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Abstract

We prove a multiplicity result for forced oscillations of a spherical pendulum

(that is, a massive point moving on a sphere) subject to a periodic action, with

or without friction, allowed to depend on the whole past of the motion. The

approach is based on topological methods.

In particular, when the unperturbed forcing term is the gravity, we obtain

two harmonic forced oscillations regardless of the presence of friction and of the

form of the perturbing force field.
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1. Introduction

The pendulum equation has had a fundamental role in the development of

classical mechanics and dynamical systems theory. Indeed, there has always
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been an interest in pendulum and pendulum-like equations in the mathematical

literature. In particular, existence and multiplicity results for periodic solutions5

have always attracted attention. It is impossible to give here an exhaustive list

of the many approaches that have been successfully pursued. As a very short list

of papers representing different techniques we only mention [8, 10, 21, 26, 29],

see also the survey papers [23, 24] and references therein. In spite of the fact that

pendulum-like equations are still a field actively researched by mathematicians,10

the so-called spherical pendulum (i.e., a massive point constrained on a sphere)

has been studied more extensively by the community of physicists and applied

mathematicians.

In [17, Corollary 4.2] a simple argument, based on the topological structure

of the set of harmonic solutions of a periodic perturbation of a differential equa-15

tion on S1, provided a multiplicity result for the forced pendulum. A similar

argument, but in the considerably more complex framework of retarded func-

tional differential equations (RFDEs), yielded in [16, Example 4.5] a multiplicity

result for the delayed pendulum. On a parallel track, a set of somewhat more

delicate topological arguments inspired by [12] gave in [18] a multiplicity result20

for the spherical pendulum (without delay). Indeed, these multiplicity results

are, in a sense, “generic” as shown in [22].

The existence of periodic oscillations for the spherical pendulum has been

proved in a series of papers, culminating in [12, 13], in the case when the per-

turbing force depends only on time and state and in the more recent papers [3, 6]25

when a, possibly infinite, delay is allowed. In the framework of delay differential

equations, a preliminary study on first- and second-order RFDEs on possibly

noncompact manifolds has been performed by some of the authors, mostly in

collaboration with M. Furi and P. Benevieri. Namely, in [5] general properties

of RFDEs with infinite delay on differentiable manifolds were studied. In [6, 16]30

we investigated the structure of the set of solutions of parameterized RFDEs,

obtaining global continuation results for such equations. The existence results

in [3, 6], as well as the already mentioned multiplicity result for the “retarded

simple pendulum” in [16], are obtained as applications of these more general

facts.35

We point out that the problem of existence of forced oscillations for the
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spherical pendulum (where no delay is allowed) had been previously treated,

in different contexts, also by other authors, see e.g. [1, 2]. In this direction we

cite the recent paper [28], which deals with massive points moving on compact

surfaces with boundary.40

In the present paper, we focus on the physically meaningful case of forced

oscillations of a spherical pendulum subject to a periodic forcing that depends

possibly on the whole history of the pendulum’s motion. We prove two multi-

plicity results, namely Theorems 3.1 and 3.2 below. In Theorem 3.2 we prove

that, under mild assumptions, the gravitational spherical pendulum always ad-45

mits at least two harmonic forced oscillations whatever the forcing term is and

regardless of the presence of friction. The methods which we employ, like those

of [16], are intrinsically topological. Indeed, in our setting, friction could well

be absent and the stable equilibrium of the pendulum could be T -resonant (see

Definition 3.1). Thus this result is not directly deducible from the implicit func-50

tion theorem. Furthermore, Theorem 3.1 below actually allows us to obtain

multiplicity results also when considering unperturbed force fields more gen-

eral than the mere gravitational one (think about, e.g., systems of springs or

electro-magnetic forces).

Our multiplicity results improve those of [18] in a natural sense, since dif-55

ferential equations with delay include ODEs as particular cases. On the other

hand, the extension that we obtain here is only partial. In fact, in [18] the ac-

tive force may depend also on the velocity, which is not the case in the present

setting. Secondly, for technical reasons we assume that the retarded forcing

term is locally Lipschitz, so we are not able to prove our results with the sole60

continuity assumption as it was done in [18].

Our results stem from the interplay between global and local aspects. A

key notion for the “local” part of this approach is that of ejecting set or point

(see Definition 2.1) which, broadly speaking, is analogous to the concept of

bifurcation point. Although it is sometimes possible to prove directly that the65

property of being ejecting holds for some points, usually the most practical way

is through a condition of T -resonance (see e.g. [9, Ch. 7]), or rather its contrary,

i.e. that of “non-T -resonance”. Roughly speaking a zero which is not T -resonant

can be regarded as an ejecting point. The condition of T -resonance is linked
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to the physical notion of period for small oscillations about an equilibrium; a70

similar idea can be traced back to Poincaré (see [25] for an exposition).

In summary, we are going to provide conditions for the zeros of a certain

vector field related to the equation governing the spherical pendulum to be

ejecting for the set of T -periodic solutions, where T > 0 is the period of the

forcing term (Lemma 3.8). This, when combined with a general topology lemma75

concerning ejecting sets (Theorem 2.1) and an a priori bound on branches of

T -periodic solutions [18, Lemma 4.1], will yield our multiplicity results.

2. Preliminaries

2.1. Degree of a vector field

We now recall some basic notions about tangent vector fields on manifolds80

as well as the notion of degree of an admissible tangent vector field (see e.g.

[15, 27]).

Let M ⊆ R
k be a smooth differentiable manifold. Let w be a tangent vector

field on M , that is, a continuous map w : M → R
k with the property that w(p)

belongs to the tangent space TpM of M at p for any p ∈ M . Let W be an85

open subset of M in which we assume w admissible (for the degree); that is,

the set w−1(0) ∩W is compact. Then, one can associate to the pair (w,W ) an

integer, deg(w,W ), called the degree (or characteristic) of the vector field w in

W , which, in a sense, counts (algebraically) the zeros of w in W .

If w is (Fréchet) differentiable at p ∈ M and w(p) = 0, then the differential90

dwp : TpM → R
k maps TpM into itself, so that the determinant det dwp of dwp

is defined. If, in addition, p is a nondegenerate zero (i.e. dwp : TpM → R
k is

injective) then p is an isolated zero and det dwp 6= 0. In fact, if w is admissible

for the degree in W , when the zeros of w are all nondegenerate, then the set

w−1(0) ∩W is finite and95

deg(w,W ) =
∑

p∈w−1(0)∩W

signdet dwp. (2.1)

Observe that in the flat case, i.e. when M = R
k, deg(w,W ) is just the classical

Brouwer degree with respect to zero, degB(w, V, 0), where V is any bounded

open neighborhood of w−1(0) ∩W whose closure is contained in W . All the
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standard properties of the Brouwer degree for continuous maps on open subsets

of Euclidean spaces, such as homotopy invariance, excision, additivity, existence,100

still hold in this more general context (see e.g. [15]).

The Excision Property allows the introduction of the notion of index of

an isolated zero of a tangent vector field. Indeed, let p ∈ M be an isolated

zero of w. Clearly, deg(w, V ) is well defined for each open V ⊆ M such that

V ∩w−1(0) = {p}. By the Excision Property deg(w, V ) is constant with respect105

to such V ’s. This common value of deg(w, V ) is, by definition, the index of w

at p, and is denoted by i (w, p). With this notation, if (w,W ) is admissible and

all the zeros of w in W are isolated, the Additivity Property yields that

deg(w,W ) =
∑

p∈w−1(0)∩W

i (w, p). (2.2)

By formula (2.1) we have that, if p is a nondegenerate zero of w, then

i (w, p) = signdet dwp.

Notice that (2.1) and (2.2) differ in the fact that, in the latter, the zeros of w

are not necessarily nondegenerate as they have to be in the former. In fact, in110

(2.2), w need not be differentiable at its zeros.

In the case when M is a compact boundaryless manifold, the celebrated

Poincaré-Hopf Theorem states that deg(w,M) coincides with the Euler-Poincaré

characteristic χ(M) of M and, therefore, is independent of w. In particular, if

all the zeros of w are isolated, it follows that115

χ(M) =
∑

p∈w−1(0)

i (w, p). (2.3)

2.2. Ejecting sets

Let Y be a metric space and X a subset of [0,+∞) × Y . Given λ ≥ 0, we

denote by Xλ the slice {y ∈ Y : (λ, y) ∈ X}.

Definition 2.1 ([14]). We say that E ⊆ X0 is ejecting (for X) if it is relatively

open in X0 and there exists a connected subset of X which meets {0} × E and120

is not contained in {0} ×X0.

In [14, Theorem 3.3] the following result was essentially proved.
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Theorem 2.1. Let Y be a metric space and let X be a locally compact subset

of [0,+∞) × Y . Assume that X0 contains n pairwise disjoint ejecting subsets

E1, . . . , En. Suppose that n − 1 of them are compact. Then, there are open125

neighborhoods U1, . . . , Un in Y of E1, . . . , En, respectively, with pairwise disjoint

closure, and a positive number λ∗ such that for λ ∈ [0, λ∗)

Xλ ∩ Ui 6= ∅, i = 1, . . . , n.

In particular, we have that the cardinality of Xλ is greater than or equal to n

for any λ ∈ [0, λ∗).

We point out that, although the assertion of Theorem 2.1 may seem quite130

intuitive, its set of assumptions is rather sharp in the sense that, as shown by

examples in [14], none of the hypotheses can be dropped.

2.3. T -resonance

A handy notion for the local investigation of a stationary point is that of T -

resonance ([9], see also [7, 14]) which we now briefly recall for a general smooth135

manifold M ⊆ R
k. As we will see (Lemma 3.8 below), for a parametrized

equation this notion or, rather, its negation is connected to that of ejecting set.

Consider on M the following differential equation:

x′(t) = g(x(t)) (2.4)

where g : M → R
k is a tangent vector field of class C1. Given T > 0, a point

p ∈ g−1(0) is said to be T -resonant for g if the linearized equation (on TpM)

z′(t) = g′(p)z(t)

admits T -periodic solutions other than the trivial one z(t) ≡ 0. If this is not true

it is also customary to say informally that a point p ∈ g−1(0) is not T -resonant140

for the equation (2.4).

Observe that, if p is not T -resonant then g′(p) is invertible, and so p is an

isolated zero of g. One can check that p is not T -resonant for g if and only if

g′(p) has no purely imaginary eigenvalues of the form 2lπi
T

with l ∈ Z. Thus:

Remark 2.2. Let g : M → R
k be a tangent vector field and let p be a zero of g145

which is not T -resonant. Then, i
(

g, p
)

= ±1. Thus, for any sufficiently small

neighborhood U ⊆M of p, we have deg(g, U) 6= 0.
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2.4. Retarded functional differential equations

Here we collect some definitions and properties of RFDEs with infinite delay

on possibly noncompact differentiable manifolds, which have been studied e.g.150

in [5]. As a general reference on RFDEs with finite delay in Euclidean spaces,

see the monograph [20].

Given an arbitrary subset A of Rs, we denote by BU((−∞, 0], A) the set

of bounded and uniformly continuous maps from (−∞, 0] into A. Notice that

BU((−∞, 0],Rs) is a Banach space, being closed in the space BC((−∞, 0],Rs)155

of the bounded and continuous functions from (−∞, 0] into R
s (endowed with

the standard supremum norm ‖ · ‖).

Let M be a boundaryless smooth manifold in R
k. A continuous map

G : R×BU((−∞, 0],M) → R
k

is said to be a retarded functional tangent vector field over M if G(t, η) ∈ Tη(0)M

for all (t, η) ∈ R×BU((−∞, 0],M). In the sequel, any map with this property160

will be briefly called a functional field (over M).

Let us consider a first order RFDE of the type

z′(t) = G(t, zt), (2.5)

where G is a functional field over M . Here, as usual and whenever it makes

sense, given t ∈ R, by zt ∈ BU((−∞, 0],M) we mean the function θ 7→ z(t+ θ).

A solution of (2.5) is a function z : J →M , defined on an open real interval165

J with inf J = −∞, bounded and uniformly continuous on any closed half-line

(−∞, b] ⊂ J , and which verifies eventually the equality z′(t) = G(t, zt). That is,

z : J → M is a solution of (2.5) if zt ∈ BU((−∞, 0],M) for all t ∈ J and there

exists τ ∈ J such that z is C1 on the interval (τ, sup J) and z′(t) = G(t, zt) for

all t ∈ (τ, sup J).170

It can be proved (see e.g. [5]) that if a functional field G is locally Lipschitz

in the second variable, then two maximal solutions of equation (2.5) coinciding

in the past must coincide also in the future.

3. Multiplicity results

In this section we obtain the main results of the paper, Theorems 3.1 and 3.2175

below. We work on the compact boundaryless manifold S = {q ∈ R
3 : |q| = r},
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where | · | is the Euclidean norm, that is the homothetic sphere S = rS2. A

crucial observation, following from the Poincaré-Hopf theorem, will be that for

any tangent vector field v on S, deg(v,S) = χ(S) = χ(S2) = 2.

We consider the following family of parametrized equations, depending on180

λ ≥ 0:

mx′′(t) = −m(|x′(t)|2/r2)x(t) − ηx′(t) + h(x(t)) + λF (t, xt). (3.1)

where:

• m > 0;

• h : S → R
3 is a C1 tangent vector field on S;

• η ≥ 0 is given;185

• F : R × BU((−∞, 0],S) → R
3 is a functional field over S which is T -

periodic in the first variable and locally Lipschitz in the second one, i.e.,

given (τ, ϕ) ∈ R × BU((−∞, 0],S), there exist an open neighborhood U

of (τ, ϕ) and L ≥ 0 such that

|F (t, ϕ1)− F (t, ϕ2)| ≤ L ‖ϕ1 − ϕ2‖ ,

for all (t, ϕ1), (t, ϕ2) ∈ U .190

Equation (3.1) represents the motion equation of a particle of mass m con-

strained to S and acted on by the sum of three forces: a tangent vector field

h depending only on the position, a possible friction and a T -periodic forcing

term λF which depends on the whole past history of the process. The term

R(q, v) = −m(|v|2/r2)q in equation (3.1) is the reactive force of the constraint.195

A physically relevant example is obtained when h is the tangential component

of the gravitational force. That is,

h(q) = hg(q) =
mg

r2
(

q3q1, q3q2,−(r2 − q23)
)

.

In order to clarify what we mean by a solution of (3.1), we introduce in a

natural way a first order RFDE on the tangent bundle

TS =
{

(q, v) ∈ R
3 × R

3 : q ∈ S, 〈q, v〉 = 0
}

,

where 〈·, ·〉 denotes the scalar product in R
3. Let, for (q, v) ∈ TS and200

(t, (ϕ, ψ)) ∈ R×BU((−∞, 0], TS):
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• κ(q, v) =
(

0,
v

m

)

• ĥ(q, v) =

(

v,−
|v|2

r2
q +

h(q)

m

)

205

• F̂ (t, (ϕ, ψ)) =

(

0,
1

m
F (t, ϕ)

)

.

One can prove that ĥ and κ are tangent vector fields on TS, and F̂ is a functional

field over TS. Setting ξ = (q, v), the following is a RFDE on TS in the sense

discussed in Section 2.4:

ξ′(t) = ĥ(ξ(t)) − ηκ(ξ(t)) + λ F̂ (t, ξt). (3.2)

That is, (3.2) is of the form (2.5) with, for any λ ∈ [0,∞),210

G
(

t, (ϕ, ψ)
)

=

(

ψ(0),−
|ψ(0)|2

r2
ϕ(0)−

η

m
ψ(0) +

1

m
h
(

ϕ(0)
)

+
λ

m
F (t, ϕ)

)

.

(3.3)

We regard a solution of (3.1) as a map x : J → S, defined on an open real

interval J with inf J = −∞, such that the pair (x, x′) : J → TS is a solution of

(3.2).

We now introduce the notion of T -resonance for equation (3.1) (see also the

appendix for a more general discussion).215

Definition 3.1. We say that a point q ∈ h−1(0) is T -resonant for (3.1) if (q, 0)

is T -resonant for ĥ− ηκ, that is, for equation (3.2) with λ = 0.

Physically, q is a T -resonant zero of h if T is the period for small oscillations

of the pendulum about the equilibrium q.

According to the above definition, q ∈ h−1(0) is not T -resonant for (3.1) if220

and only if equation (3.2) for λ = 0 linearized about ξ0 = (q, 0), namely the

equation on Tξ0TS

ζ′(t) = ĥ′(ξ0)ζ(t) − ηκ′(ξ0)ζ(t), (3.4)

has only the trivial solution. Straightforward computations (see e.g. [22]) show

that this is the case if and only if

det

(

1

m
h′(q)−

2πiℓη

mT
I +

(

2ℓπ

T

)2

I

)

6= 0, ∀ℓ ∈ Z, (3.5)
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where I : TqS → TqS denotes the identity and i is the imaginary unit.225

Given λ ≥ 0, by a T -periodic solution, or forced oscillation, of equation (3.1)

we mean a solution which is globally defined on R and is T -periodic.

We are interested in a multiplicity result for the T -periodic solutions of (3.1)

when λ > 0 is small. Namely, our main result is the following:

Theorem 3.1. Let h, F and η be as above. Assume that q1, . . . , qn−1 ∈ h−1(0)230

are non T -resonant for (3.1). Assume also that

n−1
∑

i=1

i(h, qi) 6= χ(S) = 2

Then, for λ > 0 sufficiently small, equation (3.1) admits at least n, T -periodic

solutions whose images are pairwise not coincident.

In the gravitational case h = hg there are two zeros of hg, the “north”

(0, 0, r) and the “south” (0, 0,−r) poles. As it follows from (3.5) (see also the235

appendix), the north pole is necessarily not T -resonant. Therefore we have the

following important consequence of Theorem 3.1:

Theorem 3.2. When h = hg, for λ > 0 sufficiently small, equation (3.1)

admits at least two T -periodic solutions whose images are not coincident.

We wish to emphasize the fact that in Theorem 3.2 no assumption is made240

on the T -resonance properties of the south pole. Indeed, this result holds even

in absence of friction (η = 0) and when the period for small oscillations about

the south pole is T . Because of this peculiarity, one has that Theorem 3.2 is

not a mere consequence of the implicit function theorem.

To prove Theorem 3.1 we need some notions and results taken mostly from245

[14, 16, 18, 19]. In what follows, we will mainly work with equation (3.2). First

we recall a result, Theorem 3.4 below, which concerns the existence of a “global

bifurcating branch” for (3.2). We need some preliminary notions.

We will denote by CT (TS) the set of the T -periodic continuous maps from R

into TS. This will be regarded as a metric subspace of the Banach space CT (R
6)250

of the T -periodic continuous maps from R into R
6 with the usual supremum

norm. Observe in particular that, TS being complete, so is the metric space

CT (TS).
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A pair (λ, ξ) ∈ [0,+∞) × CT (TS), where ξ is a solution of (3.2), is called

a T -periodic pair (for (3.2)). Those T -periodic pairs that are of the particular255

form (0, ζ), ζ being the map constantly equal to ζ, are said to be trivial. Observe

that any T -periodic pair (0, ζ) is trivial if and only if ζ = (q, 0) with h(q) = 0.

The following immediate consequence of Lemma 3.1 of [4] expresses a crucial

property of the set of T -periodic pairs.

Lemma 3.3. The set of T -periodic pairs for (3.2) is closed and locally compact.260

For the sake of simplicity, we will identify TS with its image in [0,+∞) ×

CT (TS) under the embedding which associates to any ζ ∈ TS the pair (0, ζ).

In particular, given q ∈ S, according to our convention (q, 0) can be seen as an

element of [0,∞)×CT (TS). Moreover, with a slight abuse of notation, if Ξ is a

subset of [0,+∞)×CT (TS), by Ξ∩S we mean the subset of S given by all q ∈ S265

such that the pair (0, (q, 0)) belongs to Ξ. Observe that if Ω ⊆ [0,+∞)×CT (TS)

is open, then Ω ∩ S is open in S.

We need the following consequence of [19, Lemma 3.2] and [16, Theorem

4.1].

Theorem 3.4. Let h, κ, ĥ, F and F̂ be as above. Let Ω be an open subset270

of [0,+∞) × CT (TS), and assume that deg(h,Ω ∩ S) is defined and nonzero.

Then Ω contains a connected set Γ of nontrivial T -periodic pairs for (3.2) whose

closure in Ω is not compact and meets the set of trivial T -periodic pairs.

Proof. By assumption, h is admissible on Ω∩S. Now, taking into account that

κ|S = 0, we get that the vector field275

h

m
− ηκ|S =

h

m

is admissible on Ω∩S as well. Consequently, by [19, Lemma 3.2], it follows that

ĥ− ηκ is admissible on Ω ∩ TS and

deg(ĥ− ηκ,Ω ∩ TS) = deg
(

−
(

ĥ− ηκ
)

∣

∣

∣

S

,Ω ∩ S

)

= deg

(

−
( h

m
− ηκ|S

)

,Ω ∩ S

)

= deg

(

−
h

m
,Ω ∩ S

)

.

Since

deg(−h/m,Ω ∩ S) = (−1)dimS deg(h,Ω ∩ S) = deg(h,Ω ∩ S) 6= 0,
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we have that deg(ĥ − ηκ,Ω ∩ TS) 6= 0 and the assertion follows directly from

[16, Theorem 4.1].

Remark 3.5. Let Ω and Γ be as in Theorem 3.4. Assume that Υ is the con-

nected component in [0,∞) × CT (TS) of the set of T -periodic pairs for (3.2)280

that contains Γ. The Theorem of Ascoli-Arzelà implies that any bounded set of

T -periodic pairs is relatively compact. Then, the closed set Υ cannot be both

bounded and contained in Ω. In particular, if Υ ∩ Fr (Ω) = ∅ then Υ cannot be

bounded (compare [16, Remark 4.2]). Here and in the sequel the symbol Fr (·)

denotes the boundary.285

The following crucial result, that will play a key role in our argument, is a

generalization of [18, Lemma 3.3], see also Lemma 3.1 in [14].

Lemma 3.6. Let h, κ, ĥ, F and F̂ be as above. Assume that (q, 0) is an isolated

zero of ĥ. Then, for any sufficiently small neighborhood V of (q, 0) in CT (TS)

there exists a real number δV > 0 such that [0, δV ]×Fr (V ) does not contain any290

T -periodic pair of (3.2).

In order to give the proof of this lemma we need to recall some notions.

A multivalued map φ : X ⊸ Y between two metric spaces is said to be upper

semicontinuous if it has compact (possibly empty) values and for any open

subset V of Y the upper inverse image of V , i.e. the set φ−1(V ) = {x ∈ X :295

φ(x) ⊆ V }, is an open subset of X .

The following remark will be used in the proof of Lemma 3.6.

Remark 3.7. Given a compact subset K of X × Y, the multivalued map that

associates to x ∈ X the slice Kx (whose graph is K) is upper semicontinuous. To

see this, let V be any open subset of Y and assume, by contradiction, that the set300

U = {x ∈ X : Kx ⊆ V } is not open. Then, there exists a sequence {xn} in X\U

which converges to some x0 ∈ U . For any n ∈ N, choose yn ∈ Kxn
∩ (Y\V ).

Because of the compactness of K, we may assume (xn, yn) → (x0, y0) ∈ K.

Thus, y0 belongs to Kx0
which is a subset of V , contradicting the fact that y0

also belongs to the closed set Y\V .305

Proof of Lemma 3.6. Let X ⊆ [0,+∞) × CT (TS) denote the set of the T -

periodic pairs of (3.2) and let X0 be the slice of X at λ = 0. Since (q, 0)
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is isolated, there exists an open neighborhood V of (q, 0) in CT (TS) such

that the closure cl (V ∩ X0) = {(q, 0)}. By Lemma 3.3, X is locally com-

pact. Hence, there exists an open neighborhood W of (q, 0) in CT (TS) and310

a number µ > 0 such that ([0, µ]× cl (W )) ∩ X is compact. By restricting V ,

if necessary, we may assume that cl (V ) ⊆ W . By Remark 3.7, the multimap

Ψ: [0, µ] ⊸ cl (W ) given by Ψ(λ) = Xλ∩cl (W ) is upper semicontinuous. Thus,

since Ψ(0) = {(q, 0)} ⊆ V , there exists δV > 0 such that Ψ([0, δV ]) ⊆ V .

Whence the assertion.315

Lemma 3.8 below shows, roughly speaking, that the condition of T -resonance

is strictly related to the notion of ejecting set. In other words, if q ∈ h−1(0) is

not T -resonant for (3.1), then {(q, 0)} can be regarded as an ejecting set for the

set X of the T -periodic pairs of (3.2).

Lemma 3.8. Let (q, 0) be a zero of ĥ − ηκ which is not T -resonant. Then,320

{(q, 0)} is an ejecting set for the set of T -periodic pairs of (3.2).

Proof. Since (q, 0) is a zero of ĥ − ηκ which is not T -resonant, then it is an

isolated zero of ĥ− ηκ and, thus, of ĥ. Hence, the set {(q, 0)} is relatively open

in the slice X0 of the set X of T -periodic pairs of (3.2). Now, Remark 2.2

applied to ĥ − ηκ ensures the existence of a small neighborhood U of (q, 0) in325

TS such that

deg(ĥ− ηκ, U) 6= 0. (3.6)

Set

Ω = {(λ, ξ) ∈ [0,+∞)× CT (TS) : ξ(t) ∈ U for all t ∈ R}.

Clearly, Ω is an open set and, because of the previous identifications, Ω∩ TS =

U . Hence,

deg(ĥ− ηκ, U) = deg(ĥ− ηκ,Ω ∩ TS). (3.7)

As in the proof of Theorem 3.4, we have that ĥ − ηκ is admissible on Ω ∩ TS330

and deg(ĥ − ηκ,Ω ∩ TS) = deg(h,Ω ∩ S). Thus, using (3.6) and (3.7), we

get deg(h,Ω ∩ S) 6= 0. Theorem 3.4 applies yielding the existence in Ω of a

connected set Γq of nontrivial T -periodic pairs whose closure in Ω is not compact

and meets the set of trivial T -periodic pairs for (3.2). By Lemma 3.6, Γq cannot

be contained in X0. This completes the proof.335
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Our main result will be deduced from the following fact concerning equa-

tion (3.2):

Theorem 3.9. Let h, κ, ĥ, F and F̂ be as above. Assume that

(q1, 0), . . . , (qn−1, 0) are zeros of ĥ − ηκ which are not T -resonant. Assume

in addition that340

n−1
∑

i=1

i(h, qi) 6= χ(S) = 2.

Then, for λ > 0 sufficiently small, equation (3.2) admits at least n, T -periodic

solutions whose projections on the base space S are pairwise not coincident.

Thus, in particular, their images are pairwise not coincident.

Proof. Observe first that the points (q1, 0), . . . , (qn−1, 0), being not T -resonant

zeros of ĥ−ηκ, are isolated zeros of ĥ−ηκ and, thus, of ĥ. As previously, denote345

by X the set of T -periodic pairs for (3.2). Lemma 3.6 implies, in particular,

that (qi, 0), i = 1, . . . , n− 1, are isolated points of X0.

By Lemma 3.8, the sets {(qi, 0)}, i = 1, . . . , n − 1, are ejecting for X . Our

aim is to apply Theorem 2.1. To this end, we need to prove the existence in the

slice X0 of a further (not necessarily compact) ejecting set.350

Let W1, . . . ,Wn−1 be pairwise disjoint open neighborhoods of

(q1, 0), . . . , (qn−1, 0) in CT (TS), respectively, with the property that

cl (Wi) ∩X0 =
{

(qi, 0)
}

for i = 1, . . . , n− 1. (3.8)

Set

Ω = [0,∞)×

(

CT (TS) \
n−1
⋃

i=1

cl (Wi)

)

.

By the Poincaré-Hopf Theorem and the additivity property of the degree, we

get355

deg(h,Ω ∩ S) = χ(S)− deg

(

h,

n−1
⋃

i=1

(Wi ∩ S)

)

= 2−
n−1
∑

i=1

i(h, qi) 6= 0.

Thus, Theorem 3.4 yields the existence of a connected set Γ ⊆ Ω of nontrivial

T -periodic pairs for (3.2) whose closure in Ω is not compact and meets the set

of trivial T -periodic pairs. Let Υ be the connected component of X containing

Γ.

We claim that Υ0, which is obviously relatively open in X0, is an ejecting set.360

To see this, it is sufficient to show that Υ is not contained in {0}×X0. Assume by
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contradiction that this is not the case, that is, assume that Υ = {0}×Υ0. Now,

observe that any connected set of solutions in CT (TS) of the equation (3.2) for

λ = 0 is bounded. Indeed, Lemma 4.1 in [18] shows that any connected set of

solutions in C1
T (S) of the second-order equation (3.1) for λ = 0 is unbounded.365

Here C1
T (S) denotes the subset of the Banach space C1

T (R
3) of the T -periodic

C1 maps from R into R
3 with the induced topology; as well known, the Banach

space C1
T (R

3) is isometric to a subset of CT (R
6). Since the two equations are

equivalent, it follows that any connected set of solutions in CT (TS) of (3.2)

for λ = 0 is bounded as well and, in particular, so is Υ. By the contradictory370

hypothesis and (3.8) we have

Υ ∩ Fr (Ω) = {0} × (Υ0 ∩ Fr (Ω0)) ⊆ {0} ×

(

X0 ∩

(

n−1
⋃

i=1

Fr (Wi)

))

= ∅.

Remark 3.5 yields a contradiction and the claim is proved.

So far we have proved that the subsets of X0

E1 := {(q1, 0)}, . . . , En−1 := {(qn−1, 0)}, En := Υ0

are indeed n ejecting sets, the first n− 1 of which are compact.

By Theorem 2.1, there exists λ∗ > 0 such that for λ ∈ [0, λ∗) there are375

in CT (TS) open neighborhoods U1, . . . , Un of E1, . . . , En with pairwise disjoint

closure and such that each {λ} × Ui contains at least one T -periodic pair, say

(λ, ξλi ) for any λ ∈ [0, λ∗). Put ξλi = (xλi , y
λ
i ) for i = 1, . . . , n. By Lemmas 3.6

and 3.8, reducing λ∗ if necessary, we can assume that, for i = 1, . . . , n− 1, Ui is

a ball in CT (TS) centered at (qi, 0) having radius strictly smaller than380

r :=
1

2
min

1≤j<k≤n−1

∣

∣qj − qk
∣

∣ .

So that, for j, k = 1, . . . , n − 1, the images of ξλj and ξλk are disjoint if j 6= k.

Indeed, since these images are, respectively, confined to the balls B
(

(qj , 0), r)

and B
(

(qk, 0), r), whose projections onto the base space S are disjoint, we have

that of xλj and xλk have disjoint images if j 6= k. So far, concerning ξλn , we

can only say this: since ξλn is contained in Un ⊆ CT (TS) \ (U1 ∪ . . . ∪ Un−1),385

its image must contain, for each i = 1, . . . , n − 1, at least one point that lies

outside the ball B
(

(qi, 0), r). Hence its image cannot coincide with any of those

of ξλ1 , . . . , ξ
λ
n−1.
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In order to conclude the proof let us show that, reducing λ∗ > 0 if necessary,

we have that for λ ∈ [0, λ∗) the projection xλn of ξλn on S cannot coincide with390

that of any of the other solutions ξλ1 , . . . , ξ
λ
n−1. Assume the contrary. Then, there

exists a sequence {λs}s∈N, with λs ց 0, such that the image of xλs

n coincides

with at least one of the images of xλs

1 , . . . , xλs

n−1 (not necessarily the same for all

λs’s). Since the images of these solutions are disjoint, selecting a subsequence

and reordering the solutions, we can assume that xλs

n ([0, T ]) = xλs

1 ([0, T ]) for395

all s. Letting s → ∞, we have that xλs

n (t) converges uniformly on [0, T ] to the

constant function t 7→ q1.

We claim that (xλs

n )′(t) converges to zero uniformly on [0, T ]. To

see this, let ds be the diameter of the orbit of xλs

n , that is, ds :=

maxt1,t2∈[0,T ]

∣

∣xλs

n (t1)− xλs

n (t2)
∣

∣. Thus, clearly, ds → 0 as s → ∞. Lemma400

4.1 in [6] implies that

(

max
t∈[0,T ]

∣

∣(xλs

n )′(t)
∣

∣

)2

≤
ds

1− ds/r
max
t∈[0,T ]

∣

∣(xλs

n )′′π(t)
∣

∣ , (3.9)

where, given t ∈ [0, T ], (xλs

n )′′π(t) denotes the projection onto the tangent space

of S at xλs

n (t) of the acceleration of (xλs

n )′′(t). In other words, (xλs

n )′′π(t) is the

tangential component of (xλs

n )′′(t).

Now, observe that if ξ is a T -periodic solution of (3.2) with ξ(t) = (x(t), y(t)),

then x is a T -periodic solution of (3.1) with x′(t) = y(t). Hence, so is xλs

n . Thus,

max
t∈[0,T ]

∣

∣(xλs

n )′′π(t)
∣

∣ ≤
1

m

(

η max
t∈[0,T ]

∣

∣(xλs

n )′(t)
∣

∣+

+ max
t∈[0,T ]

∣

∣h
(

xλs

n (t)
)∣

∣+ λs max
t∈[0,T ]

∣

∣F
(

t, (xλs

n )t
)∣

∣

)

.

Since xλs

n (t) → q1 as s→ ∞ and h(q1) = 0, by Lemma 2.2 in [6] we can assume405

that that there exists a positive constant C that bounds from above the sum of

the last two terms in the parenthesis. So that we have

max
t∈[0,T ]

∣

∣(xλs

n )′′π(t)
∣

∣ ≤
1

m

(

η max
t∈[0,T ]

∣

∣(xλs

n )′(t)
∣

∣+ C
)

. (3.10)

By (3.9) and (3.10) we get, for s large enough,

(

max
t∈[0,T ]

∣

∣(xλs

n )′(t)
∣

∣

)2

≤
ds

m(1− ds/r)

(

η max
t∈[0,T ]

∣

∣(xλs

n )′(t)
∣

∣+ C
)

≤ 2
ds
m

(

η max
t∈[0,T ]

∣

∣(xλs

n )′(t)
∣

∣+ C
)

,
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whence,

max
t∈[0,T ]

∣

∣(xλs

n )′(t)
∣

∣ ≤
dsη

m
+

√

(

dsη

m

)2

+ 2
dsC

m
.

This implies that, as s→ ∞,
∣

∣(xλs

n )′(t)
∣

∣→ 0 uniformly on [0, T ], as claimed.

Thus, ξλs

n → (q1, 0) so that, eventually, ξλs

n ∈ U1. This is impossible since410

ξλs

n ∈ Un and U1 ∩ Un = ∅.

Finally, we are in a position to prove our main multiplicity result.

Proof of Theorem 3.1. As observed previously, if ξ is a T -periodic solution of

(3.2) with ξ(t) = (x(t), y(t)), then x is a T -periodic solution of (3.1) with x′(t) =

y(t). Thus, solutions of (3.2) with different images (in TS) yield solutions of415

(3.1) that have different images (in S) as well.

By Definition 3.1, the assumption on the points qi means that all the points

(qi, 0) are not T -resonant for ĥ − ηκ. The assertion now follows from Theo-

rem 3.9.

Appendix A.420

In this appendix we are merely concerned with ODEs. Thus, for simplicity,

we will write all the equations without the explicit dependence on t.

Let M ⊆ R
k be a smooth manifold. Consider the following second order

ordinary differential equation on M

x′′ = R(x, x′) + f(x, x′) (A.1)

where f : TM → R
k is tangent toM , that is, f(q, v) ∈ TqM for all (q, v) ∈ TM ,425

and R : TM → R
k is the reactive force of the constraint M . Namely, R is

the unique function as above with the property that R(q, v) ∈ TM⊥ for all

(q, v) ∈ TM , R is quadratic in v and f̂(q, v) := (v,R(q, v) + f(q, v)) is tangent

to TM (see e.g. [11, 14]). Indeed, (A.1) is equivalent to the following first order

ODE on TM :430

ξ′ = f̂(ξ) (A.2)

where ξ = (q, v).
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Assume now that f is C1. Let q0 ∈ M be such that f(q0, 0) = 0 and let

ξ0 = (q0, 0). Since R is quadratic in the second variable, we get that equation

(A.2) linearized about ξ0 is the equation on Tξ0TM

ζ′ = f̂ ′(ξ0)ζ (A.3)

which, in turn, is equivalent to a second order equation on Tq0M , namely435

z′′ = ∂1f(q0, 0)z + ∂2f(q0, 0)z
′. (A.4)

The above argument applied to M = S and equation (3.1) for λ = 0 yields

the linear equation (3.4). Thus, a point q0 ∈ h−1(0) is not T -resonant for (3.1)

if and only if the second order equation on the tangent plane Tq0S

mz′′ = h′(q0)z − ηz′ (A.5)

has the constant z(t) ≡ 0 as its unique T -periodic solution. Observe that, in

particular, when all the eigenvalues of h′(q0) are positive the unique periodic440

solution is z(t) ≡ 0. Thus, in this case, q0 is not T -resonant. Consequently, if

h = hg we have that the north pole of S cannot be T -resonant.
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