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STABILITY FOR QUANTITATIVE PHOTOACOUSTIC

TOMOGRAPHY WITH WELL CHOSEN ILLUMINATIONS

GIOVANNI ALESSANDRINI, MICHELE DI CRISTO, ELISA FRANCINI,
AND SERGIO VESSELLA

Abstract. We treat the stability issue for the three dimensional inverse imag-
ing modality called Quantitative Photoacoustic Tomography. We provide uni-

versal choices of the illuminations which enable to recover, in a Hölder stable

fashion, the diffusion and absorption coefficients from the interior pressure
data. With such choices of illuminations we do not need the nondegeneracy

conditions commonly used in previous studies, which are difficult to be verified

a-priori.

Keywords: Quantitative Photoacoustic Tomography, stability, interior data.
MSC2010: 35R30, 35J15

1. Introduction

In recent years there has been an increasing interest towards imaging methods
which combine different physical modalities of interrogation which are known as
hybrid, or coupled physics, inverse problems.

In this paper we concentrate on Photoacoustic Tomography (PAT) that cou-
ples the (high contrast) optical tomography with the (high resolution) ultrasound
waves. The first step of this imaging technique consists of reading the boundary
response to an acoustic signal, in order to reconstruct the absorbed energy distri-
bution inside the biological tissue under inspection. We assume this first part as
already performed and we focus on the second step of the procedure, which con-
sists of reconstructing the absorption and diffusion coefficients from measurements
of the absorbed energy distribution obtained in the previous step. We refer to
[?] for an extended bibliographical review on this problem known as Quantitative
Photoacoustic Tomography (qPAT).

Let us denote by Ω ⊂ Rn the body enclosing the biological tissue under inspec-
tion. Note that the physically significant space dimension is n = 3, but, since we
shall need also to refer to model cases when n = 2, we shall leave n ≥ 2 undeter-
mined. We denote by u(x) the photon density at the point x ∈ Ω. Then u(x) solves
the following boundary value problem

(1.1)

{
−div(D∇u) + σu = 0 in Ω,

u = g on ∂Ω,

where D = D(x) > 0, σ = σ(x) are the diffusion and absorption coefficients,
respectively, and g is the illumination source prescribed on the boundary.

The goal of qPAT is to recover information on the coefficients D, σ from the
knowledge of the absorbed energy

H(x) = σ(x)u(x), x ∈ Ω,
1
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possibly repeating the experiment with different profiles of the illumination g.
Note, incidentally, that a more accurate model would require the introduction

of the additional multiplicative unknown parameter Γ(x) called the Grüneisen co-
efficient. Here we adopt, for simplicity, the commonly used convention of assuming
Γ ≡ 1. See [?] for a discussion on this issue.

This problem has been considered in [?], where a uniqueness result with two
measurements is proven. The authors assume D ∈ Ck+2, σ ∈ Ck+1 with k ≥
1. They also present a Lipschitz stability theorem. This result has been later
improved in [?] also providing a numerical reconstruction procedure. More recently,
[?] have considered the same problem when the prescribed illumination is modeled
by a Robin boundary condition, rather than a Dirichlet one. A reconstruction
method for the full nonlinear inversion is also treated. The case of partial data was
considered in [?].

All the above quoted results rely on a nondegeneracy condition which can be
illustrated as follows. If u1, u2 are two solutions to (??) corresponding to two
different illuminations g1, g2 > 0, then it is a quite well-known fact that the quotient

u =
u2

u1

satisfies an elliptic equation in pure divergence form{
div(a∇u) = 0 in Ω,

u = g on ∂Ω,

where g is the ratio g2

g1
(see Proposition ?? below). It is also easy to see that the

solution of the qPAT problem boils down to solve the inverse problem of finding a
given u and the boundary values a|∂Ω

. This is a relatively easy task if g is chosen
in such a way that the following nondegeneracy condition holds:

(1.2) |∇u| > 0, everywhere in Ω.

When n = 2 there exists a well-established criterion which enables to choose the
Dirichlet data g (independently of a!) so that (??) holds ([?], [?]). Such a criterion
is unimodality. That is, roughly speaking that the graph of g has one single peak
of maximum points, one of minimum and is monotone in between.

In dimension n ≥ 3 complex valued solutions satisfying (??) can be constructed
by the method of Complex Geometrical Optics [?], but their boundary data do
depend on the interior values of the (unknown) coefficient a and thus they cannot
be a-priori chosen.

Real valued solutions which locally satisfy |∇u| > 0 can also be constructed (see
[?], [?, Theorem 4.7]), but still they depend on the unknown coefficient a.

Indeed, there are reasons to believe that, when n ≥ 3, no Dirichlet data g exists
such that (??) is satisfied for every a. See, for related discussions, [?], [?].

The principal aim of the present paper is to treat stability even when the above
stated nondegeneracy condition may be violated.

We shall show that stability can be obtained with essentially arbitrary illumi-
nations g1, g2 imposing only one constraint on their ratio g = g2

g1
. Namely that g

satisfies a condition of unimodality adapted to the (n − 1)-dimensional boundary
∂Ω. This condition shall be made more precise in Definition ??.

Our strategy shall be as follows. In dimension n ≥ 3, for a fixed g, we cannot
assure the nonvanishing of |∇u| throughout Ω, but, under reasonable assumptions,
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it is possible to keep under control the vanishing rate in the interior. This will be
the content of Lemma ??.

On the other hand, assuming unimodality we can make sure that |∇u| > 0 on a
small neighborhood of ∂Ω (Lemma ??).

Next we adapt from [?] a weighted stability estimate on the coefficients a in
terms of u and of a|∂Ω

.
Using the previously mentioned estimates on the vanishing rate of |∇u| and a

suitable interpolation inequality [?], we arrive at an (unweighted) stability estimate
of Hölder type for a (Theorem ??). The deduction of stability bounds for D and σ
follows the track of well-known arguments, see for instance [?].

Let us emphasize that most of the present effort is devoted to two main goals:

(1) To avoid the nondegeneracy condition (??).
(2) To make precise (but feasible) a-priori assumptions which guarantee a quan-

titative, concrete, evaluation in our stability estimates.

It is our belief that the present approach can be useful also to other, more complex,
hybrid inverse problems, where analogous issues of nondegeneracy arise.

The paper is organized as follows. In the next Section ?? we provide the main
assumptions and we state our main result (Theorem ??). The proof of it is based on
some auxiliary propositions, given in the subsequent Section ??, and is presented
in Section ??.

2. Assumptions and Main Result

We assume Ω to be a C2 - smooth, bounded domain in Rn diffeomorphic to
the unit ball B1(0). More precisely, from a quantitative point of view, we assume
that there exists a diffeomorphism F of class C2 such that, for given constants Q0,
Q1 > 0,

(2.1a) F : B1(0)↔ Ω,

(2.1b) ‖F‖C2(B1(0)) ≤ Q0,

(2.1c) |F (x)− F (y)| ≥ 1

Q1
|x− y|, for every x, y ∈ B1(0).

The constants Q0, Q1, shall be part of the a-priori information that shall be used
in our quantitative stability estimates.

We are interested in recovering the unknown parameters D and σ, by performing
two measurements, that is prescribing two data g1 and g2 on ∂Ω and measuring
the corresponding internal pressure fields. In particular we establish a continuous
dependence of the unknown parameters from the measured data.

Given constants λ0, λ1, E0, E1, µ0, µ1, µ2 > 0 (which also shall be part of the
a-priori information), we consider unknown coefficients D and σ such that

(2.2) D ∈W 1,∞(Ω), σ ∈W 1,∞(Ω),

and

(2.3) λ−1
0 ≤ D ≤ λ0, for every x ∈ Ω,

(2.4) λ−1
1 ≤ σ ≤ λ1, for every x ∈ Ω,
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(2.5) ‖D‖W 1,∞(Ω) ≤ E0, ‖σ‖W 1,∞(Ω) ≤ E1.

The boundary data we choose are functions g1 and g2 such that

(2.6) gi ∈ C2(∂Ω), ‖gi‖C2(∂Ω) ≤ µ0 for i = 1, 2,

(2.7) µ−1
1 ≤ gi(x) ≤ µ1, for every x ∈ Ω, i = 1, 2.

Moreover, denoting by

g =
g2

g1
and g =

1

|∂Ω|

∫
∂Ω

g,

we assume that

(2.8) ‖ g − g ‖L2(∂Ω) ≥ µ−1
2 .

Remark 2.1. Let us emphasize that (??) represents constructively the assumption
that the illuminations g1, g2 are linearly independent.

Remark 2.2. Note that, if g1, g2 satisfy assumptions (??) and (??), then the so-
called frequency function associated to g

(2.9) F [g] :=
‖g − g‖H1/2(∂Ω)

‖g − g‖L2(∂Ω)

is bounded by a constant depending only on µ0, µ2 and Q1.

We shall see that it is convenient to assume that the ratio g = g2

g1
of the illu-

minations has a specific behaviour which is expressed in the following definition.
This is a form of monotonicity assumption, which needs however to be specified in
quantitative fashion.

Definition 2.3. Given m, M , 0 < m < M and a continuous, strictly increasing
function ω : R+ → R+, such that ω(0) = 0, we say that a function g ∈ C1(∂Ω,R)
is quantitatively unimodal if

(2.10) m ≤ g(x) ≤M, for every x ∈ ∂Ω,

the subsets of ∂Ω

(2.11) Γm = {x ∈ ∂Ω : g(x) = m} and ΓM = {x ∈ ∂Ω : g(x) = M}

are connected and non-empty, possibly reduced to single points, and, for every x ∈
∂Ω \ (Γm ∪ ΓM ) such that dist(x,Γm ∪ ΓM ) ≥ δ, we have

(2.12) |∇T g(x)| ≥ ω(δ),

where ∇T denotes the tangential gradient.

Also m, M , and ω shall be part of the a-priori information.
In our stability result, we compare two different sets of diffusion and absorption

coefficients, that we denote by D(1), σ(1) and D(2), σ(2).

Let u
(j)
i , for i, j = 1, 2, be solution to

(2.13)

{
−div

(
D(j)∇u(j)

i

)
+ σ(j)u

(j)
i = 0 in Ω,

u
(j)
i = gi on ∂Ω.
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We emphasize that, in the notation u
(j)
i , the superscript is associated to the un-

known parameters D(j), σ(j), whereas the subscript is associated to the illumination
gi.

The available measurements which represent the internal pressure fields gener-
ated by the absorptions of photons energy are given by

(2.14) H
(j)
i = σ(j)u

(j)
i .

We prove the following (uniqueness and) stability result:

Theorem 2.4. Let all the assumptions stated above be satisfied. If

(2.15)
∥∥∥H(1)

i −H
(2)
i

∥∥∥
L2(Ω)

≤ ε, for i = 1, 2,

and

(2.16)
∥∥∥D(1) −D(2)

∥∥∥
L∞(∂Ω)

≤ ε′,

then we have

(2.17)
∥∥∥D(1) −D(2)

∥∥∥
L∞(Ω)

+
∥∥∥σ(1) − σ(2)

∥∥∥
L∞(Ω)

≤ C (ε+ ε′)
θ
,

where C and θ ∈ (0, 1) only depend on the a-priori information Q0, Q1, λ0, λ1,
E0, E1, µ0, µ1, µ2, m, M and ω.

3. Auxiliary results

The proof of Theorem ?? is based on a result concerning stable reconstruction
of the main coefficient of a second order elliptic equation from the knowledge of
internal values of one of its non constant solutions.

Theorem 3.1. Let Ω be diffeomorphic to the unit ball. Let a and b ∈ W 1,∞(Ω)
such that

(3.1) C−1
0 ≤ a(x), b(x) ≤ C0, for every x ∈ Ω,

and

(3.2) |∇a(x)| , |∇b(x)| ≤ C1, for almost every x ∈ Ω.

Let g and k ∈ C2(∂Ω), with

(3.3) ‖g‖C2(∂Ω), ‖k‖C2(∂Ω) ≤ C2.

Assume g satisfies assumption (??) and

(3.4) g(x) ≥ C−1
3 for every x ∈ Ω.

Let u and v in W 1,2(Ω) be the unique solutions to boundary value problems

(3.5)

{
div (a(x)∇u(x)) = 0 in Ω,

u = g on ∂Ω,

and

(3.6)

{
div (b(x)∇v(x)) = 0 in Ω,

v = k on ∂Ω.

Given Ω′ ⊂⊂ Ω with dist (∂Ω,Ω′) ≥ d0 and θ ∈ (0, 1/2) there are positive constants

C̃ and β, depending only on C0, C1, C2, µ2, C3, Q0, Q1, d0 and θ, such that

(3.7) ‖a− b‖L∞(Ω′) ≤ C̃
(
‖u− v‖θL2(Ω) + ‖a− b‖L∞(∂Ω)

)β
.
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In order to prove Theorem ??, we need the following lemmas. For d > 0 we will
denote by Ωd = {x ∈ Ω : dist(x, ∂Ω) > d}.

Lemma 3.2. With the same assumptions of Theorem ??, for every ρ > 0 and for
every x ∈ Ω4ρ ∫

Bρ(x)

|∇u|2 ≥ Cρ
∫

Ω

|∇u|2,

where Cρ depends on C0, C1, Q0, Q1, F [g] and ρ only.

Proof. This Lemma corresponds to Theorem 4.2 in [?] for solutions of Dirichlet
boundary problem instead of Neumann boundary problem. The proof follows the
same path by taking u0 = u − u where u = |Ω|−1

∫
Ω
u. The only difference sits in

getting from estimate (4.28) in [?] to an estimate in terms of the frequency function
F [g]. In this case, by standard elliptic estimates,

‖∇u0‖L2(Ω) = ‖∇(u− g)‖L2(Ω) ≤ C‖g − g‖H1/2(∂Ω),

where C depends on Q0, Q1 and C0, and

‖u0‖L2(∂Ω) = ‖g − u‖L2(∂Ω) ≥ ‖g − g‖L2(∂Ω),

hence, from estimate (4.28) in [?], we get

‖∇u0‖L2(Ω)

‖u0‖L2(Ω)
≤ C
‖∇u0‖2L2(Ω)

‖u0‖2L2(∂Ω)

≤ C
(‖g − g‖H1/2(∂Ω)

‖g − g‖L2(∂Ω)

)2

= CF [g]2.

The rest of the proof is as in [?]. �

Lemma 3.3. With the same assumptions of Theorem ??, given Ω′ ⊂⊂ Ω with
dist (∂Ω,Ω′) ≥ d0, there exist positive constants K1 and K2 > 1 and d1 ≤ d0,
depending only on C0, C1, C2, µ2, C3 and d0, such that, for every x0 ∈ Ω′ and
r ≤ d1,

(3.8)

∫
Br(x0)

|∇u|2 ≥ rK1

K2
.

Proof. As in the proof of Theorem 4.3 in [?], starting from the doubling inequality
by Garofalo and Lin ([?]) and using Caccioppoli and Poincarè inequalities, we can
show that there is a constant 2d1 ≤ d0, depending only on C0 and C1, such that
we get, for r ≤ ρ ≤ d1

(3.9)

∫
Bρ(x0)

|∇u|2 ≤ C
(

2ρ

r

)K−2 ∫
Br(x0)

|∇u|2,

where C and K depend on C0 and C1, and K depends also, increasingly, on

(3.10) Ñ(d1) =
d2

1

∫
B2d1

(x0)
|∇u|2∫

B2d1
(x0)

(u− ur)2
,

where ur = 1
|Br(x0)|

∫
Br(x0)

u. Now, in order to estimate Ñ(d1) from above in terms

of a-priori information, we can use Caccioppoli inequality to get

(3.11) Ñ(d1) ≤ CC
4

∫
B2d1

(x0)
|∇u|2∫

Bd1
(x0)
|∇u|2

.
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By (??) and Lemma ?? we have

(3.12) Ñ(d1) ≤ CC
4

∫
Ω
|∇u|2

Cd1

∫
Ω
|∇u|2

=
CC

4Cd1

.

By (??) with ρ = d1, (??) and Lemma ?? again, we finally get

(3.13)

∫
Br(x0)

|∇u|2 ≥ C−1

(
r

d1

)K−2 ∫
Bd1

(x0)

|∇u|2 ≥ rK1

C

∫
Ω

|∇u|2.

Now, by assumption (??), trace estimates and Poincarè inequality we get

(3.14) µ−2
2 ≤ ‖g − g‖2H1/2 ≤ C‖u− g‖2H1(Ω) ≤ C‖∇u‖

2
L2(Ω),

hence, by combining (??) and (??), we finally get (??). �

Proof of Theorem ??. The first step in the proof relies on Lemma 2.1 contained
in [?]. Although such Lemma 2.1 is stated in a two-dimensional setting, its validity
can be extended in a straightforward manner to any dimension.

By Lemma 2.1 of [?], for any θ ∈ (0, 1/2) there is a constant K0 > 0, depending
only on C0, C1, C2, Q0, Q1 and θ, such that

(3.15)

∫
Ω

|a− b| |∇u|2 ≤ K0

(
‖u− v‖θL2(Ω) + ‖a− b‖L∞(∂Ω)

)
.

We now reproduce an argument due to Sincich [?, Proposition 4.9]. Let us set
φ = a− b and let x0 ∈ Ω′ such that

(3.16) |φ(x0)| = max
Ω′
|φ(x)|.

Since a and b satisfy assumption (??),

(3.17) |φ(x0)| ≤ |φ(x)|+ 2C1r, for every x ∈ Br(x0), with 0 < r ≤ d0.

Multiplying (??) by |∇u(x)|2 and integrating with respect to x on Br(x0), we
get

(3.18) |φ(x0)|
∫
Br(x0)

|∇u(x)|2dx ≤
∫
Br(x0)

|φ(x)||∇u(x)|2dx+ C1r

∫
Br(x0)

|∇u(x)|2dx,

hence

(3.19) |φ(x0)| ≤

∫
Br(x0)

|φ(x)||∇u(x)|2dx∫
Br(x0)

|∇u(x)|2dx
+ 2C1r.

By (??) and (??), and by (??) we have

(3.20) max
Ω′
|a(x)− b(x)| ≤ K0K2r

−K1

(
‖u− v‖θL2(Ω) + ‖a− b‖L∞(∂Ω)

)
+ 2C1r.

By choosing an appropriate r ∈ (0, d0) we get (??). �

Let us now show that, by choosing a boundary condition with some additional
features, we can bound form below the norm of ∇u in a neighborhood of the
boundary. The following Lemma is a variation on themes treated in [?, Lemma 2.8,
Theorem 4.1].
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Lemma 3.4. Let Ω be diffeomorphic to the unit ball and let g be quantitatively
unimodal, according to Definition ??. If u is the unique solution of problem (??)
for a coefficient a satisfying assumption (??), then

(3.21) |∇u| ≥ C, for every x ∈ Ω, with dist(x, ∂Ω) ≤ ρ,

where ρ > 0 and C > 0 depend only on C0, Q0, Q1, m, M and ω.

Proof. The diffeomorphism F in assumption (??) transforms the elliptic equation
in (??) into a similar elliptic equation in B1(0) with W 1,∞ main coefficient. The
constant of ellipticity and all the constant appearing in the assumptions (??), (??)
and (??) shall be changed in a controlled manner only depending on the a-priori
information. For this reason we assume, without loss of generality, that Ω = B1(0).

By regularity estimates for solutions of elliptic equations, the C1,β(B1(0)) norm
of u is bounded in terms of the a-priori information, hence, for x ∈ B1(0) and
dist(x,ΓM ) < η we have

u(x)−m ≥M −m− Cη.

By choosing η small enough, we get

u(x)−m ≥ M −m
2

.

By Harnack inequality ([?, Theorem 8.20, Corollary 8.21]),

(3.22) u(x)−m ≥ Cη
M −m

2
, for every x ∈ B1−η(0).

In particular, if we choose y ∈ Γm and x = (1− η)y, we get

u(x)− u(y) ≥ Cη
M −m

2
.

By Hopf lemma ([?, Lemma 3.4]) we have

|∇u(y)| ≥ k > 0, for every y ∈ Γm.

Since we can proceed in the same way on ΓM and by using again the regularity
C1,β of u up to the boundary, we have

(3.23) |∇u(x)| ≥ k − Cδβ , for every x ∈ ∂Ω, with dist(x,Γm ∪ ΓM ) ≤ δ.

By choosing δ = δ so that Cδ
β

= k/2, by (??) and (??), we have

|∇u| ≥ max{ω(δ), k/2}, on ∂Ω.

By using again the C1,β regularity of u up to the boundary, we get (??). �

Theorem 3.5. Let Ω, a, b, g and k be as in Theorem ??. Let us also assume
that g is quantitatively unimodal. Let u and v in W 1,2(Ω) be the unique solutions
to boundary value problems (??) and (??). Given θ ∈ (0, 1/2) there are positive

constants C̃ and β, depending only on C0, C1, C2, µ2, C3, Q0, Q1, d0, θ, m, M
and ω such that

(3.24) ‖a− b‖L∞(Ω) ≤ C̃
(
‖u− v‖θL2(Ω) + ‖a− b‖L∞(∂Ω)

)β
.
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Proof. The proof follows the same steps of the proof of Theorem ??. It suffices to
extend estimate (??) to every point x0 in Ω. This extension is possible by Lemma
?? and by the regularity assumptions on ∂Ω. �

4. Proof of Theorem ??

We proceed as in [?] (and in [?]) and show that, for a a fixed set of coefficients,
the ratio of two solutions (corresponding to different boundary values) satisfies a
partial differential equation.

Proposition 4.1. For j = 1, 2, the function

(4.1) U (j) =
H

(j)
2

H
(j)
1

satisfies the equation

(4.2) −div
(
a(j)∇U (j)

)
= 0 in Ω,

where

(4.3) a(j) =
D(j)(
σ(j)

)2 (H(j)
1

)2

= D(j)
(
u

(j)
1

)2

.

Moreover,

U (j) =
g2

g1
on ∂Ω.

Proof of Proposition ??. For the sake of simplicity we drop the superscript (j).
It is an easy calculation to check that, since ui solves equation (??), then

−div

(
Du2

1∇
(
u2

u1

))
= 0,

hence, by (??) and (??)

−div

(
a∇
(
H2

H1

))
= −div

(
Du2

1∇
(
u2

u1

))
= 0.

�

Our aim is to apply Theorem ?? to the functions U (1) and U (2) introduced in
the previous proposition. First of all, let us show that:

Claim 4.2. If (??) holds, then

(4.4)
∥∥∥U (1) − U (2)

∥∥∥
L2(Ω)

≤ Cε,

where C depends only on λ0, λ1, µ0, E0 and E1.

Proof of Claim ??. Let us write

(4.5) U (1) − U (2) =

(
H

(1)
2 −H(2)

2

)
H

(2)
1 +

(
H

(2)
1 −H(1)

1

)
H

(2)
2

H
(1)
1 H

(2)
1

.
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We need to get a lower estimate for the functions H
(1)
1 and H

(2)
1 . By (??) and

(??), it is enough to show that u
(j)
1 is bounded from below in terms of a-priori

information.
By (??) and (??), we can apply Maximum Principle and get

(4.6) 0 ≤ u(j)
1 (x) ≤ µ1, for every x ∈ Ω.

By Theorem 8.33 in [?], ∇u1 is bounded in terms of a-priori information. Since

u
(j)
1 = g1 ≥ µ−1

1 on ∂Ω (by (??)), there exists a positive constant d, such that

(4.7) u
(j)
1 ≥ µ−1

1

2
, in Ω \ Ωd,

where, we recall, Ωd = {x ∈ Ω : dist(x, ∂Ω) > d}. By Harnach inequality ([?,
Theorem 8.20, Corollary 8.21]),

(4.8) CH inf
Ωd/2

u
(j)
1 ≥ sup

Ωd/2

u
(j)
1 ≥ µ−1

1

2
,

hence, by (??) and (??),

(4.9) inf
Ω
u

(j)
1 = min

{
inf

Ωd/2

u
(j)
1 , inf

Ω\Ωd
u

(j)
1

}
≥ min

{
µ−1

1

2CH
,
µ−1

1

2

}
:= µ−1

3 .

Inequality (??) holds for u
(j)
2 as well. By (??) and (??),

(4.10) H
(j)
i = σ(j)u

(j)
i ≥ (λ1µ3)−1.

Moreover, by (??) and (??)

(4.11) H
(j)
i ≤ λ1µ1.

By (??), (??), (??) and (??) we finally have

(4.12) ‖U (1) − U (2)‖L2(Ω) ≤ 2µ1λ
3
1µ

2
3ε.

�

Proof of Theorem ?? (Conclusion).
We notice that, by (??), (??), (??), (??) and by Theorem 8.33 in [?], coefficients

a(1) and a(2) satisfy assumptions (??) and (??).
Moreover, by (??), (??) and (??),

(4.13)
∥∥∥a(1) − a(2)

∥∥∥
L∞(∂Ω)

≤ µ2
1ε
′.

Hence, by Theorem ??,

(4.14) ‖a(1) − a(2)‖L∞(Ω) ≤ C̃ (ε+ ε′)
θ
,

where C̃ and θ depend only on the a-priori information.
We now proceed as in [?]. By straightforward calculation it is easy to show that

the function u
(j)
1 solves

(4.15)


−div

(
a(j)∇

(
1

u
(j)
1

))
= H

(j)
1 in Ω,

1

u
(j)
1

=
1

g1
on ∂Ω,
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from which we can get
(4.16)

−div

(
a(1)∇

(
1

u
(1)
1

− 1

u
(2)
1

))
= H

(1)
1 −H(2)

1 + div

((
a(1) − a(2)

)
∇

(
1

u
(2)
1

))
.

By Theorem 8.34 in [?],

(4.17)

∥∥∥∥∥∇
(

1

u
(2)
1

)∥∥∥∥∥
L∞(Ω)

=

∥∥∥∥∥∥∥
∇u(2)

1(
u

(2)
1

)2

∥∥∥∥∥∥∥
L∞(Ω)

≤ µ2
3

∥∥∥∇u(2)
1

∥∥∥
L∞(Ω)

≤ C,

hence, by (??), by assumption (??) and by Corollary 8.7 in [?], since 1

u
(1)
1

− 1

u
(2)
1

= 0

on ∂Ω, we conclude that

(4.18)

∥∥∥∥∥ 1

u
(1)
1

− 1

u
(2)
1

∥∥∥∥∥
W 1,2(Ω)

≤ C (ε+ ε′)
θ
.

Finally, by definition (??),

(4.19) σ(1) − σ(2) =
H

(1)
1

u
(1)
1

− H
(2)
1

u
(2)
1

=
H

(1)
1 −H(2)

1

u
(1)
1

+H
(1)
1

(
1

u
(1)
1

− 1

u
(2)
1

)
,

hence, by (??) and (??),

(4.20) ‖σ(1) − σ(2)‖L2(Ω) ≤ µ3ε+ λ1µ1C (ε+ ε′)
θ
.

Since

(4.21) D(1) −D(2) =
a(1)(
u

(1)
1

)2 −
a(2)(
u

(2)
1

)2 ,

by (??), (??) and (??)

(4.22) ‖D(1) −D(2)‖L2(Ω) ≤ C (ε+ ε′)
θ
,

where C and θ depend only on the a-priori information.
Now, by standard interpolation estimates, (??) and (??), together with assump-

tion (??), give (??).
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type inequalities, Forum Math. 20, 557–569, (2008).
[ARS00] G. Alessandrini, E. Rosset, J.K. Seo, Optimal size estimates for the inverse conductivity

problem with one measurement, Proceedings of the American Mathematical Society, 128, pp.

53–64 (2000).
[AN15] G. Alessandrini, V. Nesi, Quantitative estimates on Jacobians for hybrid inverse problems,

Bulletin of the SUSU MMCS 8, pp. 25–41 (2015).

[Ba13] G. Bal, Hybrid inverse problems and internal functionals, Inverse Problems and Applica-
tions: Inside Out. II (Math. Sci. Res. Inst. Publ. vol 60) (Cambridge: Cambridge University

Press) pp. 325–368 (2013).
[BR11] G. Bal, K. Ren, Multi-source quantitative photoacoustic tomography in a diffusive regime,

Inverse Problems 27, 075003, 20 pp. (2011).

[BU10] G. Bal, G. Uhlmann, Inverse diffusion theory of photoacoustics. Inverse Problems 26,
085010, 20 pp. (2010).

[BU13] G. Bal, G. Uhlmann, Reconstruction of coefficients in scalar second order elliptic equations

from knowledge of their solutions, Comm. on Pure and Applied Math., 66, pp. 1629–1652,
(2013).

[Ca15] Y. Capdeboscq, On a counter-example to quantitative Jacobian bounds, J. Ec. polytech.

Math. 2, pp. 171–178, (2015).
[CY12] J. Chen, Y. Yang, Quantitative photo-acoustic tomography with partial data, Inverse

Problems 28, 115014, 15 pp. (2012).

[GL86] N. Garofalo, F. H. Lin, Monotonicity properties of variational integrals, Ap weights and
unique continuation, Indiana Univ. Math. J. 35, pp. 245–268 (1986).

[GT98] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order. Reprint

of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
[GW75] R. Greene, H. Wu, Embedding of open Riemannian manifolds by harmonic functions,

Ann. Inst. Fourier, 25, pp. 215–235 (1975).
[Gr85] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Math-

ematics, 24. Pitman (Advanced Publishing Program), Boston, MA, 1985.
[RGZ13] K. Ren, H. Gao, H. Zhao, A Hybrid Reconstruction Method for Quantitative PAT, SIAM

J. Imaging Sciences, pp. 32–55 (2013).

[Si15] E. Sincich, Smoothness dependent stability in corrosion detection, J. Math. Anal. Appl.,

426, no. 1, pp. 364–379 (2015).



STABILITY FOR QPAT 13
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Università di Firenze
Email address: elisa.francini@unifi.it
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