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We model the axisymmetric unidirectional flow of a Herschel-Bulkley fluid with rheological

parameters that depend linearly on pressure. Adopting an appropriate scaling we formu-

late the mathematical problem in cylindrical geometry exploiting an integral formulation

for the momentum equation in the unyielded part. We prove that, under suitable assump-

tions on the data of the problem, explicit solutions can be determined. In particular we

determine the position of the yield surface together with the pressure and velocity pro-

files. With the aid of some plots we finally discuss the dependence of the solution on the

physical parameters of the problem.
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1 Introduction

Fluids with rheological parameters that may vary with thermodynamical quantities such

as pressure or temperature have always drawn considerable attention among the scien-

tific community. Experimental studies have indeed proven that, under specific operating

conditions, viscosity can vary by several order of magnitude with pressure, see [3].

Since the seminal work of Stokes [15], many models have been proposed to investigate

fluids with pressure dependent rheology. These models are of undeniable practical inter-

est especially when considering flows at high pressure and problems involving lubricants.

While on the one hand a high pressure regime reduces the volume of a liquid, the effect

of increasing the pressure induces significant changes also in fluid properties such as vis-

cosity, thermal conductivity, etc. In particular, there are situations in which the variation

in the density of a liquid is insignificant when compared with the changes in the viscosity

of the fluid. In this case one is allowed to treat such a class of liquids as incompressible

fluids with pressure-dependent viscosity.

It has to be remarked that when we speak of “pressure” we are actually talking about

the “mean normal stress” of the fluid which must not be confused with the Lagrange

multiplier due to the constraint of incompressibility, that is the reaction due to incom-
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pressibility. Indeed, as shown in [18] and [19], since constraint forces do no work, viscosity

cannot depend on the Lagrange multiplier that enforces the incompressibility constraint.

Barus [2] carried out one of the early study on the variation of viscosity with pressure,

providing the simple relationship 1

µ∗ = µ∗o exp(α∗p∗),

which shows that viscosity varies exponentially with pressure. More general formulas

have also been proposed, as the one by Andrade [1]

µ = A∗ρ∗
1/2

exp

(
(p∗ + ρ∗

2

r∗)
s∗

θ

)
,

in which the dependence on the temperature is also taken into account. An exhaustive

summary of the investigations concerning the effects of pressure on the various properties

of liquids before 1930 can be found in [3]. More recent studies can be found in [14], [12],

[4], [13]. Simple flows concerning Newtonian and non-Newtonian fluids with pressure and

temperature dependent viscosity have been widely investigated in various settings, see

[18], [20], [22], [16], [21], [17].

In this paper we study the simple flow of an incompressible visco-plastic fluid whose

rheology depends on the mean normal stress experienced by the fluid, i.e. the pressure.

In particular we consider a Herschel-Bulkley fluid which flows in a cylindrical duct of

uniform cross-section. The Herschel-Bulkley fluid is a non-Newtonian visco-plastic fluid

in which the strain and the stress are related in a non-linear way when the second

invariant of the extra stress is above a critical threshold called yield stress. The Herschel-

Bulkley fluid is characterized by three parameters, namely the consistency index µ∗, the

flow index n and the yield stress τ∗o . The consistency index is a proportionality factor

related to the viscosity of the fluid, the yield stress is a threshold that must be overcome

in order to start the flow and the flow index is a measure of the capability of the fluid of

shear-thinning or shear thickening.

In a one-dimensional geometry the constitutive equation of a Herschel-Bulkley fluid is

given by

(τ∗ − τ∗o )+ = µ∗γ̇∗
n

, (1.1)

where τ∗ is the stress and γ̇∗
n

is the strain-rate. From (1.1) we see that the fluid cannot

undergo deformations when the applied stress is below the yield stress and that the fluid

has a power-law behaviour when the stress is above the yield stress. In the classical

Herschel-Bulkley model the consistency index and the yield stress are constants. Here

we assume that they depend (linearly) on the pressure. We shall see that, even in the

simple case of a Poiseuille unidirectional flow, the dependence of the material moduli

on the pressure leads to a mathematical problem that is much more complicated than

the classical one. For the reader interested in problems for visco-plastic fluid with non-

constant material parameters we refer to [5], [7], [10], [11].

The paper is organized as follows. After formulating the general problem, we will look

for solutions in which the radial component of the velocity is null (unidirectional flow)

1 The starred variables denote dimensional quantities.
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and we will prove that under specific assumptions analytical explicit solutions can be

found. We will finally show some plots to illustrate the dependence of the solutions on

the physical parameters of the problem.

2 The mathematical model

Let us consider an incompressible fluid in which the stress can be decomposed as

T∗ = −p∗I + S∗,

where S∗ is the traceless deviatoric part and p∗ is the mean normal stress

p∗ = −1

3
trT∗.

We assume that the consitutive equation defining the fluid is the one of an Herschel-

Bulkley fluid, namely
S∗ =

[
2µ∗(p∗)II∗

n−1

D +
τ∗o (p∗)

II∗D

]
D∗ II∗S > τ∗o (p∗),

D∗ = 0 II∗S 6 τ∗o (p∗),

where D∗ is the rate of strain, µ∗ is the consistency index (a parameter related to the

viscosity of the fluid), τ∗o is the yield stress, n is the flow index and where

II∗S =

(
1

2
S∗ · S∗

)1/2

II∗D =

(
1

2
D∗ ·D∗

)1/2

are invariants of the stress and of the strain-rate respectively. In the classical Herschel-

Bulkley model the parameters µ∗, τ∗o are taken constant. Here we assume that they

depend linearly on the mean normal stress p∗, that is

µ∗ = α∗p∗ τ∗o = βp∗. (2.1)

One can easily check that the dimension of α∗ is a time to the power of n, while β is

dimensionless since τ∗o has the dimension of a pressure. Adopting a cylindrical coordinate

system (r, θ, z) we consider the flow in a pipe of radius R∗ and length L∗ assuming that

the velocity is of the form

v∗ = w∗(r)ez, (2.2)

that is we consider a fully developed flow in which the inertial effects are negligible

(creeping flow), see Fig. 1. The constraint of incompressibility divv∗ = 0 is clearly

automatically satisfied. The linear momentum equation in the yielded region reduces to
∂p∗

∂r∗
=
∂S∗rz
∂z∗

∂p∗

∂z∗
=

1

r∗
∂

∂r∗
(r∗S∗rz) ,

(2.3)
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r∗ = s∗

r = R∗

L∗

r∗

z∗

Figure 1. Sketch of the system

since the only non-zero non-diagonal component of the stress is

S∗rz =

[
21−nα∗p∗

|w∗
′

|n

|w∗′ |
+

βp∗

|w∗′ |

]
w∗
′

,

where the prime denotes differentiation w.r.t. r∗. Referring to Fig. 1 we assume that the

flow domain can be split into an unyielded region (rigid inner plug) and a yielded region

(adjacent to the pipe walls). Moreover we assume that these regions are separated by

a smooth surface r∗ = s∗ called the yield surface. In r∗ ∈ [0, s∗] we have II∗S 6 τ∗o (p∗)

while in r∗ ∈ [s∗, R∗] we have II∗S > τ∗o (p∗). The yield criterion is thus

II∗S = τ∗o (p∗) or equivalently II∗D = 0 on r∗ = s∗.

On the pipe wall r∗ = R∗ we assume the usual no-slip condition

w∗(R∗) = 0. (2.4)

The momentum equation in the unyielded part cannot be derived from the classical local

differential formulation (2.3), since in a visco-plastic fluid the stress is not define below

the yield limit. This is a tricky issue which we have addressed recently in a series of paper,

[7], [9], [6], [8] regarding the modelling of a Bingham fluid in lubrication approximation.

Indeed, following [7], the integral formulation of the linear momentum balance in the

plug is given by

%∗
∫
Ω∗

∂v∗

∂t∗
dV ∗ + %∗

∫
∂Ω∗

v∗(v∗ · n)dS∗ =

∫
∂Ω∗

T∗ndS∗ (2.5)

where Ω∗ = {r∗ ∈ [0, s∗], z∗ ∈ [0, L∗]} is the rigid plug and %∗ is the density. Since

we are considering creeping flow where inertia is neglected, equation (2.5) reduces to the
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equilibrium equation ∫
∂Ω∗

T∗ndS∗ = 0. (2.6)

The radial component of (2.6) is automatically null because of symmetry. The longitu-

dinal component of (2.6) yields (see Appendix A)

∫
∂Ω∗

T∗n · ezdS∗ = 2π

L∗∫
0

(
S∗rz −

s∗

2

∂p∗

∂z∗

)∣∣∣∣
r∗=s∗

s∗dz∗ = 0. (2.7)

3 Scaling

We adopt the following scaling

r∗ = R∗r z∗ = R∗z w∗ = U∗w D∗ =

(
U∗

R∗

)
D II∗D =

(
U∗

R∗

)
IID

s∗ = R∗s S∗ = α∗P ∗
(
U∗

R∗

)n
S II∗S = α∗P ∗

(
U∗

R∗

)n
IIS

where R∗ is the radius of the pipe, U∗ is a characteristic velocity and P ∗ is a characteristic

pressure. We assume that the length and the radius of the pipe are of the same order so

that the non-dimensional length of the pipe is

L =
L∗

R∗
= O(1).

With this scaling and recalling that velocity is given by (2.2), we find that

Drz =
w
′
(r)

2
IID =

|w′(r)|
2

Srz = sign(w
′
(r)) · p

[
21−n|w

′
(r)|n + Bn

]
(3.1)

where
′

= d/dr and where

Bn =
β

α
,

is the Bingham number and where

α := α∗
(
U∗

R∗

)n
.

Since we expect that velocity is decreasing in the region [s, 1] we assume2 w
′
(r) < 0 and

(3.1) can be rewritten as

Srz = −p
[
21−n

(
− w

′
(r)
)n

+ Bn
]
. (3.2)

2 Notice that this is a a priori assumption that must be checked once the solution is found.
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The dimensionless momentum equation in the yielded phase is
∂p

∂r
= α

∂Srz
∂z

,

∂p

∂z
=
α

r

∂

∂r
(rSrz) .

(3.3)

The momentum integral equation (2.7) becomes

L∫
0

(
2αSrz − s

∂p

∂z

)∣∣∣∣
r=s

sdz = 0. (3.4)

We introduce

Q(r) :=
[
21−n

(
− w

′
(r)
)n

+ Bn
]

(3.5)

so that

Srz = −pQ.
System (3.3) becomes 

∂p

∂r
= −αQ∂p

∂z
,

∂p

∂z
= −

[
α

r
Qp+ αp

∂Q

∂r
+ αQ

∂p

∂r

]
.

(3.6)

On eliminating ∂p/∂r in (3.6) we find

1

p

∂p

∂z
= −

α

r

∂

∂r
(rQ)(

1− α2Q2
) (3.7)

The l.h.s. of (3.7) is a function that depends on r and z, whereas the r.h.s. depends only

on r. Therefore we may seek a solution where both sides of (3.7) are equal to a constant.

Of course this is not the sole choice, since we may also look for a solution in which both

sides are equal to a function of r. Suppose

1

p

∂p

∂z
= −λ λ > 0,

where we choose λ > 0 since we expect that pressure is decreasing along the pipe. We

get

p(r, z) = c(r) exp(−λz) (3.8)

where c(r) and λ are unknown. Further

1

r

∂

∂r
(rαQ) + λ

(
α2Q2 − 1

)
= 0. (3.9)

We introduce the new variable θ such that

αQ =
1

λθ

dθ

dr
. (3.10)
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Inserting (3.10) into (3.9) we find

d2θ

dr2
+

1

r

dθ

dr
− λ2θ = 0, (3.11)

which is a second-order modified Bessel equation. The solution to (3.11) is

θ(r) = aIo(λr) + bKo(λr) (3.12)

where a and b are integration constant and where Io and Ko are the modified Bessel

functions of first and second type respectively. From (3.10)

αQ =
aI1(λr)− bK1(λr)

aIo(λr) + bKo(λr)
=
I1(λr)− ξK1(λr)

Io(λr) + ξKo(λr)

where we have exploited the relations I
′

o = I1, K
′

o = −K1 and where for simplicity we

have set ξ = b/a. Recalling that Q is defined by (3.5) we get

−w
′
(r) =

{
1

21−nα

[
I1(λr)− ξK1(λr)

Io(λr) + ξKo(λr)
− αBn

]}1/n

(3.13)

Using the yield criterion w
′
(s) = 0 we find

I1(λs)− ξK1(λs)

Io(λs) + ξKo(λs)
= αBn. (3.14)

Integrating (3.13) between r > s and R we get the velocity in the yielded domain

w(r) =

1∫
r

{
1

21−nα

[
I1(λη)− ξK1(λη)

Io(λη) + ξKo(λη)
− αBn

]}1/n

dη (3.15)

where ξ is unknown at this stage.

Remark 1 When n = 1 our model reduces to the Bingham model with pressure-dependent

rheological parameters (which was studied in [5] in planar geometry). For this particular

case (3.15) can be integrated providing

w(r) =
1

αλ

1∫
r

d

dη
[ln(Io(λη) + ξKo(λη))] dη − Bn(1− r)

w(r) =
1

αλ
ln

(
Io(λ) + ξKo(λ)

Io(λr) + ξKo(λr)

)
− Bn(1− r).

Let us go back to the problem for the pressure. So far we have not yet used equation

(3.6)1. Hence we insert (3.8) into (3.6)1. We obtain

c
′

c
=
d(ln c)

dr
= λαQ =

d

dr
[ln(Io(λr) + ξKo(λr))]

which implies

c(r) = m [(Io(λr) + ξKo(λr))] ,
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where m > 0 is a positive constant to be determined. As a consequence

p(r, z) = m [(Io(λr) + ξKo(λr))] exp(−λz). (3.16)

Following [22], we determine the constants m and λ imposing the pressure at the inlet

and outlet of the pipe for r = 1, i.e.

p = po > 0 at r = 1, z = 0

p = p1 > 0 at r = 1, z = L

The above implies

λ =
1

L
ln

(
po
p1

)
> 0 if po > p1, (3.17)

and

m =
po[

Io(λ) + ξKo(λ)
] =

p1 exp(λL)[
Io(λ) + ξKo(λ)

] . (3.18)

We shall prove that the constant m is always positive. Plugging (3.16) into the rigid plug

momentum equation (3.4) we find

sm [(Io(λs) + ξKo(λs))]

L∫
0

exp(−λz)dz · (λs− 2αBn) = 0.

Therefore, recalling that β = αBn we get

λs = 2αBn = 2β. (3.19)

Notice that (3.19) produces the flow condition

s =
2β

λ
< 1 ⇐⇒ λ > 2β.

Substitution of (3.19) into (3.14) provides the constant ξ

ξ =
I1(2β)− βIo(2β)

K1(2β) + βKo(2β)
(3.20)

We observe that ξ can be seen as a function of β, i.e. ξ = ξ(β) defined in (0,∞). Exploiting

the properties of modified Bessel functions (see Appendix B) we can prove that

dξ

dβ
< 0 lim

β→0+
ξ(β) = 0

as shown in Fig. 2a. Therefore

ξ = ξ(β) < 0 ∀ β > 0.

To get a consistent solution we must ensure that the pressure defined in (3.16) is positive,

that is we must check that

m
[
(Io(λr) + ξKo(λr)

]
> 0

We begin by proving that the quantity Io(λr) + ξKo(λr) > 0 when r ∈ [s, 1]. When this

is proved the positiveness of m follows from (3.18). Recalling that Io and Ko are positive
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Figure 2. The function ξ (a); the function Io(λr)/Ko(λr) (b).

functions, we observe that

Io(λr) + ξKo(λr) > 0 ⇐⇒ −ξ < Io(λr)

Ko(λr)
(3.21)

Looking at Fig. 2b we see that Io/Ko is an increasing function of λr. Therefore inequality

(3.21)2 is satisfied if

−ξ < Io(λs)

Ko(λs)
=

Io(2β)

Ko(2β)
, (3.22)

that is when

βIo(2β)− I1(2β)

βKo(2β) +K1(2β)
<

Io(2β)

Ko(2β)
. (3.23)

The above reduces to

I1(2β)Ko(2β) + Io(2β)K1(2β) > 0 (3.24)

which is verified for every 2β > 0. Therefore inequality (3.21) is always satisfied and

the pressure is always positive. The only condition that we have not yet verified is the

positiveness of the function −w′(r) in the yielded domain [s, 1]. Indeed we recall that our

model was based on the a priori assumption that the velocity profile was a decreasing

function of r in the interval [s, 1], namely w
′
(r) < 0. Let us go back to (3.13) and look

at the function in square bracket. We must check that

F (r) =:

[
I1(λr)− ξK1(λr)

Io(λr) + ξKo(λr)
− β

]
> 0 (3.25)

with ξ given by (3.20) and when r ∈ [s, 1]. In Appendix B we will show that F (r) is

positive when

β < β ≈ 0.71. (3.26)
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Figure 3. Contour plots of p for α = 0.8, keeping Bn = 0.01 and varying ∆p (= p0 − p1)

Appendix A The equation for the unyielded plug

Equation (2.7) can be derived writing the stress tensor as

T =

 −p∗ 0 S∗rz
0 −p∗ 0

S∗rz 0 −p∗

 (A 1)

and assuming that at the inlet and outlet of the pipe the tangential component of the

stress is zero, i.e.

T
∣∣∣
z∗=0

 −p∗in 0 0

0 −p∗in 0

0 0 −p∗in

 , T∣∣∣
z∗=L∗

=

 −p∗out 0 0

0 −p∗out 0

0 0 −p∗out

 (A 2)

with p∗in, p∗out uniform and unknown. We have

0 =

∫
∂Ω∗

T∗n · ezdS∗ = −
∫
∂Ω∗in

T∗
∣∣∣
0
ez · ezdS∗ +

∫
∂Ω∗out

T∗
∣∣∣
L∗

ez · ezdS∗+

+

∫
∂Ω∗`

T∗
∣∣∣
s∗
er · ezdS∗ = 2π

L∗∫
0

S∗rz

∣∣∣
s∗
s∗dz∗ +

(
s∗

2

2
p∗in −

s∗
2

2
p∗out

)
Therefore we can write

0 =

L∗∫
0

(
S∗rz −

s∗

2

∂p∗

∂z∗

) ∣∣∣
s∗
s∗dz∗ +

(
s∗

2

2
p∗out −

s∗
2

2
p∗in

)
+

(
s∗

2

2
p∗in −

s∗
2

2
p∗out

)
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Figure 4. Contour plots of p for α = 0.8, keeping ∆p = 5.2 and varying Bn

which gives (2.7).

Appendix B Properties of some functions used in the model

We begin by showing that the function ξ defined in (3.20 ) is decreasing. Let us consider

the function

ξ(x) =
2I1(x)− xIo(x)

2K1(x) + xKo(x)

which is exactly (3.20) with x = 2αBn = 2β > 0. Recalling that

I
′

o(x) = I1(x) I
′

1(x) = Io(x)− I1(x)

x

K
′

o(x) = −K1(x) K
′

1(x) = −Ko(x)− K1(x)

x

it is easy to show that

ξ
′
(x) =

−x2
[
Ko(x)I1(x) +K1(x)Io(x)

]
[
2K1(x) + xKo(x)

]2 < 0

for all x > 0. Therefore ξ(x) is a decreasing function for all x > 0. Moreover

lim
x→0

ξ(x) = lim
x→0

ξ
′
(x) = 0.



12 L. Fusi et al.

1 1

s=0.069

z

r

Bn= 0.06 , n= 0.6

Srz-value

0.18
0.36
0.54
0.72
0.90
1.08
1.26
1.44
1.62
1.80

1 1

s=0.069

z

r

Bn= 0.06 , n= 1.5

Srz-value

0.28
0.56
0.84
1.12
1.40
1.68
1.96
2.24
2.52
2.80

1 1

s=0.837

z

r

Bn= 0.75 , n= 0.6

Srz-value

0.88
1.10
1.32
1.54
1.76
1.98
2.20
2.42
2.64
2.86

1 1

s=0.837

z

r

Bn= 0.75 , n= 1.5

Srz-value

0.78
1.04
1.30
1.56
1.82
2.08
2.34
2.60
2.86
3.12

Figure 5. Contour plots of |Srz| with (α,∆p) = (0.8, 3.2) for different couples (Bn, n)

Next we prove the monotonicity of the r.h.s of the second inequality of (3.21). This result

comes from the inequality

d

dx

[
Io(x)

Ko(x)

]
=
I1(x)Ko(x) + Io(x)K1(x)

K1(x)2
> 0

which holds for all positive x. Finally we show that there exists a positive fixed value of

β such that for all β > β the a priori condition w
′
(r) < 0 is no longer fulfilled. Indeed

w
′
(r) < 0 in (s, 1] only if the function F defined in (3.25) is positive. Let us set

x = λr xo = λs = 2αBn = 2β

The function (3.25) can be rewritten as

F (x) =
I1(x)− ξK1(x)

Io(x) + ξKo(x)
− xo

2

with

ξ = ξ(xo) =
2I1(xo)− xoIo(xo)

2K1(xo) + xoKo(xo)
.

First we notice that F (xo) = 0 as expected. Next we observe that if we plot F (x) for

x > xo for different positive values of xo, we obtain the behaviour of Fig. B 1. As one

can see there is a value xo ≈ 1.42 such that for all xo < xo the function F (x) is positive

for all x > xo. Therefore setting

xo = αBn = 2β ≈ 1.42

we have that the constraint −w′(r) > 0 is guaranteed in (s, 1) if

β = αBn < 0.71.
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Figure 6. Velocity plots with (α,Bn,∆p) = (0.8, 0.44, 3.2) for increasing n
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Figure 7. Shear-rate plots with (α,Bn,∆p) = (0.8, 0.44, 3.2) for increasing n
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