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ABSTRACT: The tandem gold(I)-catalyzed propargyl Claisen rearrangement/Nazarov cyclization of propargyl vinyl ether deriva-

tives, followed by in situ reduction of the resulting carbonyl group, provides functionalized cyclopentadienes fused with various N-

hetero- and carbacycles, including indoles, in good to excellent yields. The reaction occurs with high regioselectivity, with the posi-

tion of the double bonds in the five-membered ring which depends on the type of (hetero)cycle bearing the propargylic moiety and 

the side chain on the latter. 

The Nazarov reaction, in its classical version, is the Lewis- 

or Brønsted acid-catalyzed 4-electrocyclization of 1,4-dien-

3-ones to form cyclopentenones.
1,2

 The Nazarov reaction has 

now become one of the most important and versatile tool for 

the construction of 5-membered rings,
3
 as in the last two dec-

ades a number of innovative approaches have been developed 

for the generation of the requisite pentadienyl cation undergo-

ing the cyclization process.
4
 Suitably functionalized allenes in 

particular have proved very useful as substrates for the Naza-

rov reaction under a variety of conditions, including treatment 

with oxidants, Brønsted acids, and transition-metal complex-

es.
4a,5
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Gold-catalyzed cycloisomerization of aryl allenes
6
 and vinyl 

allenes (eq 1)
7,8

 were first reported in 2006 and 2007, respec-

tively, and were later exploited for the synthesis of pentannu-

lated carba- and heterocycles.
9
 Gold(I)-catalyzed cascade pro-

cesses in which allene intermediates are generated by formal 

[3,3]-rearrangement of 5-acyloxy-1,3-enynes
10

 have also been 

reported to efficiently provide 5-membered rings through a 

final Nazarov cyclization step.
9a-b,11,12 

 

Scheme 1. Proposed tandem process 
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Due to our interest in the synthesis of cyclopenta-fused het-

erocycles by the Nazarov reaction
13

, we recently extended the 

latter approach to the pentannulation of N-heterocycles
14

 and 

the synthesis of natural compounds.
14a, 15  



 

However, allenes can be prepared not only from propargylic 

acetates but also by the gold-catalyzed [3,3]-rearrangement of 

propargyl vinyl ethers (propargyl Claisen rearrangement, eq 

2).
16

 We envisaged that this reaction could be included in an 

unprecedented tandem process entailing a final Nazarov cy-

clization for the generation of cyclopentadienes (Scheme 1).
17

 

Thus, a suitably built enynyl vinyl ether (1), upon treatment 

with a gold catalyst, rearranges to give the corresponding al-

lene-gold(I) complex (2). This, in turn, should generate the 

requisite pentadienyl cation intermediate (3) which cyclizes to 

ultimately form the target pentannulated compound (4). While 

with the rearrangement of enynyl acetates the final products 

are cyclopentenones, this process provides cyclopentadienes 

bearing, on the side chain, an aldehyde group which could be 

subjected to further elaboration, even in situ, for chain elonga-

tions or other transformations. For this study we decided to 

use substrates embodying the enynyl double bond in various 

N-heterocycles, including indoles, and carbacycles (com-

pounds 7, Scheme 2), so that the corresponding pentannulated 

products could eventually be obtained. 

 

Scheme 2. Preparation of the substrates 
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The required enynyl vinyl ethers 7 were prepared by the So-

nogashira reaction of either vinyl triflates or phosphates 5, ob-

tained from the corresponding lactams and cycloalkanones, 

with differently substituted propargyl alcohols, followed by O-

vinylation
18

 of the coupling products 6 (Scheme 2).
19

 In order 

to find the optimal reaction conditions for the Au(I)-catalyzed 

tandem process, we subjected N-Ts-protected compound 7a to 

a variety of conditions (Table 1), starting with those reported 

for the cycloisomerization of vinyl allenes
7
 and the propargyl 

Claisen rearrangement.
16

 Using 3 mol % Ph3PAuSbF6 in 

CH2Cl2 (Table 1, entry 1) the reaction was complete in 1 h and 

provided target compound 8a (and its minor isomer 8a', 

formed during the aqueous work-up) as the major product 

(74%), but in mixture with allene 9a (17%).
20

 With BF4

 as the 

counterion,
16

 the reaction was similarly sluggish, being still 

incomplete after 5 h and providing a mixture of starting mate-

rial, product 8, and allene 9a
21

 (entry 2). Using TfO

 as the 

anion (entry 3), the reaction was instead much faster (0.5 h) 

and yielded 8 only. With an electron-poor ligand such as the 

phosphite [(2,4-di-t-BuC6H3)O]3P (entry 4) the reaction was 

much slower, conversion of 7a into products (mainly allene 

9a) being 16% only. With t-Bu3PAuNTf2 as the catalyst (entry 

5) the reaction was complete in 1.5 h, providing aldehyde 8 

only. We carried out also a series of experiments with the 

NHC ligand IPr (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-

ylidene) and various anions and in all cases the reaction pro-

vided the 8a/8a' mixture only (entries 6-10). Again, the reac-

tion was faster with TfO

 as the non-coordinating anion (entry 

8), being complete in 15 min. With this NHC ligand, we never 

observed allene 9a when monitoring the reactions by 
1
H 

NMR, even when carrying out the reaction at 0 °C (for exam-

ple, only the signals of the starting material and the Nazarov 

product were present in the 
1
H NMR spectrum at a 54% con-

version, entry 6), or when the reaction was slow because of the 

anion used (entry 10),
23

 which suggests a very fast cyclization 

of the gold-allene complex once formed under these condi-

tions. The use of AgSbF6 alone caused mainly devinylation of 

the starting material (entry 11). 

 

Table 1. Optimization of the reaction conditions
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entry catalystb time 

(h) 

7ac 

(%) 

8ac 

(%) 

8a' 

 (%)c,d 

9ac 

(%) 

1 Ph3PAuSbF6 1 - 74 9 17 

2 Ph3PAuBF4 5 37 29 5 29 

3 Ph3PAuOTf 0.5 - 96 4 - 

4 [(2,4-di-
tBuC6H3)O]3P

AuSbF6 

4 84 1 3 12 

5 t-Bu3PAuNTf2
e 1.5 - 95 5 - 

6f IPrAuSbF6 3.5 46 49 5 - 

7 IPrAuSbF6 2.5 - 92 8 - 

8 IPrAuOTf 0.25 - 94 6 - 

9 IPrAuNTf2
e 1.5 - 78 22 - 

10 IPrAuBF4 3.5 31 54 15 - 

11 AgSbF6 1 -g - - 21 

aConditions: Reactions carried out on 0.2-0.3 mmol of 7a in 

CH2Cl2 (0.05 M) at 25 °C under N2 atmosphere. bPrepared by 

mixing the silver salt (AgX) and the gold chloride (LAuCl) in 

CH2Cl2 before addition of the substrate. cRelative amount deter-

mined by 1H NMR of the crude reaction mixture. dFormed during 

the work-up. eCommercially available. fCarried out a 0°C. g Devi-

nylation to form alcohol 6a (79%) occurred to a great extent. 

In assessing the scope of the reaction, because of the insta-

bility of the aldehydes during the chromatographic purifica-

tion,
22

 these were reduced in situ to the corresponding alcohols 

by NaBH4 (Scheme 3) once the starting material 7 had disap-

peared (TLC monitoring). Interestingly, the alcohols deriving 

from the reduction of isomers 8' were not observed when 

adopting this two-step procedure. Thus, in the presence of t-



 

Bu3PAuNTf2 as the catalyst, 7a was quantitatively converted 

to alcohol 10a, which was obtained in 72% yield after chroma-

tography. With compound 7b, bearing a n-Bu chain, the reac-

tion carried out with the same catalyst was sluggish, providing 

after 16 h a mixture of alcohol 10b (63%) and the correspond-

ing allene (29%), together with traces of unreacted starting 

material (8%). Instead, with the IPrAuOTf catalyst the reac-

tion was faster (reaction complete in 4 h) – although still 

slower than with substrate 7a – providing alcohol 10b only, 

which was isolated in 71% yield. With gem-dimethyl substi-

tuted 7c the reaction quantitatively led to Nazarov product 10c 

(81% yield) in 1 h, with one double bond obviously forced at 

the ring junction. No [1,2-CH3]-shift did take place. Interest-

ingly, with substrate 7h bearing the same gem-dimethyl moie-

ty, and in which the N atom is not conjugated with the endo-

cyclic double bond, the reaction carried out with t-

Bu3PAuNTf2 provided alcohol 10h in 81% yield but as a 1.2:1 

mixture of isomers (see Supporting Information). 

 

Scheme 3. Scope of the reaction 
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aCarried out at 0 °C. b21:1 isomeric mixture at 100% conver-

sion. cCarried out with 1.5 mol % of catalyst. 

With a phenyl-substituted propargylic moiety (substrate 7d) 

the reaction was much cleaner when carried out at 0 °C and it 

provided, after 3.5 h and in situ reduction, alcohol 10d in 60% 

yield. Also with the seven-membered ring containing sub-

strates, the presence of the n-Bu chain in 7f relented the reac-

tion (compared to 7e) when catalyzed by the t-Bu3PAuNTf2 

complex, as it was complete in 2 h and provided 10f in mix-

ture with about 10% of the corresponding allene. With the 

IPrAuOTf catalyst, the reaction was faster (0.5 h) and provid-

ed 10f only (74% yield after chromatography).  Quite interest-

ingly, with these seven-membered ring derivatives, isomeriza-

tion of the double bonds occurred to form thermodynamically 

more stable compounds 10e-f.
24

 Finally, as in the case of 7c, 

also with substrate 7g the corresponding product (10g) with 

the double bond at the ring junction was obtained (74% yield) 

after 6 h in the presence of the IPrAuOTf catalyst.  

To demonstrate that this cascade process can be extended to 

carbacyclic systems, substrates 7i-k, were subjected to various 

reaction conditions. While in the case of N-heterocycle alco-

hol 10a (as well as 10b and 10d) we never observed double 

bond isomerization in the five-membered ring during the 

chromatographic purification on silica gel,
25

 this was not the 

case of the products deriving from carbacycle substrates, for 

the purification of which eluents containing Et3N had to be 

used. So, with both 7i and 7j, the reaction, best carried out in 

the presence of 3 mol % IPrAuSbF6, was very fast (complete 

in 10-20 min) and provided, after reduction, isomerically pure 

alcohols 10i-j in excellent yields after chromatography (81-

96%). With cycloheptene derivative 7k, the reaction was even 

faster at 25 °C and it was thus carried with 1.5 mol % of 

IPrAuSbF6, quantitatively providing 10k as a 21:1 mixture 

with a minor isomer having one double bond at the ring junc-

tion. 

 

Scheme 4. Plausible reaction mechanism 
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However, this compound proved isomerically less stable as 

the relative amount of the major isomer gradually decreased in 

solution (both in CDCl3 and in CD3OD) during NMR analysis 

(see Supporting Information). 

As the cyclopenta[b]indole motif is present in several natu-

ral and synthetic biologically active compounds,
26-27

 the scope 

of the process was evaluated with some indole derivatives, too 

(compounds 7l-o). Thus, the cascade process provided substi-

tuted cyclopenta[b]indoles 10l-o (58-65% yield) in which 

isomerization of the double bond occurred to restore the aro-

maticity of the indole ring. With substrate 7l, the reaction was 

complete in 2 h with IPrAuSbF6 (3 mol %) as the catalyst, 

whereas with the gem-dimethyl-substituted propargylic deriva-

tive 7n, 5 h were necessary for a complete conversion with the 

same catalyst. Both n-butyl-substituted derivative 7m and Br-

substituted indole 7o were instead best reacted in the presence 

of IPrAuOTf (3 mol %) as the catalyst. 

The proposed catalytic cycle for this tandem process is re-

ported in Scheme 4. The initial coordination of gold to the tri-

ple bond triggers the [3,3]-rearrangement to form allene-gold 

complex IV.
 
Gold(I)-complex IV then evolves toward allene 

V or rearranges to pentadienyl cation VI which cyclizes to 

give intermediate VII. The position of the double bonds in the 

final product X seems consistent with the mechanism pro-

posed by Toste for the cycloisomerization of vinyl allenes,
7
 

i.e. a [1,2-H]-shift from position 5 to 6 in VII to generate cati-

on VIII (path a) and eventual LAu
+
 elimination. However, in 

an experiment carried out with deuterated 7a ([D]-7a, Scheme 

5) in the presence of 3 mol % t-Bu3PAuNTf2 only 77% of deu-

terium was incorporated at position 6 of the final product, 

suggesting that at least with this type of substrates, a mecha-

nism involving deprotonation-protodeauration (path b) is also 

operative. The relative rate seems depending on the type of 

catalysts used, as incorporation of D at C6 further decreased 

when using IPrAuSbF6 (Scheme 5).  
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Clearly, with gem-dimethyl-substituted substrates like 7c 

and 7h, none of the above mechanisms can be effective and a 

base-assisted (TfO

) deprotonation at 4a position followed by 

protodeauration must instead take place. The fact we never 

observe the formation of allene V in the presence of the IPr 

ligand (e.g. entries 6-10, Table 1, for 7a), even when the reac-

tion is slow, suggests that the cyclization of allene-gold com-

plex IV, to give the Nazarov product, must be fast once IV is 

formed.
28

 The generally much faster cyclization observed 

when TfO

 is present in the reaction medium could be ac-

counted for by its greater basicity compared to the other ani-

ons used in this study,
29

 which promotes either the [1,2-H]-

shift (proton shuttling) (path a) or deprotonation at C5 (path b) 

or C4a. 

 

 

Scheme 6. 
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Finally, to demonstrate that chain elongation can be carried 

out in situ, PhMgBr (1 M in THF) was added at -78 °C to the 

DCM solution containing aldehyde 8c just after completion of 

the gold-catalyzed process (Scheme 6). The reaction provided 

alcohol 11 in 55% yield after chromatography. 

In conclusion, we have developed a gold(I)-catalyzed pro-

pargyl Claisen rearrangement/Nazarov cyclization cascade 

process for the synthesis of functionalized cyclopentadienes 

fused with various N-hetero- and carbacycles, including in-

doles. The reaction occurs under mild conditions and provides, 

in general, isomerically stable products with high regioselec-

tivity and in good to excellent yields.  Depending on the sub-

strate, alternate mechanism pathways are possible after the cy-

clization step, with the position of the double bonds in the 

five-membered ring dictated by the type of (hetero)cycle bear-

ing the propargylic moiety and the side chain on the latter. The 

presence of an aldehyde appendage on the cyclopentadiene 

allows for further elaboration, even in situ, to increase the 

complexity of the products. Extension of the methodology to 

other systems and application to the synthesis of natural com-

pounds is ongoing in our laboratory and will be reported in 

due course.  
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