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Abstract
Tropical climate model derived by Frierson et al. (Commun Math Sci 2:591–626,
2004) and its modified versions have been investigated in a number of papers [see,
e.g., Li and Titi (Discrete Contin Dyn Syst Series A 36(8):4495–4516, 2016), Wan
(J Math Phys 57(2):021507, 2016), Ye (J Math Anal Appl 446:307–321, 2017) and
more recently Dong et al. (Discrete Contin Dyn Syst Ser B 24(1):211–229, 2019)].
Here, we deal with the 2D tropical climate model with fractional dissipative terms in
the equation of the barotropic mode u and in the equation of the first baroclinic mode
v of the velocity, but without diffusion in the temperature equation, and we establish
a regularity criterion for this system.

Keywords Regularity criterion · Tropical climate model · Tropical atmospheric
dynamics · Navier–Stokes equations
Mathematics Subject Classification 35Q35 · 35Q30 · 35B65 · 76D03

1 Introduction

In this paper we consider the following 2D tropical climate model, i.e.

∂t u + (u · ∇)u + ν�2αu + ∇ p + div(v ⊗ v) = 0,

∂tv + (u · ∇)v + (v · ∇)u + η�2βv + ∇θ = 0,

∂tθ + (u · ∇)θ + div v = 0,

div u = 0

u(x, 0) = u0, v(x, 0) = v0, θ(x, 0) = θ0, (1)
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where x ∈ R
2, t ≥ 0, u = (u1(x, t), u2(x, t)) and v = (v1(x, t), v2(x, t)) denote the

barotropicmode and the first baroclinicmode of the velocity, respectively, p = p(x, t)
denotes the pressure, and θ = θ(x, t) the temperature. Here� = (−	)1/2, and ν ≥ 0,
η ≥ 0, 0 ≤ α ≤ 2 and 0 ≤ β ≤ 2. Further conditions on the last two parameters will
be introduced in a few lines.

When ν = η = 0, the above system gives the original tropical climate model
derived by Frierson et al. [5]. Instead, in the case of ν > 0, η > 0, α = 1 and
β = 1, (1) reduces to the viscous version of the Frierson-Majda-Pauluis model that
has been analyzed by Li and Titi [16]. Problem (1) with parameter ranges 0 ≤ α ≤ 2
and 0 ≤ β ≤ 2 may have some pertinence in describing certain types of tropical
atmospheric dynamics (see, e.g., [19–21] and the references therein).

We emphasize that in this paper the equation for θ contains no dissipation, and we
also assume ν = 1 and η = 1. Our goal here is mainly related to the problem of
regularity in time for the solutions of system (1), in the 2D case.

Global well-posedness of solutions to a tropical climate model with dissipation in
the equation of the first baroclinic mode of the velocity, under the hypotheses of small
initial data, was studied byWan [26] and Ma andWan [17]. In fact, the issue of global
regularity has been investigated in a number of articles and (partially) addressed in
dependence of the values assumed by parameters α and β. In particular, in the 2D case,
Ye [27] was able to prove global existence (adding �2θ in (1)3), in Hs-norm, s ≥ 2,
for β = 1 and α > 0. Dong et al. [4] considered the 2D model assuming α + β = 2
with 1 < β ≤ 3/2, and they proved that system (1) possesses a unique global solution
when the initial data (u0, v0, θ0) is sufficiently regular, i.e., u0, v0 ∈ Hs(R2), s > 2,
and θ0 ∈ Ḣ−1(R2) ∩ Hs+1−β(R2). In addition, in [4], the authors also studied the
cases of α + β = 2 with 3/2 < β < 2, and α + β = 2 with α = 2 and β = 0. Let us
also recall that Ma et al. [18] established the local well-posedness of strong solutions
to the considered model.

We also mention an article of Zhu [30], in which the 3D system (1) is considered,
with initial data in H3(R3). The author proved global existence of strong solutions
(u, v, θ) ∈ L∞(0, T ; H3(R3)), for any T > 0, removing �2βv in (1)2, and assuming
α ≥ 5/2.

In the present paper we consider problem (1) with 1/2 < α < 1, 0 < β < 1, and
β + 2α = 2, which is a situation not addressed in the above mentioned works, and in
any case it is new to the best of our knowledge. Taking initial data u0, v0, θ0 ∈ Hs(R2),
s > 2, and following an approach similar to the one given in [7] (see also [6] and [8]), in
Theorem3.1we prove a continuation result for the solutions of (1). To bemore precise,
assuming that the solution (u, v, θ) ∈ C([0, T ); Hs(R2)), for some T > 0, it is
possible to extend (u, v, θ)(t) beyond time T provided that the quantities ‖∇u(t)‖Ḃ0∞,2

,

‖∇v(t)‖Ḃ0∞,2
, and ‖∇θ(t)‖Ḃ0∞,2

are bounded in L2(0, T ), where Ḃ0∞,2 = Ḃ0∞,2(R
2) is

the homogeneous Besov space Ḃs
p,q(R

2) with s = 0, p = ∞ and q = 2 (see below
for details).
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2 Preliminaries and basic facts

Let us recall some basic facts about the function spaces that will be used in the sequel.
We also list the estimates needed to reach the claimed regularity result. Most of the
controls we use in following have been established in [13]. We refer to this paper for
a detailed overview (see also [14,24,25]), which is somehow aimed at our purposes,
on the theory of Besov spaces Bs

p,q = Bs
p,q(R

n) (and homogeneous Besov spaces

Ḃs
p,q = Ḃs

p,q(R
n)), with 0 < p, q ≤ ∞ and s ∈ R.

Let us consider—only in this section—the case of Rn as domain of the considered
vector and scalar fields and recall some inequalities and embeddings in Sobolev and
Besov spaces. Here, Ḃs

p,q = Ḃs
p,q(R

n), with 0 < p, q ≤ ∞ and s ∈ R indicate homo-
geneous Besov spaces and the non-homogeneous counterparts are Bs

p,q = Bs
p,q(R

n),
0 < p, q ≤ ∞ and s ∈ R (see, e.g., [24,25]) with norms, respectively, ‖ · ‖Ḃs

p,q
and

‖ · ‖Bs
p,q
. In the sequel BMO = BMO(Rn) denotes the Bounded Mean oscillation

space with norm ‖ · ‖BMO (see, e.g. [12–14]).
For p ≥ 1, we indicate by L p = L p(Rn) the usual Lebesgue space, endowed

with norm ‖ · ‖p = ‖ · ‖L p . Also, for L2, the norm is ‖ · ‖ = ‖ · ‖2. We denote by
Wk,p = Wk,p(Rn) and ‖ · ‖k,p = ‖ · ‖Wk,p a Sobolev space and its norm, respectively
(see, e.g., [1]). When p = 2 we use the notation Hk = Wk,2 and ‖ · ‖Hk = ‖ · ‖Wk,2 .

In the sequel we will use the symbols C (or c) to denote generic constants, which
may change from line–to–line, but are not dependent on the solution. Also, we denote
a generic constant by C( · ) (or by c( · )), with the meaning that the constant depends
mainly on the arguments between parentheses, or alternatively by using a subscript to
make explicit the quantities the constant depends on.

2.1 Besov and Sobolev inequalities

Let us recall the hypotheses of [13, Theorem 2.1], under which we are going to
introduce the following estimates. For any p, ρ, σ ∈ [1,∞], q ∈ [1,∞) and s > n/q,
there exists a constant C depending only on n, p and q, but not on ρ, σ such that for
f ∈ Ḃn/p

p,ρ ∩ Bs
q,σ , we have (see [13, (2.2) p. 257, and pp. 260–261]) the following

logarithmic control

‖ f ‖L∞ ≤ C
(
1 + ‖ f ‖

Ḃn/p
p,ρ

(
log+(‖ f ‖Bs

q,σ
)
)1−1/ρ)

.

Now, let p, q, ρ, σ , ν ∈ [1,∞] with ν ≤ min(ρ, σ ), 1/q = 1/p− s/n, 1 ≤ r ≤ q
and s1/n < 1/r − 1/q < s2/n. Then, for f ∈ Ḃs1

r ,σ ∩ Ḃs2
r ,σ , we have ([13, p. 260])

‖ f ‖Ḃ0
q,ν

≤ C‖ f ‖Ḃ0
q,ρ

(
1 +

(
1 + log+ (‖ f ‖Ḃs1

r ,σ
+ ‖ f ‖Ḃs2

r ,σ

)) 1
ν
− 1

ρ

)
, (2)

where ν ≤ σ, ρ and log+(t) :=
{
log(t), t > e,
1, e ≥ t ≥ 0.

Then, by using the embedding

Ḃs
p,ρ ⊂ Ḃ0

q,ρ with s/n = 1/p − 1/q, from (2) we obtain the following estimate ([13,
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722 L. Bisconti

(2.3) p. 257]), i.e.

‖ f ‖Ḃ0
q,ν

≤ C

(
1 + ‖ f ‖Ḃs

p,ρ

(
log+ (‖ f ‖Ḃs1

r ,σ
+ ‖ f ‖Ḃs2

r ,σ

)) 1
ν
− 1

ρ

)
. (3)

As a special case of (3), taking p = q, ρ = ∞, and f ∈ Wα,r , α > n/r + 1, we have

‖∇ f ‖Ḃ0
p,ν

≤ C

(
1 + ‖∇ f ‖Ḃ0

p,∞

(
log+ (‖ f ‖Wα,r

)) 1
ν

)
.

Let us still assume f ∈ Wα,r , α > n/r + 1, and recall the following control (see
[13, Section 5, pp. 272–273] for details), i.e.

‖∇ f ‖∞ ≤ C‖∇ f ‖Ḃ0∞,1
. (4)

In particular, by using (4) along with (2), and taking ν = 1, ρ = 2, q = ∞, we find
the inequality

‖∇ f ‖∞ ≤ C‖∇ f ‖Ḃ0∞,1

≤ C‖∇ f ‖Ḃ0∞,2

(
1 + log

1
2
(
e + ‖∇ f ‖Wα−1,r

))
,

(5)

where we exploited the embedding Wα−1,r ⊂ Bs
r ,σ , if α − 1 > s, or in alternative

Wα−1,r ⊂ Bα−1
r ,max{r ,2}, if α − 1 = s (see, e.g., [4]). When Rn = R

2, if we take r = 2,

so that f ∈ Wα,2 = Hα , with α > 2, recalling that Hα−1 ≈ Bα−1
2,2 , and setting s = α,

inequality (5) reduces to

‖∇ f ‖∞ ≤ C‖∇ f ‖Ḃ0∞,2

(
1 + log

1
2
(
e + ‖∇ f ‖Hs−1

))
. (6)

2.2 Further inequalities

We will also use some elementary commutator type estimates as in the following
lemma concerning the operator �s , s > 0 (see, e.g., [7,10,11]).

Lemma 2.1 For s > 0 and 1 < r ≤ ∞, and for smooth enough f and g

‖�s( f g)‖r ≤ C(‖ f ‖p1‖�sg‖q1 + ‖g‖p2‖�s f ‖q2), (7)

where q1, q2 ∈ (1,∞) and 1/r = 1/p1 + 1/q1 = 1/p2 + 1/q2, and C is a suitable
positive constant.

Also, for the commutator [�s, f ]g := �s( f g) − f �sg, s > 0, we have the
following estimate

‖[�s, f ]g‖r ≤ C(‖∇ f ‖p1‖�s−1g‖q1 + ‖g‖p2‖�s f ‖q2), (8)
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A regularity criterion for a 2D tropical climate model… 723

where q1, q2 ∈ (1,∞) such that 1/r = 1/p1 + 1/q1 = 1/p2 + 1/q2, and C is a
suitable positive constant.

In the sequel all the function spaces are taken on R
n = R

2, and so we always
have n = 2 in the used Sobolev embeddings and interpolation inequalities. In partic-
ular Wk,p = Wk,p(R2), Hs = H2(R2), Bs

p,q = Bs
p,q(R

2), Ḃs
p,q = Ḃs

p,q(R
2), and

BMO = BMO(R2).
As a further consequence of (3), in the case R

n = R
2, for s = 0, p = ρ = ∞,

ν = 2, and also assuming f ∈ Wα,2, α > 2, we have the following logarithmic
control (see [7] and [13, Theorem 2.1, p. 257]), in which we set s = α, i.e.

‖ f ‖Ḃ0∞,2
≤ C

(
1 + ‖ f ‖Ḃ0∞,∞ log

1
2 (e + ‖ f ‖Hs−1)

)
. (9)

We also use the following interpolation inequalities (see, e.g, [3,9,15])

‖ f ‖4 ≤ ‖ f ‖ 1
2 ‖∇ f ‖ 1

2 , (10)

and (see [12, Lemma 1, p. 180])

‖ f ‖4 ≤ ‖ f ‖ 1
2 ‖ f ‖

1
2
BMO . (11)

3 Regularity result

Theorem 3.1 Let (u0, v0, θ0) ∈ Hs × Hs × Hs, for any s > 2, with div u0 = 0.
Assume the parameters α and β in (1) are such that

1

2
< α < 1, 0 < β < 1 with β + 2α = 2. (12)

Let (u, v, θ) be a local solution to the system (1), defined on some time interval [0, T ),
with 0 < T < ∞, and having the following regularity

u, v, θ ∈ C([0, T̃ ]; Hs) and u ∈ L2(0, T̃ ; Hs+α), v ∈ L2(0, T̃ ; Hs+β), (13)

for any 0 < T̃ < T . Then (u, v, θ)(t) can be extended beyond time T , with the same
regularity as in (13), provided that

∫ T

0

(‖∇u(t)‖2
Ḃ0∞,2

+ ‖∇v(t)‖2
Ḃ0∞,2

+ ‖∇θ(t)‖2
Ḃ0∞,2

)
dt < ∞. (14)

In this paper we will not deal with the two cases (α, β) = (1/2, 1) and (α, β) =
(1, 0). In fact, to try to examine them, an alternative approach to the one used here
seems necessary.
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724 L. Bisconti

3.1 Proof of Theorem 3.1

The proof consists in proving suitable a priori estimates for the considered solution
(u, v, θ) showing explicitly that it can extended after time T > 0. Thus, the procedure
is divided in a number of steps in which we establish the needed bounds in L2, H1,
H2 and Hs , s > 2. These steps parallels the formal estimates in the global existence
results given in [4] and [27], although in our case they are carried out with different
techniques borrowed from [7,22] and [13, Theorem 5.1] (see also [28,29], and [2]).

L2-estimates

Taking the L2-inner product of (1)1, (1)2 and (1)3 with u, v and θ , respectively, and
adding them up, therefore we get, for any t > 0

‖u(t)‖2 + ‖v(t)‖2 + ‖θ(t)‖2 + 2
∫ t

0

(‖�αu(s)‖2 + ‖�βv(s)‖2) ds
= ‖u0‖2 + ‖v0‖2 + ‖θ0‖2,

(15)

where the following identities have been applied

∫

R2
div(v ⊗ v) · u dx +

∫

R2
(v · ∇)u · v dx = 0,

∫

R2
∇θ · v dx +

∫

R2
divv · θ dx = 0,

∫

R2
(u · ∇)u · u dx = 0,

∫

R2
(u · ∇)v · v dx = 0 and

∫

R2
(u · ∇)θ · θ dx = 0.

Thanks to (15), for any t > 0, it follows that u ∈ L∞(0, t; L2) ∩ L2(0, t; Hα),
v ∈ L∞(0, t; L2) ∩ L2(0, t; Hβ), and θ ∈ L∞(0, t; L2).

Inwhat followswe use the notation ‖(u, v, θ)(t)‖2 := ‖u(t)‖2+‖v(t)‖2+‖θ(t)‖2,
with t ≥ 0.

Next, we consider higher order estimates.

H1-estimates

Multiplying (1)1 by −	u, integrating by parts, we obtain

1

2

d

dt
‖∇u(t)‖2 + ‖∇�αu(t)‖2 =

∫

R2
(v · ∇)v · 	u dx +

∫

R2
v divv · 	u dx (16)

where, due the divergence-free condition div u = 0, we used the following relation

∫

R2
(u · ∇u) · 	u dx = 0.
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Multiplying (1)2, (1)3 by −	v and −	θ , respectively, we obtain

1

2

d

dt
‖∇v(t)‖2 + ‖∇�βv(t)‖2 =

∫

R2
(u · ∇)v · 	v dx +

∫

R2
(v · ∇)u · 	v dx

+
∫

R2
∇θ · 	v dx,

(17)

and

1

2

d

dt
‖∇θ(t)‖2 =

∫

R2
(u · ∇)θ · 	θ dx +

∫

R2
divv · 	θ dx . (18)

Summing (16), (17) and (18), and observing that

∫

R2
∇θ · 	v dx +

∫

R2
divv · 	θ dx = 0,

we reach the following relation

1

2

d

dt

(‖∇u(t)‖2 + ‖∇v(t)‖2 + ‖∇θ(t)‖2) + ‖∇�αu(t)‖2 + ‖∇�βv(t)‖2

=
∫

R2
(v · ∇)v · 	u dx +

∫

R2
v divv · 	u dx +

∫

R2
(u · ∇)v · 	v dx

+
∫

R2
(v · ∇)u · 	v dx +

∫

R2
(u · ∇)θ · 	θ dx . (19)

Exploiting the fact that u is divergence free, we get

∣∣∣∣

∫

R2
(u · ∇)v · 	v dx

∣∣∣∣ ≤
∫

R2
|∇u||∇v|2 dx

≤ c‖∇v‖24‖∇u‖
≤ c‖∇v‖BMO‖∇v‖‖∇u‖
≤ c‖∇v‖BMO

(‖∇v‖2 + ‖∇u‖2)

≤ c‖∇v‖Ḃ0∞,2

(‖∇v‖2 + ‖∇u‖2)

≤ c‖∇v‖Ḃ0∞,∞
(
1 + log

1
2 (e + ‖∇v‖Hs−1)

)(‖∇v‖2 + ‖∇u‖2),

(20)
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726 L. Bisconti

where we used (11) along with the embedding Ḃ0∞,2 ⊂ BMO (see, e.g., [8,13]), and
control (9). Similarly, for the last integral term in the right-hand side of (3.1), we find

∣∣∣∣

∫

R2
(u · ∇)θ · 	θ dx

∣∣∣∣ ≤
∫

R2
|∇u||∇θ |2 dx

≤ c‖∇θ‖24‖∇u‖
≤ c‖∇θ‖BMO

(‖∇θ‖2 + ‖∇u‖2)

≤ c‖∇θ‖Ḃ0∞,∞
(
1 + log

1
2 (e + ‖∇θ‖Hs−1)

)(‖∇u‖2 + ‖∇θ‖2),

(21)

where we applied again relation (11).

Remark 3.2 Controls (20) and (21) can be reached somehow more directly by using
Hölder’s inequality ‖ f ‖24 ≤ ‖ f ‖‖ f ‖∞ along with (6), but so obtaining estimates
involving the stronger norm ‖ · ‖Ḃ0∞,2

–which is however used in the sequel– in place

of ‖ · ‖Ḃ0∞,∞ .

For the remaining terms in the right-hand side of (3.1), recalling that

∫

R2
(v · ∇)∇v · ∇u dx +

∫

R2
(v · ∇)∇u · ∇v dx = −

∫

R2
divv∇v · ∇u dx,

and therefore by making use of the integration by parts, rearranging the terms and
exploiting (7)–(8), we infer

∣
∣∣∣

∫

R2
v divv · 	u dx +

∫

R2
(v · ∇)v · 	u dx +

∫

R2
(v · ∇)u · 	v dx

∣
∣∣∣

≤
∣∣∣∣

∫

R2
∇(

divv v
) · ∇u dx

∣∣∣∣ +
∣∣∣∣

∫

R2
[∇, v · ∇]v · ∇u dx

∣∣∣∣

+
∣
∣∣∣

∫

R2
[∇, v · ∇]u · ∇v dx

∣
∣∣∣ +

∣
∣∣∣

∫

R2
divv∇v · ∇u dx

∣
∣∣∣

≤ ‖�1−α
(
div v v

)‖‖�1+αu‖ + ‖[∇, v · ∇]v‖‖∇u‖
+‖[∇, v · ∇]u‖‖∇v‖ + ‖divv‖∞‖∇v‖‖∇u‖

≤ c(‖∇u‖∞ + ‖∇v‖∞)(‖∇v‖2 + ‖∇u‖2) + c‖div v‖p1‖�1−αv‖q1‖�1+αu‖
+c‖v‖p2‖�1−αdiv v‖q2‖�1+αu‖

≤ c(‖∇u‖∞ + ‖∇v‖∞)(‖∇v‖2 + ‖∇u‖2) + c‖∇v‖p1‖�1−αv‖q1‖�1+αu‖
+c‖v‖p2‖�1+(1−α)v‖q2‖�1+αu‖ =: K1 + K2 + K3,

where [∇, f · ∇]g := ∇(( f · ∇)g) − ( f · ∇)∇g, and 1/pi + 1/qi = 1/2, i = 1, 2.
For K1, using (6), it follows that

K1 ≤ c(‖∇u‖2
Ḃ0∞,2

+ ‖∇v‖2
Ḃ0∞,2

)
(
1 + log(e + ‖∇u‖Hs−1 + ‖∇v‖Hs−1)

)

(‖∇u‖2 + ‖∇v‖2).
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A regularity criterion for a 2D tropical climate model… 727

Consider K2. Taking p1 = ∞ and q1 = 2, have that

K2 ≤ cε‖∇v‖2∞‖�1−αv‖2 + ε‖�1+αu‖2
≤ cε‖∇v‖2∞

(‖v‖1−σ ‖∇v‖σ
)2 + ε‖�1+αu‖2

≤ cε‖∇v‖2∞
(‖v‖2 + ‖∇v‖2) + ε‖�1+αu‖2

≤ cε‖∇v‖2∞
(
1 + ‖∇v‖2) + ε‖�1+αu‖2

≤ cε‖∇v‖2
Ḃ0∞,2

(
1 + log(e + ‖∇v‖Hs−1)

)(
1 + ‖∇v‖2) + ε‖�1+αu‖2,

where we used Young’s inequality, Gagliardo-Nirenberg’s inequality (see [23]) with
σ = 1 − α, and we also employed relation (6).

Let us take into account K3. In this case, setting p2 = q2 = 4, we get

K3 = ‖v‖4‖�1+(1−α)v‖4‖�1+αu‖
≤ cε‖v‖24‖�1+(1−α)v‖24 + ε‖�1+αu‖2
≤ cε‖v‖24

(‖∇v‖1−σ∞ ‖�1+βv‖σ
)2 + ε‖�1+αu‖2

= cε

(‖v‖24‖∇v‖2(1−σ)∞
)‖�1+βv‖2σ + ε‖�1+αu‖2

≤ cε,δ‖v‖
2

1−σ

4 ‖∇v‖2∞ + δ‖�1+βv‖2 + ε‖�1+αu‖2

≤ cε,δ

(‖v‖ 1
2 ‖∇v‖ 1

2
) 2
1−σ ‖∇v‖2∞ + δ‖�1+βv‖2 + ε‖�1+αu‖2,

(22)

where we used Young’s inequality, Gagliardo-Nirenberg’s inequality with parameter
σ = (2α − 1)/2(1 − β) and control (10). Let us recall that in our case we have
1/2 < α < 1 and 0 < β < 1. Observe that

1 − α

β
≤ σ < 1 ⇐⇒ β + 2α ≥ 2 and α + β <

3

2
, (23)

and the last two conditions above are always satisfied under the assumptions in (12).
Then, relation (22) reduces to

K3 ≤ cε,δ‖∇v‖ 1
1−σ ‖∇v‖2∞ + δ‖�1+βv‖2 + ε‖�1+αu‖2

= c‖∇v‖2∞‖∇v‖ 1
1−σ + δ‖�1+βv‖2 + ε‖�1+αu‖2.

Notice that

2 ≥ 1

1 − σ
= 2(1 − β)

3 − 2α − 2β
⇐⇒ β + 2α ≤ 2,

which is guaranteed by the hypotheses in (12). Thus, we reach

K3 ≤ c‖∇v‖2∞
(
1 + ‖∇v‖2) + δ‖�1+βv‖2 + ε‖�1+αu‖2

≤ c‖∇v‖2
Ḃ0∞,2

(
1 + log(e + ‖∇v‖Hs−1 )

)(
1 + ‖∇v‖2) + δ‖�1+βv‖2 + ε‖�1+αu‖2,
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(24)

where in the last step we used (6).
From relation (3.1), along with the estimates (20)–to–(24), we get

1

2

d

dt

(
e + ‖∇u(t)‖2 + ‖∇v(t)‖2 + ‖∇θ(t)‖2) + (1 − 2ε)‖�1+αu(t)‖2 + (1 − δ)‖�1+βv(t)‖2

≤ C
(‖∇u(t)‖2

Ḃ0∞,2
+ ‖∇v(t)‖2

Ḃ0∞,2
+ ‖∇θ(t)‖2

Ḃ0∞,∞

)(
1 + log

(
e + ‖∇u(t)‖Hs−1

+ ‖∇v(t)‖Hs−1 + ‖∇θ(t)‖Hs−1
))(

e + ‖∇u‖2 + ‖∇v‖2 + ‖∇θ‖2)

≤ C Iu,v,θ (t)
(
1 + log

(
e + ‖∇u(t)‖Hs−1 + ‖∇v(t)‖Hs−1 + ‖∇θ(t)‖Hs−1

))

× (
e + ‖∇u‖2 + ‖∇v‖2 + ‖∇θ‖2),

(25)

where

Iu,v,θ (t) := ‖∇u(t)‖2
Ḃ0∞,2

+ ‖∇v(t)‖2
Ḃ0∞,2

+ ‖∇θ(t)‖2
Ḃ0∞,2

. (26)

Setting

‖(∇u,∇v,∇θ)(t)‖2 := ‖∇u(t)‖2 + ‖∇v(t)‖2 + ‖∇θ(t)‖2, and

‖|(∇u,∇v,∇θ)(t)‖|Hs−1 := ‖∇u(t)‖Hs−1 + ‖∇v(t)‖Hs−1 + ‖∇θ(t)‖Hs−1 ,

relation (25) can be rewritten as

d

dt

(
e + ‖(∇u,∇v,∇θ)(t)‖2) + 2(1 − 2ε)‖�1+αu(t)‖2 + 2(1 − δ)‖�1+βv(t)‖2

≤ C Iu,v,θ (t)
(
1 + log

(
e + ‖|(∇u,∇v,∇θ)(t)‖|Hs−1

)) (
e + ‖∇u,∇v,∇θ(t)‖2).

(27)

For any T∗ ≤ t < T , T∗ ≥ 0, we set

y(t) := sup
T∗≤s≤t

‖|(∇u,∇v,∇θ)(s)‖|Hs−1 , (28)

and applying Gronwall’s inequality to (27), for any T∗ ≤ t < T , it follows that

(
e + ‖(∇u, ∇v, ∇θ)(t)‖2) + 2

∫ t

T∗

(
(1 − 2ε)‖�1+αu(s)‖2 + (1 − δ)‖�1+βv(s)‖2)ds

≤ (
e + ‖(∇u, ∇v, ∇θ)(T∗)‖2

)
exp

{
C

∫ t

T∗
Iu,v,θ (s) log

(
e2 + e‖|(∇u, ∇v, ∇θ)(s)‖|Hs−1

)
ds

}

≤ C∗
(
e + y(t)

)cε
,

where ε > 0 is small constant, depending on T∗, such that

∫ t

T∗
Iu,v,θ (s)ds < ε << 1, (29)
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where we used (14), and the constant C∗ depends on ‖(∇u,∇v,∇θ)(T∗)‖.

H2-estimates

Applying the operator 	 to (1)1, (1)2 and (1)3, and multiplying them in L2 by 	u,
	v and 	θ , respectively, and adding them up, we get

1

2

d

dt

(‖	u(t)‖2 + ‖	v(t)‖2 + ‖	θ(t)‖2) + ‖�2+αu‖2 + ‖�2+ 1
2 v‖2

= −
∫

R2
	

(
(u · ∇)u

) · 	u dx −
∫

R2
	

(
(u · ∇)v

) · 	v dx −
∫

R2
	

(
(u · ∇)θ

) · 	θ dx

−
∫

R2
	

(
(v · ∇)v

) · 	u dx −
∫

R2
	

(
divv v

) · 	u dx −
∫

R2
	

(
(v · ∇)u

) · 	v dx

=: I1 + I2 + I3 + I4 + I5 + I6.

(30)

Let us first consider the three worst terms, i.e. I4 + I5 + I6. Thus, we have

|I4 + I5 + I6| =
∣∣
∣∣−

∫

R2
	

(
divv v

) · 	u dx −
∫

R2
[	, v · ∇]v · 	u dx

−
∫

R2
[	, v · ∇]u · 	v dx +

∫

R2
divv	v · 	u dx

∣∣∣∣

≤
∣∣
∣∣

∫

R2
	

(
divv v

) · 	u dx

∣∣
∣∣ +

∣∣
∣∣

∫

R2
[	, v · ∇]v · 	u dx

∣∣
∣∣

+
∣∣∣∣

∫

R2
[	, v · ∇]u · 	v dx

∣∣∣∣ +
∣∣∣∣

∫

R2
divv	v · 	u dx

∣∣∣∣

≤ ‖�2−α
(
divv v

)‖‖�2+αu‖ + ‖[	, v · ∇]v‖‖	u‖
+‖[	, v · ∇]u‖‖	v‖ + ‖divv‖∞‖	v‖‖	u‖

=: I I1 + I I2 + I I3 + I I4, (31)

where [	, f · ∇]g := 	(( f · ∇)g) − ( f · ∇)	g.
Then, we have

I I2 + I I3 + I I4 ≤ c(‖∇v‖∞‖	v‖‖	u‖ + ‖∇u‖∞‖	v‖‖	u‖ + ‖∇u‖∞‖	v‖2)
≤ c(‖∇u‖∞ + ‖∇v‖∞)(‖	v‖2 + ‖	u‖2).

Consider I I1. By using (7) we have that

I I1 ≤ c‖∇v‖p1‖�1+(1−α)v‖q1‖�2+αu‖ + c‖v‖p2‖�2+(1−α)v‖q2‖�2+αu‖
=: I I11 + I I12,

with 1/pi + 1/qi = 1/2, i = 1, 2.
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Let us take into account I I11. Then, setting p1 = ∞ and q1 = 2, we have that

I I11 = ‖∇v‖∞‖�1+(1−α)v‖‖�2+αu‖
≤ cε‖∇v‖2∞‖�2−αv‖2 + ε‖�2+αu‖2
≤ cε‖∇v‖2∞

(‖v‖1−σ ‖	v‖σ
)2 + ε‖�2+αu‖2

≤ c‖∇v‖2∞(‖v‖2 + ‖	v‖2) + ε‖�2+αu‖2
≤ c‖∇v‖2∞(1 + ‖	v‖2) + ε‖�2+αu‖2,

where we used Young’s inequality, and Gagliardo-Nirenberg’s inequality

‖�2−αv‖2 ≤ (‖v‖1−σ ‖	v‖σ )2, with σ = (2 − α)/2.

For the term I I12, setting p2 = ∞ and q2 = 2, we reach

I I12 = ‖v‖∞‖�2+(1−α)v‖‖�2+αu‖
≤ cε‖v‖2∞‖�2+(1−α)v‖2 + ε‖�2+αu‖2
≤ cε‖v‖2∞

(‖	v‖1−σ ‖�2+βv‖σ
)2 + ε‖�2+αu‖2

≤ cε,δ‖v‖
2

1−σ∞ ‖	v‖2 + δ‖�2+βv‖2 + ε‖�2+αu‖2

≤ cε,δ

(‖v‖ 1
2 ‖∇v‖

1
2∞

) 2
1−σ ‖	v‖2 + δ‖�2+βv‖2 + ε‖�2+αu‖2

≤ c‖∇v‖
1

1−σ∞ ‖	v‖2 + δ‖�2+βv‖2 + ε‖�2+αu‖2,

(32)

where we applied Young and Gagliardo-Nirenberg’s inequalities. In particular, param-
eter σ = (1 − α)/β is such that σ < 1 if and only if α + β > 1. Moreover, observe
that

2 ≥ 1

1 − σ
= β

β + α − 1
⇐⇒ β + 2α ≥ 2,

and also this last condition is satisfied assuming (12). Hence, usingYoung’s inequality,
from (32) we get

I I12 ≤ c(1 + ‖∇v‖2∞)‖	v‖2 + δ‖�2+βv‖2 + ε‖�2+αu‖2.

Let us take into account the integral term I1, to get

|I1| =
∣∣
∣∣

∫

R2
[	, u · ∇]u · 	u dx

∣∣
∣∣

≤ ‖[	, u · ∇]u‖‖	u‖
≤ c‖∇u‖∞‖	u‖2,
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where we used (8). We also have that

|I2| =
∣∣∣∣

∫

R2
[	, u · ∇]v · 	v dx

∣∣∣∣

≤ ‖[	, u · ∇]v‖‖	v‖
≤ c

(‖∇u‖∞‖	v‖2 + ‖∇v‖∞‖	u‖‖	v‖)

≤ c
(‖∇u‖∞ + ‖∇v‖∞)(‖	u‖2 + ‖	v‖2).

Similarly, we obtain

|I3| =
∣∣∣∣

∫

R2
[	, u · ∇]θ · 	θ dx

∣∣∣∣

≤ ‖[	, u · ∇]θ‖‖	θ‖
≤ c

(‖∇u‖∞‖	θ‖2 + ‖∇θ‖∞‖	u‖‖	θ‖)

≤ c
(‖∇u‖∞ + ‖∇θ‖∞)(‖	u‖2 + ‖	θ‖2).

(33)

Combining (30)with (31)–to–(33), and setting‖(	u,	v,	θ)(t)‖2 := ‖	u(t)‖2+
‖	v(t)‖2 + ‖	θ(t)‖2, we finally get

1

2

d

dt

(
e + ‖(	u, 	v, 	θ)(t)‖2) + (1 − 2ε)‖�2+αu(t)‖2 + (1 − δ)‖�2+βv(t)‖2

≤ C
(
1 + ‖∇u(t)‖2∞ + ‖∇v(t)‖2∞ + ‖∇θ(t)‖2∞)

(
e + ‖(	u, 	v, 	θ)(t)‖2)

≤ C(1 + Iu,v,θ (t))
(
1 + log

(
e + ‖|(∇u, ∇v, ∇θ)(t)‖|Hs−1

)) (
e + ‖(	u, 	v, 	θ)(t)‖2),

(34)

where Iu,v,θ (t) is defined as in (26) and, in particular, in the last inequality we used
relation (6). We conclude as in (27)-to-(29) by an application of Gronwall’s lemma
and exploiting hypothesis (14), to get the control

(
e + ‖(	u, 	v, 	θ)(t)‖2) + 2

∫ t

T∗

(
(1 − 2ε)‖�2+αu(s)‖2 + (1 − δ)‖�2+βv(s)‖2)ds

≤ (
e + ‖(	u, 	v, 	θ)(T∗)‖2

)
exp

{
C

∫ t

T∗

(
1 + Iu,v,θ (s)

)
log

(
e2 + e‖|(	u, 	v, 	θ)(s)‖|Hs−1

))
ds

}

≤ C∗ec(t−T∗)
(
e + y(t)

)cε
,

where y(t) is defined as in (28), ε > 0 is the small quantity introduced in (29), and
we still use C∗ that, in this case, also depends on ‖(	u,	v,	θ)(T∗)‖2.
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Hs-estimates, s > 2

We now derive and close the Hs-controls for u, v and θ . Applying the operator �s to
(1)1, (1)2 and (1)3, multiplying the resulting equations in L2, by �su, �sv and �sθ ,
respectively, and adding them up, we obtain

1

2

d

dt

(‖�su(t)‖2 + ‖�sv(t)‖2 + ‖�sθ(t)‖2) + ‖�s+αu(t)‖2 + ‖�s+βv(t)‖2

= −
∫

R2
�s((u · ∇)u

) · �su dx −
∫

R2
�s((u · ∇)v

) · �sv dx −
∫

R2
�s((u · ∇)θ

) · �sθ dx

−
∫

R2
�s((v · ∇)v

) · �su dx −
∫

R2
�s(divv v

) · �su dx −
∫

R2
�s((v · ∇)u

) · �sv dx

=: Î1 + Î2 + Î3 + Î4 + Î5 + Î6.

(35)

Let us first consider the integral term Î1. By exploiting relation (8), we get

| Î1| =
∣∣∣∣

∫

R2
[�s, u · ∇]u · �su dx

∣∣∣∣

≤ ‖[�s, u · ∇]u‖‖�su‖
≤ C‖∇u‖∞‖�su‖2.

(36)

Consider Î2 to find

| Î2| =
∣∣∣∣

∫

R2
�s((u · ∇)v

) · �sv dx

∣∣∣∣

≤ ‖[�s, u · ∇]v‖‖�sv‖
≤ C

(‖∇u‖∞‖�s−1∇v‖ + ‖�su‖‖∇v‖∞
)‖�sv‖

≤ C
(‖∇u‖∞ + ‖∇v‖∞)

(‖�su‖2 + ‖�sv‖2).

We now estimate Î3. Observe that

| Î3| =
∣∣∣∣

∫

R2
[�s, u · ∇]θ · �sθ dx

∣∣∣∣

≤ ‖[�s, u · ∇]θ‖‖�sθ‖
≤ (‖∇u‖∞‖�s−1∇θ‖ + ‖∇θ‖∞‖�su‖)‖�sθ‖
≤ C

(‖∇u‖∞ + ‖∇θ‖∞
)(‖�su‖2 + ‖�sθ‖2).
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Let us take into account Î4, Î5 and Î6. We have that

| Î4 + Î5 + Î6| =
∣∣∣
∣−

∫

R2
�s(divv v

) · �su dx −
∫

R2
[�s, v · ∇]v · �u dx

−
∫

R2
[�s, v · ∇]u · �sv dx +

∫

R2
divv�sv · �su dx

∣∣∣∣

≤
∣∣∣
∣

∫

R2
�s(divvv

) · �su dx

∣∣∣
∣ +

∣∣∣
∣

∫

R2
[�s, v · ∇]v · �su dx

∣∣∣
∣

+
∣
∣∣∣

∫

R2
[�s, v · ∇]u · �sv dx

∣
∣∣∣ +

∣
∣∣∣

∫

R2
divv�sv · �su dx

∣
∣∣∣

≤ ‖�s−α
(
divv v

)‖‖�s+αu‖ + ‖[�s, v · ∇]v‖‖�su‖
+ ‖[�s, v · ∇]u‖‖�sv‖ + ‖divv‖∞‖�sv‖‖�su‖

=: Î I 1 + Î I 2 + Î I 3 + Î I 4,

where [�s, f · ∇]g := �s(( f · ∇)g) − ( f · ∇)�sg.
In particular, using (7) we have that

Î I 1 ≤ C
(‖∇v‖p1‖�s−αv‖q1 + ‖v‖p2‖�s+(1−α)v‖q2

)‖�s+αu‖
=: Î I 11 + Î I 12,

with 1/pi + 1/qi = 1/2, i = 1, 2.
Let us start with Î I 12. Taking p2 = ∞ and q2 = 2, and applying Young and

Gagliardo-Nirenberg’s inequalities, we infer

Î I 12 ≤ cε‖v‖2∞‖�s+(1−α)v‖2 + ε‖�s+αu‖2
≤ cε‖v‖2∞

(‖	v‖(1−ϑ)‖�s+βv‖ϑ
)2 + ε‖�s+αu‖2

≤ cε,δ‖v‖
2

1−ϑ∞ ‖	v‖2 + δ‖�s+βv‖2 + ε‖�s+αu‖2

≤ cε,δ

(‖v‖ 1
2 ‖	v‖ 1

2
) 2
1−ϑ ‖	v‖2 + δ‖�s+βv‖2 + ε‖�s+αu‖2

≤ cε,δ‖	v‖ 1
1−ϑ ‖	v‖2 + δ‖�s+βv‖2 + ε‖�s+αu‖2

≤ c‖	v‖2+ 1
1−ϑ + δ‖�s+βv‖2 + ε‖�s+αu‖2,

where ϑ = (s − 1 − α)/(s − 2 + β). Here, as usual, s > 2, 1/2 < α < 1, and
0 < β < 1, and it holds true

ϑ = s − 1 − α

s − 2 + β
< 1 ⇐⇒ α + β > 1, (37)

which is verified under the assumptions in (12). Moreover, we have that

1

1 − ϑ
= s − 2 + β

β + α − 1
.

123



734 L. Bisconti

For the term Î I 11, taking p1 = ∞ and q1 = 2, we have the following control

Î I 11 = ‖∇v‖∞‖�s−αv‖2‖�s+αu‖
≤ cε‖∇v‖2∞‖�s−αv‖2 + ε‖�s+αu‖2
≤ cε‖∇v‖2∞

(‖v‖1−σ ‖�sv‖σ
)2 + ε‖�s+αu‖2

≤ cε‖∇v‖2∞(1 + ‖�sv‖2) + ε‖�s+αu‖2,

where we used Gagliardo-Nirenberg’s inequality with σ = (s − α)/α.
For the remaining terms Î I 2, Î I 3, and Î I 4, we get

| Î I 2 + Î I 3 + Î I 4| ≤ c(‖∇u‖∞ + ‖∇v‖∞)(‖�su‖2 + ‖�sv‖2). (38)

Setting ‖(�su,�sv,�sθ)(t)‖2 := ‖�su(t)‖2+‖�sv(t)‖2+‖�sθ(t)‖2, recalling
that ‖(∇u,∇v,∇θ)(t)‖|Hs−1 = ‖∇u(t)‖Hs−1 + ‖∇v(t)‖Hs−1 + ‖∇θ(t)‖Hs−1 , and
using (35) along with the above estimates (36)–to–(38), for Îi , i = 1, . . . , 8, we
obtain the following differential inequality

1

2

d

dt

(
e + ‖(�su,�sv,�sθ)(t)‖2) + (1 − 2ε)‖�s+αu(t)‖2 + (1 − δ)‖�s+βv(t)‖2

≤ C
(‖∇u(t)‖2∞ + ‖∇v(t)‖2∞ + ‖∇θ(t)‖2∞)

(
e + ‖(�su,�sv,�sθ)(t)‖2)

+ C‖	v(t)‖2+ 1
1−ϑ

≤ C Iu,v,θ (t)
(
1 + log

(
e + ‖|(∇u,∇v,∇θ)(t)‖|Hs−1

))

× (
e + ‖(�su,�sv,�sθ)(t)‖2) + C‖	v(t)‖2+ 1

1−ϑ ,

(39)

where in the last step we used again (6), with Iu,v,θ defined as in (26), and parameter
ϑ is given in (37).

Then, up to use explicitly Gagliardo-Nirenberg’s inequality to control lower-order
terms in ‖|(∇u,∇v,∇θ)(t)‖|Hs−1 with ‖(�su,�sv,�sθ)(t)‖2 and ‖(u, v, θ)(t)‖2,
and up to introduce a constant C0 larger than “e” in the above logarithm (which
is needed to reabsorb the terms coming from the interpolations and the subsequent
manipulations), setting

Y (t) := ‖(�su,�sv(t),�sθ)(t)‖2,

from the differential inequality (39) we infer

d

dt

(
e + Y (t)

) ≤ C Iu,v,θ (t)
(
1 + log

(
e + Y (t)

)) (
e + Y (t)

) + C‖	v(t)‖2+ 1
1−ϑ .
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As a direct consequence of Gronwall’s inequality, we get

e + Y (t) ≤
((

e + Y (T∗)
) + C

∫ t

T∗
‖	v(s)‖2+ 1

1−ϑ ds

)

× exp

{
C

∫ t

T∗
Iu,v,θ (s) log

(
e2 + eY (s)

)
ds

}
.

Hence, with a slight abuse of notation we still use the quantity y(t) = supT∗≤s≤t Y (s),
T∗ ≤ t < T , introduced in (28), and recalling that ε > 0 is the small parameter in
(29), we have that

e + y(t) ≤ [(
e + Y (T∗)

) + C∗(t − T∗)ecγ (t−T∗)(e + y(t)
)cγ ε](

e + y(t)
)cε

≤ c
[(
e + Y (T∗)

) + (t − T∗)ecγ (t−T∗)](e + y(t)
)c(γ+1)ε

,

where γ = 1+1/2(1−ϑ), and we employed relation (34) and its direct consequence.
Here, the constantC∗ depends on‖u(T∗)‖H2 ,‖v(T∗)‖H2 , and‖θ(T∗)‖H2 . Then, taking
ε < 1/c(γ + 1), we finally obtain the bound

sup
0≤t≤T

(‖�su(t)‖2 + ‖�sv(t)‖2 + ‖�sθ(t)‖2) < +∞,

and so the solution (u, v, θ)(t) remains uniformly bounded in Hs-norm on [0, T ]. In
particular, by using a standard argument about the continuation of local solutions, it
follows that (u, v, θ)(t) can be extended beyond T > 0, and the proof is completed.
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