L.M.P., J.B.P., 
P.Peterlongo, L.P., G.P., P.D.P.P., C.M.P., K.-A.P., M.P., M.C.P., A.M.P., S.R.P., T.Pocza, E.M.P., B.Poppe, M.E.P., F.P., D.P., M.A.P., 
P.Pujol, P.Radice, S.J.R., J.Rantala, C.R.-F., G.R., K.R., P.Rice, A.Richardson, H.A.R., M.R., G.C.R., C.R-A., M.A.Rookus, 
M.A.Rossing, J.H.R., A.Rudolph, I.B.R., H.B.S., D.P.S., J.M.S., R.K.S., M.J.S., T.A.S., L.Senter, V.W.S., G.Severi, P.Sharma, N.S., 
L.E.Side, W.S., J.S., C.F.S., H.Sobol, H.Song, P.Soucy, M.S., A.B.S., Z.S., D.S., D.S.-L., L.E.S.-C., G. Sukiennicki, R.S., C.S., A.J.S., 
C.I.S., L.Szafron, Y.Y.T., J.A.T., M.-K.T., M.R.T., S.-H.T., K.L.T., M.Thomassen, P.J.T., L.C.V.T., D.L.T., L.T., A.V.T., 
M.Tischkowitz, S.T., A.E.T., A.Tone, B.T., R.T., A. Trichopoulou, N.T., S.S.T., A.M.V.A., D.V.D.B., A.H.V.D.H., R.B.V.D.L., M.V.H., 
E.V.N., E.J.V.R., A.Vanderstichele, R.V.-M., A.Vega, D.V.E., I.V., J.V., R.A.V., A.Vratimos, L.W., C.W., D.W., S.W.-G., B.W., P.M.W., 
C.R.W., J.N.W., N.W., A.S.W., J.T.W., L.R.W., A.W., M.W., A.H.W., X.W., H.Y., D.Y., A.Z., K.K.Z.
All authors read and approved the final manuscript.

Competing interests
The authors declare no competing financial interests related to this manuscript.

Websites
Nature Publishing Group. Nature Genetics - iCOGS, http://www.nature.com/icogs/
The Cancer Genome Atlas Project - http://cancergenome.nih.gov/
The cBio Cancer Genomics Portal - http://www.cbioportal.org/
Pupasuite 3.1 -http://pupasuite.bioinfo.cipf.es
OCAC - http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/
CIMBA QC guidelines-http://ccge.medschl.cam.ac.uk/consortia/cimba/members/data%20management/CIMBA%20and%20BCAC
%20Quality%20Control%20November%202008%20v2.doc

HHS Public Access
Author manuscript
Nat Genet. Author manuscript; available in PMC 2017 November 01.

Published in final edited form as:
Nat Genet. 2017 May ; 49(5): 680–691. doi:10.1038/ng.3826.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/icogs/
http://cancergenome.nih.gov/
http://www.cbioportal.org/
http://pupasuite.bioinfo.cipf.es
http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/
http://ccge.medschl.cam.ac.uk/consortia/cimba/members/data%20management/CIMBA%20and%20BCAC%20Quality%20Control%20November%202008%20v2.doc
http://ccge.medschl.cam.ac.uk/consortia/cimba/members/data%20management/CIMBA%20and%20BCAC%20Quality%20Control%20November%202008%20v2.doc


Abstract

To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), 

we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 

40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for 

serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for 

mucinous EOC (3q22.3, 9q31.1) and one for endometrioid EOC (5q12.3). We then meta-analysed 

the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 
and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified an 

additional three loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory 

biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a novel 

susceptibility gene for low grade/borderline serous EOC.

Epithelial ovarian cancer (EOC) is a heterogeneous disease commonly classified into five 

major histotypes of invasive disease 1- (high grade serous (HGSOC), low grade serous 

(LGSOC), mucinous (MOC), endometrioid (ENOC) and clear cell carcinoma (CCOC)) - 

and two histotypes of borderline disease – serous and mucinous. The histotypes have 

differences in lifestyle and genetic risk factors, precursor lesions, patterns of spread, 

molecular events during oncogenesis, response to chemotherapy, and prognosis. HGSOC are 

thought to be derived from fallopian tube secretory epithelial cells through foci of 

endosalpingiosis existing as inclusion cysts lined with tubal epithelium at the ovarian and 

peritoneal surface2. In contrast, CCOC, ENOC, and sero-endometrioid carcinomas appear to 

develop from endometriosis 3,4. MOC resembles adenocarcinoma of the gastric pylorus, 

intestine, or endocervix and the majority of these tumors show gastrointestinal 

differentiation 5.

Approximately 20% of the familial component of EOC risk is attributable to high-to-

intermediate risk genes 6. An unknown fraction is due to more common, lower risk genetic 

variation 7. In European populations, genome-wide association studies (GWAS) have 

identified 23 EOC susceptibility alleles including 18 common variants associated with all 

histologies and/or serous EOC 8-15, one with borderline serous tumors 13, three with 

MOC 16 and one with CCOC 12. The majority of these loci also showed associations 

(p<0.05) with EOC risk for BRCA1 or BRCA2 mutation carriers 15. Five additional loci 

associated with EOC and breast and/or prostate cancer have been identified17; three of these 

were associated with susceptibility to EOC, breast and prostate cancers, and two were 

associated only with breast and EOC risk. However, the common genetic variants explain 

only 3.9% of the inherited component of EOC risk 15 and additional susceptibility loci are 

likely to exist, particularly for the less common, non-serous histotypes.

We designed a custom Illumina array named the ‘OncoArray’, in order to identify new 

cancer susceptibility loci18. The OncoArray includes ~533,000 variants (of which 260,660 

formed a GWAS backbone) and has been used to genotype over 500,000 samples, including 

EOC case-control studies of the Ovarian Cancer Association Consortium (OCAC) and 

BRCA1 and BRCA2 mutation carriers of the Consortium of Investigators of Modifiers of 

BRCA1/2 (CIMBA). These data were combined with genotype data from the Collaborative 

Oncological Gene-environment Study (COGS) project 14,19 and three EOC GWAS 8,9. We 
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present the results of these association analyses together with functional annotation of the 

new genome-wide significant EOC susceptibility loci.

Results

Association analyses

Genetic association analyses were performed using genotype data from 25,509 population-

based EOC cases and 40,941 controls from OCAC and meta-analysis of these data with 

19,036 BRCA1 and 12,412 BRCA2 mutation carriers from CIMBA, of whom 2,933 and 

954, respectively, were affected with EOC. The numbers of participants by study for OCAC 

and CIMBA are shown in Supplementary table 1 and Supplementary table 2, respectively.

We used data from the 1000 Genomes Project 20 reference panel to impute genotypes for 

11,403,952 common variants (MAF>1%) and evaluated the associations of these SNPs with 

EOC risk. In OCAC alone, nine histotypes were investigated (all invasive, serous invasive, 

HGSOC, LGSOC, serous borderline, LGSOC and serous borderline combined, ENOC, 

CCOC and MOC). Association analyses revealed six novel loci associated with serous EOC 

histotypes at genome-wide significance (p<5×10-8): rs9870207 at 3q28, rs13113999 at 

4q32.3, rs150293538 at 8q21.11, rs7902587 at 10q24.33, rs8098244 at 18q11.2 and 

rs6005807 at 22q12.1. Five of these loci were associated with borderline serous EOC (3q28, 

4q32.3, 8q21.11, 10q24.33 and 18q11.2) and four with LGSOC tumors (3q28, 8q21.11, 

10q24.33 and 18q11.2) (Table 1). We also identified two loci associated with MOC 

(rs112071820 at 3q22.3 and rs320203 at 9q31.1) and one locus associated with ENOC 

(rs555025179 at 5q12.3). The meta-analysis of OCAC and CIMBA revealed three additional 

serous EOC loci (rs2165109 at 2q13; rs9886651 at 8q24.21; rs7953249 at 12q24.31). The 

8q24.21 SNP rs9886651 is close to two SNPs previously associated with serous EOC 9 (and 

Gjyshi A, Mendoza-Fandino G, Tyrer J, Woods NT, Lawrenson K et al., personal 

communication). Multi-variable analysis of OCAC data showed that this is a third 

independent-associated variant in this region (unadjusted OR = 1.07, OR adjusted for 

rs1400482 and rs13255292 =1.07). Variant rs6005807 at 22q12.1 was previously reported to 

be associated with serous EOC at sub-genome-wide significance 21.

The association of the top SNP in each region with the nine EOC histotypes studied with 

EOC risk in BRCA1 and BRCA2 carriers is shown in Figure 1. Four SNPs, rs8098244 

(18q11.2), rs2165109 (2q13), rs9886651 (8q24.21), rs7953249 (12q24.31) showed 

associations with EOC risk for BRCA1 mutation carriers and one SNP, rs9886651 (8q24.21) 

showed an association with risk for BRCA2 carriers (P<0.05)

Eighteen of the 23 previously published loci were associated with the same histotype at 

genome-wide significance (excluding the 5 pleitropic loci published by Kar et al, 

Supplementary table 3). Of these, 11 showed an association with EOC risk for BRCA1 
mutation carriers and eight showed an association with risk for BRCA2 carriers (P<0.05). 

There was significant heterogeneity of risk between the five main, non-overlapping 

histotypes (high grade serous, low grade/borderline serous, endometrioid, clear cell and 

invasive/borderline mucinous) for 28 of the 40 new and previously published loci 

(Supplementary table 3).
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We carried out a competing-risks association analysis in BRCA1 and BRCA2 mutation 

carriers in order to investigate whether the observed associations with ovarian cancer in 

mutation carriers are influenced by associations with breast cancer risk. For this we used the 

most significantly associated genotyped SNPs for this 22. The EOC HR estimates were 

consistent with the estimates from the main analysis for all SNPs (results not shown). Some 

evidence suggested that rs7953249 at 12q24.31 was associated with reduced breast cancer 

risk in BRCA1 mutation carriers (HR=0.95, 95%CI 0.91-0.99, p=0.034) and that SNP 

rs2165109 at 2q13 was associated with increased breast cancer risk in BRCA2 mutation 

carriers (HR=1.08, 95%CI 1.01-1.14, p=0.02). When these associations were analyzed by 

tumor estrogen-receptor status, the associations for the two SNPs were restricted to ER-

negative breast for BRCA1 (p=0.026 for rs7953249) and BRCA2 (p=0.02 for rs2165109) 

mutation carriers.

Association analyses adjusted for the most significant SNP in each region (including 3 

independent SNPs at 8q24.21) did not reveal any additional independent association signals 

in these regions. At the 12 new EOC risk regions, 571 SNPs were deemed potentially causal 

(Supplementary table 4) and carried forward for functional annotation, eQTL and mQTL 

analyses.

Functional and molecular analyses

Of the 571 candidate causal variants in the 12 novel loci, 562 variants are located in non-

coding DNA sequences and may influence the expression of nearby target genes 23. We used 

a variety of in silico approaches to identify putative, tissue-specific, regulatory biofeatures 

and candidate susceptibility genes associated with risk SNPs at each locus. For the few risk-

associated, non-synonymous variants in protein coding genes, we also evaluated predicted 

effects on protein function.

Functional annotation of candidate causal alleles—We mapped the set of 562 non-

protein coding candidate causal SNPs at the 12 susceptibility loci to regulatory biofeatures, 

using a variety of epigenomic marks profiled in normal and cancer tissues relevant to the 

cellular origins of different ovarian cancer histotypes (Supplementary table 5). The cell types 

interrogated included: (1) fallopian tube (FT33; FT246) and ovarian surface epithelial cell 

lines (IOSE4; IOSE11) for serous precursor tissues; (2) serous-related cancer cell lines 

including HGSOC cell lines (UWB1.289; CaOV3) and a LGSOC cell line (OAW42); (3) 

endometriosis epithelial cells (EEC16), as a likely precursor of ENOC; (4) cell types 

relevant to MOC, including MOC cell lines (GTFR230; MCAS) and both colonic normal 

(colon crypt) and cancer tissues (HCT116; HeLa-S3). The epigenomic marks annotated 

were open chromatin, identified using formaldehyde assisted isolation of regulatory element 

sequencing (FAIRE-seq) and DNase I hypersensitivity sequencing (DNase-seq) and 

chromatin immunoprecipitation sequencing (ChIP-seq) of histone modifications, specifically 

histone H3 lysine 27 acetylation (H3K27ac, which denotes active chromatin) and histone H3 

lysine 4 monomethylation (H3K4me1, which marks active and poised enhancers). SNPs 

were also intersected with ENCODE transcription factor ChIPseq data. All tissue types were 

evaluated for all risk loci. The SNP-biofeature intersections by tissue type are illustrated in 

Figure 2 and Supplementary table 6.
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Nine (1.6%) of the 571 candidate causal SNPs lie in protein coding sequences. Five of these 

are synonymous and four are non-synonymous but predicted to be benign by Polyphen-2 

(Supplementary table 6). Four SNPs lie within untranslated regions of protein-coding genes 

and so could affect mRNA stability: rs1051149 and rs1051150 in the 3’ UTR of LAMA3 
and rs12327412 in the 5’ UTR of TTC39C, all at the 18q11.2 locus; and rs1018128 in the 3’ 

UTR of GMNC at 3q28. The majority of biofeature-SNP intersections (n=166, 29% of all 

candidate causal SNPs and 97% of candidate causal SNPs overlapping a biofeature) were for 

SNPs lying within active chromatin, and/or open chromatin. Eleven SNPs lie in the 

promoters of four genes (PVT1, HNF1A, TTC39C and TTC28) (Supplementary Table 6).

At six serous risk loci (4q32.3; 3q28; 8q21; 18q11; 8q24; 22q12) we observed extensive 

SNP-biofeature overlaps, particularly in serous-related tissue types. In contrast, the two 

MOC susceptibility loci (3q22.3, 9q31.1) were biofeature-poor regions and showed little or 

no SNP-biofeature intersections in any of the tissue types under investigation, including 

MOC and ENCODE cell lines. At the endometrioid EOC risk locus (5q12.3) we observed 

enhancers in endometriosis, ovarian, fallopian and EOC cell types flanking the small number 

risk associated SNPs (n=8), none of which coincided with regulatory elements.

Several studies have shown that common variant susceptibility alleles are significantly 

enriched for regulatory elements detected in disease-relevant tissue types. Therefore we 

tested for enrichment of SNP-H3K27ac intersections at each locus because H3K27ac was 

the most comprehensively profiled regulatory feature across different tissue types 

(Supplementary table 7). At the 12q24.31 locus a large region of active chromatin spanning 

the HNF1A promoter drove a strong enrichment for risk SNP-H3K27ac intersects in the 

OAW42 LGSOC cell line (P=4.45×10-22). At 10q24.33 (which is associated with LGSOC 

and borderline SOC) we identified a significant enrichment of acetylated H3K27 in normal 

fallopian cells (FT33 P=1.09×10-4, FT246 P=4.29×10-3), HGSOC ovarian cancer cells 

(UWB1.289 P=6.23×10-3), MOC cells (GTFR230 P=5.16×10-3) as well as, somewhat 

surprisingly, colorectal cancer cells (HCT116 P=2.64×10-4) and cervical cancer cells (HeLa-

S3 P=9.60×10-12). This locus contains several clusters of H3K27ac activity and TF binding 

in ovarian and ENCODE datasets, and these highly active regions showed extensive overlap 

with candidate causal alleles (Figure 3).

Identifying candidate susceptibility gene targets at risk loci—We used several 

approaches to identify candidate target genes at the 12 risk loci. First, we hypothesized that 

target genes underlying disease susceptibility are more likely to display prevalent copy 

number alterations in ovarian tumor tissues. Amplifications were the most frequent 

alteration at 6 of the 12 susceptibility loci (Supplementary figure 1). Contiguous genes were 

commonly amplified in the same sample indicating segmental amplifications (data not 

shown). HNF1A, ORAI1, CHEK2, XPB1, BUB1, and FOXL2 are found inside the same 

topologically associating domain (TAD) as candidate causal SNPs and have been previously 

implicated in ovarian cancer development (Supplementary figure 2). Notably, HNF1A, 

ORAI1, and FOXL2 are amplified in >5% of EOC samples. No TAD was identified for 

8q24.21; but MYC and PVT1 appear to be the targets for multiple enhancer elements 

containing independent EOC risk associations for HGSOC at this locus (Gjyshi et al., 

personal communication).
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We also performed expression and methylation quantitative trait locus (eQTL and mQTL) 

analyses in several data sets comprising methylation/expression profiling and germline 

genotyping in relevant tumor tissues (see Methods). For eQTL analyses, we evaluated 

associations between the candidate causal SNPs and all genes profiled within 1 Mb of the 

index risk SNP at each locus, since this window will contain most cis-eQTL associations 23. 

Results of the eQTL analyses in each data set were adjusted for tumor copy number and 

methylation status 24 and a meta-analysis of the two HGSOC data sets from TCGA and the 

Mayo Clinic are shown in Supplementary table 8-11. The most significant eQTL 

associations in both HGSOC data sets were identified between the candidate causal risk 

SNPs at the 10q24.33 risk locus and OBFC1 expression (TCGA-rs11597399 - P = 3.1 × 

10-10; Mayo-rs7902587- P = 4.0 × 10-4; meta-analysis-rs34379047- P = 2.1 × 10-11). The 

risk (T) allele was associated with reduced OBFC1 expression in both data sets (Figure 3d). 

We then evaluated all SNPs at this locus (not just the candidate causal SNPs) for eQTL 

associations; the SNPs with the most significant eQTL associations for OBFC1 were also 

candidate causal SNPs for the risk association, reinforcing OBFC1 as the target gene. No 

expression associations were identified at P < 10-4 for the candidate causal risk SNPs at any 

other locus in the eQTL meta-analysis. Thirty-two ENOC samples were used to conduct an 

eQTL analysis focused on the 5q13.1 ENOC risk locus but this did not reveal any 

associations at P < 0.05 (Supplementary table 10).

Methylation QTL analyses were restricted to the set of 67 CpGs with the most significant 

association with decreased expression of the 74 genes of interest (within a 1Mb region of the 

index SNP) in the 12 regions. Results are presented for the most significant mQTL 

associations for each SNP based on the reduced set of CpGs (Supplementary table 12). We 

identified two regions with mQTL associations at P<0.005. At 2q13, the risk allele [G] of 

rs56226558 was associated with reduced methylation of the CpG cg21469370 (p=1.4 × 

10-3), with methylation being associated with reduced expression of BCL211 (p=1.1×10-6) 

even though cg21469370 lies in the gene body of ACOXL. At 3q22.3, the risk allele [C] of 

rs68088905 was associated with reduced methylation of the CpG cg06726820 in the 

promoter of RBP1 (mQTL p = 4.9 × 10-3). Methylation was strongly associated with 

reduced RBP1 expression (p=1.7×10-36). We found no highly significant mQTL associations 

for genes at any other locus, and the eQTL SNP at 10q24.33 was not association with DNA 

methylation.

SNPs in the 10q24.33 locus revealed the most significant eQTL with expression of the 

OBFC1 gene. The most significant eQTL SNPs also showed the most epigenetic marks, 

including rs35007589 (eQTL p-value 2.3×10-11), rs35176048 (eQTL p-value 2.6 ×10-11) 

and rs34685262 (eQTL p-value 3.8 ×10-11). These SNPs intersect regions of open 

chromatin, H3K27ac and H3K4me1 signal in normal ovarian and fallopian tube epithelial 

cells and, for rs35176048 and rs34685262, in HGSOC cell lines. These enhancers are not 

specific to ovarian cell types. At this locus, 11 candidate causal SNPs are predicted by 

motifbreakR 25 to alter transcription factor binding sites, of which 8 are predicted to have a 

strong effect on TF binding (Supplementary table 13). Of particular interest, rs2488000 

(eQTL p-value = 1.4 × 10-10) is predicted in silico to strongly impact the binding of CTCF, a 

ubiquitously expressed transcriptional regulator that plays a key role in insulator function 

and chromatin structure (Figure 3c). Furthermore in ENCODE there is evidence from 
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ChIPseq experiments that CTCF does bind at this location in monocytes. Other SNPs 

predicted to have a strong effect on the binding of other cancer-relevant TFs are rs11813268 

(ETS1), rs7907606 (FOXP1) and rs2995264 (IRF8) (Supplementary table 13).

At 8q24.21, the candidate causal variants span a region of ~20kb that includes the promoter 

and first exon of PVT1, an oncogenic long non-coding RNA (lncRNA) with known roles in 

breast and ovarian cancer 26. The 8q24 region is also a hotspot for association with other 

cancers 27 with PVT1, CMYC and novel lncRNAs identified as candidate target genes. Five 

SNPs (rs10956390, rs10098831, rs6470578, rs6990534 and rs4410871) coincide with 11 or 

more biofeatures in normal ovarian and fallopian epithelial cells, and ovarian cancer cells.

Discussion

We have identified 12 novel loci associated with different histotypes of EOC at genome-

wide significance. Despite the use of a stringent significance threshold it is possible that 

some of these represent false positive associations. Wakefield has suggested the use of an 

approximate Bayes factor to calculate the Bayes false discovery probability (BFDP) 28. We 

have estimated the BFDP based on a plausible odds ratio of 1.2 and a prior probability of 

association of 0.0001. The BFDP was less than 10% for 11 of the 12 associations. We also 

calculated the BFDP for the 22 previously reported loci, of which 17 were <1%, 1 was >1% 

but less than 10% and 4 were greater than 10%. We did not calculate the BFDP for the 5 

pleiotropic loci reported by Kar et al, 2016 17. These five loci together with the 29 loci with 

BFDP<10% bring the total number of susceptibility loci for different histotypes of EOC to 

34 for women of European ancestry, of which 27 are associated with risk of invasive EOC at 

P<0.01. Assuming a polygenic variance of 1.45 29 the 27 loci account for approximately 

6.4% of the polygenic risk in the population. Incorporating common EOC susceptibility 

variants into risk assessment tools will improve risk prediction and may be particularly 

useful for refining risk estimates in BRCA1 and BRCA2 mutation carriers.

Some strata in the OCAC analyses pooled data from several studies from the same country. 

This might increase the potential for bias because of population stratification, but we expect 

any inflation due to population stratification to be effectively removed by adjusting for the 

principal components. In order to evaluate the possible magnitude of such a bias we 

compared the inflation of the median test statistic for the analysis of the OncoArray data 

stratified by study with an analysis in which all the cases and controls were combined into a 

single stratum. There was little difference (λ=1.054 v λ=1.078). As these inflation factors 

are not adjusted for sample size, some of the difference is due to the increase in effective 

sample size of the non-stratified analysis, suggesting that any bias do to pooling data from 

multiple studies will be minimal.

Consistent with previous studies in EOC and other cancer types, the vast majority of the 

risk-associated variants were located in non-protein coding regions of the genome 30 

suggesting these variants impact target gene expression by altering the activity of functional 

element(s) that regulate the expression of one or more susceptibility genes. Since non-

coding biofeatures, such as enhancers, show a high degree of tissue specificity, we 

intersected EOC risk SNPs with regions of active chromatin catalogued in cell lines 
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representing the different EOC histotypes (HGSOC, ENOC, LGSOC and MOC) and in EOC 

precursor cells (OSEC/FTSEC for LGSOC/HGSOC, EEC for ENOC and colonic crypt for 

MOC). Enrichment analyses test for over-representation of cell-type specific biofeatures 

intersecting risk variants at confirmed risk loci, compared to a lack of enrichment in non-

disease associated tissues. A major strength of our approach was the ability to interrogate 

histotype-specific epigenomic profiles and so in addition to identifying the putative 

functional targets of risk SNPs, these analyses can also indicate whether some cell types are 

more likely to be relevant to disease pathogenesis compared to other cell types. For example 

we detected a significant enrichment of active chromatin marks coinciding with SNPs in 

fallopian tube epithelial cells at the 10q24.33 LGSOC/borderline serous locus, which could 

reflect recent pathological evidence that some of these tumors arise in the distal fallopian 

tube 31, as well as HGSOC 2. At the same locus, we also identified an enrichment for 

biofeatures in a primary MOC cell line, a cancer histotype that is often associated with 

deregulation of the MAPK pathway; which is also perturbed in LGSOC 32. Given the 

growing evidence that regulatory mechanisms are highly tissue specific, it is perhaps to be 

expected that we find such enrichments in cell types associated with EOC development. 

However, the lack of enrichment at MOC and ENOC risk loci may indicate that alternative 

precursor cell types give rise to these histotypes rather than the cell types evaluated in the 

current study.

Expression QTL analysis identified associations between the most statistically significant 

risk-associated SNPs at 10q24.33 and OBFC1, many of which also coincide with epigenetic 

biofeatures. OBFC1 is a subunit of an alpha accessory factor that stimulates the activity of 

DNA polymerase-alpha-primase, the enzyme that initiates DNA replication. OBFC1 also 

appears to function in a telomere-associated complex that binds telomeric single-stranded 

DNA in vitro and localizes at telomeres in vivo 33. Four SNPs in this region (rs2487999, 

rs4387287, rs9420907 and rs9419958) have previously been reported to be associated with 

telomere length (NHGRI-EBI GWAS catalog 27, Supplementary table 14). The r2 between 

these and rs7902587 are between 0.52 and 0.93 (1000 Genomes European populations). 

However, the associations of all four with LGSOC and borderline serous EOC are attenuated 

when adjusted for rs7902587 suggesting a single association peak. The alleles associated 

with a decrease in leukocyte telomere length being associated with an increased risk of 

LGSOC and borderline serous EOC. These findings are consistent with the association 

between borderline EOC and rs7705526 at 5p15 (adjacent to the telomerase reverse 

transcriptase gene)13. Furthermore, the histotype specificity is consistent with the suggestion 

that telomere length differs between the different histotypes of EOC 34.

Candidate causal variants at three of the 12 novel loci are associated with multiple traits in 

the NHGRI-EBI GWAS catalog (P<5×10-8). These traits converge on pathways involved in 

inflammation and immunity, including monocyte count, C-reactive protein (CRP) levels, 

gamma-glutamyl transpeptidase levels, N-glycan levels, allergen sensitization, and multiple 

sclerosis (Supplementary table 14). For example, at the 12q24.31 HGSOC risk locus, the 

risk allele of four candidate causal SNPs (rs7979473, rs1183910, rs2393791, rs7310409) 

have previously been associated with raised CRP levels in blood plasma, a marker of 

inflammation. This is consistent with the established link between chronic inflammation and 

increased cancer risk. In addition SNPs within 500kb of the top SNP at 2q13, 8q24.21, 
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10q24.33 and22q12.1 are associated with several different cancers although only one of 

these is a candidate causal EOC variant (rs2995264 at 10q24.33 associated with cutaneous 

malignant melanoma).

This study demonstrates the strength of large-scale collaborations in identifying common 

variant risk associations for complex traits such as EOC which is rare, has a high mortality 

rate, and exhibits heterogeneity by histotype. As the largest study to date with over 90,000 

EOC cases and controls including an additional ~25,000 previously unstudied participants, 

we identify several novel risk loci specific to the rarer EOC histotypes: ENOC, MOC, 

LGSOC and borderline EOC. The histotype-specific nature of these associations adds to the 

somatic, epidemiological and clinical data indicating that EOC histotypes can be thought of 

as distinct diseases. The lack of heterogeneity between studies of varying designs, carried 

out in different populations, and the high levels of statistical significance, with confirmation 

of known EOC susceptibility loci, provide evidence that these are robust associations. 

Molecular analyses of genes and the tissue specific regulatory architecture at these loci, 

which combined publicly available datasets with systematic, large-scale genome wide 

profiling experiments, point to a small number of non-coding biofeatures and target genes 

that may play a histotype-specific role in EOC initiation and development. Detailed 

functional studies will be required to define the underlying biology of SNP-regulatory 

interactions to identify the causal SNP(s) at each locus, and to confirm which candidate 

susceptibility genes represent the targets of these risk SNPs. Evolving technologies, in 

particular CRISPR-Cas9 genome editing, now enable precision modification of risk SNPs to 

create isogenic models of different alleles 35, enabling the effects of each allele on disease 

pathogenesis to be studied, for example at 19p13 36, 8q24 14, 17q12 12 and 5p15 13. Finally, 

given that several previously identified EOC susceptibility alleles are associated with risk of 

other cancers 17, and that there are similarities in molecular phenotype and/or shared tissue 

of origin between endometrial cancer, endometriosis and ENOC and CCOC 37 as well as 

basal-like breast cancer 38, we anticipate that the loci reported here may be also associated 

with risk of other cancer-related traits.

METHODS

Study samples

Genotype data from six OCAC and two CIMBA genotyping projects were used for these 

analyses (Supplementary table 1). All participating studies were approved by the relevant 

research ethics committee and all participants provided written, informed consent.

OCAC—The OCAC OncoArray data comprised 63 genotyping project/case-controls sets 

(Supplementary table 1). Some studies (e.g. SEARCH) contributed samples to more than 

one genotyping project and some case-control sets are a combination of multiple individual 

studies. The following numbers are for the subjects of European ancestry that passed QC. 

The analyses included 66,450 samples from seven genotyping projects: 40,941 controls, 

22,406 invasive cases and 3,103 borderline cases. The number of cases by histotype were 

serous borderline (1,954), mucinous borderline (1,149), LGSOC (1,012), HGSOC (13,037), 

ENOC (2,810), CCOC (1,366) and other EOC (2,764).
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CIMBA—Eligibility in CIMBA is restricted to females aged 18 years or older with 

pathogenic variants in BRCA1 or BRCA2. The majority of the participants were sampled 

through cancer genetics clinics, including some related participants. Sixty-three studies 

contributed OncoArray and iCOGS genotype data on 31,448 mutation carriers. For the 

samples genotyped on OncoArray, after quality control (see below), data were available on 

15,694 BRCA1 mutation-carriers and 10,988 BRCA2 mutation carriers, of whom 2,372 and 

849, respectively, were affected with EOC (Supplementary table 2). We also obtained 

genotype data on 3,342 (561 affected) BRCA1 and 1,424 (105 affected) BRCA2 non-

overlapping samples genotyped using the iCOGS array 1,2.

Genotype data and Quality Control (QC)

Data from all the genotyping projects apart from the OCAC and CIMBA OncoArray 

projects have been published previously 1,3-6. Genotypes for OCAC samples were 

preferentially selected from the different projects in the following order: OncoArray, Mayo 

GWAS, COGS, and other GWAS.

Genotyping was performed at five centers: University of Cambridge, Center for Inherited 

Disease Research (CIDR), National Cancer Institute (NCI), Genome Quebec and Mayo 

Clinic. OncoArray sample QC was similar to that carried out for the other projects (as 

described 5). We excluded samples if they had a genotyping call rate < 95%, excessively low 

or high heterozygosity, if they were not female, or were duplicates (cryptic or intended). 

Duplicates and close relatives were identified using in-house software that calculates a 

concordance matrix for all individuals. Samples with concordance>0.86 were flagged as 

duplicates and samples with concordance between 0.74 and 0.86 were flagged as relatives. 

The comparison was performed among all the OncoArray samples, and all the previously 

genotyped samples. The concordance statistics were used to identify cryptic duplicates and 

expected duplicates whose genotypes did not match. We attempted to resolve these with the 

study investigators. If the discrepancy could not be resolved both samples were excluded. In 

OCAC, for confirmed cryptic duplicates and relatives, we retained one sample in the 

analysis. For case-control pairs we excluded the control, while for case-case and control-

control pairs we excluded the sample with the lower call rate. In CIMBA, relatives were 

included in the analysis and the association tests were adjusted accordingly. For confirmed 

duplicates, the sample with the higher call rate was retained.

SNP QC was carried out according to the OncoArray QC Guidelines. 7 Only those SNPs 

that passed QC for all consortia were used for imputation. We excluded SNPs with a call 

rate <95%, SNPs deviating from Hardy-Weinberg equilibrium (P<10-7 in controls or 

unrelated samples in CIMBA and P <10-12 in cases) and SNPs with concordance<98% 

among 5,280 duplicate pairs. For the imputation, we additionally excluded SNPs with a 

MAF<1% and a call rate <98% and SNPs that could not be linked to the 1000 genomes 

reference or differed significantly in frequency from the 1000 genomes (European 

frequency) and a further 1,128 SNPs where the cluster plot was judged to be inadequate. Of 

the 533,631 SNPs which were manufactured on the array, 494,813 SNPs passed the initial 

QC and 470,825 SNPs were used for imputation. Samples with overall heterozygosity <5% 

or > 40% were excluded.
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Ancestry analysis

Intercontinental ancestry was calculated for the OCAC samples using the software package 

FastPop (http://sourceforge.net/projects/fastpop/) 8 developed specifically for the 

OncoArray. Only the samples with >80% European ancestry were used for these analyses. 

For the CIMBA samples 33,661 weakly correlated autosomal SNPs (pair-wise r2 less than 

0.1) were used to compute the genomic kinship between all pairs of individuals, along with 

267 HapMap samples (CHB, JPT, YRI and CEU). These were converted to distances and 

subjected to multidimensional scaling. Using the first two components, we calculated the 

proportion of European ancestry for each individual and excluded samples with >27% non-

European ancestry to ensure that samples of Ashkenazi Jewish ancestry were included in the 

final sample. Analysis using FastPop provided virtually identical results.

Principal components analysis

Principal component analysis for the OncoArray data was carried out using data from 

33,661 uncorrelated SNPs (pair-wise r2 less than 0.1) with minor allele frequency greater 

than 0.05 using an in house program (available at http://ccge.medschl.cam.ac.uk/software/

pccalc/). Principal components analysis for the other genotype data sets was carried out as 

previously described. 1,5

Imputation

We performed imputation separately for each genotyping project data set. We imputed 

genotypes into the reference panel from the 1000 Genomes Project (v3 October 2014). 9 We 

initially used an effcient two-step procedure, which involved pre-phasing using SHAPEIT 10 

followed by imputation of the phased data using IMPUTE2 11. We then performed more 

accurate imputation for any region with a SNP with P<10 6 in the OCAC analyses or the 

OCAC/CIMBA meta-analysis. The boundaries were set +/−500kb from the most significant 

SNP in each region. The single-step imputation used IMPUTE2 without pre-phasing with 

some of the default parameters modified. These included an increase of the MCMC 

iterations to 90 (out of which the first 15 were used as burn-in), an increase of the buffer 

region to 500kb and increasing to 100 the number of haplotypes used as templates when 

phasing observed genotypes.

After imputation, 85 per cent of common variants including both single nucleotide variants 

and small indels (MAF>0.05) have an imputation r2 imputation accuracy > 0.9 with 97 

percent having imputation r2 > 0.7. Of the rare variants (0.001 < MAF < 0.05), 28 per cent 

have an imputation r2> 0.9 and 58 per cent have an imputation r2> 0.7.

Association analyses in the unselected ovarian cancer cases and controls from OCAC and 
CIMBA

We excluded SNPs from the association analysis if their imputation accuracy was r2<0.3 or 

their minor allele frequency (MAF) was <0.01. In total, genotypes for 11,595,112 million 

variants were available for analysis.

Phelan et al. Page 11

Nat Genet. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://sourceforge.net/projects/fastpop/
http://ccge.medschl.cam.ac.uk/software/pccalc/
http://ccge.medschl.cam.ac.uk/software/pccalc/


Association analyses OCAC

We evaluated the association between genotype and disease using the imputed genotype 

dosage in a logistic regression model. We carried out initial, genome-wide analyses 

separately for OncoArray, COGS and the five GWAS datasets and pooled the results using a 

fixed effects meta-analysis. The analyses were adjusted for study and for population 

substructure by including the eigenvectors of project-specific principal components as 

covariates in the model (nine for OncoArray, five for COGS, two for UK GWAS, and two 

for the US, BWH and POL GWAS, and a single PC for the MAY GWAS). The number of 

eigenvectors chosen was based on the inflection point of a scree plot. After one-step 

imputation of the genotypes in the regions of interest we used genotype dosages in a single 

logistic regression model with adjustment for each genotyping project/study combination 

and nineteen principal components. Principal components were set to zero for samples not 

included in a given project. We used custom written software for the analysis.

EOC is a heterogeneous phenotype with five major histotypes for invasive disease – 

HGSOC, LGSOC, MOC, ENOC and CCOC – and two histotypes of borderline disease – 

serous and mucinous. The pattern of association across the different histotypes varies for the 

known EOC risk loci. We therefore carried out the association analysis on the following nine 

histotypes: all invasive disease; HGSOC; LGSOC; all invasive serous; serous borderline; 

LGSOC and borderline serous combined; ENOC; CCOC; and mucinous invasive/mucinous 

borderline combined.

Association analyses CIMBA

We carried out the ovarian cancer association analyses separately for BRCA1 and BRCA2 
carriers and for OncoArray and COGS samples. The results were pooled using fixed effects 

meta-analysis. The primary analysis was carried out within a survival analysis framework 

with time to ovarian cancer diagnosis as the endpoint. Mutation carriers were followed until 

the age of ovarian cancer diagnosis, or risk-reducing salpingo-oophorectomy (RRSO) or age 

at study recruitment.

Breast cancer diagnosis was not considered as a censoring event. In order to account for the 

non-random sampling of BRCA1 and BRCA2 carriers with respect to disease status we 

conducted the analyses by modelling the retrospective likelihood of the observed genotypes 

conditional on the disease phenotype. We assessed the associations between genotype and 

risk of ovarian cancer using a score test statistic based on the retrospective likelihood. 12 To 

account for the non-independence among related individuals in the sample, we used an 

adjusted version of the score test statistic, which uses a kinship-adjusted variance of the 

score. 13 We evaluated associations between imputed genotypes and ovarian cancer risk 

using a version of the score test as described above but with the posterior genotype 

probabilities replacing the genotypes. All analyses were stratified by the country of origin of 

the samples and for Ashkenazi Jewish origin.

We carried out the analyses using custom written functions in Fortran and Python. The score 

test statistic was implemented in R version 3.0.1.
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OCAC/CIMBA meta-analysis

We conducted a meta-analysis of the EOC associations in BRCA1, BRCA2 carriers and 

OCAC samples using an inverse variance approach assuming fixed effects. We combined the 

logarithm of the per-allele hazard ratio estimate for the association with EOC risk in BRCA1 
and BRCA2 mutation carriers and the logarithm of the per-allele odds ratio estimate for the 

association with EOC (any-subtype) and serous EOC in OCAC. The number of BRCA1 and 

BRCA2 samples with tumor histology information was too small to allow for subgroup 

analyses. However, previous studies have demonstrated that the vast majority of EOCs in 

BRCA1 and BRCA2 mutation carriers are HGSOC. Meta-analyses were carried out using 

the software “metal”, 2011-03-25 release 14.

We evaluated whether there is evidence for multiple independent association signals in the 

region around each newly identified locus by evaluating the associations of genetic variants 

in the region while adjusting for the SNP with the smallest meta-analysis p-value in the 

respective region. This was done separately for BRCA1 carriers, BRCA2 carriers and 

OCAC.

Candidate causal SNPs in each susceptibility region

In order to identify a set of variants most likely to mediate the observed association – the 

credible causal variants - we excluded SNPs with causality odds of less than 1:100 by 

comparing the likelihood of each SNP from the association analysis with the likelihood of 

the most strongly associated SNP.

Functional annotation of risk associated variants

Expression and methylation quantitative trait loci analyses—A TCGA data set15 

was available for 326 HGSOC tumors in women of European ancestry. Ancestry was 

estimated using the Local Ancestry in adMixed Populations (LAMP, 16) software package 

and individuals with > 95% European descent were retained for further analyses. Matched 

gene expression (measured on the Agilent 1M microarray), CpG methylation (measured on 

the Illumina Infinium HumanMethylation27 BeadChip), copy number alteration (called 

using the Affymetrix SNP 6.0), and germline genotype (called using the Affymetrix SNP 

6.0) were also available. A Mayo Clinic data set was available for 209 serous EOC tumors 

and 32 ENOC tumors in women of European ancestry. Matched gene expression (measured 

on the Agilent whole human genome 4x44K expression microarray), CpG methylation 

(measured on the Illumina Infinium HumanMethylation450), copy number alteration (called 

using the OncoArray), and germline genotype (called using the OncoArray) were available 

for all of these samples. Genotypes were imputed into the 1000 Genomes October 2014 

(Phase 3, version 5) 9 European reference panel for both data sets. Expression QTL analyses 

were performed using linear regression as implemented in the R package Matrix eQTL 17. 

Only variants with imputation accuracy R2 > 0.3 were analyzed. Prior to eQTL analyses the 

effects of tumor copy number and methylation on gene expression were regressed out as 

previously described18. For the Mayo data set, we performed separate analyses on the 

HGSOC and ENOC samples. Results for the two HGSOC data sets were combined in a 

random effects meta-analysis. We focused on local or cis-acting eQTLs between SNPs in the 
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1:100 list of potentially causal variants and all genes up to 1 Mb on either side of these 

SNPs.

mQTL analyses for the 1:100 potentially causal SNPs in regions of interest (1 MB on either 

side of the index SNP) were conducted using the Mayo dataset only, because methylation 

was assayed with the much denser 450K array and the Mayo sample included histologies 

other than HGSOC. Within each region, CpG probes were filtered based on their association 

with gene expression. For each expression probe within the region, a linear model was fit by 

CpG probe adjusted for age and CNV overlapping the expression probes. The CpG with the 

strongest negative test statistic for each gene (across multiple expression probes per gene) 

was retained for mQTL analysis in order to reduce the total number of tests. We performed 

VanderWaerden rank transformations of the beta values to account for skewed distributions 

in the beta-values, and conducted linear regression of the SNP genotypes on the transformed 

beta values, adjusted for age and CNV overlapping the CpG probe; missing CNV values 

were imputed using the median for the non-missing samples within each region. As a 

sensitivity analysis, we also performed analyses adjusted only for age. Analyses were 

conducted for all histologies, as well as for the serous, HGSOC, and ENOC subsets. Raw. 

Loci were eliminated from analyses where there were either no Agilent probes for the region 

on the array (9q31.1) or there were no negatively associated CpGs on the 450k array 

(8q21.11).

For eQTL and mQTL analyses two-sided p-values are reported.

Mapping risk SNPs to biofeatures

Cell culture—Cell lines were cultured in their respective media as follows: GTFR230, 

NOSE-CM (1:1 Medium 199: MCDB105 (both Sigma Aldrich), 15% fetal bovine serum 

(FBS, Hyclone), 500 ng/ml hydrocortisone, 5 μg/ml insulin (both Sigma Aldrich) 10 ng/ml 

epidermal growth factor and 34 μg protein/ml bovine pituitary extract (both Life 

Technologies); MCAS, EMEM supplemented with 15% FBS (Seradigm); RMG-II and 

JHOC5, RPMI plus 10% FBS and OAW42, DMEM containing 10% FBS, 20 μg/ml insulin 

and sodium pyruvate (Lonza). Cell lines were authenticated by profiling short tandem 

repeats using the Promega Powerplex 16HS Assay (performed at the University of Arizona 

Genetics Core facility) and all cultures tested negative for contaminating Mycoplasma 
infections using a Mycoplasma specific PCR.

Chromatin immunoprecipitation (ChIP)—Our ChIP protocol was based on the 

methods of Schmidt et al. 19 Four 15cm dishes of cells were fixed in formaldehyde for 10 

minutes, before quenching the fixation with glycine. Cells were harvested, lysed in a 

sarkosyl-containing lysis buffer, and sonicated using the Covaris E220 evolution Focused-

Ultrasonicator to yield 100-300bp genomic DNA fragments. 5 μg of an antibody raised 

against H3K27ac (Diagenode) was incubated with blocked magnetic Dynabeads (Life 

Technologies) at 4°C for 4 hours. Antibody-bead conjugates were incubated with 100 μg 

chromatin at 4°C overnight, with constant agitation. Beads were washed extensively with 

RIPA buffer and then RNase and proteinase K (both Qiagen) treated. DNA was then eluted 

from the beads in TE buffer and cleaned up using the QIAquick PCR Purification kit 
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(Qiagen). Two independent immunoprecipitations and one input sample were sequenced for 

each cell line and each sample was quality checked by site-specific qPCR prior to next 

generation sequencing (NGS).

Next generation sequencing—ChIP libraries were constructed using the Kapa Hyper 

Library Preparation kit, according to manufacturer’s instructions. Approximately 2/3 of the 

immunoprecipitated (IP) material was used as the starting amount. For undiluted input 

samples, 100-300 ng of starting material was used. Construction was carried out according 

to manufacturer’s instructions using Bio NextFLex adapters diluted 1:50. Final PCR on a 

portion of the adapter ligation was performed for 12 cycles. Products were evaluated by the 

Agilent Bioanalyzer, using high sensitivity DNA chips. ChIP libraries were quantified using 

Kapa Biosystems Illumina library quantification kit, then 12 pooled for sequencing, which 

was carried out using single end reads with 75 cycles on a NextSeq 500 (with version 2 

chemistry).

Analysis of ChIP-seq data—ChIP-seq data were processed using MACS2 with p value 

cutoff of 0.001. The smaller of input or signal was linearly scaled to the same depth as the 

larger dataset. In order to control the irreproducible discovery rate in ChIPseq analysis, we 

used IDR version 2.0 pipeline. 20 A standard IDR threshold p< 0.05 was applied.

Functional annotation of variants—We used shell scripts with bedtools (http://

bedtools.readthedocs.org/en/latest/) to generate overlap data between all variants in each 

associated region including likely causal SNPs and bed file versions of all the data 

represented in Figure 2 and Supplementary Table 6. In addition we included 3’UTRs, 

5’UTRs, miRcode high confidence conserved microRNA target sites, high confidence 

microRNA target sites from microRNA.org, and all coding exons. The overlap data thus 

obtained were converted to matrix form by means of python scripts. MicroRNA target sites 

were only considered that overlapped untranslated (UTR) gene regions. Exonic variants 

were further assessed for missense or nonsense mutations by Mutect software 21. The 

NHGRI-EBI GWAS catalog was used to identify SNPs among the potentially causal set with 

other genome-wide signification associations (Supplementary table 14).

Locus-specific tissue enrichment of variants—H3K27 acetylation peaks were 

collated from public sources (for HeLa-S3, HCT116, UCSD Ovary, UCSD Sigmoid Colon, 

Colon Crypt) or from in-house data (IOSE4, IOSE11, FT33, FT246, EEC16, CaOV3, 

UWB1.289, OAW42, GFTR230, MCAS) (Supplementary table 5 and Supplementary table 

16). Overlaps were counted for the all SNPs against which genotypes were imputed in 1000 

genomes for each H3K27Ac dataset. The fraction of causal SNPs with overlaps was then 

tested for significance against this background for each cell type in the H3K27ac datasets 

using the hypergeometric distribution. Finally, p values were adjusted for multiple 

comparisons using Bonferroni’s method.

Data availability

OncoArray germline genotype data for OCAC studies will be available through dbGap 

(www.ncbi.nlm.nih.gov/gap). Summary results are available from the Ovarian Cancer 
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Association Consortium (http://ocac.ccge.medschl.cam.ac.uk/). A subset of the OncoArray 

germline genotype data for the CIMBA studies will be made publically available through 

dbGAP. The complete dataset will not be made publically available due to restraints imposed 

by the ethics committees of individual studies; requests for further data can be made to the 

Data Access Coordination Committee (http://cimba.ccge.medschl.cam.ac.uk/).

ChipSeq data are available from the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/

geo), GEO accession number GSE68104.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Histotype specific associations (odds ratios) of top SNP in 12 novel EOC susceptibility 
regions
The forest plot shows the point estimates of odds ratios with 95% confidence intervals 

around each estimate. Odds ratios and confidence intervals in bold are histotypes significant 

at nominal P<0.05.
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Figure 2. Number of overlaps between causal SNPs and H3K27ac in relevant tissues and cell 
lines
Height of each bar in the histogram represents the number of candidate causal SNPs at each 

locus overlapping H3K27ac marks in a particular cell line. Loci are grouped according to 

their association with different histotypes of ovarian cancer. The number of causal SNPs at 

100:1 odds relative to the top regional SNP is indicated by the red circles (scale below, 

right). In the key cell lines are grouped according to their likely relevance to the different 

histotypes. Abbreviations: mucinous ovarian cancer (MOC), low grade serous ovarian cancer 
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(LGSOC), high grade serous ovarian cancer (HGSOC), and epithelial ovarian cancer (EOC) 

precursors.
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Figure 3. Functional analysis of the chr10q24.33 locus
(a) Active chromatin, denoted by H3K27ac signaling, in EOC-relevant cell types. (b) 

Regional association plot for genotyped and imputed SNPs. The dashed box highlights the 

region shown in panel (a) (c) MotifbreakR analysis, a non-canonical CTCF motif is 

significantly altered by SNP rs2488000. (d) EQTL analysis, OBFC1 expression is associated 

with rs11597399 genotype in HGSOCs from TCGA. Box and whisker plot showing median 

(horizontal line within box), interquartile range (IQR; length of box) and 1.5 times the IQR 

(whiskers) of OBFC1 expression for each genotype.
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