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Abstract

We prove the existence of infinitely many periodic solutions, as well as the
presence of chaotic dynamics, for a periodically perturbed planar Liénard
system of the form ẋ = y − F (x) + p(ωt), ẏ = −g(x). We consider the
case in which the perturbing term is not necessarily small. Such a result
is achieved by a topological method, that is by proving the presence of a
horseshoe structure.

1 Introduction

In this paper we study the presence of chaotic dynamics for time periodic
perturbations of the Liénard equation

ẍ+ f(x)ẋ+ g(x) = 0, (1.1)
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where f, g : R → R are continuous functions. Usually, equation (1.1) can be
written as the equivalent system{

ẋ = y

ẏ = −f(x)y − g(x)

in the phase-plane. Another classical approach consists in the study of (1.1) as
the first order system in the Liénard plane:{

ẋ = y − F (x)

ẏ = −g(x)
(1.2)

by setting

F (x) :=

∫ x

0

f(s) ds. (1.3)

Observe that with the additional assumption that g is locally Lipschitz contin-
uous, in virtue of the smoothness of F (x) inherited by its integral form, the
uniqueness for the solutions of the initial value problems associated with (1.2)
is ensured. Therefore, these regularity hypotheses will be assumed throughout
this work.

In a recent paper [13], Messias and Alves Gouveia have investigated the case{
ẋ = y − ax2 + εp(ωt)

ẏ = −x
(1.4)

where a is a real constant, ε is a small real parameter and the perturbation
function p is a 2π/ω-periodic differentiable function. In [13], using the Poincaré
compactification of the plane in polar coordinates, the authors prove the exis-
tence of a homoclinic loop connecting a saddle point at infinity for the associated
autonomous system {

ẋ = y − ax2

ẏ = −x.
(1.5)

This, in turns, allows to enter in a setting where the Melnikov method can be
applied. To be more specific, we recall that in [13, Theorem 1] the existence of
a transversal intersection between the stable and the unstable manifolds at the
saddle point at infinity is proved for ε 6= 0 sufficiently small and p(·) an even
smooth function.

In our work we consider a different approach based on the theory of topolog-
ical horseshoes. Under the name of topological horseshoes, one usually means
those techniques in which the geometric properties of the Smale’s horseshoe are
preserved under less restrictive assumptions (see, for instance the introduction
in [10] and the references quoted therein). Our aim is to study a broad class of
periodic perturbations of the Liénard system (1.2) of the form{

ẋ = y − F (x)− E(t)

ẏ = −g(x)
(1.6)

with F even and g odd. The main features of our result are the following:
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• we do not assume that the perturbation E(t) is small;

• we deal both with the case when the associated autonomous system (1.2)
has either a global center or a local center surrounded by a homoclinic
loop connecting a saddle point at infinity.

We restrict our analysis to a T -periodic stepwise forcing term E of the form

E(t) =

{
E1, for 0 ≤ t < τ1

E2, for τ1 ≤ t < τ1 + τ2
(1.7)

where
E1 6= E2

and τ1, τ2 are positive constants with

τ1 + τ2 = T.

In this case, the nonautonomous Liénard system (1.6) appears as a periodic
switched system, in the sense that the associated dynamics is the superposition
of the two autonomous systems{

ẋ = y − F (x)− E1

ẏ = −g(x)
(1.8)

and {
ẋ = y − F (x)− E2

ẏ = −g(x)
(1.9)

which switch one to the other in a T -periodic manner.
Instead of studying the switched system made by (1.8)-(1.9), one could equiv-

alently consider equation (1.1) perturbed by a T -periodic Dirac comb forcing
term of the form

e = −A
∑
n∈Z

(
δτ1+nT − δnT

)
, A := E2 − E1

where, as usual, δa is the Dirac delta distribution concentrated at the point
a ∈ R. Such kind of forcing term arises in the study of discrete time signal
analysis, where abrupt variation of the parameters is modelled by pulse trains
described by Dirac combs (see, for instance the very recent paper [3] and the
references quoted therein, as well as [2] for a Liénard equation perturbed by
impulses).

Coming back to system (1.6) with E(t) as (1.7), our main result can be
presented as follows:

Theorem 1.1. Let f, g : R → R with f continuous and g locally Lipschitz
continuous and satisfying g(x)x > 0 for all x 6= 0. Suppose that f is odd (and so
F is even) and g is odd and, moreover, assume that the corresponding system
(1.2) has a center which is not isochronous. Then system (1.6) has infinitely
many periodic solutions as well as chaotic-like dynamics for any stepwise forcing
term, provided that the switching times τ1, τ2 are sufficiently large. Moreover,
the result is robust with respect to small perturbations, namely, once we have
fixed τ1 and τ2, there exists δ > 0 such that the result holds for each T -periodic

forcing term P (t) with
∫ T

0
|P (t)− E(t)| dt < δ.
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Here, the result obtained has to be read in the light of Definition 3.1 in
Section 3 and the precise features of the obtained chaotic dynamics are those
of Theorem 3.1. We anticipate that we actually get the following property:
for each given positive integers m1,m2 there are τ∗1 and τ∗2 such that for any
τ1 > τ∗1 and τ2 > τ∗2 the Poincaré map associated with system (1.6) presents a
full dynamics on 4m1m2 symbols on a compact invariant set. An explanation
of the dynamical features of the chaotic solutions is provided in Section 3.2
immediately after the conclusion of the proof of Theorem 1.1.

The plan of the paper is as follows.
In Section 2 we present the phase-portrait of the associated Liénard au-

tonomous system, with a list of sufficient conditions ensuring that there is a
region, around the origin, filled by closed orbits. We observe that this property
holds, even if the system is not Hamiltonian, in virtue of the symmetry condi-
tions on F and g which guarantee that the trajectories have a mirror symmetry
with respect to the y-axis.

In the first part of Section 3 we introduce the method for producing chaotic
dynamics using a linked twist map approach. The theory of linked twist maps is
a powerful approach to reveal chaotic dynamics obtained by switching between
two different maps which satisfy a twist condition on linked annuli (see [4] and
the interesting surveys [1, 26] where the theory is applied to fluid dynamics).
More recently this framework has been extended to topological annuli in [12]
thus allowing more general configurations. In the second part of Section 3 we
give new applications to the specific case of system (1.6).

The last section will be devoted to some remarks and examples showing the
broad range of applicability of Theorem 1.1.

2 Phase-portrait of the autonomous system

Throughout this section we consider the autonomous system{
ẋ = y − F (x)

ẏ = −g(x)
(2.1)

with the standard regularity and symmetry assumptions, namely

f : R→ R is continuous and odd, with F (x) =
∫ x

0
f(s) ds;

g : R → R is locally Lipschitz continuous and odd, with g(x)x > 0 for
x 6= 0.

System (2.1) is equivalent to{
ẋ = y

ẏ = −f(x)y − g(x)
(2.2)

in the phase-plane, via the nonlinear transformation (x, y) 7→ (x, y − F (x)).
Therefore a closed trajectory in one system is closed also in the other one and
viceversa. For this reason we can exploit some results obtained in the literature
from one or the other system. It is well known that the hypotheses on f and
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g imply a mirror symmetry of the trajectories with respect to the y-axis and
hence, any trajectory departing at the time t = 0 at a point P0 = (0, y0) (for
y0 > 0) on the y-axis and hitting again the first time the y-axis at a point
P1 = (0, y1) (for y1 < 0) is closed. For this reason, without loss of generality,
we can say that the origin is a center when this situation occurs.

Indeed, it may happen that for some special mutual behavior of F (x) and
g(x) near the origin, the condition of being a center may fail and homoclinic
loops at the origin may appear, as the so-called “petal” or “figure eight”. How-
ever, this will not influence our analysis, because it will be sufficient to consider
the case in which there is a closed trajectory surrounding the origin and then
an external annulus filled by periodic orbits. Clearly, such annulus can fill the
rest of the plane. In any case, for sake of completeness, we briefly discuss the
whole situation.

Sharp conditions for having a center date back from the classical results of
Filippov [5] further developed by Opial [14] and, more recently in the Eighties
by Hara and Yoneyama [9]. More precisely, if F (x) has a definite sign in a right
hand neighborhood of 0, for instance F (x) > 0 for 0 < x ≤ a, then the condition

∃α > 1

4
:

1

F (x)

∫ x

0+

g(ξ)

F (ξ)
dξ ≥ α, ∀ 0 < x ≤ a (2.3)

implies that both the systems have a (local) center at the origin (see [14, p. 71],
[9, p. 178]). In order to produce a homoclinic loop at the origin it is sufficient
to violate condition (2.3) by assuming

1

F (x)

∫ x

0+

g(ξ)

F (ξ)
dξ ≤ 1

4
, ∀ 0 < x ≤ a (2.4)

(see, again [14, p. 73], [9, p. 183]). In this light, we can consider as an example
the equation

ẍ+ (x3 + 4x)ẋ+ x3 + x7 = 0. (2.5)

The phase-portrait of such equation in both the phase-plane and the Liénard
plane has the following feature (see Figure 1 for the phase-plane). Condition
(2.4) holds near the origin and therefore trajectories departing at a point (0, y0)
with y0 > 0 sufficiently small tend to the origin and a homoclinic loop at the
origin is produced. On the other hand, being the leading coefficient of g(x) large
enough, any trajectory intersecting the negative y-axis is actually closed, as we
will check below. Therefore we can say that for equation (2.5) both systems
(2.1) and (2.2) have the so-called property (H) (analyzed in [23]), namely they
possess a closed trajectory γ surrounding the origin and containing in its interior
all the critical points of the system and such that each trajectory outside γ is
closed.

Hence the main problem is to detect if we are in presence of a local or a
global center. This problem has been widely investigated in the literature, in
particular for nonlinearities with a polynomial growth. A detailed discussion of
this kind of problems with a comprehensive list of references may be found in
[24]. In particular, if we suppose that f(x) = p2m+1(x) is an odd polynomial
of degree 2m + 1 and g(x) = q2n+1(x) is an odd polynomial of degree 2n + 1,
one can prove that, if n ≥ 2(m+ 1), then in both systems (2.1) and (2.2) there
is a global center, with the exception of the above mentioned remark. Indeed,
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Figure 1: Phase-portrait for the equation (2.5) in the phase-plane. The aspect ratio
is not the real one, for sake of simplicity.

according to [22] a global center (outside a compact neighborhood of the origin)
can occur also for n = 2m+ 1, depending on the leading coefficients.

The second possibility to be investigated is when the center is only local and
a separatrix appear. Here the situation is more delicate because, a priori, we
cannot exclude the possibility of blow-up phenomena, as, for instance for the
equation

ẍ+ 3xẋ+ x(x2 + 1) = 0,

which has x(t) = − tan(t) as unbounded solution run in finite time (see [24, p.
395]). Indeed, as observed in [24], in the phase plane, such equation produces
the portrait of a center (at the origin) which is unbounded in the x-direction and
for y > 0, while it is bounded below by a trajectory (y = −x2 − 1) lying on the
negative y-plane. A phase-plane inspection shows the existence of a separatrix
between the trajectory y = −x2 − 1 and the isocline y = −(x2 + 1)/3. For our
purposes it is crucial to control the nonexistence of blow-up phenomena for the
separatrix. With this respect, a sufficient condition is

lim sup
x→+∞

g(x)

|f(x)|
< +∞, (2.6)

according to [22].
Finally we observe that there are other ways for producing a center, without

assuming the natural mirror symmetry inherited by the oddness conditions on
f and g. Following once again Opial [14] and Hara and Yoneyama [9] we call a
center of type (S) the one obtained by the mirror symmetry as above. According
to [9] (and following Filippov [5] and Sansone and Conti [21] ), we call a center
of type (F ) provided that

F (G−1(−x)) = F (G−1(x)), ∀x > 0, (2.7)

where

G(x) :=

∫ x

0

g(ξ) dξ.
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The type (F ) is a generalization of the type (S). If the system (2.1) is of type
(F ), then the orbits have “deformed mirror symmetry” with respect to the y-
axis.

3 Proof of the main result

3.1 General framework

The result that we are going to present is actually a generalization of what
has been obtained in [12]. Indeed, in [12] a theorem about the presence of full
symbolic dynamics for the Poincaré map on two topologically linked annuli was
proved and applications were given to planar Hamiltonian systems. Therein a
result in the framework of linked twist maps theory was produced under two
crucial assumptions: a linked annuli hypothesis and a twist maps condition.

Our new contribution here consists in improving the linked annuli hypothe-
sis. Moreover, our result is suited for applications to planar systems which are
not necessarily Hamiltonian.

We start with some basic definitions borrowed from [17, 18]. The notation
is the same as in [12] for sake of comparison. Given any continuous curve
γ : [a; b] → R2 we will use the symbol γ to denote also the image set γ([a; b])
of the curve. An arc is the homeomorphic image of a compact interval. An
oriented rectangle is a pair R̂ = (R,R−) where R ⊂ R2 is a bounded planar
region homeomorphic to the unit square [0; 1] × [0; 1] and R− := Rleft ∪ Rright

with Rleft, Rright two disjoint arcs in ∂R.

Let φ : D ⊆ R2 → R2 be a continuous map, let R̂1, R̂2 be two oriented rect-
angles and H ⊆ R1 ∩D be a compact set. We say that the pair (H,φ) stretches

R1 to R2 along the paths and write (H,φ) : R̂1 m−→R̂2 if for every continuous
curve γ : [a; b] → R1 with γ(a) ∈ Rleft and γ(b) ∈ Rright (or viceversa) there
exists a subinterval [a1; b1] ⊆ [a; b] such that γ(t) ∈ H and φ(γ(t)) ∈ R2 for all
t ∈ [a1; b1] and, moreover, φ(γ(a1)), φ(γ(b1)) belong to different components of
R−2 . Sometimes the reference to the compact set H will be omitted in order to

simplify the notation. If m ≥ 1 is an integer, we write φ : R̂1

m
m−→ R̂2 and say

that φ stretches R̂1 to R̂2 m times if there are m pairwise disjoint compact sets
H1, . . . ,Hm ⊆ R1 ∩D such that (Hi, φ) : R̂1 m−→R̂2 for i = 1, . . . ,m.

The property of stretching along the paths (SAP) is preserved by composi-
tion of maps and, in particular, it can be applied to the iterates of a given map
φ. When (H,φ) : R̂ m−→R̂, we know that there is at least a fixed point for φ in

H (see [17, Theorem 3.9]). Moreover, if φ : R̂
m
m−→ R̂ for some m ≥ 2, then φ

induces a chaotic dynamics on m symbols according to the following definition.

Definition 3.1. There are m ≥ 2 pairwise disjoint sets H1, . . . ,Hm ⊂ D such
that for each two-sided sequence (si)i∈Z, where each si ranges in {1, . . . ,m},
there exists a corresponding sequence (wi)i∈Z of points in D with

wi ∈ Hsi and wi+1 = φ(wi) ∀i ∈ Z. (3.1)

Moreover, whenever (si)i∈Z is a k-periodic sequence, then there exists a k-
periodic sequence (wi)i∈Z satisfying (3.1).

If φ is one-to-one (as in the case of the Poincaré map), a consequence of
the above definition is that there exists a compact invariant set Λ ⊂ R ∩ D
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such that φ|Λ is semi-conjugate to the two-sided Bernoulli shift on m sym-
bols. Furthermore Λ contains as a dense subset the periodic points of φ and
the counterimage (by the semiconiugacy) of any periodic sequence (si)i∈Z of
symbols contains a periodic point of φ having the same period of (si)i∈Z. The
semiconiugacy with the Bernoulli shift is a typical feature associated to chaotic
dynamics and, in particular, it implies the positivity of the topological entropy.
We refer to [12, 17] for more details.

In the present article we apply this method via the following lemma taken
from [19, Theorem 3.2].

Lemma 3.1. Let m1,m2 be positive integers.

1. If φ1 : R̂1

m1

m−→ R̂2 and φ2 : R̂2

m2

m−→ R̂3, then φ2 ◦ φ1 : R̂1

m1m2

m−→ R̂3.

2. If

φ1 : R̂1

m1

m−→ R̂′2, φ1 : R̂1

m1

m−→ R̂′′2 ,

φ2 : R̂′2
m2

m−→ R̂1, φ2 : R̂′′2
m2

m−→ R̂1,

then φ2 ◦ φ1 induces chaotic dynamics on 2m1m2 symbols in R1.

R̂1

R̂′2

R̂′′2

R̂1

m
1
×
φ1

m
1 ×
φ
1

m1m2 × φ2 ◦ φ1

m1m2 × φ2 ◦ φ1

m
2 ×
φ
2

m
2
×
φ2

Figure 2: Graph associated with the situation described in Lemma 3.1.

Next we introduce the specific concepts which will be useful for the present
paper.

If γ is a (closed) Jordan curve in R2 we let I(γ) and E(γ) be respectively the
bounded open connected component and the unbounded one of R2\γ. Let γ1, γ2

be two Jordan curves in R2 such that γ1 ⊂ I(γ2), then the set A := I(γ2)\I(γ1)
is a (closed) topological annulus and we set

I(A) := I(γ1), E(A) := E(γ2), ∂iA := γ1 and ∂eA := γ2.
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A ray in A is any simple continuous curve γ : [a; b] → A such that either
γ(a) ∈ ∂iA and γ(b) ∈ ∂eA or, viceversa, γ(a) ∈ ∂eA and γ(b) ∈ ∂iA. The
following lemma shows that w.l.o.g. it is always possible to consider rays whose
endpoints are the only points of theirs lying on the boundary of A.

Lemma 3.2. Let A be a topological annulus and γ : [a; b]→ R2 be a continuous
path such that γ(a) ∈ I(A) and γ(b) ∈ E(A). Then, there is [c; d] ⊆ [a; b] such
that γ(c) ∈ ∂iA, γ(d) ∈ ∂eA and γ(s) lies in the interior of A for all s ∈ ]c; d[.
If γ is also simple then γ|[c;d] is a ray in A.

A similar statement holds whenever γ(a) ∈ E(A) and γ(b) ∈ I(A).

Proof. In the case that γ(a) ∈ I(A) and γ(b) ∈ E(A), it’s enough to define:

c := sup{s ∈ [a; b] : γ(s) ∈ ∂iA} and d := inf{s ∈ [c; b] : γ(s) ∈ ∂eA}.

Similarly one can deal with the other situation.

Two disjoint rays γ, η in an annulus A divide it into two sets which are
homeomorphic to a rectangle and can be oriented by choosing the two rays
as “vertical sides”. We describe here the procedure. In order to fix ideas, we
assume w.l.o.g. that:

• the two rays are parametrized so that γ, η : [0; 1] → A with γ(0), η(0) ∈
∂iA and γ(1), η(1) ∈ ∂eA;

• ∂iA and ∂eA are parametrized by two Jordan curves δi, δe : [0; 1] → R2

with δi(0) = δi(1) = γ(0), δe(0) = δe(1) = γ(1), δi(1/2) = η(0) and
δe(1/2) = η(1); moreover δi and δe are taken in the same homotopic class
of the fundamental group of R2 \ {O}, with O ∈ I(A) (so that they run
around O with the same orientation).

Then, the two topological rectangles we are interested in have boundaries given
by the following Jordan curves:

γ ∗ δe|[0;1/2] ∗ η−1 ∗ (δi|[0;1/2])
−1 and γ ∗ (δe|[1/2;1])

−1 ∗ η−1 ∗ δi|[1/2;1]

where ∗ stands for the concatenation of curves and the exponent −1 is used
to reverse the orientation of a curve. If R is any one of the two rectangles,
then we define its vertical sides Rleft = γ and Rright = η and we consider the
corresponding oriented rectangle:

R̂ := (R,Rleft ∪Rright) = (R, γ ∪ η). (3.2)

Definition 3.2. Two annuli A1, A2 ⊂ R2 are topologically linked if there exist
two rays γ1 and γ2 of A1 and A2, respectively, such that γ1 ⊂ I(A2) and
γ2 ⊂ I(A1).

Proposition 3.1. If the annuli A1, A2 are topologically linked, then:

1. I(A1) ∩ I(A2) 6= ∅;

2. I(A1) ∩ E(A2) 6= ∅ 6= E(A1) ∩ I(A2);

3. there exist two rays η1 and η2 of A1 and A2, respectively, such that η1 ⊂
E(A2) and η2 ⊂ E(A1).
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Proof. Let γ1 : [0; 1]→ A1 and γ2 : [0; 1]→ A2 be two rays such that γ1 ⊂ I(A2)
and γ2 ⊂ I(A1) and assume w.l.o.g. that γ1(0) ∈ ∂iA1. We choose r > 0 such
that r < dist(γ1(0), ∂eA1) and r < dist(γ1(0), ∂iA2). This choice grants that
B(γ1(0), r) ⊂ I(A2) and B(γ1(0), r) ∩ E(A1) = ∅, thus in particular one has
that:

I(A1) ∩ I(A2) ⊃ I(A1) ∩B(γ1(0), r) 6= ∅.
Since γ1(1) ∈ ∂eA1∩I(A2), we can choose r > 0 such that r < dist(γ1(1), ∂iA2)
and r < dist(γ1(1), ∂iA1) and deduce that B(γ1(1), r) ⊂ I(A2) and B(γ1(1), r)∩
I(A1) = ∅ and, therefore:

E(A1) ∩ I(A2) ⊃ E(A1) ∩B(γ1(1), r) 6= ∅.

Similarly one can show that I(A1) ∩ E(A2) 6= ∅.
Now we can choose two points p ∈ E(A1) ∩ I(A2) and q ∈ E(A1) ∩ E(A2)

(which is clearly non-empty). Since E(A1) is open and connected, it is also
path-connected and there is a continuous simple curve η : [a; b] → E(A1) such
that η(a) = p and η(b) = q. Since η(a) ∈ I(A2) and η(b) ∈ E(A2) then by
Lemma 3.2 there is an interval [c; d] ⊂ [a; b] such that η2 := η|[c;d] is a ray of
A2. One can argue in a similar way to show the existence of η1.

Figure 3: Example of topologically linked annuli with the curves γi, ηi which divide
them into rectangles. Observe that the two components of A1∩A2 (red/darker regions)
do not give rise to oriented rectangles as required in the paper [12] and, therefore, these
two annuli do not fit into the frame of [12, Definition 3.1, Theorem 3.1].

When two annuli A1, A2 are topologically linked we will use the curves γi
(given by Definition 3.2) and ηi (given by Lemma 3.1), for i = 1, 2, to determine
two oriented rectangles in each annulus according to (3.2). Next we show how a
twist condition like the one in [12] implies that each one of the oriented rectangle
in an annulus is “stretched” across any oriented rectangle of the other annulus
a suitable number of times.

Let
Πi = Πi(θ, α) : Ãi := R× [ai; bi]→ Ai i = 1, 2

be a covering projection for the annulus Ai where the variables θ, α generalize
the angle and radius of the classical polar coordinates. Without loss of generality
we assume the following properties:
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• Πi(θ + 1, α) = Πi(θ, α) for all θ ∈ R and all α ∈ [a1; bi];

• [ai; bi] 3 α 7→ Πi(k, α) parametrizes γi and [ai; bi] 3 α 7→ Πi(k + 1/2, α)
parametrizes ηi for each k ∈ Z.

In particular, for each k ∈ Z the covering map Πi homeomorphically transforms
the rectangles [k; k + 1/2] × [ai; bi] and [k + 1/2; k + 1] × [ai; bi] into the two
topological rectangles in which Ai is divided by the linking condition. The rect-
angles in the covering space inherit the orientation of the topological rectangles
in an obvious way through Πi.

Let φi : Ai → Ai, for i = 1, 2, be continuous maps which admit liftings
φ̃i : Ãi → Ãi such that

Πi ◦ φ̃i = φi ◦Πi and φ̃i(θ, α) = (θ + gi(θ, α), Ri(θ, α))

where gi, Ri : Ãi → R are continuous functions which are 1-periodic w.r.t. their
first variable. We assume what follows:

(BI) Boundary Invariance: Ri(θ, ai) = ai and Ri(θ, bi) = bi for all θ ∈ R.

(TC) Twist Condition: there exists ki, ji ∈ Z such that ji ≤ ki and either

max
θ∈[0;1]

gi(θ, ai) ≤ −1 + ji and min
θ∈[0;1]

gi(θ, bi) ≥ 1 + ki

or
min
θ∈[0;1]

gi(θ, ai) ≥ 1 + ki and max
θ∈[0;1]

gi(θ, bi) ≤ −1 + ji.

In this framework the following result holds, which provides an extension of
[12, Theorem 3.1].

Theorem 3.1. Let A1, A2 ⊂ R2 be topologically linked annuli and φi : Ai → Ai,
for i = 1, 2, be two continuous maps that satisfy (BI) and (TC). For i = 1, 2 let

R̂i be anyone of the two oriented rectangles determined by the linking condition
in Ai. Then:

φ1 : R̂2

m1

m−→ R̂1 and φ2 : R̂1

m2

m−→ R̂2 with mi := ki − ji + 1.

In particular φ2 ◦φ1 have at least four fixed points and induces chaos on 4m1m2

symbols.

Proof. We have only to show that

Claim: if φ1 satisfies the first twist condition in (TC), then φ1 : R̂2

m1

m−→ R̂1

where R1 = Π1 ([0; 1/2]× [a1; b1]) and R2 is anyone of the two rectangles
in A2.

All the other situations can be checked in the same manner. Once this step is
achieved, we get the conclusion of the proof by Lemma 3.1.

In order to prove our claim we argue as follows. Thanks to the properties of
liftings, without loss of generality we can assume that actually

max
θ∈[0;1]

g1(θ, a1) ≤ −1 and min
θ∈[0;1]

g1(θ, b1) ≥ m1 (3.3)
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and we will exploit the fact that the this twist condition implies that, roughly
speaking, φ̃1 maps a lifted copy of R1 across m1 components of Π−1

1 (R1). More
precisely, let us consider the compact set

K̃1 := Π−1
1 (A1 ∩R2) ∩ [0; 1]× [a1; b1] 6= ∅

and observe that K̃1 ∩ {0, 1/2, 1} × [a1; b1] = ∅ since R2 ∩ (γ1 ∪ η1) = ∅ by

construction. In particular we have that K̃1 ⊂ ]0; 1[× [a1; b1] and that Π1|K̃1
is

a homeomorphism onto A1 ∩R2. Let us consider the following pairwise disjoint
rectangles in the covering space Ã1:

S̃` :=

[
`− 1; `− 1

2

]
× [a1; b1] = (`− 1, 0) +

[
0;

1

2

]
× [a1; b1] for ` ∈ Z

and observe that Π1(S̃`) = R1 for all ` ∈ Z. Let

H̃` :=
{

(θ, α) ∈ K̃1 : φ̃1(θ, α) ∈ S̃`
}

= K̃1 ∩ φ̃−1
1

(
S̃`

)
for ` = 1, . . . ,m1

which are m1 pairwise disjoint compact subsets of K̃1. Thus, the sets:

H` := Π1(H̃`) ` = 1, . . . ,m1

are pairwise disjoint compact subsets of A1 ∩R2. We’ll show that they are not
empy and that

(H`, φ1) : R̂2 m−→R̂1 for all ` = 1, . . . ,m1. (3.4)

Let δ : [0; 1]→ R2 be a continuous curve such that δ(0) ∈ γ2 and δ(1) ∈ η2. By
Lemma 3.2 there exists [s0; t0] ⊂ [0; 1] such that δ1 := δ|[s0;t0] is a continuous
curve in A1 ∩ R2 such that δ1(s0) ∈ ∂iA1 and δ1(t0) ∈ ∂eA1. Moreover, δ1
crosses neither γ1 nor η1 by construction. As a consequence δ1 admits a (unique)

continuous lifting δ̃1 : [s0; t0]→ K̃1. We can be a little more precise if we write

δ̃1(t) = (θ1(t), r1(t)) since we have now that r1(s0) = a1, r1(t0) = b1 and either
θ1([s0; t0]) ⊂ ]0; 1/2[ or θ1([s0; t0]) ⊂ ]1/2; 1[. Let’s check the first component of

φ̃1 at the endpoints of δ̃1 in the case that (3.3) holds:

θ1(s0) + g1(θ1(s0), a1) < 0 and θ1(t0) + g1(θ1(t0), b1) > m1

which implies that the projection of φ̃1(δ̃1) on the θ-axis strictly contains the
interval [0;m1] and, roughly speaking, means that the curve φ1(δ1) makes at
least m1 complete turns in A1 around I(A1) and crosses the rectangle R1 at
least the same number of times. More precisely, it is possible to determine
numbers sk, tk ∈ [s0; t0] for k = 1, . . . ,m1 such that

s1 < t1 < s2 < t2 < · · · < sm1
< tm1

and
θ1(s`) + g1(δ̃1(s`)) = `− 1,

θ1(t`) + g1(δ̃1(t`)) = `− 1/2

`− 1 < θ1(t) + g1(δ̃1(t)) < `− 1/2 ∀t ∈ ]s`; t`[

for all ` = 1, . . . ,m1
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which means that
φ1(δ(s`)) ∈ γ1,

φ1(δ(t`)) ∈ η1

φ1(δ(t)) ∈ R1 ∀t ∈ [s`; t`]

δ(t) ∈ H` ∀t ∈ [s`; t`]

for all ` = 1, . . . ,m1

and (3.4) follows.

Remark 3.1. The main difference between our Theorem 3.1 and [12, Theo-
rem 3.1] lies in the kind of linkage which is required to be satisfied by the two
annuli A1 and A2. In the paper [12] the two annuli are required to be linked
through a topological rectangle R, which means that there should be a connected
component of A1∩A2 which is homeomorphic to a rectangle and whose bound-
ary is the concatenation of four arcs, two on ∂A1 and the remaining two on
∂A2. In particular, each arc of ∂A1 has to be followed by an arc of ∂A2 and
viceversa, which, roughly speaking, means that the two annuli should intersect
somewhere in a neat, transversal way. For example, the two annuli depicted
in Figure 3 are not linked through a topological rectangles according to [12,
Definition 3.1]. Now, the paper [12] deals with planar Hamiltonian systems and
the annuli which are considered there have closed level lines of the Hamiltonian
as boundaries. Using the kind of arguments employed in [6, Section 3] it is pos-
sible to construct Hamiltonians whose level lines are not starshaped and show
a behavior like that in Figure 3.

We observe that it might be possible to prove Theorem 1.1 also by using
in a suitable way [12, Theorem 3.1], but our Theorem 3.1 allows us to swiftly
prove our main result without worrying about the way in which the orbits of
the shifted systems intersect each other. We just have to check that our new
notion of linkage in Definition 3.2 is satisfied and this turns out to be quite
easy (see next Subsection 3.2). This greatly simplifies the treatment in all the
applications.

3.2 Proof of Theorem 1.1

We are now in position to apply our geometric approach for producing the
desired chaotic dynamics, being systems (1.8) and (1.9) merely a translation of
system (2.1).

Just to fix the ideas, let us suppose E1 < E2 (the other case being completely
symmetric). As previously observed, with the special choice of E(t) as in (1.7),
system (1.6) switches periodically between (1.8) and (1.9). Therefore, it is
convenient analyze the auxiliary system

(SE)

{
ẋ = y − F (x)− E
ẏ = −g(x)

where the constant E is treated as a parameter. As a result we obtain that the
phase-portraits of all the systems (SE) are just translations of (S0) (which is
actually (2.1)) in the vertical direction with the origin (0, 0) shifted at the point
(0, E). For this reason, without loss of generality, we can suppose, from now on
that

E1 = 0 and E2 > 0.
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By the assumption of non-isochronicity, which plays a crucial role, we take two
closed orbits of (S0) having different period. Let us call these trajectories Γ′0 and
Γ′′0 with Γ′0 internal to Γ′′0 . In the same light, we call σ′ and σ′′ the corresponding
periods. It will be not restrictive to suppose

σ′ < σ′′,

as the other situation can be treated similarly.
Our configuration determines four intersection points of the above considered

orbits with the y-axis: (0, a), (0, b), (0, c), (0, d) with

a < b < 0 < c < d.

Notice that we can always select the two closed orbits Γ′ and Γ′′ in such a way
that

max{b− a, d− c} < c− b. (3.5)

Indeed, as a consequence of the non-isochronicity and the continuity of the
period function with respect to the initial data, one can always select two orbits
with different periods which are sufficiently close to each other. We also denote
by W0 the closed annular region bounded by Γ′0 and Γ′′0 .

Figure 4: Phase-portraits in the Liénard plane of (S0). For this example we have
taken f(x) = 3

5
x|x|, f(x) = 1

5
|x3| and g(x) = x. The aspect ratio is not the real one,

for sake of simplicity.

After these preliminary positions, we can start the proof of Theorem 1.1.
The compact annular region W0 is invariant for the dynamical system asso-

ciated with (S0). Hence, for every τ > 0 its Poincaré map Φ0,τ
0 :W0 →W0 is a

well defined homeomorphism. Using the fact that σ′ < σ′′ we get that Φ0,τ
0 may

determine an arbitrarily large twist between Γ′0 and Γ′′0 provided that τ > 0 is
large enough.

Next, we take an arbitrary E2 satisfying the condition

(I) max{b− a, d− c} < E2 < c− b

and consider the closed curves Γ′E2
and Γ′′E2

as well as the annular region WE2

corresponding to system (SA). Observe that σ′ and σ′′ are also the fundamental
periods of Γ′E2

and Γ′′E2
, respectively. Similarly as above, the compact annu-

lar region WE2
is invariant for the dynamical system associated with (SE2

).
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Hence, for every τ > 0 its Poincaré map Φ0,τ
E2

: WE2
→ WE2

is a well de-

fined homeomorphism. Actually, we have that Φ0,τ
E2

= Π ◦ Φ0,τ
0 ◦ Π−1, where

Π : (x, y) 7→ (x, y + E2).
Figure 5 below shows the obtained overlapping. Condition (I) guarantees

that W0 and WE2
are two linked annuli.

Figure 5: Phase-portraits in the Liénard plane showing the overlapping of two different
systems (SE). For this example we have taken f(x) = 3

5
x|x|, F (x) = 1

5
|x3| and g(x) =

x. The overlapping is obtained by shifting (S0) to (SE2) for E2 = 2.5. The orbits Γ′0
and Γ′′0 of (S0) are determined by choosing c = 2 and d = 4. The highlighted bold
segments correspond to the arcs γi and ηi. The aspect ratio is not the real one, for
sake of clarity.

Clearly, the Poincaré map Φ0,T associated with the non-autonomous system
(1.6) can be represented as

Φ0,T = Φ0,τ2
E2
◦ Φ0,τ1

0 ,

wherever defined. In this manner, provided that τ1 and τ2 are sufficiently large,
we can apply Theorem 3.1 and, therefore, the proof is complete.

The dynamics obtained for equation (1.6) by Theorem 3.1 are as follows.
There are globally defined solutions that make a suitably prescribed number
of turns around the corresponding equilibrium in each interval in which E(t)
remains constant, more precisely:

• `+ ik turns in each interval [kT, kT + τ1], k ∈ Z, with ik ∈ {1, . . . ,m1};

• `+jk turns in each interval [kT+τ1, kT+T ], k ∈ Z, with jk ∈ {1, . . . ,m2}.

Here, the number ` ∈ N depends on σ′, τ1 and τ2, while the sequences {ik}k∈Z
and {jk}k∈Z can be arbitrarily chosen a priori within the specified ranges. More-
over, it is possible to chose in which half of the respective annulus the solution
should stop at the times kT + τ1 and kT in the Liénard plane (recall that our
annuli are divided into two topological rectangles by the y-axis, see figure 5).

Remark 3.2. We point out that for simplicity of exposition we assumed in
Theorem 1.1 that system (1.2) has a non-iscocronous center. In fact, as we see
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from its proof, we just need to assume that system (1.2) possesses two closed
orbits of different periods.

4 Remarks and examples

In this section we present different examples in order to put in evidence the
applicability of our result.

As a a first case of system in the Liénard plane, we consider the equation{
ẋ = y − ax2 + εp(ωt)

ẏ = −x
(4.1)

where a > 0 is a fixed constant, ε > 0 is a real parameter and p(θ) is a given non-
constant periodic function whose period is, for instance, 2π. In [13, Theorem 1],
using Melnikov theory the authors proved the existence of chaotic dynamics for
an even and smooth function p(θ) and ε sufficiently small. It is also observed
that when p(θ) is odd, the stable and unstable manifolds associated to the sad-
dle point at infinity may not intersect and therefore the method does not apply.
Conversely, our result applies with no restriction on ε or symmetry conditions
on the forcing term. On the other hand, we require ω small (so that the period
will be large) and p(θ) close to a stepwise function.

One could observe that the Melnikov method requires to compute some in-
tegrals which require the knowledge of an analytic expression for the homoclinic
orbit, which, in general is an hard task to accomplish. Our approach works well
regardless the presence of an homoclinic loop at infinity. In this connection,
consider for example the system{

ẋ = y − ax2m+2 + εp(ωt)

ẏ = −x2n+1
(4.2)

If n ≥ 2(m + 1), then the associated autonomous system has the property
(H) from [23], as recalled in Section 2. Moreover (see [11]) the period tends to
zero as the orbits are enlarged to infinity. Therefore, we can apply our result,
for instance, to system {

ẋ = y − ax2 + εp(ωt)

ẏ = −x5
(4.3)

where there is no homoclinic loop at infinity.
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