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1. Introduction

The aim of this paper is to develop a theory of Sobolev embeddings, of any order 
m ∈ N, in arbitrary open sets Ω in Rn, with n ≥ 2. As usual, by an m-th order Sobolev 
embedding we mean an estimate for a norm of the h-th order weak derivatives (0 ≤ h ≤
m − 1) of any m times weakly differentiable function in Ω in terms of norms of some of 
its derivatives up to the order m.

The classical theory of Sobolev embeddings involves ground domains Ω satisfying 
suitable regularity assumptions. For instance, a formulation of the original theorem by 
Sobolev reads as follows. Assume that Ω is a bounded domain satisfying the cone prop-
erty, m ∈ N, 1 < p < n

m , and F(·) is any continuous seminorm in Wm,p(Ω) which does 
not vanish on any (non-zero) polynomial of degree not exceeding m −1. Then there exists 
a constant C = C(Ω) such that

‖u‖
L

np
n−mp (Ω)

≤ C
(
‖∇mu‖Lp(Ω) + F(u)

)
(1.1)

for every u ∈ Wm,p(Ω). Here, Wm,p(Ω) denotes the usual Sobolev space of those func-
tions in Ω whose weak derivatives up to the order m belong to Lp(Ω), and ∇mu stands 
for the vector of all (weak) derivatives of u of order m.

It is well known that standard Sobolev embeddings are spoiled in presence of domains 
with “bad” boundaries. In particular, inequalities of the form (1.1) do not hold, at least 
with the same critical exponent np

n−mp , in irregular domains. The interplay between the 
geometry of the domain and Sobolev inequalities, even in frameworks more general than 
the Euclidean one, has over the years been the subject of extensive investigations, along 
diverse directions, by a number of authors. Their results are the object of a rich literature, 
which includes the papers [3,5,6,16,7,8,12,13,18,19,25–27,29,28,31,32,37,39,43,49,47,48,
50–52,54–56,60–62,64,65,68,69] and the monographs [21–24,41,62,66]. Various classical 
problems in the theory of spaces of differentiable functions, involving possibly irregular 
sets, have attracted new interest in the last two decades, and have been considered in 
such contributions as [10,17,20,33,34,45,40,46,63,67,70].

In order to avoid any assumption on Ω, we deal with Sobolev inequalities from an 
unconventional perspective. The underling idea of our results is that suitable information 
on boundary traces of trial functions can replace boundary regularity of Ω.

The inequalities that will be established have the form

‖∇hu‖Y (Ω,μ) ≤ C
(
‖∇mu‖X(Ω) + N∂Ω(u)

)
, (1.2)

where m ∈ N, h ∈ N0, ‖ ·‖X(Ω) is a Banach function norm on Ω with respect to Lebesgue 
measure Ln, ‖ ·‖Y (Ω,μ) is a Banach function norm with respect to a possibly more general 
measure μ, and N∂Ω(·) is a (non-standard) seminorm on ∂Ω, depending on the trace of u, 
and of its derivatives up to the order 

[
m−1

2
]
. Here, N0 = N ∪ {0}, and [·] denotes integer 

part. Moreover, ∇0u stands just for u, and we shall denote ∇1u also by ∇u.



646 A. Cianchi, V. Maz’ya / Advances in Mathematics 293 (2016) 644–696
Some distinctive traits of the inequalities to be presented can be itemized as follows:

• No regularity on Ω is a priori assumed. In particular, the constants in (1.2) are 
independent of the geometry of Ω.

• The critical Sobolev exponents, or, more generally, the optimal target norms, are the 
same as in the case of regular domains.

• The order 
[
m−1

2
]

of the derivatives, on which the seminorm N∂Ω(·) depends, is 
minimal for an inequality of the form (1.2) to hold without any additional assumption 
on Ω.

Let us emphasize that, in view of these features, our inequalities provide original 
conclusions even when just applied to smooth trial functions u on regular domains Ω.

A first-order Sobolev inequality on arbitrary domains Ω ⊂ Rn, of the form (1.2), 
where X(Ω) = Lp(Ω), Y (Ω, μ) = Lq(Ω), and N∂Ω(·) = ‖ · ‖Lr(∂Ω), with 1 ≤ p < n, r ≥ 1
and q = min{ rn

n−1 , 
np
n−p} was established in [60] via isoperimetric inequalities. Sobolev 

inequalities of this kind, but still involving only first-order derivatives and Lebesgue 
measure, have recently received renewed attention. In particular, the paper [57] makes 
use of mass transportation techniques to address the problem of the optimal constants for 
p ∈ (1, n), the problem when p = 1 having already been solved in [60]. Sharp constants 
in inequalities in the borderline case when p = n are exhibited in [58].

In the present paper, we develop a completely different approach, which not only 
enables us to establish arbitrary-order inequalities, which cannot just be derived via 
iteration of first-order ones, but also augments the first-order theory, in that more general 
measures and norms are allowed.

Our point of departure is a new pointwise estimate for functions, and their derivatives, 
on arbitrary – possibly unbounded and with infinite measure – domains Ω. Such estimate 
involves a novel class of double-integral operators, where integration is extended over 
Ω × Sn−1. The relevant operators act on a kind of higher-order difference quotients of 
the traces of functions and of their derivatives on ∂Ω.

In view of applications to norm inequalities, the next step calls for an analysis of 
boundedness properties of these operators in function spaces. To this purpose, we prove 
their boundedness between optimal endpoint spaces. In combination with interpolation 
arguments based on the use of Peetre K-functional, these endpoint results lead to point-
wise bounds, for Sobolev functions, in rearrangement form. As a consequence, Sobolev 
inequalities on an arbitrary n-dimensional domain are reduced to considerably simpler 
one-dimensional inequalities for Hardy type operators.

With this apparatus at disposal, we are able to establish inequalities involving 
Lebesgue norms, with respect to quite general measures, as well as Yudovich–Pohozaev–
Trudinger type inequalities in exponential Orlicz spaces for limiting situations. The 
compactness of corresponding Rellich–Kondrashov type embeddings, with subcritical 
exponents, is also shown. Inequalities for other rearrangement-invariant norms, such as 
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Lorentz and Orlicz norms, could be derived. However, in order to avoid unnecessary 
additional technical complications, this issue is not addressed here.

One major motivation for our research is to provide an effective functional framework 
for boundary value problems for partial differential equations, and variational problems, 
in domains lacking any regularity, to which the theory of Sobolev spaces available in the 
existing literature does not apply. In this connection, let us mention the following simple 
instance, which yet gives the flavor of the generality allowed by the use of an inequality 
like (1.2). Consider the problem

{Δ2u = divF in Ω,

u = 0, B u = 0 on ∂Ω,
(1.3)

where Ω is any open set in Rn, n ≥ 3, Δ2 is the bi-Laplace operator, F : Ω → Rn

is a given function, and B is the (second-order) boundary operator generated by the 
minimization of the quadratic functional

∫
Ω

(
|∇2u|2 + 2F · ∇u

)
dx

among functions u vanishing on ∂Ω. Here, the dot “·” stands for scalar product in Rn. 
Assume that F ∈ L

2n
n+2 (Ω), where 2n

n+2 is the Hölder conjugate of the critical Sobolev 
exponent 2n

n−2 . A special case of Theorem 6.3, Section 6, tells us that there exists a 
constant C = C(n) such that the Sobolev inequality

‖∇u‖
L

2n
n−2 (Ω)

≤ C‖∇2u‖L2(Ω)

holds for every function u vanishing on ∂Ω. (Incidentally, notice that, instead, an inequal-
ity of this kind fails if ∇2u is replaced just with Δu, unless Ω is sufficiently regular.) 
A standard argument relying upon Riesz’ representation theorem in Hilbert spaces then 
yields the existence of a unique solution u to (1.3), whatever Ω is.

An analysis of more general problems in arbitrary domains goes beyond the scope of 
the present contribution, and is the subject of a work in progress.

The paper is organized as follows. In the next section we offer a brief overview of 
some Sobolev type inequalities, in basic cases, which follow from our results, and we 
discuss their novelty and optimality. Section 3 contains some preliminary definitions and 
results. The statement of our main results starts with Section 4, which is devoted to 
our key pointwise inequalities for Sobolev functions on arbitrary open sets. Estimates 
in rearrangement form are derived in the subsequent Section 5. In Section 6, Sobolev 
type inequalities in arbitrary open sets are shown to follow via such estimates. Examples 
which demonstrate the sharpness of our results are exhibited in Section 7. In particular, 
Example 7.4 shows that inequalities of the form (1.2) may possibly fail if N∂Ω(u) only 
depends on derivatives of u on ∂Ω up to an order smaller than [m−1 ]. Finally, in the 
2
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Appendix, some new notions, which are introduced in the definitions of the seminorms 
N∂Ω(·), are linked to classical properties of Sobolev functions.

2. A taste of results

In order to give an overall idea of the content of this paper, we enucleate hereafter a 
few basic instances of the inequalities that can be derived via our approach.

We begin with two examples which demonstrate that our conclusions lead to new 
results also in the case of first-order inequalities, namely in the case when m = 1 in (1.2).

Let Ω be any open set in Rn, and let μ be a Borel measure on Ω such that μ(Br∩Ω) ≤
Crα for some C > 0, and α ∈ (n − 1, n], and for every ball Br with radius r. Clearly, if 
μ = Ln, then this condition holds with α = n.

Assume that 1 < p < n and r > 1, and let s = min{ rα
n−1 , 

αp
n−p}. Then

‖u‖Ls(Ω,μ) ≤ C
(
‖∇u‖Lp(Ω) + ‖u‖Lr(∂Ω)

)
(2.1)

for some constant C and every function u with bounded support, provided that 
Ln(Ω) < ∞, μ(Ω) < ∞ and Hn−1(∂Ω) < ∞. Here, Hn−1 denotes the (n −1)-dimensional 
Hausdorff measure. In particular, if r = p(n−1)

n−p , and hence s = αp
n−p , then (2.1) holds even 

if the assumption on the finiteness of these measures is dropped; in this case, the constant 
C depends only on n, p, α. Inequality (2.1) follows via a general principle contained in 
Theorem 6.1, Section 6. It extends a version of the Sobolev inequality for measures, on 
regular domains [62, Theorem 1.4.5]. It also augments, as far as measures are concerned, 
the result of [57], whose approach, though yielding sharp constants, is confined to norms 
evaluated with respect to the Lebesgue measure. Let us point out that, by contrast, 
our method, being based on representation formulas, need not lead to optimal norms in 
inequalities with p = 1.

Consider now the borderline case corresponding to p = n. As a consequence of Theo-
rem 6.1 again, one can show that

‖u‖
exp L

n
n−1 (Ω,μ)

≤ C
(
‖∇u‖Ln(Ω) + ‖u‖

exp L
n

n−1 (∂Ω)

)
, (2.2)

for some constant C and every function u with bounded support, provided that 
Ln(Ω) < ∞, μ(Ω) < ∞ and Hn−1(∂Ω) < ∞. Here, ‖ · ‖

exp L
n

n−1 (Ω,μ)
and ‖ · ‖

exp L
n

n−1 (∂Ω)
denote norms in Orlicz spaces of exponential type on Ω and ∂Ω, respectively. In-
equality (2.2) on the one hand extends the Yudovich–Pohozaev–Trudinger inequality 
to possibly irregular domains; on the other hand, it enhances, under some respect, a re-
sult of [58], where optimal constants are exhibited in estimates involving the weaker 
norm in expL(Ω), and just for the Lebesgue measure.

Let us now turn to higher-order inequalities. Focusing, for the time being, on second-
order inequalities may help to grasp the quality and sharpness of our conclusions in this 
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framework. In the remaining part of this section, we thus assume that m = 2 in (1.2); 
we also assume, for simplicity, that μ = Ln.

First, assume that h = 0. Then we can prove (among other possible choices of the 
exponents) that, if 1 < p < n

2 , then

‖u‖
L

pn
n−2p (Ω)

≤ C
(
‖∇2u‖Lp(Ω) + ‖u‖

V1,0L
p(n−1)
n−p (∂Ω)

+ ‖u‖
L

p(n−1)
n−2p (∂Ω)

)
, (2.3)

for some constant C = C(p, n), in particular independent of Ω, and every function u
with bounded support. Note that pn

n−2p is the same critical Sobolev exponent as in the 
case of regular domains. Here, ‖ · ‖V1,0Lr(∂Ω) denotes, for r ∈ [1, ∞], the seminorm given 
by

‖u‖V1,0Lr(∂Ω) = inf
g
‖g‖Lr(∂Ω), (2.4)

where the infimum is taken among all Borel functions g on ∂Ω such that

|u(x) − u(y)| ≤ |x− y|(g(x) + g(y)) for Hn−1-a.e. x, y ∈ ∂Ω, (2.5)

and Lr(∂Ω) denotes a Lebesgue space on ∂Ω with respect to the measure Hn−1. The 
function g appearing in (2.5) is an upper gradient, in the sense of [38], for the restriction 
of u to ∂Ω, endowed with the metric inherited from the Euclidean metric in Rn, and 
with the measure Hn−1. In [38], a definition of this kind, and an associated seminorm 
given as in (2.4), were introduced to define first-order Sobolev type spaces on arbitrary 
metric measure spaces. In the last two decades, various notions of upper gradients and 
of Sobolev spaces of functions defined on metric measure spaces, have been the object 
of investigations and applications. They constitute the topic of a number of papers and 
monographs, including [4,11,35,39,42,53].

Let us stress that, although the new term ‖u‖
V1,0L

p(n−1)
n−p (∂Ω)

on the right-hand side 

of (2.3) can be dropped when Ω is a regular, say Lipschitz, domain, it is indispensable 
if Ω is arbitrary. This can be shown by taking into account a domain as in Fig. 1 (see 
Example 7.1, Section 7).

As in the case of regular domains, if p > n
2 , then the Lebesgue norm on the left-hand 

side of (2.3) can be replaced by the norm in L∞. Indeed, if r > n − 1, then

‖u‖L∞(Ω) ≤ C
(
‖∇2u‖Lp(Ω) + ‖u‖V1,0Lr(∂Ω) + ‖u‖L∞(∂Ω)

)
(2.6)

for any open set Ω such that Ln(Ω) < ∞ and Hn−1(∂Ω) < ∞, for some constant C, and 
for any function u with bounded support. In particular, the constant C depends on Ω
only through Ln(Ω) and Hn−1(∂Ω).

In the limiting situation when n ≥ 3, p = n
2 and r > n − 1, a Yudovich–Pohozaev–

Trudinger type inequality of the form

‖u‖ n ≤ C
(
‖∇2u‖ n + ‖u‖V1,0Lr(∂Ω) + ‖u‖ n

)
(2.7)
exp Ln−2 (Ω) L 2 (Ω) exp Ln−2 (∂Ω)
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Fig. 1. Example 7.1, Section 7.

holds for some constant C independent of the geometry of Ω, and every function u
with bounded support, provided that Ln(Ω) < ∞ and Hn−1(∂Ω) < ∞. The norms 
‖ · ‖

exp L
n

n−2 (Ω)
and ‖ · ‖

exp L
n

n−2 (∂Ω)
are the same exponential norms appearing in the 

Yudovich–Pohozaev–Trudinger inequality on regular domains, and in its boundary trace 
counterpart.

Consider next the case when still m = 2 in (1.2), but h = 1. From our estimates one 
can infer that, if 1 < p < n and r ≥ 1, and Ω is any open set with Ln(Ω) < ∞ and 
Hn−1(∂Ω) < ∞, then

‖∇u‖Lq(Ω) ≤ C
(
‖∇2u‖Lp(Ω) + ‖u‖V1,0Lr(∂Ω)

)
(2.8)

for some constant C independent of the geometry of Ω, and every function u with 
bounded support, where

q = min
{

rn
n−1 ,

np
n−p

}
. (2.9)

In particular, if r = p(n−1)
n−p , and hence q = np

n−p , then the constant C in (2.8) depends 
only on n and p.

Inequality (2.8) is optimal under various respects. For instance, if Ω is regular, then, as 
a consequence of (1.1), the seminorm ‖u‖V1,0Lr(∂Ω) can be replaced just with ‖u‖Lr(∂Ω)
on the right-hand side. By contrast, this is impossible in a domain Ω as in Fig. 2, for 
any q ∈ [1, np ], whatever r is – see Example 7.2, Section 7.
n−p
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Fig. 2. Example 7.2, Section 7.

Fig. 3. Example 7.3, Section 7.

The question of the optimality of the exponent q given by (2.9) can also be raised. 
The answer is affirmative. Actually, domains like that of Fig. 3 show that such exponent 
q is the largest possible in (2.8) if no regularity is imposed on Ω (Example 7.3, Section 7).

When p > n, inequality (2.8) can be replaced with

‖∇u‖L∞(Ω) ≤ C
(
‖∇2u‖Lp(Ω) + ‖u‖V1,0L∞(∂Ω)

)
, (2.10)

for some constant C independent of the geometry of Ω, and every function u with 
bounded support, provided that Ln(Ω) < ∞ and Hn−1(∂Ω) < ∞.
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Finally, in the borderline case corresponding to p = n, an exponential norm is involved 
again. Under the assumption that Ln(Ω) < ∞ and Hn−1(∂Ω) < ∞, one has that

‖∇u‖
exp L

n
n−1 (Ω)

≤ C
(
‖∇2u‖Ln(Ω) + ‖u‖V1,0 exp L

n
n−1 (∂Ω)

)
(2.11)

for some constant C, depending on Ω only through Ln(Ω) and Hn−1(∂Ω), and for every 
function u with bounded support. Here, the seminorm ‖ · ‖V1,0 exp L

n
n−1 (∂Ω)

is defined as 
in (2.4), with the norm ‖ · ‖Lr(∂Ω) replaced with the norm ‖ · ‖

exp L
n

n−1 (∂Ω)
. Again, the 

exponential norms in (2.11) are the same optimal Orlicz target norms for Sobolev and 
trace inequalities, respectively, on regular domains.

3. Preliminaries

Let Ω be any open set in Rn, n ≥ 2. Given x ∈ Ω, define

Ωx = {y ∈ Ω : (1 − t)x + ty ⊂ Ω for every t ∈ (0, 1)}, (3.1)

and

(∂Ω)x = {y ∈ ∂Ω : (1 − t)x + ty ⊂ Ω for every t ∈ (0, 1)}. (3.2)

They are the largest subset of Ω and ∂Ω, respectively, which can be “seen” from x. It is 
easily verified that Ωx is an open set. The following proposition tells us that (∂Ω)x is a 
Borel set.

Proposition 3.1. Assume that Ω is an open set in Rn, n ≥ 2. Let x ∈ Ω. Then the set 
(∂Ω)x, defined by (3.2), is Borel measurable.

Proof. Given any r ∈ Q ∩ (0, 1), define

(∂Ω)x(r) = {y ∈ ∂Ω : (1 − t)x + ty ⊂ Ω for every t ∈ (0, r)}.

If y ∈ (∂Ω)x(r), then there exists δ > 0 such that Bδ(y) ∩ ∂Ω ⊂ (∂Ω)x(r). Thus, for 
each r ∈ Q ∩ (0, 1), the set (∂Ω)x(r) is open in ∂Ω, in the topology induced by Rn. The 
conclusion then follows from the fact that (∂Ω)x = ∩r∈Q∩(0,1)(∂Ω)x(r). �

Next, we define the sets

(Ω × Sn−1)0 = {(x, ϑ) ∈ Ω × Sn−1 : x + tϑ ∈ ∂Ω for some t > 0}, (3.3)

and

(Ω × Sn−1)∞ = (Ω × Sn−1) \ (Ω × Sn−1)0. (3.4)
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Clearly,

(Ω × Sn−1)0 = Ω × Sn−1 if Ω is bounded. (3.5)

Let

ζ : (Ω × Sn−1)0 → Rn (3.6)

be the function defined as

ζ(x, ϑ) = x + tϑ, where t is such that x + tϑ ∈ (∂Ω)x.

In other words, ζ(x, ϑ) is the first point of intersection of the half-line {x + tϑ : t > 0}
with ∂Ω.

Given a function g : ∂Ω → R, with compact support, we adopt the convention that 
g(ζ(x, ϑ)) is defined for every (x, ϑ) ∈ Ω × Sn−1, on extending it by 0 on (Ω × Sn−1)∞; 
namely, we set

g(ζ(x, ϑ)) = 0 if (x, ϑ) ∈ (Ω × Sn−1)∞. (3.7)

Let us next introduce the functions

a : Ω × Sn−1 → [−∞, 0) and b : Ω × Sn−1 → (0,∞] (3.8)

given by

b(x, ϑ) =
{ |ζ(x, ϑ) − x| if (x, ϑ) ∈ (Ω × Sn−1)0,
∞ otherwise,

(3.9)

and

a(x, ϑ) = −b(x,−ϑ) if (x, ϑ) ∈ Ω × Sn−1. (3.10)

Proposition 3.2. The function ζ is Borel measurable. Hence, the functions a and b are 
Borel measurable as well.

Proof. Assume first that Ω is bounded, so that (Ω × Sn−1)0 = Ω × Sn−1. Consider a 
sequence of nested polyhedra {Qk} invading Ω, and the corresponding sequence of func-
tions {ζk}, defined as ζ, with Ω replaced with Qk. Such functions are Borel measurable, 
by elementary considerations, and hence ζ is also Borel measurable, since ζk converges 
to ζ pointwise.

Next, assume that Ω is unbounded. For each h ∈ N, consider the set Ωh = Ω ∩Bh(0), 
where Bh(0) is the ball, centered at 0, with radius h. Let ζh and bh be the functions, 
defined as ζ and b, with Ω replaced with Ωh. Since Ωh is bounded, then we already know 



654 A. Cianchi, V. Maz’ya / Advances in Mathematics 293 (2016) 644–696
that bh is Borel measurable. Moreover, bh converges to b pointwise. Hence, b is Borel 
measurable as well, and in particular the set (Ω × Sn−1)0, which agrees with {b < ∞}, 
is Borel measurable. Finally, the function ζh is Borel measurable, inasmuch as Ωh is a 
bounded set. Moreover, ζh converges to ζ pointwise on the Borel set (Ω × Sn−1)0. Thus, 
ζ is Borel measurable. �

Given m ∈ N and p ∈ [1, ∞], we denote by V m,p(Ω) the Sobolev type space defined 
as

V m,p(Ω) =
{
u : u is m-times weakly differentiable in Ω, and |∇mu| ∈ Lp(Ω)

}
.

(3.11)

Let us notice that, in the definition of Vm,p(Ω), it is only required that the derivatives 
of u of the highest order m belong to Lp(Ω). Replacing Lp(Ω) in (3.11) with a more 
general Banach function space X(Ω) leads to the notion of m-th order Sobolev type 
space V mX(Ω) built upon X(Ω).

For k ∈ N0, we denote as usual by Ck(Ω) the space of real-valued functions whose 
k-th order derivatives in Ω are continuous up to the boundary. We also set

Ck
b (Ω) = {u ∈ Ck(Ω) : u has bounded support}. (3.12)

Clearly,

Ck
b (Ω) = Ck(Ω) if Ω is bounded.

Let α = (α1, . . . , αn) be a multi-index with αi ∈ N0 for i = 1, . . . , n. We adopt the 
notations |α| = α1+· · ·+αn, α! = α1! · · ·αn!, and ϑα = ϑα1

1 · · ·ϑαn
n for ϑ ∈ Rn. Moreover, 

we set Dαu = ∂|α|u
∂x

α1
1 ...∂xαn

n
for u : Ω → R.

We need to extend the notion of upper gradient g for the restriction of u to ∂Ω
appearing in (2.5) to the case of higher-order derivatives. To this purpose, let us denote 
by gk,j , where k ∈ N0 and j = 0, 1, (k, j) �= (0, 0), any Borel function on ∂Ω such that:

(i) If k ∈ N, j = 0, and u ∈ Ck−1
b (Ω),

∣∣∣∣ ∑
|α|≤k−1

(2k − 2 − |α|)!
(k − 1 − |α|)!α!

(y − x)α

|y − x|2k−1

[
(−1)|α|Dαu(y) −Dαu(x)

]∣∣∣∣
≤ gk,0(x) + gk,0(y) (3.13)

for Hn−1-a.e. x, y ∈ ∂Ω.
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(ii) If k ∈ N, j = 1, and u ∈ Ck
b (Ω),

n∑
i=1

∣∣∣∣ ∑
|α|≤k−1

(2k − 2 − |α|)!
(k − 1 − |α|)!α!

(y − x)α

|y − x|2k−1

[
(−1)|α|Dα ∂u

∂xi
(y) −Dα ∂u

∂xi
(x)

]∣∣∣∣
≤ gk,1(x) + gk,1(y) (3.14)

for Hn−1-a.e. x, y ∈ ∂Ω.
(iii) If k = 0, j = 1, and u ∈ C0

b(Ω),

|u(x)| ≤ g0,1(x) (3.15)

for Hn−1-a.e. x ∈ ∂Ω.

Note that inequality (3.13), with k = 1, agrees with (2.5), and hence g1,0 has the same 
role as g in (2.5). Let us also point out that, as (2.5) extends a classical property of the 
gradient of weakly differentiable functions in Rn, likewise its higher-order versions (3.13)
and (3.14) extend a parallel property of functions in Rn endowed with higher-order weak 
derivatives. This is shown in Proposition A.1 of the Appendix.
In analogy with (2.4), we introduce the seminorm given, for r ∈ [1, ∞], by

‖u‖Vk,jLr(∂Ω) = inf
gk,j

‖gk,j‖Lr(∂Ω) (3.16)

where k, j and u are as above, and the infimum is extended over all functions gk,j
fulfilling the appropriate definition among (3.13), (3.14) and (3.15). More generally, given 
a Banach function space Z(∂Ω) on ∂Ω with respect to the Hausdorff measure Hn−1, we 
define

‖u‖Vk,jZ(∂Ω) = inf
gk,j

‖gk,j‖Z(∂Ω). (3.17)

Observe that, in particular,

‖u‖V0,1Z(∂Ω) = ‖u‖Z(∂Ω).

4. Pointwise estimates

In the present section we establish our first main result: a pointwise estimate for 
Sobolev functions, and their derivatives, in arbitrary open sets. In what follows we define, 
for k ∈ N,

�(k) =
{ 0 if k is odd,

1 if k is even.
(4.1)
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Theorem 4.1 (Pointwise estimate). Let Ω be any open set in Rn, n ≥ 2. Assume that 
m ∈ N and h ∈ N0 are such that 0 < m −h < n. Then there exists a constant C = C(n, m)
such that

|∇hu(x)| ≤ C

(∫
Ω

|∇mu(y)|
|x− y|n−m+h

dy +
m−h−1∑
k=1

∫
Ω

∫
Sn−1

g[ k+h+1
2 ],�(k+h)(ζ(y, ϑ))
|x− y|n−k

dHn−1(ϑ) dy

+
∫

Sn−1

g[h+1
2 ],�(h)(ζ(x, ϑ)) dHn−1(ϑ)

)
for a.e. x ∈ Ω, (4.2)

for every u ∈ V m,1(Ω) ∩ C
[m−1

2 ]
b (Ω). Here, g[ k+h+1

2 ],�(k+h) is any function as in
(3.13)–(3.15), and convention (3.7) is adopted.

Remark 4.2. In the case when m − h = n, and Ω is bounded, an estimate analogous 
to (4.2) can be proved, with the kernel 1

|x−y|n−m+h in the first integral on the right-hand 

side replaced with log C
|x−y| . The constant C depends on n and the diameter of Ω. If 

m − h > n, and Ω is bounded, then the kernel is bounded by a constant depending on 
n, m and the diameter of Ω.

Remark 4.3. Under the assumption that

u = ∇u = · · · = ∇[m−1
2 ]u = 0 on ∂Ω, (4.3)

one can choose g[h+1
2 ],�(h) = 0 for k = 0, . . . , m − h − 1 in (4.2). Hence,

|∇hu(x)| ≤ C

∫
Ω

|∇mu(y)|
|x− y|n−m+h

dy for a.e. x ∈ Ω. (4.4)

A special case of (4.4), corresponding to h = m − 1, is the object of [62, Theorem 1.6.2].

Remark 4.4. As already mentioned in Section 1, the order 
[
m−1

2
]

of the derivatives 
prescribed on ∂Ω, which appears on the right-hand side of (4.2), is minimal for Sobolev 
type inequalities to hold in arbitrary domains. This issue is discussed in Example 7.4, 
Section 7 below.

A key step in the proof of Theorem 4.1 is contained in the next lemma, which deals 
with the case when h = m − 1 in Theorem 4.1.

Lemma 4.5. Let Ω be any open set in Rn, n ≥ 2.

(i) If u ∈ V 2�−1,1(Ω) ∩ C�−1
b (Ω) for some � ∈ N, then
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|∇2�−2u(x)|

≤ C

(∫
Ω

|∇2�−1u(y)|
|x− y|n−1 dy +

∫
Sn−1

g�−1,1(ζ(x, ϑ)) dHn−1(ϑ)
)

for a.e. x ∈ Ω, (4.5)

for some constant C = C(n, �).
(ii) If u ∈ V 2�,1(Ω) ∩ C�−1

b (Ω) for some � ∈ N, then

|∇2�−1u(x)| ≤ C

(∫
Ω

|∇2�u(y)|
|x− y|n−1 dy +

∫
Sn−1

g�,0(ζ(x, ϑ)) dHn−1(ϑ)
)

(4.6)

for some constant C = C(n, �). Here, g�−1,1 and g�,0 are functions as in
(3.13)–(3.15), and convention (3.7) is adopted.

Our proof of Lemma 4.5 in turn requires the following representation formula for the 
(2� − 1)-th order derivative of a one-dimensional function in an interval, in terms of 
its 2�-th derivative in the relevant interval, and of its derivatives up to the order � − 1
evaluated at the endpoints.

Lemma 4.6. Let −∞ < a < b < ∞. Assume that ψ ∈ W 2�,1(a, b) for some � ∈ N. Then

ψ(2�−1)(t)

=
t∫

a

Q2�−1

(2τ − a− b

b− a

)
ψ(2�)(τ) dτ −

b∫
t

Q2�−1

(a + b− 2τ
b− a

)
ψ(2�)(τ) dτ

+ (2�− 1)!(−1)�
�−1∑
k=0

(2�− k − 2)!
k!(�− k − 1)!

1
(b− a)2�−k−1

[
(−1)k+1ψ(k)(b) + ψ(k)(a)

]
(4.7)

for t ∈ (a, b). Here, ψ(k) denotes the k-th order derivative of ψ, and Q2�−1 is the poly-
nomial of degree 2� − 1, obeying

Q2�−1(t) + Q2�−1(−t) = 1 for t ∈ R, (4.8)

and

Q2�−1(−1) = Q
(1)
2�−1(−1) = · · · = Q

(�−1)
2�−1 (−1) = 0. (4.9)

Proof. Let us represent ψ as

ψ(t) = �(t) + ς(t) for t ∈ (a, b), (4.10)
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where � and ς are the solutions to the problems

{
�(2�)(t) = ψ(2�)(t) in (a, b),
�(k)(a) = �(k)(b) = 0 for k = 0, 1, . . . , �− 1,

(4.11)

and
{
ς(2�)(t) = 0 in (a, b),
ς(k)(a) = ψ(k)(a), ς(k)(b) = ψ(k)(b) for k = 0, 1, . . . , �− 1,

(4.12)

respectively. Let us first focus on problem (4.11). We claim that

�(2�−1)(t) =
t∫

a

Q2�−1

(2τ − a− b

b− a

)
ψ(2�)(τ) dτ

−
b∫

t

Q2�−1

(a + b− 2τ
b− a

)
ψ(2�)(τ) dτ for t ∈ (a, b), (4.13)

where Q2�−1 is as in the statement. In order to verify (4.13), let us consider the auxiliary 
problem

{
ω2�(s) = φ(s) in (−1, 1),
ω(k)(±1) = 0, k = 0, 1, . . . , �− 1,

(4.14)

where φ ∈ L1(a, b) is any given function. Let κ : [−1, 1]2 → R be the Green function 
associated with problem (4.14), so that

ω(s) =
1∫

−1

κ(s, r)φ(r) dr for s ∈ [−1, 1]. (4.15)

The function κ takes an explicit form ([14]; see also [36, Section 2.6]), given by

κ(s, r) = C|s− r|2�−1

1−sr
|s−r|∫
1

(t2 − 1)�−1 dt for s �= r, (4.16)

where C = C(�) is a suitable constant. One can easily see from formula (4.16) that κ(s, r)
is a polynomial of degree 2� − 1 in s for fixed r, and a polynomial of degree 2� − 1 in r
for fixed s, both in {(s, r) ∈ [−1, 1]2 : s > r}, and in {(s, r) ∈ [−1, 1]2 : s < r}. Moreover, 
κ(s, r) = κ(−s, −r). In particular, if s > r, one has that
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κ(s, r) = C

[ �−1∑
j=0

(
�− 1
j

)
(−1)�−1−j

2j + 1 (1 − sr)2j+1(s− r)2�−2k−2

− (s− r)2�−1
�−1∑
j=0

(
�− 1
j

)
(−1)�−1−j

2j + 1

]
. (4.17)

Thus, if s > r,

∂2�−1κ

∂s2�−1 (s, r) = C(2�− 1)!
[ �−1∑

j=0

(
�− 1
j

)
(−1)�+j

2j + 1 r2j+1 −
�−1∑
j=0

(
�− 1
j

)
(−1)�−1−j

2j + 1

]
,

(4.18)

a polynomial of degree 2� − 1 in r, depending only on odd powers of r. Let us denote 
this polynomial by Q2�−1(r). It follows from (4.18) that Q2�−1(−1) = 0. Moreover,

∂Q2�−1

∂r
(r) = ∂

∂r

(
∂2�−1κ

∂s2�−1 (s, r)
)

= C(2�− 1)!
�−1∑
j=0

(
�− 1
j

)
(−1)�+jr2j

= −C(2�− 1)!(r2 − 1)�−1. (4.19)

Thus, Q2�−1 vanishes, together with all its derivatives up to the order � − 1, at −1, 
namely Q2�−1 fulfills (4.9). Equation (4.18) also tells us that Q2�−1(s) −Q2�−1(0) is an 
odd function, and hence

Q2�−1(s) + Q2�−1(−s) = 2Q2�−1(0) for s ∈ R. (4.20)

Since κ is an even function,

∂2�−1κ
∂s2�−1 (s, r) = ∂2�−1κ

∂s2�−1 (−s,−r) = −Q2�−1(−r) if −1 ≤ s < r ≤ 1.

Thus, (2� − 1)-times differentiation of equation (4.15) yields

ω(2�−1)(s) =
s∫

−1

Q2�−1(r)φ(r) dr −
1∫

s

Q2�−1(−r)φ(r) dr for s ∈ [−1, 1]. (4.21)

Since ω(2�) = φ, an integration by parts in (4.21), equation (4.20), and the fact that 
Q2�−1(−1) = 0, tell us that

ω(2�−1)(s) = 2Q2�−1(0)ω(2�−1)(s) −
s∫

−1

Q′
2�−1(r)ω(2�−1)(r) dr

−
1∫
Q′

2�−1(−r)ω(2�−1)(r) dr for s ∈ [−1, 1]. (4.22)

s
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Owing to the arbitrariness of ω, equation (4.22) ensures that 2Q2�−1(0) = 1. Equa-
tion (4.8) thus follows from (4.20).

The function � defined as

�(t) = ω
(

2t−a−b
b−a

)
for t ∈ [a, b]

is thus the solution to problem (4.11), and the representation formula (4.13) follows via 
a change of variables in (4.21).

Consider next problem (4.12). The function ς is a polynomial of degree 2� − 1, and 
ς(2�−1) is a constant which, owing to the two-point Taylor interpolation formula (see 
e.g. [30, Chapter 2, Section 2.5, Ex. 3]), is given by

ς(2�−1) = (2�− 1)!
[
d�−1

dt�−1

(
ς(t)

(t− b)�

)
|t=a

+ d�−1

dt�−1

(
ς(t)

(t− a)�

)
|t=b

]

= (2�− 1)!
[
d�−1

dt�−1

(
ψ(t)

(t− b)�

)
|t=a

+ d�−1

dt�−1

(
ψ(t)

(t− a)�

)
|t=b

]
. (4.23)

Leibnitz’ differentiation rule for products yields
[
d�−1

dt�−1

(
ψ(t)

(t− b)�

)
|t=a

+ d�−1

dt�−1

(
ψ(t)

(t− a)�

)
|t=b

]

= (−1)�
�−1∑
k=0

(2�− k − 2)!
k!(�− k − 1)!

1
(b− a)2�−k−1

[
(−1)k+1ψ(k)(b) + ψ(k)(a)

]
. (4.24)

Equation (4.7) follows from (4.13), (4.23) and (4.24). �
Proof of Lemma 4.5. Given x ∈ Ω and ϑ ∈ Sn−1, let a(x, ϑ) and b(x, ϑ) be defined as 
in (3.10) and (3.9), respectively.

We begin with the proof of (4.5) for � = 1. If u ∈ V 1,1(Ω) ∩C0
b(Ω), then, by a standard 

property of Sobolev functions, for a.e. x ∈ Ω the function

[0, b(x, ϑ)] 
 t �→ u(x + tϑ)

belongs to V 1,1(0, b(x, ϑ)) for Hn−1-a.e. ϑ ∈ Sn−1, and

d

dt
u(x + tϑ) = ∇u(x + tϑ) · ϑ for a.e. t ∈ [0, b(x, ϑ)].

Hence, for any such x and ϑ,

u(ζ(x, ϑ)) − u(x) =
b(x,ϑ)∫

∇u(x + tϑ) · ϑ dt, (4.25)

0
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where convention (3.7) is adopted. Integrating both sides of equation (4.25) over Sn−1

yields

nωnu(x) =
∫

Sn−1

u(ζ(x, ϑ)) dHn−1(ϑ) −
∫

Sn−1

b(x,ϑ)∫
0

∇u(x + tϑ) · ϑ dt dHn−1(ϑ), (4.26)

where ωn = π
n
2 /Γ(1 + n

2 ), the Lebesgue measure of the unit ball in Rn. One has that

∫
Sn−1

b(x,ϑ)∫
0

∇u(x + tϑ) · ϑ dt dHn−1(ϑ) =
∫

Sn−1

b(x,ϑ)∫
0

1
tn−1∇u(x + �ϑ) · ϑ tn−1d� dHn−1(ϑ)

=
∫
Ωx

∇u(y) · (y − x)
|x− y|n dy. (4.27)

Inequality (4.5), with � = 1, follows from (4.26) and (4.27).
Let us next prove (4.6). If u ∈ V 2�,1(Ω) ∩ C�−1

b (Ω), then for a.e. x ∈ Ω, the function

[a(x, ϑ), b(x, ϑ)] 
 t �→ u(x + tϑ)

belongs to V 2�,1(a(x, ϑ), b(x, ϑ)) for Hn−1-a.e. ϑ ∈ Sn−1. Consider any such x and ϑ. If 
(x, ϑ) ∈ (Ω × Sn−1)0, then, by Lemma 4.6,

d2�−1

dt2�−1u(x + tϑ) =
t∫

a(x,ϑ)

Q2�−1

(2τ − a(x, ϑ) − b(x, ϑ)
b(x, ϑ) − a(x, ϑ)

) d2�

dτ2�u(x + τϑ) dτ

−
b(x,ϑ)∫
t

Q2�−1

(
a(x, ϑ) + b(x, ϑ) − 2τ

b(x, ϑ) − a(x, ϑ)

) d2�

dτ2�u(x + τϑ) dτ

+ (2�− 1)!(−1)�

×
�−1∑
k=0

(2�− k − 2)!
k!(�− k − 1)!

[
(−1)k+1(dku(x+tϑ)

dtk

)
|t=b(x,ϑ) +

(dku(x+tϑ)
dtk

)
|t=a(x,ϑ)

]
(b(x, ϑ) − a(x, ϑ))2�−k−1 (4.28)

for t ∈ (a(x, ϑ), b(x, ϑ)). If, instead, (x, ϑ) ∈ (Ω × Sn−1)∞, then

d2�−1

dt2�−1u(x + tϑ) =
{
−
∫∞
t

d2�

dτ2�u(x + τϑ) dτ, if b(x, ϑ) = ∞,∫ t

−∞
d2�

dτ2�u(x + τϑ) dτ, if a(x, ϑ) = −∞,
(4.29)

for t ∈ (a(x, ϑ), b(x, ϑ)) (if both b(x, ϑ) = ∞ and a(x, ϑ) = −∞, then either expression 
on the right-hand side of (4.29) can be exploited).
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We have that

dk

dtk
u(x + tϑ) =

∑
|α|=k

k!
α!ϑ

αDαu(x + tϑ) for a.e. t ∈ (a(x, ϑ), b(x, ϑ)), (4.30)

for k = 1, . . . , 2�. From (4.28)–(4.30) we infer that

∑
|α|=2�−1

(2�− 1)!
α! ϑαDαu(x)

= −χ(Ω×Sn−1)∞(x, ϑ)
∑

|α|=2�−1

(2�− 1)!
α! ϑα

±∞∫
0

∑
|γ|=1

ϑγDα+γu(x + τϑ) dτ

+ χ(Ω×Sn−1)0(x, ϑ)
[ 0∫
a(x,ϑ)

Q2�−1

(2τ − a(x, ϑ) − b(x, ϑ)
b(x, ϑ) − a(x, ϑ)

) d2�

dτ2�u(x + τϑ)dτ

−
b(x,ϑ)∫
0

Q2�−1

(
a(x, ϑ) + b(x, ϑ) − 2τ

b(x, ϑ) − a(x, ϑ)

) d2�

dτ2�u(x + τϑ) dτ

+ (2�− 1)!(−1)�
�−1∑
k=0

(2�− k − 2)!
k!(�− k − 1)!

×
∑
|α|=k

k!
α!ϑ

α

[
(−1)k+1Dαu(x + b(x, ϑ)ϑ) + Dαu(x + a(x, ϑ)ϑ)

]
(b(x, ϑ) − a(x, ϑ))2�−k−1

]
, (4.31)

where the upper limit of integration in the first integral on the right-hand side is either 
+∞, or −∞ according to whether b(x, ϑ) = ∞ or a(x, ϑ) = −∞.

Denote by {Pβ} the system of all homogeneous polynomials of degree 2� − 1 in the 
variables ϑ1, . . . , ϑn such that

∫
Sn−1

Pβ(ϑ)ϑαdHn−1(ϑ) = δαβ ,

where δαβ stands for the Kronecker delta. On multiplying equation (4.31) by Pβ(ϑ)
(2�−1)! , and 

integrating over Sn−1 one obtains that

Dβu(x)
β!

= −
∫

Sn−1

χ(Ω×Sn−1)∞(x, ϑ)Pβ(ϑ)
∑

|α|=2�−1

ϑα+γ

α!

±∞∫
0

Dα+γu(x + τϑ) dτ dHn−1(ϑ)
|γ|=1
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+
∫

Sn−1

χ(Ω×Sn−1)0(x, ϑ) Pβ(ϑ)
(2�− 1)!

×
[ 0∫
a(x,ϑ)

Q2�−1

(2τ − a(x, ϑ) − b(x, ϑ)
b(x, ϑ) − a(x, ϑ)

) d2�

dτ2�u(x + τϑ)dτ

−
b(x,ϑ)∫
0

Q2�−1

(
a(x, ϑ) + b(x, ϑ) − 2τ

b(x, ϑ) − a(x, ϑ)

) d2�

dτ2�u(x + τϑ) dτ
]
dHn−1(ϑ)

+ (−1)�
∫

Sn−1

Pβ(ϑ)

×
∑

|α|≤�−1

(2�− |α| − 2)!ϑα

(�− |α| − 1)!α!

[
(−1)|α|+1Dαu(x + b(x, ϑ)ϑ) + Dαu(x + a(x, ϑ)ϑ)

]
(b(x, ϑ) − a(x, ϑ))2�−|α|−1 dHn−1(ϑ).

(4.32)

There exist constants C = C(n, �) and C ′ = C ′(n, �) such that

∣∣∣∣
∫

Sn−1

χ(Ω×Sn−1)∞(x, ϑ)Pβ(ϑ)
∑

|α|=2�−1
|γ|=1

ϑα+γ

α!

±∞∫
0

Dα+γu(x + τϑ) dτ dHn−1(ϑ)
∣∣∣∣

≤ C

∫
Sn−1

∞∫
0

|∇2�u(x + τϑ)| dτ dHn−1(ϑ) = C

∫
Sn−1

∞∫
0

|∇2�u(x + τϑ)|
τn−1 τn−1 dτ dHn−1(ϑ)

≤ C ′
∫
Ω

|∇2�u(y)|
|x− y|n−1 dy. (4.33)

Next, we claim that there exists a constant C = C(�, n) such that

∣∣∣∣
∫

Sn−1

χ(Ω×Sn−1)0(x, ϑ)
[
Pβ(ϑ)

0∫
a(x,ϑ)

Q2�−1

(2τ − a(x, ϑ) − b(x, ϑ)
b(x, ϑ) − a(x, ϑ)

) d2�

dτ2�u(x + τϑ)dτ

− Pβ(ϑ)
b(x,ϑ)∫
0

Q2�−1

(
a(x, ϑ) + b(x, ϑ) − 2τ

b(x, ϑ) − a(x, ϑ)

) d2�

dτ2�u(x + τϑ)dτ
]
dHn−1(ϑ)

∣∣∣∣
≤ C

∫
Ω

|∇2�u(y)|
|x− y|n−1 dy. (4.34)

In order to prove (4.34), observe that
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∫
Sn−1

χ(Ω×Sn−1)0(x, ϑ)Pβ(ϑ)

×
0∫

a(x,ϑ)

Q2�−1

(2τ − a(x, ϑ) − b(x, ϑ)
b(x, ϑ) − a(x, ϑ)

) d2�

dr2�u(x + τϑ)dτ dHn−1(ϑ)

=
∫

Sn−1

χ(Ω×Sn−1)0(x, ϑ)Pβ(ϑ)

×
−a(x,ϑ)∫

0

Q2�−1

(
− 2r + a(x, ϑ) + b(x, ϑ)

b(x, ϑ) − a(x, ϑ)

) d2�

dτ2�u(x− rϑ)dr dHn−1(ϑ)

=
∫

Sn−1

χ(Ω×Sn−1)0(x,−θ)Pβ(−θ)

×
−a(x,−θ)∫

0

Q2�−1

(
− 2r + a(x,−θ) + b(x,−θ)

b(x,−θ) − a(x,−θ)

) d2�

dr2�u(x + rθ)dr dHn−1(θ)

= −
∫

Sn−1

χ(Ω×Sn−1)0(x, θ)Pβ(θ)

×
b(x,θ)∫
0

Q2�−1

(
a(x, θ) + b(x, θ) − 2r

b(x, θ) − a(x, θ)

) d2�

dr2�u(x + rθ)dr dHn−1(θ),

where we have made use of the fact that Pβ(−θ) = −Pβ(θ) if |β| = 2� − 1, and of (3.10). 
Thus,

∣∣∣∣
∫

Sn−1

χ(Ω×Sn−1)0(x, ϑ)
[
Pβ(ϑ)

0∫
a(x,ϑ)

Q2�−1

(2τ − a(x, ϑ) − b(x, ϑ)
b(x, ϑ) − a(x, ϑ)

) d2�

dτ2�u(x + τϑ)dτ

− Pβ(ϑ)
b(x,ϑ)∫
0

Q2�−1

(
a(x, ϑ) + b(x, ϑ) − 2τ

b(x, ϑ) − a(x, ϑ)

) d2�

dτ2�u(x + τϑ)dτ
]
dHn−1(ϑ)

∣∣∣∣

= 2
∣∣∣∣
∫

Sn−1

Pβ(ϑ)
b(x,ϑ)∫
0

Q2�−1

(
a(x, ϑ) + b(x, ϑ) − 2r

b(x, ϑ) − a(x, ϑ)

) d2�

dr2�u(x + rϑ) drdHn−1(ϑ)
∣∣∣∣

= 2
∣∣∣∣
∫

Pβ(ϑ)

Sn−1
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×
b(x,ϑ)∫
0

Q2�−1

(
a(x, ϑ) + b(x, ϑ) − 2r

b(x, ϑ) − a(x, ϑ)

) ∑
|α|=2�

(2�)!
α! ϑαDαu(x + rϑ) drdHn−1(ϑ)

∣∣∣∣

≤ C

∫
Sn−1

b(x,ϑ)∫
0

|∇2�u(x + rϑ)| drdHn−1(ϑ) ≤ C ′
∫
Ωx

|∇2�u(y)|
|x− y|n−1 dy

for some constants C = C(n, �) and C ′ = C ′(n, �). Hence, inequality (4.34) follows.
Finally, by definition (3.13), there exists a constant C = C(n, �) such that

∣∣∣∣
∫

Sn−1

χ(ω×Sn−1)0(x, ϑ)(−1)�Pβ(ϑ)

×
∑

|α|≤�−1

(2�− |α| − 2)!
(�− |α| − 1)!α!ϑ

α

×
[
(−1)|α|+1Dαu(x + b(x, ϑ)ϑ) + Dαu(x + a(x, ϑ)ϑ)

]
(b(x, ϑ) − a(x, ϑ))2�−|α|−1 dHn−1(ϑ)

∣∣∣∣
≤ C

∫
Sn−1

χ(ω×Sn−1)0(x, ϑ)
[
g�,0(x + ϑa(x, ϑ)) + g�,0(x + ϑb(x, ϑ))

]
dHn−1(ϑ)

= 2C
∫

Sn−1

g�,0(ζ(x, ϑ)) dHn−1(ϑ). (4.35)

Combining (4.32)–(4.35) yields (4.6).
Inequality (4.5), with � ≥ 2, follows on applying (4.6) with u replaced with its first-

order derivatives. �
Proof of Theorem 4.1. For simplicity of notation, we consider the case when h = 0, the 

proof in the general case being analogous. Let u ∈ V m,1(Ω) ∩ C
[m−1

2 ]
b (Ω). By inequal-

ity (4.5) with � = 1,

|u(x)| ≤ C

(∫
Ω

|∇u(y)|
|x− y|n−1 dy +

∫
Sn−1

g0,1(ζ(x, ϑ)) dHn−1(ϑ)
)

for a.e. x ∈ Ω. (4.36)

From (4.36) and an application of inequality (4.6) with � = 1 one obtains that

|u(x)| ≤ C

(∫
Ω

∫
Ω

|∇2u(z)|
|y − z|n−1

dz dy

|x− y|n−1

+
∫ ∫

g1,0(ζ(y, ϑ)) dH
n−1(ϑ) dy

|x− y|n−1 +
∫

g0,1(ζ(x, ϑ)) dHn−1(ϑ)
)

Ω Sn−1 Sn−1
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≤ C ′
(∫

Ω

|∇2u(z)|
|x− z|n−2 dz +

∫
Ω

∫
Sn−1

g1,0(ζ(y, ϑ)) dH
n−1(ϑ) dy

|x− y|n−1

+
∫

Sn−1

g0,1(ζ(x, ϑ)) dHn−1(ϑ)
)

for a.e. x ∈ Ω, (4.37)

for some constants C = C(n) and C ′ = C ′(n). Note that in the last inequality we have 
made use of a special case of the well known identity

∫
Rn

1
|x− y|n−σ

∫
Rn

f(z)
|y − z|n−γ

dz dy = C

∫
Rn

f(z)
|x− z|n−σ−γ

dz for a.e. x ∈ Rn, (4.38)

which holds for some constant C = C(n, σ, γ) and for every compactly supported inte-
grable function f , provided that σ > 0, γ > 0 and σ + γ < n.

Inequality (4.37) in turn yields, via an application of inequality (4.5) with � = 2,

|u(x)| ≤ C

(∫
Ω

|∇3u(z)|
|x− z|n−3 dz +

∫
Ω

∫
Sn−1

g1,1(ζ(y, ϑ)) dH
n−1(ϑ) dy

|x− y|n−2

+
∫
Ω

∫
Sn−1

g1,0(ζ(y, ϑ)) dH
n−1(ϑ) dy

|x− y|n−1 +
∫

Sn−1

g0,1(ζ(x, ϑ)) dHn−1(ϑ)
)

for a.e. x ∈ Ω, (4.39)

for some constant C = C(n). A finite induction argument, relying upon an alternate 
iterated use of inequalities (4.6) and (4.5) as above, eventually leads to (4.2). �
5. Estimates in rearrangement form

The pointwise bounds established in the previous section enable us to derive rearrange-
ment estimates for functions, and their derivatives, with respect to any Borel measure μ
on Ω such that

μ(Br(x) ∩ Ω) ≤ Cμr
α for x ∈ Ω and r > 0, (5.1)

for some α ∈ (n −1, n] and some constant Cμ > 0. Here, Br(x) denotes the ball, centered 
at x, with radius r.

Recall that, given a measure space R, endowed with a positive measure ν, the de-
creasing rearrangement φ∗

ν : [0, ∞) → [0, ∞] of a ν-measurable function φ : R → R is 
defined as

φ∗
ν(s) = inf{t ≥ 0 : ν(|φ| > t}) ≤ s} for s ∈ [0,∞).

The operation of decreasing rearrangement is not linear. However, one has that



A. Cianchi, V. Maz’ya / Advances in Mathematics 293 (2016) 644–696 667
(φ + ψ)∗ν(s) ≤ φ∗
ν(s/2) + ψ∗

ν(s/2) for s ≥ 0, (5.2)

for every measurable functions φ and ψ on R.
Any function φ shares its integrability properties with its decreasing rearrangement φ∗

ν , 
since

ν({|φ| > t}) = L1({φ∗
ν > t}) for every t ≥ 0.

As a consequence, any norm inequality, involving rearrangement-invariant norms, be-
tween the rearrangements of the derivatives of Sobolev functions and the rearrangements 
of its lower-order derivatives, immediately yields a corresponding inequality for the orig-
inal Sobolev functions. Thus, the rearrangement inequalities to be established hereafter 
reduce the problem of n-dimensional Sobolev type inequalities in arbitrary open sets to 
considerably simpler one-dimensional Hardy type inequalities – see Theorem 6.1, Sec-
tion 6 below.

Theorem 5.1 (Rearrangement estimates). Let Ω be any open bounded open set in Rn, 
n ≥ 2. Let m ∈ N and h ∈ N0 be such that 0 < m − h < n. Assume that μ is a Borel 
measure in Ω fulfilling (5.1) for some α ∈ (n − 1, n] and for some Cμ > 0. Then there 
exist constants c = c(n, m) and C = C(n, m, α, Cμ) such that

|∇hu|∗μ(cs) ≤ C

[
s−

n−m+h
α

s
n
α∫

0

|∇mu|∗Ln(r)dr +
∞∫

s
n
α

r−
n−m+h

n |∇mu|∗Ln(r)dr

+
m−h−1∑
k=1

(
s−

n−1−k
α

s
n−1
α∫

0

[
g[ k+h+1

2 ],�(k+h)]∗
Hn−1(r)dr

+
∞∫

s
n−1
α

r−
n−1−k
n−1

[
g[ k+h+1

2 ],�(k+h)]∗
Hn−1(r)dr

)

+ s−
n−1
α

s
n−1
α∫

0

[
g[h+1

2 ],�(h)]∗
Hn−1(r)dr

]
for s > 0, (5.3)

for every u ∈ V m,1(Ω) ∩ C
[m−1

2 ]
b (Ω). Here, �(·) is defined as in (4.1), and g[ k+h+1

2 ],�(k+h)

denotes any Borel function on ∂Ω fulfilling the appropriate condition from (3.13)–(3.15).

Remark 5.2. In inequality (5.3), and in what follows, when considering rearrangements 
and norms with respect to a measure μ, Sobolev functions and their derivatives have 
to be interpreted as their traces with respect to μ. Such traces are well defined, thanks 
to standard (local) Sobolev inequalities with measures, owing to the assumption that 
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α ∈ (n − 1, n] in (5.1). An analogous convention applies to the integral operators to be 
considered below.

In preparation for the proof of Theorem 5.1, we introduce a few integral operators, 
and prove pointwise estimates for their rearrangements.

Let Ω be any open set in Rn. We define the operator T as

Tg(x) =
∫

Sn−1

|g(ζ(x, ϑ))| dHn−1(ϑ) for x ∈ Ω, (5.4)

at any Borel function g : ∂Ω → R. Here, and in what follows, we adopt convention (3.7). 
Note that, owing to Fubini’s theorem, Tg is a measurable function with respect to any 
Borel measure in Ω.

For γ ∈ (0, n), we denote by Iγ the classical Riesz potential operator given by

Iγf(x) =
∫
Ω

f(y)
|y − x|n−γ

dy for x ∈ Ω, (5.5)

at any f ∈ L1(Ω), and we call Nγ the operator defined as

Nγg(x) =
∫
∂Ω

g(y)
|x− y|n−γ

dHn−1(y) for x ∈ Ω, (5.6)

at any function g ∈ L1(∂Ω).
Finally, we define the operator Qγ as the composition

Qγ = Iγ ◦ T. (5.7)

Namely,

Qγg(x) =
∫
Ω

∫
Sn−1

|g(ζ(y, ϑ))| dH
n−1(ϑ) dy

|x− y|n−γ
for x ∈ Ω, (5.8)

for any Borel function g : ∂Ω → R.
Our analysis of these operators requires a few notations and properties from interpo-

lation theory.
Assume that R is a measure space, endowed with a positive measure ν. Given a pair 

X1(R) and X2(R) of normed function spaces, a function φ ∈ X1(R) +X2(R), and s ∈ R, 
we denote by K(φ, s; X1(R), X2(R)) the associated Peetre’s K-functional, defined as

K(s, φ;X1(R), X2(R)) = inf
(
‖φ1‖X1(R) + s‖φ2‖X2(R)

)
for s > 0.
φ=φ1+φ2
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We need an expression for the K-functional (up to equivalence) in the case when X1(R)
and X2(R) are certain Lebesgue or Lorentz spaces, and R is one of the measure spaces 
mentioned above. Recall that, given σ > 1, the Lorentz space Lσ,1(R) is the Banach 
function space of those measurable functions φ on R for which the norm

‖φ‖Lσ,1(R) =
∞∫
0

φ∗
ν(s)s−1+ 1

σ ds

is finite. The Lorentz space Lσ,∞(R), also called Marcinkiewicz space or weak-Lσ space, 
is the Banach function space of those measurable functions φ on R for which the quantity

‖φ‖Lσ,∞(R) = sup
s>0

s
1
σ φ∗

ν(s)

is finite. Note that, in spite of the notation, this is not a norm. However, it is equivalent 
to a norm, up to multiplicative constants depending on σ, obtained on replacing φ∗

ν(s)
with 1

s

∫ s

0 φ∗
ν(r)dr.

It is well known that

K(φ, s;L1(R), L∞(R)) =
s∫

0

φ∗
ν(r) dr for s > 0, (5.9)

for every φ ∈ L1(R) + L∞(R) [9, Chapter 5, Theorem 1.6]. If σ > 1, then

K(φ, s;Lσ,∞(R), L∞(R)) ≈ ‖r 1
σ φ∗

ν(r)‖L∞(0,sσ) for s > 0, (5.10)

for every φ ∈ Lσ,∞(R) + L∞(R) [44, Equation (4.8)]. Moreover,

K(φ, s;L1(R), Lσ,1(R)) ≈
sσ

′∫
0

φ∗
ν(r) dr + s

∞∫
sσ′

r−
1
σ′ φ∗

ν(r) dr for s > 0, (5.11)

for every φ ∈ L1(R) + Lσ,1(R) [44, Theorem 4.2]. In (5.10) and (5.11), the notation 
“≈” means that the two sides are bounded by each other up to multiplicative constants 
depending on σ.

Let R and S be positive measure spaces. An operator L defined on a linear space 
of measurable functions on R, and taking values into the space of measurable functions 
on S, is called sub-linear if, for every φ1 and φ2 in the domain of L and every λ1, λ2 ∈ R,

|L(λ1φ1 + λ2φ2)| ≤ |λ1||Lφ1| + |λ2||Lφ2|.

A basic result in the theory of real interpolation tells us what follows. Assume that L
is a sub-linear operator as above, and Xi(R) and Yi(S), i = 1, 2, are normed function
spaces on R such that
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L : Xi(R) → Yi(S) (5.12)

with norms not exceeding Ni, i = 1, 2. Here, the arrow “→” denotes a bounded operator. 
Then,

K(Lφ, s;Y1(S), Y2(S)) ≤ max{N1, N2}K(φ, s;X1(R), X2(R)) for s > 0, (5.13)

for every φ ∈ X1(R) + X2(R).

Lemma 5.3. Let Ω be an open set in Rn, n ≥ 2, and let γ ∈ (0, n). Assume that μ is any 
Borel measure in Ω fulfilling (5.1) for some α ∈ (n − γ, n] and for some Cμ > 0. Then 
there exists a constant C = C(n, α, γ, Cμ) such that

‖Nγg‖
L

α
n−γ

,∞(Ω,μ)
≤ C‖g‖L1(∂Ω) (5.14)

for every g ∈ L1(∂Ω).

Proof. We make use of an argument related to [1,2]. Given g ∈ L1(∂Ω) and t > 0, define 
Et = {x ∈ Ω : |Nγg(x)| > t}, and denote by μt the restriction of the measure μ to Et. 
By Fubini’s theorem,

tμ(Lt) = t

∫
Ω

dμt(x) ≤
∫
Ω

|Nγg(x)|dμt(x) ≤
∫
Ω

∫
∂Ω

|g(y)|
|x− y|n−γ

dHn−1(y) dμt(x)

≤
∫
∂Ω

|g(y)|
∫
Ω

dμt(x)dHn−1(y)
|x− y|n−γ

. (5.15)

Next,

∫
Ω

dμt(x)
|x− y|n−γ

= (n− γ)
∞∫
0

�−n+γ−1
∫

{x∈Ω:|x−y|γ−n>�γ−n}

dμt(x) d�

≤ (n− γ)
∞∫
0

�−n+γ−1μt(B�(y)) d�. (5.16)

From (5.15) and (5.16) we deduce that, for each fixed r > 0,

tμ(Lt) ≤ (n− γ)
∫
∂Ω

|g(y)|
∞∫
0

�−n+γ−1μt(B�(y)) d� dHn−1(y)

= (n− γ)
r∫
�−n+γ−1

∫
|g(y)|μt(B�(y)) dHn−1(y) d�
0 ∂Ω
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+ (n− γ)
∞∫
r

�−n+γ−1
∫
∂Ω

|g(y)|μt(B�(y)) dHn−1(y) d�. (5.17)

We have that

r∫
0

�−n+γ−1
∫
∂Ω

|g(y)|μt(B�(y)) dHn−1(y) d�

≤ Cμ‖g‖L1(∂Ω)

r∫
0

�−n+γ−1+α d� = Cμ
rα−n+γ

α−n+γ ‖g‖L1(∂Ω). (5.18)

On the other hand,

∞∫
r

�−n+γ−1
∫
∂Ω

|g(y)|μt(B�(y)) dHn−1(y) d� ≤ μ(Lt)
∞∫
r

�−n+γ−1
∫
∂Ω

|g(y)| dHn−1(y) d�

= μ(Lt) r
−n+γ

n−γ ‖g‖L1(∂Ω). (5.19)

Combining (5.17)–(5.19), and choosing r =
(

μ(Lt)
Cμ

) 1
α , yield

tμ(Lt) ≤ (n− γ)‖g‖L1(∂Ω)

(
Cμ

rα−n+γ

α− n + γ
+ μ(Lt)

r−n+γ

n− γ

)

= α
α−n+γ ‖g‖L1(∂Ω)C

n−γ
α

μ μ(Lt)1−
n−γ
α . (5.20)

Thus,

tμ(Lt)
n−γ
α ≤ α

α−n+γC
n−γ
α

μ ‖g‖L1(∂Ω) for t > 0. (5.21)

Hence, inequality (5.14) follows. �
Proposition 5.4. Let Ω be an open set in Rn. Then

∫
Sn−1

|g(ζ(x, ϑ))| dHn−1(ϑ) ≤ 2n
∫
∂Ω

|g(y)|
|x− y|n−1 dH

n−1(y) for x ∈ Ω, (5.22)

for every Borel function g : ∂Ω → R. Here, convention (3.7) is adopted.

Proof. We split the proof in steps. Fix x ∈ Ω.
Step 1. Denote by Π : Rn \ {x} → Sn−1 the projection function into Sn−1 given by

Π(y) = y − x for y ∈ Rn \ {x}.
|y − x|
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Then

Hn−1(Π(E)) ≤ 1
dist(x,E)n−1H

n−1(E) (5.23)

for every set E ⊂ ∂Ω.
The function Π is differentiable, and |∇Π(y)| ≤ |y − x|−1 for y ∈ Rn \ {x}. Thus, the 

restriction of Π to E is Lipschitz continuous, and

|∇Π(y)| ≤ 1
dist(x,E) for y ∈ E. (5.24)

Inequality (5.24) implies (5.23), by a standard property of Hausdorff measure – see 
e.g. [59, Theorem 7.5].

Step 2. We have that

Hn−1(Π(E)) ≤ 2n
∫
E

dHn−1(y)
|x− y|n−1 for every Borel set E ⊂ ∂Ω. (5.25)

The following chain holds:

∫
E

dHn−1(y)
|x− y|n−1 =

∞∫
0

Hn−1({y ∈ E : |x− y|−n+1 > t}) dt

=
∞∫
0

Hn−1({y ∈ E : |x− y| < τ}) d(−τ1−n)

=
∑
k∈Z

2k+1∫
2k

Hn−1({y ∈ E : |x− y| < τ}) d(−τ1−n)

≥
∑
k∈Z

Hn−1({y ∈ E : |x− y| < 2k})
2k+1∫
2k

d(−τ1−n)

= (1 − 2−n+1)
∑
k∈Z

2−k(n−1)Hn−1({y ∈ E : |x− y| < 2k})

≥ (1 − 2−n+1)
∑
k∈Z

2−k(n−1)Hn−1({y ∈ E : 2k−1 ≤ |x− y| < 2k}). (5.26)

Since dist(x, {y ∈ E : 2k−1 ≤ |x − y| < 2k}) ≥ 2k−1, by (5.23)

Hn−1({y ∈ E : 2k−1 ≤ |x− y| < 2k})

≥ C2(k−1)(n−1)Hn−1(Π({y ∈ E : 2k−1 ≤ |x− y| < 2k})) (5.27)
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for k ∈ Z. From (5.26) and (5.27) we deduce that
∫
E

dHn−1(y)
|x− y|n−1 ≥ 1

2

∑
k∈Z

2−k(n−1)2(k−1)(n−1)Hn−1(Π({y ∈ E : 2k−1 ≤ |x− y| < 2k}))

= 2−n
∑
k∈Z

Hn−1(Π({y ∈ E : 2k−1 ≤ |x− y| < 2k}))

≥ 2−nHn−1( ∪k∈Z Π({y ∈ E : 2k−1 ≤ |x− y| < 2k})
)

= 2−nHn−1(Π(∪k∈Z{y ∈ E : 2k−1 ≤ |x− y| < 2k})
)

= 2−nHn−1(Π(E)), (5.28)

whence inequality (5.25) follows.
Step 3. Conclusion.
We have that

Π({y ∈ (∂Ω)x : |g(y)| > t}) = {ϑ ∈ Sn−1 : |g(ζ(x, ϑ))| > t} for t > 0.

Thus, by (5.25),∫
{y∈(∂Ω)x:|g(y)|>t}

dHn−1(y)
|x− y|n−1 ≥ 2−nHn−1({ϑ ∈ Sn−1 : |g(ζ(x, ϑ))| > t}) for t > 0.

Hence,
∫

(∂Ω)x

|g(y)|
|x− y|n−1 dH

n−1(y) =
∞∫
0

∫
{y∈(∂Ω)x:|g(y)|>t}

dHn−1(y)
|x− y|n−1 dt

≥ 2−n

∞∫
0

Hn−1({ϑ ∈ Sn−1 : |g(ζ(x, ϑ))| > t}) dt

= 2−n

∫
Sn−1

|g(ζ(x, ϑ))| dHn−1(ϑ). (5.29)

Inequality (5.22) is thus established. �
Lemma 5.5. Let Ω be an open set in Rn, n ≥ 2. Assume that μ is any Borel measure 
in Ω fulfilling (5.1) for some α ∈ (n − 1, n] and for some Cμ > 0. Then there exists a 
constant C = C(n, α, Cμ) such that

(Tg)∗μ(s) ≤ Cs−
n−1
α

s
n−1
α∫

0

g∗Hn−1(r) dr for s > 0, (5.30)

for every Borel function g : ∂Ω → R.
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Proof. By Proposition 5.4, there exists a constant C = C(n) such that

Tg(x) ≤ CN1|g|(x) for x ∈ Ω, (5.31)

for every Borel function g : ∂Ω → R. Hence, by Lemma 5.3, with γ = 1, there exists a 
constant C = C(n, α, Cμ) such that

‖Tg‖
L

α
n−1 ,∞(Ω,μ)

≤ C‖g‖L1(∂Ω) (5.32)

for every Borel function g : ∂Ω → R.
On the other hand,

0 ≤ Tg(x) ≤ ‖g‖L∞(∂Ω)

∫
Sn−1

dHn−1(ϑ) = nωn‖g‖L∞(∂Ω) for x ∈ Ω, (5.33)

and hence

‖Tg‖L∞(Ω,μ) ≤ nωn‖g‖L∞(∂Ω) (5.34)

for every Borel function g : ∂Ω → R. We thus deduce from (5.9), (5.10), (5.13), (5.32)
and (5.34) that

s(Tg)∗μ(s
α

n−1 ) ≤ ‖r n−1
α (Tg)∗μ(r)‖

L∞(0,s
α

n−1 )
≈ K(Tg, s;L

α
n−1 ,∞(Ω, μ), L∞(Ω, μ))

≤ CK(g, s;L1(∂Ω), L∞(∂Ω)) = C

s∫
0

g∗Hn−1(r) dr for s > 0, (5.35)

for some constant C = C(n, α, Cμ), and for every Borel function g : ∂Ω → R. Hence, 
inequality (5.30) follows. �
Lemma 5.6. Let Ω be an open set in Rn, n ≥ 2, and let γ ∈ (0, n). Assume that μ is any 
Borel measure in Ω fulfilling (5.1) for some α ∈ (n − γ, n] and for some Cμ > 0. Then, 
there exists a constant C = C(n, γ, α, Cμ) such that

(Iγf)∗μ(s) ≤ C

(
s−

n−γ
α

s
n
α∫

0

f∗
Ln(r) dr +

∞∫
s

n
α

r−
n−γ
n f∗

Ln(r) dr
)

for s > 0, (5.36)

for every f ∈ L1(Ω).

Proof. A standard weak-type inequality for Riesz potentials tells us that there exists a 
constant C1 = C1(n, γ, α, Cμ) such that
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‖Iγf‖
L

α
n−γ

,∞(Ω,μ)
≤ C1‖f‖L1(Ω) (5.37)

for every f ∈ L1(Ω) (a proof of inequality (5.37) follows, in fact, along the same lines as 
that of (5.14)). Furthermore, there exists a constant C2 = C2(n, γ, α, Cμ) such that

‖Iγf‖L∞(Ω,μ) ≤ C2‖f‖
L

n
γ

,1(Ω)
(5.38)

for every f ∈ L
n
γ ,1(Ω). Inequality (5.38) can be derived from (5.37), applied with μ = Ln

and α = n, via a duality argument. Indeed,

‖Iγf‖L∞(Ω) ≤ ‖Iγ |f |‖L∞(Ω) = sup
‖h‖L1(Ω)≤1

∫
Ω

|h(x)|
∫
Ω

|f(y)|
|y − x|n−γ

dy dx

= sup
‖h‖L1(Ω)≤1

∫
Ω

|f(y)|
∫
Ω

|h(x)|
|y − x|n−γ

dy dx

≤ sup
‖h‖L1(Ω)≤1

C‖f‖
L

n
γ

,1(Ω)
‖Iγh‖

L
n

n−γ
,∞(Ω)

≤ sup
‖h‖L1(Ω)≤1

C ′‖f‖
L

n
γ

,1(Ω)
‖h‖L1(Ω) ≤ C ′‖f‖

L
n
γ

,1(Ω)
(5.39)

for some constants C = C(n, γ) and C ′ = C ′(n, γ, α, Cμ), and for every f ∈ L
n
γ ,1(Ω). 

Note that the first inequality holds owing to a Hölder type inequality in Lorentz spaces. 
As shown by a standard convolution argument, the space of continuous functions is 
dense in L

n
γ ,1(Ω). Inequality (5.39) then implies that the function Iγf is continuous if 

f ∈ L
n
γ ,1(Ω). Thus, ‖Iγf‖L∞(Ω,μ) ≤ ‖Iγf‖L∞(Ω), and (5.38) follows from (5.39).

By (5.37) and (5.38), via (5.10), (5.11) and (5.13), we deduce that there exists a 
constant C = C(n, γ, α, Cμ) such that

s(Iγf)∗μ(s
α

n−γ ) ≤ ‖r n−γ
α (Iγf)∗μ(r)‖

L∞(0,s
α

n−γ )
≈ K(Iγf, s;L

α
n−γ ,∞(Ω, μ), L∞(Ω, μ))

≤ CK(f, s;L1(Ω), L
n
γ ,1(Ω))

≈
s

n
n−γ∫
0

f∗
Ln(r) dr + s

∞∫
s

n
n−γ

r−
n−γ
n f∗

Ln(r) dr for s > 0, (5.40)

where the equivalence is up to multiplicative constants depending on n, γ, α, Cμ. Hence, 
(5.36) follows. �
Lemma 5.7. Let Ω be an open set in Rn, n ≥ 2, and let γ ∈ (0, n − 1). Assume that μ
is any Borel measure in Ω fulfilling (5.1) for some α ∈ (n − γ, n] and for some Cμ > 0. 
Then there exists a constant C = C(n, γ, α, Cμ) such that
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(Qγg)∗μ(s) ≤ C

(
s−

n−1−γ
α

s
n−1
α∫

0

g∗Hn−1(r) dr +
∞∫

s
n−1
α

r−
n−1−γ
n−1 g∗Hn−1(r) dr

)
for s > 0,

(5.41)

for every Borel function g : ∂Ω → R.

Proof. By inequality (5.32), with μ = Ln, there exists a constant C = C(n) such that

‖Tg‖
L

n
n−1 ,∞(Ω)

≤ C‖g‖L1(∂Ω) (5.42)

for every Borel function g : ∂Ω → R. Moreover, there exists a constant C = C(n, γ, α, Cμ)
such that

‖Iγf‖
L

α
n−1−γ

,∞(Ω,μ)
≤ C‖f‖

L
n

n−1 ,∞(Ω)
(5.43)

for every f ∈ L
n

n−1 ,∞(Ω). Indeed, by (5.36), for any such f ,

‖Iγf‖
L

α
n−1−γ

,∞(Ω,μ)

= sup
s>0

s
n−γ−1

α (Iγf)∗μ(s)

≤ C sup
s>0

(
s−

1
α

s
n
α∫

0

f∗
Ln(r) dr + s

n−γ−1
α

∞∫
s

n
α

r−
n−γ
n f∗

Ln(r) dr
)

≤ C‖f‖
L

n
n−1 ,∞(Ω)

sup
s>0

(
s−

1
α

s
n
α∫

0

r−
n−1
n dr + s

n−γ−1
α

∞∫
s

n
α

r−
n−1
n −n−γ

n dr

)

= C ′‖f‖
L

n
n−1 ,∞(Ω)

, (5.44)

where C is the constant appearing in (5.36), and C ′ = C ′(n, γ, α, Cμ). If follows 
from (5.42) and (5.43) that

‖Qγg‖
L

α
n−1−γ

,∞(Ω,μ)
≤ C‖g‖L1(∂Ω), (5.45)

for some constant C = C(n, γ, α, Cμ), and for every Borel function g : ∂Ω → R.
On the other hand, by (5.30), applied with μ = Ln, there exists a constant C = C(n, γ)

such that

‖Tg‖
L

n
γ

,1(Ω)
=

∞∫
(Tg)∗Ln(s)s−1+ γ

n ds ≤ C

∞∫
s−1+ γ

n−n−1
n

s
n−1
n∫
g∗Hn−1(r) dr ds
0 0 0
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=
∞∫
0

g∗Hn−1(r)
∞∫

r
n

n−1

s−1+ γ
n−n−1

n ds dr = n
n−γ−1

∞∫
0

g∗Hn−1(r)r−1+ γ
n−1 dr

= n
n−γ−1‖g‖Ln−1

γ
,1(∂Ω)

(5.46)

for every Borel function g : ∂Ω → R. Coupling inequalities (5.46) and (5.38) tells us that 
there exists a constant C = C(n, γ, α, Cμ) such that

‖Qγg‖L∞(Ω,μ) ≤ C‖g‖
L

n−1
γ

,1(∂Ω)
(5.47)

for every Borel function g : ∂Ω → R.
Now, by (5.10), (5.11), (5.13), (5.45) and (5.47), there exists a constant C =

C(n, γ, α, Cμ) such that

s(Qγg)∗μ(s
α

n−1−γ ) ≤ ‖r n−1−γ
α (Qγg)∗μ(r)‖

L∞(0,s
α

n−γ−1 )

≈ K(Qγg, s;L
α

n−1−γ ,∞(Ω, μ), L∞(Ω, μ))

≤ CK(g, s;L1(∂Ω), L
n−1
γ ,1(∂Ω))

≈
s

n−1
n−1−γ∫
0

g∗Hn−1(r) dr + s

∞∫
s

n−1
n−1−γ

r−
n−1−γ
n−1 g∗Hn−1(r) dr for s > 0,

for every Borel function g : ∂Ω → R, where equivalence holds up to multiplicative 
constants depending on n, γ, α, Cμ. Inequality (5.41) follows. �
Proof of Theorem 4.1. Inequality (4.2) can be written as

|∇hu(x)| ≤ C

(
Im−h(|∇mu|)(x) +

m−h−1∑
k=1

Qk

(
g[ k+h+1

2 ],�(k+h))(x) + T
(
g[h+1

2 ],�(h))(x)
)

for a.e. x ∈ Ω.

Hence, (5.3) follows via Lemmas 5.5–5.7, owing to property (5.2) of rearrangements. �
6. Sobolev inequalities

We present here a sample of Sobolev type inequalities that can be established via the 
universal pointwise and rearrangement estimates of Sections 4 and 5, respectively. We 
limit ourselves to inequalities for standard norms, such as Lebesgue norms and Orlicz 
norms of exponential or logarithmic type, which naturally come into play when borderline 
exponents in the Sobolev norms are taken into account. Measures μ satisfying (5.1) will 
be included in our results. Let us emphasize, however, that inequalities for more general 
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norms can be derived from the relevant pointwise bounds. Virtually, any Sobolev type 
inequality for rearrangement-invariant norms, which holds in regular domains, has a 
counterpart in arbitrary domains, provided that appropriate boundary seminorms are 
employed.

A key tool in our approach is the reduction principle to one-dimensional inequalities 
stated in Theorem 6.1 below for Sobolev inequalities involving arbitrary rearrangement-
invariant norms. Recall that a rearrangement-invariant space X(R) on a measure 
space R, endowed with a positive measure ν, is a Banach function space (in the sense of 
Luxemburg) endowed with a norm X(R) such that

‖φ‖X(R) = ‖ψ‖X(R) whenever φ∗
ν = ψ∗

ν . (6.1)

Every rearrangement-invariant space X(R) admits a representation space X(0, ∞), 
namely another rearrangement-invariant space on (0, ∞) such that

‖φ‖X(R) = ‖φ∗
ν‖X(0,∞) for every φ ∈ X(R). (6.2)

In customary situations, an expression for the norm ‖ · ‖X(0,∞) immediately follows 
from that of ‖ · ‖X(R). The Lebesgue spaces and the Lorentz spaces, whose definition 
has been recalled above, are standard instances of rearrangement-invariant spaces. The 
exponential spaces, which have already been mentioned in Section 2, can be regarded as 
special examples of Orlicz spaces. The Orlicz space LA(R) built upon a Young function 
A : [0, ∞) → [0, ∞], namely a left-continuous convex function which is neither identically 
equal to 0 nor to ∞, is a rearrangement-invariant space equipped with the Luxemburg 
norm given by

‖φ‖LA(R) = inf
{
λ > 0 :

∫
R

(
|φ(x)|
λ

)
dx ≤ 1

}
. (6.3)

The class of Orlicz spaces includes the Lebesgue spaces, since LA(R) = Lp(R) if A(t) = tp

for p ∈ [1, ∞[, and LA(R) = L∞(R) if A(t) = ∞χ(1,∞)(t). Given σ > 0, we denote by 
expLσ(R) the Orlicz space built upon a Young function equivalent to A(t) = et

σ −1 near 
infinity. If either p > 1 and σ ∈ R, or p = 1 and σ ≥ 0, we denote by Lp(logL)σ(R) the 
Orlicz space built upon the Young function A(t) = tp logσ(c + t), where c is a sufficiently 
large positive number.

We refer to [9] for a comprehensive account of rearrangement-invariant spaces.

Theorem 6.1 (Reduction principle for Sobolev inequalities). Let Ω be any open set in Rn, 
n ≥ 2. Assume that μ is a measure in Ω fulfilling (5.1) for some α ∈ (n − 1, n], and for 
some constant Cμ. Let m ∈ N, and h ∈ N0 be such that 0 < m − h < n. Assume that 
X(Ω), Y (Ω, μ) and Xk(∂Ω), k = 0, · · · , m − h − 1, are rearrangement-invariant spaces 
such that
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∥∥∥∥∥∥∥s
−n−m+h

α

s
n
α∫

0

ϕ(r)dr

∥∥∥∥∥∥∥
Y (0,∞)

≤ C‖ϕ‖X(0,∞), (6.4)

∥∥∥∥∥∥∥
∞∫

s
n
α

r−
n−m+h

n ϕ(r)dr

∥∥∥∥∥∥∥
Y (0,∞)

≤ C‖ϕ‖X(0,∞), (6.5)

∥∥∥∥∥∥∥s
−n−k−1

α

s
n−1
α∫

0

ϕ(r)dr

∥∥∥∥∥∥∥
Y (0,∞)

≤ C‖ϕ‖Xk(0,∞), k = 1, . . . ,m− h− 1, (6.6)

∥∥∥∥∥∥∥
∞∫

s
n−1
α

r−
n−k−1
n−1 ϕ(r)dr

∥∥∥∥∥∥∥
Y (0,∞)

≤ C‖ϕ‖Xk(0,∞), k = 1, . . . ,m− h− 1, (6.7)

∥∥∥∥∥∥∥s
−n−1

α

s
n−1
α∫

0

ϕ(r) dr

∥∥∥∥∥∥∥
Y (0,∞)

≤ C‖ϕ‖X0(0,∞), (6.8)

for some constant C, and for every non-increasing function ϕ : [0, ∞) → [0, ∞). Then 
there exists a constant C ′ = C ′(n, C) such that

‖∇hu‖Y (Ω,μ) ≤ C ′
(
‖∇mu‖X(Ω) +

m−h−1∑
k=0

‖u‖
V[ k+h+1

2 ],�(k+h)Xk(∂Ω)

)
(6.9)

for every u ∈ V mX(Ω) ∩ C
[m−1

2 ]
b (Ω).

Remark 6.2. The statement of Theorem 6.1 can be somewhat generalized, in the sense 
that assumptions (6.4)–(6.8) can be weakened if either μ(Ω) < ∞, or Ln(Ω) < ∞, 
or Hn−1(∂Ω) < ∞. Specifically: if μ(Ω) < ∞, it suffices to assume that there exists 
L ∈ (0, ∞) such that inequalities (6.4)–(6.8) hold with the integral operators multiplied 
by χ(0,L) on the left-hand sides; if Ln(Ω) < ∞, it suffices to assume that inequalities
(6.4)–(6.5) hold with ϕ replaced by ϕχ(0,M) for some M ∈ (0, ∞); if Hn−1(∂Ω) < ∞, 
it suffices to assume that inequalities (6.6)–(6.8) hold with ϕ replaced by ϕχ(0,N) for 
some N ∈ (0, ∞). Then inequality (6.9) holds, but with C ′ depending also either on
L and μ(Ω), or on M and Ln(Ω), or on N and Hn−1(∂Ω) < ∞, according to whether 
μ(Ω) < ∞, or Ln(Ω) < ∞, or Hn−1(∂Ω) < ∞.

Our first application of Theorem 6.1 yields the following Sobolev type inequality, in 
arbitrary domains, with usual exponents.
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Theorem 6.3 (Sobolev inequality with measure). Let Ω be any open set in Rn, n ≥ 2. 
Assume that μ is a measure in Ω fulfilling (5.1) for some α ∈ (n − 1, n], and for some 
constant Cμ. Let m ∈ N, and h ∈ N0 be such that 0 < m − h < n. If 1 < p < n

m−h , then 
there exists a constant C = C(n, m, p, α, Cμ) such that

‖∇hu‖
L

αp
n−(m−h)p (Ω,μ)

≤ C
(
‖∇mu‖Lp(Ω) +

m−h−1∑
k=0

‖u‖
V[ k+h+1

2 ],�(k+h)L
p(n−1)

n−(m−h−k)p (∂Ω)

)

(6.10)

for every u ∈ V m,p(Ω) ∩ C
[m−1

2 ]
b (Ω).

The next result tells us that, as in the classical Rellich theorem, the Sobolev embedding 
corresponding to inequality (6.10) is pre-compact if the exponent αp

n−(m−h)p is replaced 
with any smaller one, and μ(Ω) < ∞.

Theorem 6.4 (Compact Sobolev embedding with measure). Let Ω, μ, n, m and h be as 
in Theorem 6.3. Assume, in addition, that μ(Ω) < ∞. If 1 ≤ q < αp

n−(m−h)p , and {ui}

is a bounded sequence in V m,p(Ω) ∩C
[m−1

2 ]
b (Ω) endowed with the norm appearing on the 

right-hand side of (6.10), then {∇hui} is a Cauchy sequence in Lq(Ω, μ).

The limiting case when p = n
m−h , which is excluded from Theorem 6.3, is considered 

in the next statement, which provides us with a Yudovich–Pohozaev–Trudinger type 
inequality in arbitrary domains.

Theorem 6.5 (Limiting Sobolev inequality with measure). Let Ω and μ be as in The-
orem 6.3. Assume, in addition, that Ln(Ω) < ∞, μ(Ω) < ∞ and Hn−1(∂Ω) < ∞. 
Let m ∈ N and h ∈ N0 be such that 0 < m − h < n. Then there exists a constant 
C = C(n, m, α, Cμ, Ln(Ω), μ(Ω), Hn−1(∂Ω)) such that

‖∇hu‖
exp L

n
n−(m−h) (Ω,μ)

≤ C
(
‖∇mu‖

L
n

m−h (Ω)
+

m−h−1∑
k=1

‖u‖
V[ k+h+1

2 ],�(k+h)L
n−1
k (log L)

(m−h)(n−k−1)
nk (∂Ω)

+ ‖u‖
V[h+1

2 ],�(h) exp L
n

n−(m−h) (∂Ω)

)
(6.11)

for every u ∈ V m, n
m−h (Ω) ∩ C

[m−1
2 ]

b (Ω).

The super-limiting regime, where p > n
m−h , is the object of the following theorem.

Theorem 6.6 (Super-limiting Sobolev inequality). Let Ω be a open set in Rn, n ≥ 2, such 
that Ln(Ω) < ∞ and Hn−1(∂Ω) < ∞. Assume that m ∈ N, h ∈ N0, and 0 < m − h < n. 
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If p > n
m−h and pk > n−1

k for k = 1, . . . , m − h − 1, then there exists a constant 
C = C(n, m, p, p1, . . . , pm−h−1, Ln(Ω), Hn−1(∂Ω)) such that

‖∇hu‖L∞(Ω)

≤ C
(
‖∇mu‖Lp(Ω) +

m−h−1∑
k=1

‖u‖
V[ k+h+1

2 ],�(k+h)Lpk (∂Ω)
+ ‖u‖

V[h+1
2 ],�(h)L∞(∂Ω)

)
(6.12)

for every u ∈ V m,p(Ω) ∩ C
[m−1

2 ]
b (Ω).

Proof of Theorem 6.1. Let u be any function as in the statement. Inequalities (5.3) and
(6.4)–(6.8) tell us that

∥∥|∇hu|∗μ(cs)
∥∥
Y (0,∞)

≤ C

[∥∥∥∥s−n−m+h
α

s
n
α∫

0

|∇mu|∗Ln(r)dr
∥∥∥∥
Y (0,∞)

+
∥∥∥∥

∞∫
s

n
α

r−
n−m+h

n |∇mu|∗Ln(r)dr
∥∥∥∥
Y (0,∞)

+
m−h−1∑
k=1

(∥∥∥∥s−n−1−k
α

s
n−1
α∫

0

[
g[ k+h+1

2 ],�(k+h)]∗
Hn−1(r)dr

∥∥∥∥
Y (0,∞)

+
∥∥∥∥

∞∫
s
n−1
α

r−
n−1−k
n−1

[
g[ k+h+1

2 ],�(k+h)]∗
Hn−1(r)dr

∥∥∥∥
Y (0,∞)

)

+
∥∥∥∥s−n−1

α

s
n−1
α∫

0

[
g[h+1

2 ],�(h)]∗
Hn−1(r)dr

∥∥∥∥
Y (0,∞)

]

≤ C ′
(∥∥∥|∇mu|∗Ln(s)

∥∥∥
X(0,∞)

+
m−h−1∑
k=0

∥∥∥[g[ k+h+1
2 ],�(k+h)]∗

Hn−1(s)
∥∥∥
Xk(0,∞)

)
(6.13)

for some constants C depending on n, and C ′ depending on the constant C appearing in
(6.4)–(6.8) and on n. A property of rearrangement-invariant spaces [9, Proposition 5.11, 
Chapter 3] ensures that the norm on left-most side of (6.13) is bounded from below by 
min{1, 1c}

∥∥|∇hu|∗μ(s)
∥∥
Y (0,∞). Hence, from (6.13) and (6.2) we deduce that

‖∇hu‖Y (Ω,μ) ≤ C
(
‖∇mu‖X(Ω) +

m−h−1∑
k=0

∥∥∥g[ k+h+1
2 ],�(k+h)

∥∥∥
Xk(∂Ω)

)
(6.14)

for some constant C depending on the constant C appearing in (6.4)–(6.8) and on n. 
Inequality (6.9) follows on taking the infimum in (6.14), for each fixed k, among all 
functions g[ k+h+1

2 ],�(k+h). �
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Proof of Theorem 6.3. Since, for any measure space R, a representation space of the 
Lebesgue space Lp(R) is just Lp(0, ∞), the conclusion can be easily deduced from The-
orem 6.1, via standard one-dimensional Hardy type inequalities for Lebesgue norms (see 
e.g. [62, Section 1.3.2]). �
Proof of Theorem 6.4. Fix any ε > 0. Then, there exists a compact set K ⊂ Ω such that 
μ(Ω \K) < ε. Let � ∈ C∞

0 (Ω) be such that 0 ≤ � ≤ 1, � = 1 in K. Thus, K ⊂ supp(�), 
the support of �, and hence

μ(supp(1 − �)) ≤ μ(Ω \K) < ε. (6.15)

Let Ω′ be an open set, with a smooth boundary, such that supp(�) ⊂ Ω′ ⊂ Ω. Let {ui}
be a bounded sequence in V m,p(Ω) ∩ C

[m−1
2 ]

b (Ω). Then, by Theorem 6.3 (applied with 
μ = Ln), it is also bounded in the standard Sobolev space Wm,p(Ω′). By a weighted 
version of Rellich’s compactness theorem [62, Theorem 1.4.6/1], {∇hui} is a Cauchy 
sequence in Lq(Ω′, μ), and hence there exists i0 ∈ N such that

‖∇hui −∇huj‖Lq(Ω′,μ) < ε (6.16)

if i, j > i0. On the other hand, by Hölder’s inequality,

‖(1 − �)(∇hui −∇huj)‖Lq(Ω,μ)

≤ ‖∇hui −∇huj‖
L

αp
n−mp (Ω,μ)

μ(supp(1 − �))
αp−(n−mp)q

αpq

≤ C
(
‖ui‖

V m,p(Ω)∩C[m−1
2 ](Ω)

+ ‖uj‖
V m,p(Ω)∩C[m−1

2 ](Ω)

)
ε

αp−(n−mp)q
αpq

≤ C ′ε
αp−(n−mp)q

αpq (6.17)

for some constants C and C ′ independent of i and j. From (6.16) and (6.17) we infer 
that

‖∇hui −∇huj‖Lq(Ω,μ) ≤ ‖∇hui −∇huj‖Lq(Ω′,μ) + ‖(1 − �)(∇hui −∇huj)‖Lq(Ω,μ)

≤ ε + C ′ε
αp−(n−mp)q

αpq (6.18)

if i, j > i0. Owing to the arbitrariness of ε, inequality (6.18) tells us that {∇hui} is a 
Cauchy sequence in Lq(Ω, μ). �
Proof of Theorem 6.5. If R is a finite measure space, equipped with a measure ν, then 
the norm of a function φ in the Orlicz space expLσ(R), with σ > 0, is equivalent, up to 
multiplicative constants depending on σ and ν(R), to the functional

∥∥(1 + log ν(R))− 1
σ φ∗

ν(s)
∥∥

∞ .
s L (0,ν(R))
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Moreover, the norm in the Orlicz space Lp logσ L(R) is equivalent, up to multiplicative 
constants depending on p, σ and ν(R) to the functional

∥∥(1 + log ν(R)
s

)σ
p φ∗

ν(s)
∥∥
Lp(0,ν(R)).

Thus, owing to Theorem 6.1 and Remark 6.2, inequality (6.11) will follow if we show 
that∥∥∥∥∥∥∥s

−n−(m−h)
α

(
1 + log μ(Ω)

s

)−n−(m−h)
n

s
n
α∫

0

ϕ(r)dr

∥∥∥∥∥∥∥
L∞(0,μ(Ω))

≤ C‖ϕ‖
L

n
m−h (0,Ln(Ω))

,

(6.19)∥∥∥∥∥∥∥
(
1 + log μ(Ω)

s

)−n−(m−h)
n

∞∫
s

n
α

r−
n−(m−h)

n ϕ(r)dr

∥∥∥∥∥∥∥
L∞(0,μ(Ω))

≤ C‖ϕ‖
L

n
m−h (0,Ln(Ω))

,

(6.20)

for every non-increasing function ϕ : [0, ∞) → [0, ∞) with support in [0, Ln(Ω)], and

∥∥∥∥∥∥∥s
−n−k−1

α

(
1 + log μ(Ω)

s

)−n−(m−h)
n

s
n−1
α∫

0

ϕ(r)dr

∥∥∥∥∥∥∥
L∞(0,μ(Ω))

≤ C‖
(
1 + log Hn−1(∂Ω)

s

) (m−h)(n−k−1)
n(n−1) ϕ(s)‖

L
n−1
k (0,Hn−1(∂Ω))

, k = 1, . . . ,m− h− 1,

(6.21)∥∥∥∥∥∥∥
(
1 + log μ(Ω)

s

)−n−(m−h)
n

∞∫
s
n−1
α

r−
n−k−1
n−1 ϕ(r)dr

∥∥∥∥∥∥∥
L∞(0,μ(Ω))

≤ C‖
(
1 + log Hn−1(∂Ω)

s

) (m−h)(n−k−1)
n(n−1) ϕ(s)‖

L
n−1
k (0,Hn−1(∂Ω))

, k = 1, . . . ,m− h− 1,

(6.22)∥∥∥∥∥∥∥s
−n−1

α

(
1 + log μ(Ω)

s

)−n−(m−h)
n

s
n−1
α∫

0

ϕ(r) dr

∥∥∥∥∥∥∥
L∞(0,μ(Ω))

≤ C‖
(
1 + log Hn−1(∂Ω)

s

)−n−(m−h)
n ϕ(s)‖L∞(0,Hn−1(∂Ω)), (6.23)

for some constant C and every non-increasing function ϕ : [0, ∞) → [0, ∞) with support 
in [0, Hn−1(∂Ω)].
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Inequalities (6.19)–(6.23) are consequences of classical weighted Hardy type inequali-
ties [62, Section 1.3.2]. �
Proof of Theorem 6.6. Inequality (6.12) follows from Theorem 6.1 and Remark 6.2, via 
weighted Hardy type inequalities [62, Section 1.3.2]. �
7. Sharpness of results

In this section we work out in detail some examples, announced in Sections 1 and 2, 
in connection with certain sharpness features of the inequalities presented above.

Example 7.1. We observed in Section 2 that the term ‖u‖
V1,0L

p(n−1)
n−p (∂Ω)

can be dropped 

on the right-hand side of (2.3) if Ω is a regular domain. Here, we show that, by contrast, 
the term in question is indispensable for an arbitrary domain. To this purpose, we exhibit 
a domain Ω ⊂ Rn for which the inequality

‖u‖
L

pn
n−2p (Ω)

≤ C
(
‖∇2u‖Lp(Ω) + ‖u‖

L
p(n−1)
n−2p (∂Ω)

)
(7.1)

fails for 1 < p < n
2 , for every constant C independent of u. The relevant domain is the 

union of a sequence of axially symmetric “cup-shaped” subdomains Ωk about the xn-axis, 
which are connected by thin cylinders Hk joining Ωk with Ωk−1 (Fig. 1, Section 2). Each 
subdomain Ωk is a set of revolution about the xn-axis of the form

Ωk =
{
x : |x′| < (xn − xk

n + εk)β , xn ∈ (xk
n, x

k
n + hk)

}
for some xk

n > 0 and 0 < εk < hk, with hk → 0+ as k → ∞, and β ∈ (0, 1). The cylinder 
Hk has a basis of radius εβk . Define the sequence {uk} by

uk(x) = 1 − xn−xk
n

hk
for x ∈ Ωk,

uk = 0 in Ωj for j �= k and in Hj for j �= k, k + 1, and is continued to Hk and Hk+1 in 
such a way that u ∈ C2(Ω).

One can verify that

‖uk‖
L

pn
n−2p (Ω)

≈ h
[(n−1)β+1](n−2p)

np

k , (7.2)

‖uk‖
L

p(n−1)
n−2p (∂Ω)

≈ h
[(n−2)β+1](n−2p)

(n−1)p
k , (7.3)

as k → ∞, and

‖∇2uk‖Lp(Ω) = ‖∇2uk‖Lp(Hk∪Hk+1) (7.4)
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for k ∈ N. If εk decays to 0 sufficiently fast as k → ∞, the norm ‖∇2uk‖Lp(Hk∪Hk+1)
decays arbitrarily fast to 0. Thus, inequality (7.1) fails when tested on the sequence uk, 
whatever C is.

Example 7.2. Our purpose here is to demonstrate that, whereas the seminorm 
‖u‖V1,0Lr(∂Ω) can be replaced with ‖u‖Lr(∂Ω) in (2.8) when Ω is a regular domain, 
this is impossible, in general, if no regularity on Ω is retained. Precisely, we construct 
an open set Ω in R2 for which the inequality

‖∇u‖Lq(Ω) ≤ C
(
‖∇2u‖Lp(Ω) + ‖u‖L∞(∂Ω)

)
(7.5)

for u ∈ V 2,p(Ω) ∩ C(Ω) fails for 1 < p < 2 and for every q ≥ 1. The relevant set Ω is 
represented in Fig. 2, Section 2.

Let u : Ω → R be a function such that u ∈ C2(Ω) ∩C0(Ω), u(x, y) = 1 + 1
bk

(y−1 −ck)
if (x, y) ∈ Rk, u(x, y) = 0 if (x, y) ∈ R, and u(x, y) depends only on y in Nk. One has 
that

‖u‖L∞(∂Ω) = 2, (7.6)

and

‖∇u‖L1(Ω) ≥
∞∑
k=1

‖∇u‖L1(Rk) =
∞∑
k=1

akbk
bk

=
∞∑
k=1

ak = ∞. (7.7)

On the other hand,

‖∇2u‖Lp(Ω) =
( ∞∑

k=1

‖∇2u‖pLp(Nk)

) 1
p

.

Thus,

‖∇2u‖Lp(Ω) < ∞, (7.8)

provided that the sequence dk decays sufficiently fast to 0. Equations (7.6)–(7.8) tell us 
that inequality (7.5) cannot hold in Ω.

Example 7.3. We are concerned here with the sharpness of the exponent q given by (2.9)
in inequality (2.8). An open set Ω ⊂ Rn is produced where inequality (2.8) fails if q
exceeds the right-hand side of (2.9). Consider the domain Ω ⊂ Rn, with n ≥ 3, depicted 
for n = 3 in Fig. 3, Section 2. By the standard Sobolev inequality, one necessarily has 
q ≤ np

n−p . Thus, it suffices to show that

q ≤ rn
. (7.9)
n− 1
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Let {uk} be a sequence of functions uk : Ω → R enjoying the following properties: 
uk ∈ C2(Ω) ∩C0(Ω); uk(x′, xn) = 1 + 1

bk
(xn−1 −ck) if (x′, xn) ∈ Rk; uk(x′, xn) depends 

only on xn on Nk; uk(x′, xn) = 0 if (x′, xn) /∈ Rk ∪Nk. One has that, for k ∈ N,

‖∇uk‖Lq(Ω) ≥ ‖∇uk‖Lq(Rk) = b
n−q
q

k ,

‖uk‖V1,0Lr(∂Ω) ≤ Cb
n−1−r

r

k ,

and

‖∇2uk‖Lp(Ω) = ‖∇2uk‖Lp(Nk),

for some constant C. Thus, inequality (2.8) entails that

b
n−q
q

k ≤ C
(
‖∇2uk‖Lp(Nk) + b

n−1−r
r

k

)
(7.10)

for some constant C, and for every k ∈ N. The norm on the right-hand side of (7.10)
decays to 0 arbitrarily fast, provided that dk tends to 0 fast enough. Hence, if (2.8) holds, 
then q must necessarily satisfy (7.9).

Example 7.4. We conclude by showing that the number 
[
m−1

2
]

of derivatives to be 
prescribed on ∂Ω, appearing in our inequalities, is minimal, in general, for an m-th order 
Sobolev inequality to hold in an arbitrary domain Ω. This will be demonstrated by two 
examples.

First, given p > 1 and h, i, n ∈ N such that p(m − h) < n and 0 ≤ h ≤ i < m
2 , we 

produce a counterexample to the inequality

‖∇hu‖
L

pn
n−p(m−h) (Ω)

≤ C‖∇mu‖Lp(Ω) (7.11)

for all u ∈ V m,p(Ω) ∩ Ci−1(Ω) such that u = ∇u = · · · = ∇i−1u = 0 on ∂Ω. Note that 
the condition i < m

2 is equivalent to i − 1 <
[
m−1

2
]
.

Second, in the case when p(m − h) > n > p max{m − i, 2i − h} and 0 ≤ h < i < m
2

we produce a counterexample to the inequality

‖∇hu‖L∞(Ω) ≤ C‖∇mu‖Lp(Ω) (7.12)

for all u ∈ V m,p(Ω) ∩ Ci−1(Ω) such that u = ∇u = · · · = ∇i−1u = 0 on ∂Ω.
To this purpose, consider a domain Ω similar to the one constructed in Example 7.1, 

save that the sequence of cup-shaped subdomains Ωk is replaced with a sequence of balls 
Bδk(xk), with radius δk to be chosen later, again connected by thin cylinders (Fig. 4).

Let vk : Bδk(xk) → [0, 1] be the function defined as

vk(x) =
(
1 − |x−xk|2

2

)i for x ∈ Bδk(xk). (7.13)

δk
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Fig. 4. Example 7.4, Section 7.

We have that ∇�vk = 0 on ∂Bδk(xk) for 0 ≤ � ≤ i − 1, and hence, given � ≤ i and 
εk ∈ (0, δk2 ), there exists a positive constant c such that

|∇�vk| ≤ cδk
−iεi−�

k (7.14)

in an ε neighborhood of ∂Bδk(xk). Moreover, if � ≤ 2i, then there exists a positive 
constant c such that

|∇�vk| ≥ cδk
−� (7.15)

in a subset of Bδk(xk) of Lebesgue measure ≈ δk
n, whereas, if � > 2i, then

∇�vk = 0. (7.16)

Next, denote by yk and zk the north and the south poles of Bδk(xk), respectively, and let 
ρ : [0, ∞) → [0, 1] be a smooth function, which vanishes in [0, 12 ] and equals 1 in [1, ∞). 
Let us define the function wk : Ω → [0, ∞) as

wk(x) = vk(x)ρ(|x− yk|/εk)ρ(|x− zk|/εk) for x ∈ Bδk(xk), (7.17)

and wk = 0 elsewhere, where εk will be chosen later.
If j ≤ 2i,

|∇jwk| ≥ cδk
−j (7.18)
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in a subset of Bδk(xk) of Lebesgue measure ≈ δk
n, and, if j > 2i,

∇jwk = 0 in Bδk(xk) \ (Bεk(yk) ∪Bεk(zk)). (7.19)

Thus, there exists a constant c such that

|∇jwk| ≤ c

min{j,2i}∑
�=0

ε�−j
k |∇�vk| in Bεk(yk) ∪Bεk(zk). (7.20)

Consequently, if j ≤ m, then

|∇jwk| ≤ cεi−j
k δk

−i in Bεk(yk) ∪Bεk(zk), (7.21)

for some constant c. Hence, if j > 2i, then

‖∇jwk‖pLp(Bδk
(xk)) ≤ cδk

−piε
p(i−j)+n
k (7.22)

for some constant c. On the other hand, if j ≤ 2i, then

‖∇jwk‖pLp(Bδk
(xk)) ≤ c

(
δk

n−pj + δk
−piε

p(i−j)+n
k

)
(7.23)

for some constant c.
Set εk = δαk , with α to be chosen later. Then, by (7.22) and (7.23),

‖wk‖pV m,p(Bδk
(xk)) ≤ c

(
δk

−pi+α[p(i−m)+n] + δk
n−2pi + δk

−pi+α(−pi+n))
≤ c

(
δk

−pi+α[p(i−m)+n] + δk
n−2pi), (7.24)

where the last inequality holds since p(i −m) + n < −pi + n, owing to the assumption 
that i < m

2 .
Let us consider (7.11). Note that

n > pi. (7.25)

Indeed, since we are now assuming that p(m − h) < n and 0 ≤ h ≤ i < m
2 , we have that 

n > p(m − h) ≥ p(m − i) > p(2i − i) = pi, namely (7.25).
We may choose α such that

−pi + α[p(i−m) + n] < n− 2pi. (7.26)

Actually, if p(i −m) + n > 0, then inequality (7.26) holds provided that

1 < α < n−pi . (7.27)
p(i−m)+n
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Note that the two inequalities in (7.27) are compatible since i < m
2 . If, instead, p(i −

m) + n ≤ 0, then any choice of α > 1 is admissible, since −pi + α[p(i −m) + n] ≤ −pi, 
whence (7.26) follows, owing to (7.25).

By (7.24) and (7.26),

‖wk‖pV m,p(Bδk
(xk)) ≤ cδk

−pi+α[p(i−m)+n], (7.28)

for some constant c. Given a sequence {λk}, define u as

u(x) =
∞∑
k=1

λkwk(x) for x ∈ Ω. (7.29)

Note that u = ∇u = · · · = ∇i−1u = 0 on ∂Ω.
Set q = pn

n−p(m−h) , and choose λk = δ
h−n

q

k for k ∈ N. By (7.18), there exists a positive 
constant c such that

‖∇hu‖qLq(Ω) =
∞∑
k=1

λq
k

∫
Bδk

(xk)

|∇hwk|qdx ≥ c

∞∑
k=1

λq
kδ

n−hq
k = c

∞∑
k=1

1 = ∞. (7.30)

On the other hand, by (7.28) there exists a constant c such that

‖u‖pV m,p(Ω) =
∞∑
k=1

λp
k‖wk‖pV m,p(Bδk

(xk)) ≤ c
∞∑
k=1

λp
kδ

−pi+α[p(i−m)+n]
k

= c

∞∑
k=1

δ
(α−1)[p(i−m)+n]
k . (7.31)

Our assumptions ensure that p(i − m) + n ≥ p(h − m) + n > 0. Thus, (α − 1)[p(i −
m) + n] > 0, and hence the last series in (7.31) converges, provided that δk decays to 0
sufficiently fast. Clearly, equations (7.30) and (7.31) contradict (7.11).

Let us next focus on (7.12). Consider again the function u given by (7.29). Fix σ ∈
(0, h), and choose λk = δh−σ

k . By (7.18),

‖∇hu‖L∞(Ω) ≥ c lim
k→∞

λkδ
−h
k = c lim

k→∞
δ−σ
k = ∞. (7.32)

Moreover, by (7.24),

‖u‖pV m,p(Ω) =
∞∑
k=1

λp
k‖wk‖pV m,p(Bδk

(xk)) ≤ c

∞∑
k=1

δ
p(h−σ)
k

(
δ
−pi+α[p(i−m)+n]
k + δn−2pi

k

)

= c
∞∑(

δ
hp−σp−pi+α[p(i−m)+n]
k + δhp−σp+n−2pi

k

)
. (7.33)
k=1
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The assumption n > p max{m − i, 2i − h} ensures that

hp + n− 2pi > 0, and hp− pi + α[p(i−m) + n] > 0,

provided that α is sufficiently large. Since σ can be chosen arbitrarily small, we may 
assume that both exponents of δk in the last series of (7.33) are positive, and hence that

‖u‖V m,p(Ω) < ∞, (7.34)

provided that δk decays to 0 fast enough. Equations (7.32) and (7.34) contradict (7.12).

Appendix A

A result in the theory of Sobolev functions tells us that, if u is any weakly differentiable 
function in Rn, then

|u(x) − u(y)| ≤ C(M(|∇u|)(x) + M(|∇u|)(y)) for a.e. x, y ∈ Rn, (A.1)

for some constant C. Here, M denotes the maximal function operator defined, for f ∈
L1

loc(Rn), as

Mf(x) = sup
B�x

1
Ln(B)

∫
B

|f(y)| dy for x ∈ Rn,

and B denotes any ball in Rn. Thus, M(|∇u|) is an upper gradient for u in the sense of 
metric measure spaces, as defined in [38].

The following proposition provides us with a higher-order counterpart of (A.1), and 
gives grounds for definitions (3.13) and (3.14).

Proposition A.1. Let n, � ∈ N. Then there exists a constant C = C(�, n) such that, if 
u ∈ W 2�−1,1

loc (Rn), then

∣∣∣∣∣∣
∑

|α|≤�−1

(2�− 2 − |α|)!
(�− 1 − |α|)!α!

(y − x)α

|y − x|2�−1

[
(−1)|α|Dαu(y) −Dαu(x)

]∣∣∣∣∣∣
≤ C

(
M(|∇2�−1u|)(x) + M(|∇2�−1u|)(y)

)
for a.e. x, y ∈ Rn. (A.2)

Proof. By [15, Proposition 5.1], if 0 ≤ |α| ≤ 2� −2, then there exist a measurable function 
R2�−1,α(u) : Rn × Rn → R and a constant C = C(�, n) such that

Dαu(y) =
∑ (y − x)γ

γ! Dα+γu(x) + R2�−1,α(u)(x, y) for a.e. x, y ∈ Rn, (A.3)

|γ|≤2�−2−|α|
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and

|R2�−1,α(u)(x, y)|

≤ C|x− y|2�−1−|α|[M(|∇2�−1u|)(x) + M(|∇2�−1u|)(y)
]

for a.e. x, y ∈ Rn. (A.4)

We claim that there exist constants C(α, �), for |α| ≤ � − 1, such that

∑
|α|≤�−1

(2�− 2 − |α|)!
(�− 1 − |α|)!α!

(y − x)α[Dαu(x) + (−1)|α|+1Dαu(y)]
|y − x|2�−1

=
∑

|α|≤�−1

C(α, �)(y − x)α

|y − x|2�−1 R2�−1,α(u)(x, y) for a.e. x, y ∈ Rn. (A.5)

Inequality (A.2) will then follow from (A.5) and (A.4).
Let us establish (A.5). By (A.3), after exchanging the order of summation and relabel-

ing the indices, one obtains that there exist constants A(α, �) and B(α, �), for |α| ≤ � −1, 
such that

∑
|α|≤�−1

(2�− 2 − |α|)!
(�− 1 − |α|)!α! (y − x)α [Dαu(x) + (−1)|α|+1Dαu(y)]

|y − x|2�−1

=
∑

|α|≤�−1

(2�− 2 − |α|)!
(�− 1 − |α|)!α!

(y − x)α

|y − x|2�−1

×
[
Dαu(x) + (−1)|α|+1

( ∑
|γ|≤2�−2−|α|

(y − x)γ

γ! Dα+γu(x) + R2�−1,α(u)(x, y)
)]

=
∑

|α|≤2�−2

(y − x)α

|y − x|2�−1A(α, �)Dα(u)(x) +
∑

|α|≤�−1

(y − x)α

|y − x|2�−1B(α, �)R2�−1,α(u)(x, y)

(A.6)

for a.e. x, y ∈ Rn.
Now, let us choose u = P in (A.6), where P is a polynomial of the form

P(y) =
∑

|α|≤2�−2

bα(y − x)α for y ∈ Rn, (A.7)

for some coefficients bα ∈ R. Clearly,

DαP(x) = α!bα if |α| ≤ 2�− 2, DαP(x) = 0 if |α| > 2�− 2. (A.8)
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Hence, R2�−1,α(P)(x, y) = 0, and from (A.6) we obtain that

∑
|α|≤�−1

(2�− 2 − |α|)!
(�− 1 − |α|)!α! (y − x)α [DαP(x) + (−1)|α|+1DαP(y)]

|y − x|2�−1

=
∑

|α|≤2�−2

(y − x)α

|y − x|2�−1A(α, �)α!bα (A.9)

for a.e. x, y ∈ Rn. We next express the leftmost side of (A.6) in an alternative form. 
Define ϕ : R → R as

ϕ(t) = u(x + tϑ) for t ∈ R,

where

ϑ = y − x

|y − x| .

Given j ∈ {1, . . . , 2� − 1}, we have that

ϕ(j)(t) =
∑
|α|=j

j!
α!ϑ

αDαu(x + tϑ) for a.e. t ∈ R. (A.10)

Thus, by the Taylor formula centered at t = 0, if k ∈ {1, . . . , 2� − 1}, then

ϕ(k)(|y − x|) =
2�−2∑
j=k

ϕ(j)(0)
(j − k)! |y − x|j−k + Q2�−1,k(ϕ)(|y − x|)

=
2�−2∑
j=k

1
(j − k)!

∑
|α|=j

j!
α! |y − x|j−kϑαDαu(x) + Q2�−1,k(ϕ)(|y − x|) (A.11)

for a.e. x, y ∈ Rn, where Q2�−1,k(ϕ) denotes the remainder in the (2� − 2 − k)-th order 
Taylor formula for ϕ(k), centered at t = 0. By (A.10) and (A.11), there exist constants 
A′(α, �) and B′(α, �) such that

∑
|α|≤�−1

(2�− 2 − |α|)!
(�− 1 − |α|)!α! (y − x)α [Dαu(x) + (−1)|α|+1Dαu(y)]

|y − x|2�−1

= (−1)�
�−1∑
k=0

(2�− k − 2)!
k!(�− k − 1)!

[
ϕ(k)(0) + (−1)k+1ϕ(k)(|y − x|)

]
|y − x|2�−k−1

= (−1)�
�−1∑ (2�− k − 2)!

k!(�− k − 1)!
1

|y − x|2�−k−1

k=0
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×
[ ∑
|α|=k

k!
α!

ϑαDαu(x)

+ (−1)k+1
( 2�−2∑

j=k

1
(j − k)! |y − x|j−k

∑
|α|=j

j!
α!ϑ

αDαu(x) + Q2�−1,k(ϕ)(|y − x|)
)]

=
∑

|α|≤2�−2

(y − x)α

|y − x|2�−1A
′(α, �)Dαu(x)

+
∑

|α|≤�−1

1
|y − x|2�−|α|−1B

′(α, �)Q2�−1,|α|(ϕ)(|x− y|) (A.12)

for a.e. x, y ∈ Rn. If P is again a polynomial in t of the form (A.7), then ϕ is also a 
polynomial of degree not exceeding 2� − 2, and from (A.8) and (A.12), applied with 
u = P, we obtain that

∑
|α|≤�−1

(2�− 2 − |α|)!
(�− 1 − |α|)!α! (y − x)α [DαP(x) + (−1)|α|+1DαP(y)]

|y − x|2�−1

=
∑

|α|≤2�−2

(y − x)α

|y − x|2�−1A
′(α, �)α!bα (A.13)

for a.e. x, y ∈ Rn. Owing to the arbitrariness of the coefficients bα, we infer from (A.9)
and (A.13) that

A(α, �) = A′(α, �) (A.14)

for every multi-index α such that |α| ≤ 2� − 2. On the other hand, by (4.23) and (4.24), 
applied with ς = ψ = ϕ, a = 0 and b = |y − x|, and by (A.12) and (A.13),

0 = ϕ(2�−1)(t) =
[
d�−1

dt�−1

(
ϕ(t)

(t− |y − x|)�
)

|t=0
+ d�−1

dt�−1

(
ϕ(t)
t�

)
|t=|y−x|

]

= (−1)�
�−1∑
k=0

(2�− k − 2)!
k!(�− k − 1)!

[
ϕ(k)(0) + (−1)k+1ϕ(k)(|y − x|)

]
|y − x|2�−k−1

=
∑

|α|≤�−1

(2�− 2 − |α|)!
(�− 1 − |α|)!α!

(y − x)α[(−1)|α|+1Dαu(y) + Dαu(x)]
|y − x|2�−1

=
∑

|α|≤2�−2

(y − x)α

|y − x|2�−1A
′(α, �)α!bα (A.15)

for a.e. x, y ∈ Rn. By the arbitrariness of the coefficients bα again, A′(α, �) = 0 for every 
α such that |α| ≤ 2� − 2. Hence, owing to (A.14),
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A(α, �) = 0 (A.16)

for every α such that |α| ≤ 2� − 2. Equations (A.6) and (A.16) tell us that

∑
|α|≤�−1

(2�− 2 − |α|)!
(�− 1 − |α|)!α! (y − x)αD

αu(x) + (−1)|α|+1Dαu(y)
|y − x|2�−1

=
∑

|α|≤�−1

(y − x)α

|y − x|2�−1B(α, �)R2�−1,α(u)(x, y) for a.e. x, y ∈ Rn, (A.17)

whence (A.5) follows with C(α, �) = B(α, �). �
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