
25 April 2024

Synchronous context-free grammars and optimal linear parsing strategies / Crescenzi, Pierluigi; Gildea,
Daniel; Marino, Andrea; Rossi, Gianluca; Satta, Giorgio. - In: JOURNAL OF COMPUTER AND SYSTEM
SCIENCES. - ISSN 0022-0000. - STAMPA. - 81:(2015), pp. 1333-1356. [10.1016/j.jcss.2015.04.003]

Original Citation:

Synchronous context-free grammars and optimal linear parsing
strategies

Conformità alle politiche dell'editore / Compliance to publisher's policies

Published version:
10.1016/j.jcss.2015.04.003

Terms of use:

Publisher copyright claim:

Questa versione della pubblicazione è conforme a quanto richiesto dalle politiche dell'editore in materia di
copyright.
This version of the publication conforms to the publisher's copyright policies.

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1051078 since: 2022-10-19T10:00:23Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

Journal of Computer and System Sciences 81 (2015) 1333–1356
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Synchronous context-free grammars and optimal linear

parsing strategies

Pierluigi Crescenzi a, Daniel Gildea b,∗, Andrea Marino c, Gianluca Rossi d,
Giorgio Satta e

a Dipartimento di Sistemi e Informatica, Università di Firenze, Viale Morgagni, 65, 50134 Firenze, Italy
b Computer Science Department, University of Rochester, Rochester, NY 14627, United States
c Dipartimento di Informatica, Università di Milano, Via Festa del Perdono 7, 20122 Milano, Italy
d Dipartimento di Matematica, Università di Roma Tor Vergata, Via Ricerca Scientifica 1, 00133 Roma, Italy
e Dipartimento di Ingegneria dell’Informazione, Università di Padova, Via Gradenigo 6/A, 35131 Padova, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 November 2013
Received in revised form 12 February 2015
Accepted 12 February 2015
Available online 15 April 2015

Keywords:
Formal languages
Parallel rewriting systems
Parsing

Synchronous Context-Free Grammars (SCFGs), also known as syntax-directed translation
schemata [1,2], are unlike context-free grammars in that they do not have a binary normal
form. In general, parsing with SCFGs takes space and time polynomial in the length of the
input strings, but with the degree of the polynomial depending on the permutations of the
SCFG rules. We consider linear parsing strategies, which add one nonterminal at a time.
We show that for a given input permutation, the problems of finding the linear parsing
strategy with the minimum space and time complexity are both NP-hard.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Synchronous Context-Free Grammars (SCFGs) are widely used to model translational equivalence between strings in
both the area of compilers for programming languages and, more recently, in the area of machine translation of natural
languages. The formalism was first introduced by Lewis and Stearns [3] under the name of syntax-directed transduction
grammars, and was later called syntax-directed translation schemata by Aho and Ullman [1,2]. The name SCFG, which we
use in this article, was later introduced in the literature on computational linguistics, where the term “synchronous” refers
to rewriting systems that generate strings in both a source and target language simultaneously [4–6]. In fact, SCFGs can be
seen as a natural extension of the well-known rewriting formalism of Context-Free Grammars (CFGs). More precisely, while
a CFG generates a set of strings, an SCFG generates a set of string pairs using essentially the same context-free rewriting
mechanism, along with some special synchronization between the two derivations, as discussed below.

An SCFG is a string rewriting system based on synchronous rules. Informally, a synchronous rule is composed of two CFG
rules along with a bijective pairing between all the occurrences of the nonterminal symbols in the right-hand side of the first
rule and all the occurrences of the nonterminal symbols in the right-hand side of the second rule. There is no restriction
on the terminal symbols appearing in the right-hand sides of the two CFG rules. Two nonterminal occurrences that are
associated by the above bijection are called linked nonterminals. Linked nonterminals are not necessarily occurrences of
the same nonterminal symbol. In what follows, we will often view a synchronous rule as a permutation of the nonterminal

* Corresponding author. Fax: +1 585 273 4556.
E-mail address: gildea@cs.rochester.edu (D. Gildea).
http://dx.doi.org/10.1016/j.jcss.2015.04.003
0022-0000/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2015.04.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:gildea@cs.rochester.edu
http://dx.doi.org/10.1016/j.jcss.2015.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2015.04.003&domain=pdf

1334 P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356
occurrences in the two right-hand sides, combined with some renaming of these occurrences and with some insertion and
deletion of terminal symbols.

In an SCFG rewriting is restricted in two ways: the two CFG rule components in a synchronous rule must be applied
simultaneously, and rewriting must take place at linked nonterminals. Other than that, the application of a synchronous
rule is independent of the context, similarly to the CFG case. As a result, an SCFG generates a pair of strings by means of
two context-free parse trees that have the same skeleton but differ by some reordering and renaming of the nonterminal
children at each internal node, and by the insertion and the deletion of the terminal children of that node. Moreover, the
projection of the generated string pairs on both dimensions are still context-free languages. Thus, the added generative
power of an SCFG lies in its ability to model long-distance movement of phrase constituents in the translation from the
source to the target language, through simple permutations implemented at the internal nodes in the generated trees,
something that is not possible with models based on finite-state transducers.

Recently, SCFGs have received wide attention in the area of natural language processing, where several variants of SCFGs
augmented with probabilities are currently used for translation between natural languages. This is due to the recent surge
of interest in commercial systems for statistical machine translation working on large scale, real-world applications such as
the translation of text documents from the world-wide web. However, from a theoretical perspective our knowledge of the
parsing problem based on SCFGs and of several related tasks is quite limited, with many questions still left unanswered, as
discussed below. This is rather surprising, in view of the fact that SCFGs are a very natural extension of the class of CFGs,
for which the parsing problem has been extensively investigated and is well understood nowadays.

In the context of statistical machine translation, SCFGs are automatically induced from parallel corpora, that is, very large
collections of source texts that come with target translations, and are usually enriched with annotations aligning source
and target words [7,8]. Alternative translation models are currently in use in machine translation, such as word-to-word
translation models [9] or phrase-based translation models [10], which are essentially finite-state models. However, it has
been experimentally shown that the more powerful generative capacity of SCFGs achieves better accuracy than finite-state
models in real-world machine translation applications [7].

The recognition (or membership) problem for SCFGs is defined as follows. Given as input an SCFG G and strings w1
and w2, we have to decide whether the pair w1, w2 can be generated by G . The parsing problem for SCFGs (or synchronous
parsing problem) is defined for the same input G , w1 and w2, and produces as output some suitable representation of the
set of all parse trees in G that generate w1 and w2. Finally, the decoding (or translation) problem for SCFGs requires as
input an SCFG G and a single string w1, and produces as output some suitable representation of the set of all parse trees
in G that generate pairs of the form w1, w2, for some string w2. In this paper we investigate the synchronous parsing
problem, which is strictly related to the other two problems, as will be discussed in more detail in Section 5.

From the perspective of synchronous parsing, a crucial difference between CFGs and SCFGs is that SCFGs cannot always
be binarized, that is, cast into a normal form with no more than two nonterminals on the right-hand side of each rule
component in a synchronous rule. In fact, SCFGs form an infinite hierarchy, where grammars with at most r nonterminals
on the right-hand side of a rule can generate sets of string pairs not achievable by grammars with the same quantity
bounded by r − 1, for each r > 3 [2]. Binarization is crucial to standard algorithms for CFG parsing, whether explicitly as a
preprocessing transformation on the grammar, as for instance in the case of the Cocke–Kasami–Younger algorithm [11], or
implicitly through the use of dotted rule symbols indicating which nonterminals have already been parsed, as in the case
of Earley algorithm [12]. Unfortunately these techniques cannot be applied to SCFGs, because of the above restrictions on
binarization, and the parsing problem for SCFGs seems significantly more complex than the parsing problem for CFGs, from
a computational perspective. While parsing for CFGs can be solved in polynomial space and time by the above mentioned
algorithms, it has been shown that parsing for SCFGs is NP-hard, when the grammar is considered as part of the input [13].

Despite this hardness result, when the SCFG is fixed, parsing can be performed in time polynomial in the length of the
input strings using the bottom–up dynamic programming framework described in Section 2. The degree of the polynomial is
determined by the maximum complexity of any rule in the grammar, because rules are parsed independently of one another.
More precisely, the complexity of a given rule is O(nd(π,σ)), where n is the sentence length, and d is some function of π ,
the permutation associated with the rule, and σ , a parsing strategy for the rule. This leads us to consider the problem
of finding the best strategy for a given rule, that is, finding the σ that minimizes d(π, σ). We investigate the problem of
finding the best linear parsing strategy for a given synchronous rule, that is, the way of collecting one after the other the
linked nonterminals in a synchronous rule that results in the optimization of the space and time complexity for synchronous
parsing. We show that this task is NP-hard. This solves an open problem that has been addressed in several previously
published works; see for instance [14,15], and [16].

Relation with previous work The problem that we explore in this article is an instance of a grammar factorization problem.
Factorization is the general method of breaking a grammar rule into a number of equivalent, smaller rules, usually for the
purpose of finding efficient parsing algorithms. Our linear parsing strategies for SCFGs process two linked nonterminals from
the original rule at each step. Each of these steps is equivalent to applying a binary rule in another rewriting system, which
must be more general than SCFGs, since after all SCFGs cannot be binarized.

The general problem of grammar factorization has received a great deal of study recently in the field of computational
linguistics, with the rise of statistical systems for natural language translation, as well as systems for parsing with monolin-
gual grammars that are more powerful than CFGs [15,17–19]. Most work in this area addresses some subclasses of the very

P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356 1335
general rewriting framework known as Linear Context-Free Rewriting Systems (LCFRS) [20], which is equivalent to Multiple
Context-Free Grammars [21], and which subsumes SCFGs and many other formalisms. Many algorithms have been proposed
for efficiently factorizing subclasses of LCFRS, in order to optimize parsing under various criteria. Our result in this article
is a hardness result, showing that such algorithms cannot extend to the widely used and theoretically important class of
SCFGs. A related result has been presented by Crescenzi et al. [16], showing that optimal linear factorization for general
LCFRS is NP-hard. Their reduction involves constructing LCFRS rules that are not valid as SCFG rules. Indeed, as already
mentioned, SCFG rules can be viewed as permutations, and the special structure of these objects makes reductions less
straightforward than in the case of LCFRS. This article therefore strengthens the result in [16], showing that even if we
restrict ourselves to SCFGs, detection of optimal linear parsing strategies is still NP-hard.

2. Preliminaries

In this section we formally introduce the class of synchronous context-free grammars, along with the computational
problem that we investigate in this article. We assume the reader to be familiar with basic definitions from formal language
theory, and we only briefly summarize here the adopted notation.

For any positive integer n, we write [n] to denote the set {1, . . . , n}, and for n = 0 we let [n] be the empty set. We also
write [n]0 to denote the set [n] ∪ {0}.

2.1. Synchronous context-free grammars

Let Σ be some finite alphabet. A string x over Σ is a finite ordered sequence of symbols from Σ . The length of x is
written |x|; the empty string is denoted by ε, and we have |ε| = 0. We write Σ∗ for the set of all strings over Σ , and
Σ+ = Σ∗ \ {ε}. For strings x, y ∈ Σ∗ , x · y denotes the concatenation of x and y, which we abbreviate as xy.

A context-free grammar (CFG for short) is a tuple G = (V N , V T , P , S), where V N is a finite set of nonterminals, V T is a
finite set of terminals with V T ∩ V N = ∅, S ∈ V N is a special symbol called the start symbol, and P is a finite set of rules
having the form A → α, with A ∈ V N and α ∈ (V T ∪ V N)∗ . The size of a CFG G is defined as |G| = ∑

(A→γ)∈P |Aγ |.
The derive relation associated with a CFG G is written ⇒G ; we also use the reflexive and transitive closure of ⇒G ,

written ⇒∗
G . The language (set of strings) derived in G is defined as L(G) = {w | S ⇒∗

G w, w ∈ V ∗
T }.

In what follows, we need to represent bijections between the occurrences of nonterminals in two strings over V N ∪ V T .
This can be realized by annotating nonterminals with indices from an infinite set. In this article, we draw indices from the
set of positive natural numbers N. We define I(V N) = {A t | A ∈ V N , t ∈ N} and V I = I(V N) ∪ V T . For a string γ ∈ V ∗

I , we
write index(γ) to denote the set of all indices that appear in symbols in γ .

Two strings γ1, γ2 ∈ V ∗
I are synchronous if each index from N occurs at most once in γ1 and at most once in γ2, and

index(γ1) = index(γ2). Therefore γ1, γ2 have the general form

γ1 = u1,0 A
t1

1,1u1,1 A
t2

1,2u1,2 · · · u1,r−1 A
tr

1,r u1,r

γ2 = u2,0 A
tπ(1)

2,1 u2,1 A
tπ(2)

2,2 u2,2 · · · u2,r−1 A
tπ(r)

2,r u2,r

where r ≥ 0, u1,i, u2,i ∈ V ∗
T for each i ∈ [r]0, A

ti

1,i , A
tπ(i)

2,i ∈ I(V N) for each i ∈ [r], ti
= t j for i
= j, and π is a permutation
of the set [r]. Note that, under the above convention, nonterminals A1,i , A2,π−1(i) appear with the same index ti , for each
i ∈ [r]. In a pair of synchronous strings, two nonterminal occurrences with the same index are called linked nonterminals.

A synchronous context-free grammar (SCFG) is a tuple G = (V N , V T , P , S),1 where V N , V T and S are defined as for
CFGs, and P is a finite set of synchronous rules. Each synchronous rule has the form [A1 → α1, A2 → α2], where A1, A2 ∈
V N and where α1, α2 ∈ V ∗

I are synchronous strings. We refer to A1 → α1 and A2 → α2, respectively, as the left and right
components of the synchronous rule. Note that if we ignore the indices annotating the nonterminals in α1 and α2, then
A1 → α1 and A2 → α2 are context-free rules.

Example 1. The list of synchronous rules reported below implicitly defines an SCFG. Symbols si are rule labels, to be used
as references in later examples.

s1 : [S → A 1 B 2
, S → B 2 A 1]

s2 : [A → aA 1 b, A → b A 1 a]
s3 : [A → ab, A → ba]
s4 : [B → cB 1 d, B → dB 1 c]
s5 : [B → cd, B → dc]

1 We overload symbol G . It will always be clear from the context whether G refers to a CFG or to an SCFG.

1336 P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356
We now define the notion of derivation associated with an SCFG. In a derivation, we rewrite a pair of synchronous
strings, always producing a new pair of synchronous strings. This is done in several steps, where, at each step, two linked
nonterminals are rewritten by a synchronous rule. We use below the auxiliary notion of reindexing, which is an injective
function f from N to N. We extend f to V I by letting f (A t

) = A f (t) for A t ∈ I(V N) and f (a) = a for a ∈ V T . We also
extend f to strings in V ∗

I by letting f (ε) = ε and f (Xγ) = f (X) f (γ), for each X ∈ V I and γ ∈ V ∗
I .

Let γ1, γ2 ∈ V ∗
I be two synchronous strings. The derive relation [γ1, γ2] ⇒G [δ1, δ2] holds whenever there exist an

index t in index(γ1) = index(γ2), a synchronous rule s ∈ P of the form [A1 → α1, A2 → α2], and some reindexing f such
that

(i) index(f (α1)) ∩ (index(γ1) \ {t}) = ∅;

(ii) γ1 = γ ′
1 A t

1 γ ′′
1 , γ2 = γ ′

2 A t
2 γ ′′

2 ; and
(iii) δ1 = γ ′

1 f (α1)γ
′′

1 , δ2 = γ ′
2 f (α2)γ

′′
2 .

We also write [γ1, γ2] ⇒s
G [δ1, δ2] to explicitly indicate that the derive relation holds through rule s.

Note that δ1, δ2 above are guaranteed to be synchronous strings, because α1 and α2 are synchronous strings and because
of condition (i) above. Note also that, for a given pair [γ1, γ2] of synchronous strings, an index t and a synchronous rule
as above, there may be infinitely many choices of a reindexing f such that the above constraints are satisfied. However, all
essential results about SCFGs are independent of the specific choice of reindexing, and therefore we will not further discuss
this issue here.

A derivation in G is a sequence σ = s1s2 · · · sd , d ≥ 0, of synchronous rules si ∈ P , i ∈ [d], with σ = ε for d = 0, satisfying
the following property. For some pairs of synchronous strings [γ1,i, γ2,i], i ∈ [d]0, we have [γ1,i−1, γ2,i−1] ⇒si

G [γ1,i, γ2,i]
for each i ∈ [d]. We always implicitly assume some canonical form for derivations in G , by demanding for instance that each
step rewrites a pair of linked nonterminal occurrences of which the first is leftmost in the left component. When we want
to focus on the specific synchronous strings being derived, we also write derivations in the form [γ1,0, γ2,0] ⇒σ

G [γ1,d, γ2,d],
and we write [γ1,0, γ2,0] ⇒∗

G [γ1,d, γ2,d] when σ is not further specified. The translation generated by an SCFG G is defined
as

T (G) = {[w1, w2] | [S 1
, S 1] ⇒∗

G [w1, w2], w1, w2 ∈ V ∗
T } .

Example 2. Consider the SCFG G from Example 1. The following is a (canonical) derivation in G

[S 1
, S 1] ⇒s1

G [A 1 B 2
, B 2 A 1]

⇒s2
G [aA 3 bB 2

, B 2 b A 3 a]
⇒s2

G [aaA 4 bbB 2
, B 2 bb A 4 aa]

⇒s3
G [aaabbbB 2

, B 2 bbbaaa]
⇒s4

G [aaabbbcB 5 d,dB 5 cbbbaaa]
⇒s5

G [aaabbbccdd,ddccbbbaaa]
It is not difficult to see that T (G) = {[apbpcqdq, dqcqbpap] | p, q ≥ 1}.

We conclude this section with a remark. Our definition of SCFG is essentially the same as the definition of the syntax-
directed transduction grammars in [3] and the syntax-directed translation schemata in [1,2], as already mentioned in the
introduction. The only difference is that in a synchronous rule [A1 → α1, A2 → α2] we allow A1, A2 to be different non-
terminals, while in the above formalisms we always have A1 = A2. Although our generalization does not add to the weak
generative power of the model, that is, the class of translations generated by the two models are the same, it does increase
its strong generative capacity, that is, the parse tree mappings defined by syntax-directed translation schemata are a proper
subset of the parse tree mappings defined by SCFGs. As a consequence of this fact, when the definitions of the two models
are enriched with probabilities, SCFGs can define certain parse tree distributions that cannot be captured by syntax-directed
translation schemata, as argued in [13]. The above generalization has been adopted in several translation models for natural
language.

2.2. Parsing strategies for SCFGs

Recognition and parsing algorithms for SCFGs are commonly used in the area of statistical machine translation. Despite
the fact that the underlying problems are NP-hard, it has been experimentally shown that the typology of synchronous
rules that we encounter in real world applications can be processed efficiently, for most of the cases, if we adopt the

P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356 1337
appropriate parsing strategy, as already discussed in Section 1. We are thus interested in the problem of finding optimal
parsing strategies for synchronous rules, under some specific parsing framework.

Standard parsing algorithms for SCFGs exploit dynamic programming techniques, and are derived as a generalization
of the well-known Cocke–Kasami–Younger algorithm for word recognition based on CFGs [11,22], which essentially uses a
bottom–up strategy. All these algorithms are based on the representation described below. For a string w = a1 · · ·an , n ≥ 1,
and for integers i, j ∈ [n]0 with i < j, we write w[i, j] to denote the substring ai+1 · · ·a j . Assume we are given the input pair
[w1, w2]. To simplify the discussion, we focus on a sample synchronous rule containing only occurrences of nonterminal
symbols

s : [A1 → A 1
1,1 A 2

1,2 A 3
1,3 A 4

1,4 A 5
1,5 A 6

1,6,

A2 → A 6
2,1 A 1

2,2 A 4
2,3 A 2

2,4 A 5
2,5 A 3

2,6], (1)

Synchronous rule s can be associated with the permutation π of the set [6] identified by the sequence 614253, which is
visualized in Fig. 1a. Recall that, for each k ∈ [6], nonterminals A1,k, A2,π−1(k) are linked in rule s.

Assume that, for each k ∈ [6], we have already parsed all possible occurrences of the linked nonterminals A1,k, A2,π−1(k)

over [w1, w2]. If we want to parse the linked nonterminals A1, A2 in the left-hand side of rule s, we need to check
whether some of the derivations for the linked nonterminals A1,k, A2,π−1(k) can be combined, according to the permutation
associated to s, to provide a parse of two contiguous substrings of [w1, w2]. Formally, we need to explore the search space
of all integers i1,0 ≤ i1,1 ≤ · · · ≤ i1,6, i1,k ∈ [|w1|]0, and i2,0 ≤ i2,1 ≤ · · · ≤ i2,6, i2,k ∈ [|w2|]0, and check whether, for some
choice of these integers and for each k ∈ [6], we have

[A 1
1,k, A 1

2,π−1(k)
] ⇒∗

G [w1[i1,k−1, i1,k], w2[i2,π−1(k)−1, i2,π−1(k)]]. (2)

Informally, when condition (2) holds we say that linked nonterminals A1,k, A2,π−1(k) span substrings w1[i1,k−1, i1,k] and
w2[i2,π−1(k)−1, i2,π−1(k)] of the input.

For reasons of computational efficiency, it is advantageous to break the parsing of synchronous rule s into several steps,
which collectively determine a strategy. In this article, we restrict ourselves to strategies which add linked nonterminals
one pair at each step, according to some fixed total ordering, which we call a linear parsing strategy. The result of the
partial analyses obtained at each step is represented by means of a data structure which we call a state. To provide a
concrete example, let us choose the linear parsing strategy σ of gathering all the A1k ’s on the first component of rule s
from left to right. At the first step, we then collect linked nonterminals A1,1, A2,π−1(1) = A2,2 and construct the partial
analysis represented by the state 〈(s, σ , 1), (i1,0, i1,1), (i2,1, i2,2)〉, meaning that A1,1 spans substring w1[i1,0, j1,1] and A2,2
spans substring w2[i2,1, j2,2]. The first element in the state, (s, σ , 1), indicates that this state is generated from synchronous
rule s after the first combination step, assuming our current strategy σ . We refer to this first element as the type of the
state.

At the second step we add to our partial analysis the linked nonterminals A1,2, A2,4, as shown in Fig. 1b. We construct
a new state 〈(s, σ , 2), (i1,0, i1,2), (i2,1, i2,2), (i2,3, i2,4)〉, meaning that A1,1, A1,2 together span w1[i1,0, i1,2], A2,2 spans
w2[i2,1, i2,2] and A2,4 spans w2[i2,3, i2,4]. Note that the integer i1,1 is dropped from the description of the state, since it
will not be referenced by any further step based on the associated partial analysis. After adding the third pair of linked
nonterminals A1,3, A2,6, we create state 〈(s, σ , 3), (i1,0, i1,3), (i2,1, i2,2), (i2,3, i2,4), (i2,5, i2,6)〉, spanning four separate sub-
strings of the input, as shown in Fig. 1c. After adding the linked nonterminals A1,4, A2,3, we have that the span of A2,3
fills in the gap between the spans of the previously parsed nonterminals A2,2 and A2,4, as shown in Fig. 1d. We can then
collapse these three spans into a single string, obtaining a new state 〈(s, σ , 4), (i1,0, i1,4), (i2,1, i2,4), (i2,5, i2,6)〉 which spans
three separate substrings of the input. Finally, at the next two steps states of type (s, σ , 5) and (s, σ , 6) can be constructed,
each spanning two substrings only.

We refer below to the number of substrings spanned by a state as the fan-out of the state (this notion will be formally
defined later). The above example shows that the fan-out of each state depends on the parsing strategy that we are adopting.

Bottom–up dynamic programming algorithms for the parsing problem for SCFGs are designed on the basis of the above
state representation for partial analyses. These algorithms store in some appropriate data structure the states that have
already been constructed, and then retrieve and combine states in order to construct new states. Let n be the maximum
length between the input strings w1 and w2. Because a state with fan-out f may have O(n2 f) instantiations, fan-out
provides a way of bounding the space complexity of our algorithm. When we use linear parsing strategies, fan-out is also
relevant in assessing upper bounds on time complexity. Consider the basic step of adding the (k + 1)-th pair of linked
nonterminals to a state of type (s, σ , k) having fan-out f . As before, we have O(n2 f) instantiations for states of type
(s, σ , k). We also have O(n4) possible instantiations for the span of the (k +1)-th pair, since any pair of linked nonterminals
spans exactly two substrings. However, the (k + 1)-th pair might share some of its boundaries with the boundaries of the
state of type (s, σ , k), depending on the permutation associated with the synchronous rule s. If we define δ(s, σ , k) as the
number of independent boundaries in the (k + 1)-th pair, with 0 ≤ δ(s, σ , k) ≤ 4, we have that all executions of the above
step can be carried out in time O(n2 f +δ(s,σ ,k)).

If we want to optimize the space or the time complexity of a dynamic programming algorithm cast in the above frame-
work, we need to search for a parsing strategy that minimizes the maximum fan-out of its states, or else a strategy that

1338 P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356
Fig. 1. a): combining spans to parse the SCFG rule s of Eq. (1). b), c) and d): the first three steps in a linear parsing strategy for this rule.

minimizes the maximum value of the sum of the fan-out and the δ() function. This needs to be done for each individual
synchronous rule in the grammar. In our running example, the critical step is provided by state type (s, σ , 3) with fan-
out 4, leading to space complexity of O(n8). Furthermore, the combination of state type (s, σ , 2) (fan-out 3) with linked
pair A1,3, A2,6 (δ(s, σ , 3) = 3) leads to time complexity of O(n9). However, we can switch to a different strategy σ ′ , by col-
lecting linked nonterminal pairs in s in the order given by the left components A1,4, A1,5, A1,2, A1,3, A1,1, A1,6. According
to this new strategy, states of types (s, σ ′, 2) and (s, σ ′, 3) both have fan-out three, while every other state type has fan-out
two. This leads to space complexity of O(n6) for rule s. It is not difficult to see that this strategy is also space optimal for
rule s, on the basis of the observation that any grouping of two linked nonterminals A1,k, A2,π−1(k) and A1,k′ , A2,π−1(k′) with
k, k′ ∈ [6] and k
= k′ , has a fan-out of at least three. As for the time complexity, the critical step is the combination of state
type (s, σ ′, 2) (fan-out 3) with linked pair A1,2, A2,4 (δ(s, σ ′, 3) = 2), leading to time complexity of O(n8) for this strategy.
It is not difficult to verify that σ ′ is also a time optimal strategy.

P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356 1339
2.3. Fan-out and optimization of parsing

What we have informally shown in the previous section is that, under the outlined framework based on state repre-
sentations for partial analyses, we can exploit the properties of the specific permutation of a given synchronous rule to
reduce the maximum fan-out of states, and hence improve the space and time complexity of our parsing algorithms. In this
section, we provide formal definitions of these concepts, and introduce the computational problem that is investigated in
this article.

Let s be a synchronous rule with r > 2 linked nonterminals, and let πs be the permutation representing s. A linear
parsing strategy for s is defined as a permutation σs of the set [r]. The intended meaning of σs is that, when parsing the
rule s, the pair of linked nonterminals A1,σ (k), A2,π−1(σ (k)) is collected at the k-th step, for each k ∈ [r], as shown in Fig. 1.

Let us consider state type (s, σs, k), k ∈ [r], defined as in Section 2.2. We define the count of internal boundaries for
(s, σs, k) as

ib(πs,σs,k) =
∣∣∣{h : σ−1

s (h) ≤ k ∧ σ−1
s (h + 1) > k

}∣∣∣
+

∣∣∣{h : σ−1
s (h) > k ∧ σ−1

s (h + 1) ≤ k
}∣∣∣

+
∣∣∣{h : σ−1

s (π−1
s (h)) ≤ k ∧ σ−1

s (π−1
s (h + 1)) > i

}∣∣∣
+

∣∣∣{h : σ−1
s (π−1

s (h)) > k ∧ σ−1
s (π−1

s (h + 1)) ≤ k
}∣∣∣ . (3)

In the definition above, the term
∣∣{h : σ−1

s (h) ≤ k ∧ σ−1
s (h + 1) > k

}∣∣ counts the number of nonterminals A1,i that have
already been collected at step k and such that nonterminal A1,i+1 has not yet been collected. Informally, this term counts
the nonterminals in the right-hand side of the first CFG rule component of s that represent right internal boundaries of the
span of a state of type (s, σs, k). The second term in the definition counts the number of nonterminals in the right-hand
side of the same rule component that represent left internal boundaries. Similarly, the remaining two terms count right and
left internal boundary nonterminals, respectively, in the right-hand side of the second CFG rule component of s.

For state type (s, σs, k), k ∈ [r], we also define the count of external boundaries as

eb(πs,σs,k) = I(σ−1
s (1) ≤ k) + I(σ−1

s (n) ≤ k)

+ I(σ−1
s (π−1

s (1)) ≤ k) + I(σ−1
s (π−1

s (n)) ≤ k) . (4)

The indicator functions I() count the number of nonterminals that are placed at the left and right ends of the right-hand
sides of the two rule components and that have already been collected at step k. Informally, the sum of these functions
counts the nonterminals that represent external boundaries of the span of state type (s, σs, k).

Finally, the fan-out of state type (s, σs, k) is defined as

fo(πs,σs,k) = 1

2
(ib(πs,σs,k) + eb(πs,σs,k)) . (5)

Dividing the total number of boundaries by two gives the number of substrings spanned by the state type (s, σs, k). Observe
that the fan-out at step k is a function of both the permutation πs associated with the SCFG rule s, and the linear parsing
strategy σs .

As discussed in Section 2.2, the fan-out at step k gives space and time bounds on the parsing algorithm relative to that
step and parsing strategy σs . Thus the complexity of the parsing algorithm relative to synchronous rule s depends on the
fan-out at the most complex step of σs . We wish to find, for an input synchronous rule s with associated permutation πs ,
the linear parsing strategy that minimizes quantity

min
σ

max
k∈[r]

fo(πs,σ ,k) , (6)

where σ ranges over all possible linear parsing strategies for s. Our main result in this article is that this minimization
problem is NP-hard. This is shown by first proving that the optimization of the ib(πs, σs, k) component of the fan-out is
NP-hard, in the next section, and then by extending the result to the whole fan-out in a successive section.

3. Permutation multigraphs and cutwidth

With the goal of showing that the minimization problem in (6) is NP-hard, in this section we investigate the minimiza-
tion problem for the ib(πs, σs, k) component of the fan-out, defined in (3). More precisely, given as input a synchronous
rule s with r > 2 nonterminals and with associated permutation πs , we investigate a decision problem associated with the
computation of the quantity

min
σ

max ib(πs,σ ,k) , (7)

k∈[r]

1340 P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356
Fig. 2. The permutation multigraph corresponding to the SCFG rule s of Eq. (1). In this figure and all subsequent figures, green edges are shown with dashed
lines.

where σ ranges over all possible linear parsing strategies for s. We do this by introducing a multigraph representation for
the synchronous rule s, and by studying the so-called cutwidth problem for such a multigraph.

3.1. Permutation multigraphs

Our strategy for proving the NP-hardness of the optimization problem in (7) will be to reduce to the problem of finding
the cutwidth of a certain class of multigraphs, which represent the relevant structure of the input synchronous rule. In
this section we introduce this class of multigraphs, and discuss its relation with synchronous rules. We denote undirected
multigraphs as pairs G = (V , E), with set of nodes V and multiset of edges E .

A permutation multigraph is a multigraph G = (V , A � B) such that both P A = (V , A) and P B = (V , B) are Hamiltonian
paths, and � is the merge operation defined for multisets. In the following, the edges in A will be called red, the edges in
B will be called green.

A permutation multigraph G = (V , A � B) can be thought of as encoding some permutation: if we identify nodes in V
with integers in [|V |] according to their position on path A, the order of vertices along path B defines a permutation of the
set [|V |]. We can therefore use a permutation multigraph to encode the permutation associated with a given synchronous
rule. More precisely, let s be a synchronous rule of the form

s : [A1 → u1,0 A 1
1,1u1,1 · · · u1,r−1 A r

1,ru1,r,

A2 → u2,0 A
πs(1)

2,1 u2,1 · · · u2,r−1 B
πs(r)

2,r u2,r] , (8)

where r ≥ 2, u1,i, u2,i ∈ V ∗
T for each i ∈ [r]0 and πs is a permutation of the set [r]. We associate with s the permutation

multigraph Gs = (V s, Es,A � Es,B) defined as

• V s = {(A1,i, A2,π−1
s (i)) : i ∈ [r]};

• Es,A = {((A1,i, A2,π−1
s (i)), (A1, j, A2,π−1

s (j))) : i, j ∈ [r] ∧ |i − j| = 1};
• Es,B = {((A1,πs(i), A2,i), (A1,πs(j), A2, j)) : i, j ∈ [r] ∧ |i − j| = 1}.

To see that Gs is a permutation multigraph, observe that Gs is the superposition of the following two Hamiltonian paths

• 〈(A1,1, A2,π−1
s (1)

), ((A1,2, A2,π−1
s (2)

), . . . , (A1,r−1, A2,π−1
s (r−1)

), (A1,r, A2,π−1
s (r))〉;

• 〈(A1,πs(1), A2,1), (A1,πs(2), A2,2), . . . , (A1,πs(r−1), A2,r−1), (A1,πs(r), A2,r)〉.

An example permutation multigraph is shown in Fig. 2, with one Hamiltonian path shown above and one below the vertices.
We shall now discuss a mathematical relation between internal boundary counts for states associated with linear parsing

strategies for the synchronous rule s and width values for the permutation multigraph Gs . We first recall the definition of
the width and cutwidth of a graph and a multigraph. Let G = (V , E) be an undirected (multi)graph such that |V | = n > 1.
A linear arrangement of G is a bijective mapping ν from V to [n]. We call positions the integer values of ν . For any
i ∈ [n − 1], the width of G at i with respect to ν , denoted by wd(G, ν, i), is defined as |{(u, v) ∈ E : ν(u) ≤ i < ν(v)}|. In the
case of a multigraph, the size of the previous set should be computed taking into account multiple occurrences. Informally,
wd(G, ν, i) is the number of distinct edges crossing over the gap between positions i and i + 1 in the linear arrangement ν .
To simplify the notation below, we also let wd(G, ν, n) = 0. The cutwidth of G is then defined as

cw(G) = min
ν

max
i∈[n]

wd(G, ν, i) ,

where ν ranges over all possible linear arrangements of G . The cutwidth of the multigraph of Fig. 2 is six, which is achieved
between (A1,3, A2,6) and (A1,4, A2,3) in the linear arrangement shown.

Let us now consider synchronous rule s in (8) and the associated permutation πs , and let σs be some linear parsing
strategy defined for s. The linear arrangement associated with σs is the linear arrangement νs for permutation multigraph
Gs = (V s, Es) defined as follows. For each i ∈ [r], νs((A1,i, A2,π−1

s (i))) = k if and only if σs(k) = (A1,i, A2,π−1
s (i)). The following

relation motivates our investigation of the cutwidth problem for permutation multigraphs in the remaining part of this
section.

P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356 1341
Fig. 3. The
[3,6] grid (left), whose cutwidth is 4, and the composed grid �[6,6,3,6] (right) with grids L, M and R shaded.

Lemma 1. Let s be a synchronous rule with r > 2 linked nonterminals, and let σs be a linear parsing strategy for s. Let πs and Gs be the
permutation and the permutation multigraph, respectively, associated with s, and let νs be the linear arrangement for Gs associated
with σs . For every i ∈ [r] we have

wd(Gs, νs, i) = ib(πs,σs, i) .

Proof. The lemma follows from the definition of the internal boundary function in (3) and the definition of the permutation
multigraph. The first two terms in (3) count edges from the set Es,A crossing the gap at position i in linear arrangement νs

of Gs , while the second two terms in (3) count edges from the set Es,B . �
Note that Lemma 1 directly implies the relation cw(Gs) = minσ maxi∈[r] ib(πs, σ , k).
In the rest of the present section we investigate the permutation multigraph cutwidth problem, or PMCW for short. An

instance of PMCW consists of a permutation multigraph G and an integer k, and we have to decide whether cw(G) ≤ k. We
show that the PMCW problem is NP-complete. We reduce from the minimum bisection width problem, or MBW for short.
The MBW problem consists of deciding whether, given a graph G and an integer k, there is a partition of the nodes of G
into two equal size subsets V 1 and V 2, such that the number of edges with one endpoint in V 1 and one endpoint in V 2 is
not greater than k. It is known that the MBW problem is NP-complete even when restricted to cubic graphs (graphs where
every vertex has three edges) with no multi-edges and no self-loops [23]. We use this variant of the MBW problem in our
reduction. Our proof that the PMCW problem is NP-complete is a modification of the proof reported in [24, Theorem 4.1,
p. 434], showing that the problem of deciding whether an undirected graph has (modified) cutwidth not greater than a
given integer is NP-complete for graphs with maximum vertex degree of three.

3.2. Construction of permutation multigraph G ′

Throughout the rest of this section, we let G = (V , E) be a cubic graph where V = {v1, . . . , vn} is the set of its vertices.
Note that n > 1 must be even. We also let k be an arbitrary positive integer. We construct a permutation multigraph G ′
and an integer k′ such that 〈G, k〉 is a positive instance of MBW if and only if 〈G ′, k′〉 is a positive instance of PMCW (this
statement will be shown in Sections 3.3 and 3.4).

Let H and W be positive integers. We will make use of a grid gadget X =
[H, W] with H rows and W columns; for an
example, see the left part of Fig. 3. More precisely, for any h ∈ [H] and for any w ∈ [W], the grid X includes a node xh,w .
Moreover, for any h ∈ [H] and for any w ∈ [W − 1], there is an edge

(
xh,w , xh,w+1

)
, and, for any h ∈ [H − 1] and for any

w ∈ [W], there is an edge
(
xh,w , xh+1,w

)
. It is known that, for any H and W greater than 2, cw(X) = min{H +1, W +1} [25].

For positive integers Hl , Wl , Hm , and Wm with Hl > Hm , we will also exploit a composed grid �[Hl, Wl, Hm, Wm],
which is formed by combining two grid gadgets L =
[Hl, Wl] and R =
[Hl, Wl] with a grid gadget M =
[Hm, Wm], as
shown in the right part of Fig. 3. The nodes of L, R , and M will be denoted as lh,w , rh,w , and mh,w , respectively. Besides
the edges of the three grids L, R , and M , for any h ∈ [Hm], the composed grid �[Hl, Wl, Hm, Wm] also includes the edges (
lh,Wl ,mh,1

)
and

(
mh,Wm , rHl−Hm+h,1

)
.

The target graph G ′ consists of several grid gadgets, as shown in Fig. 4. More specifically, it has one grid Gi =
[2n4 + 1,

6n4], i ∈ [n], for each of the n nodes of the source cubic graph G . The nodes of Gi will be denoted as gh,w
i . In addition, G ′

has a composed grid S = �[3n4 + 1, 12n4, 2n4 + 1, 8n4 + 1]. For each grid Gi , i ∈ [n], we add to G ′ a sheaf of 4n2 edges
connecting distinct nodes in Gi to 4n2 distinct nodes of M , as will be explained in detail below. In addition, for each edge
(vi, v j) ∈ E with i < j, we add to G ′ two edges, each edge connecting a node in Gi with a node in G j . The choice of all of
the above connections will be done in a way that guarantees that G ′ is a permutation multigraph. The large grids L and R
and the wide sheaves connecting each Gi to M are designed to force half of the Gi grids to fall on either side of M in any
layout of optimal cutwidth. This in turn guarantees that we have a layout of low cutwidth only if the source graph G has a
bisection of small width.

Before providing a mathematical specification of G ′ , we informally summarize the organization of the edges of G ′ con-
necting the M and Gi grids. When scanning the columns of M from left to right, we will have a first column that has no
connection to any of the Gi components, followed by a first block of 4n2 columns with connections to the G1 component,

1342 P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356
Fig. 4. Overview of the graph G ′ constructed from a graph G consisting of four vertices v1, v2, v3, v4, and three edges (v1, v2), (v2, v3), (v3, v4).

Fig. 5. Block 1 is composed by all columns of Gi connected with M as in the pattern displayed by the two green columns at the left of position 4n2 −3 +2d<
i .

Block 3 is composed by all columns of Gi starting with the column at position 4n2 − 3 + 2d<
i and extending to the right.

followed by a second block of 4n2 columns with connections to G2, and so on up to the n-th block of 4n2 columns with
connections to Gn . The remaining columns of M do not have any connection with the Gi components.

Looking at one of the grids Gi , the columns are organized into three blocks, when scanning from left to right.

• Block 1 (left portion of Gi in Fig. 5): The first column has two edges connecting to the M component, one from its top
vertex and one from its bottom vertex, and the remaining columns in the block each have a single edge connecting to
M from the column’s bottom vertex. This block extends from the column with index 1 to column 4n2 − 4 − 2d>

i , where
d>

i denotes the number of edges of G of the form (vi, v j) with j > i, that is, the number of “forward” neighbors of i.
The block therefore contains a total of 4n2 − 3 − 2d>

i edges connecting Gi to M .
• Block 2 (Fig. 6): This block represents the edges from the source graph G . For each edge (vi, v j) of G such that i < j,

we have two columns each having a single edge connecting to M from the column’s bottom vertex, and a single edge
connecting to the grid G j from the column’s top vertex (such as the column labeled γi,h in Fig. 6). This is followed by
two columns for each edge (vi, v j) in G such that j < i, with each column having its bottom vertex connected to the
grid G j and no connection to M (such as the column labeled γ ′

i,h in Fig. 6). Block 2 extends from column 4n2 − 3 − 2d>
i

to column 4n2 − 4 + 2d<
i , where d<

i denotes the number of edges of G of the form (vi, v j) with j < i, that is, the
number of “backward” neighbors of i. The number of edges connecting Gi to M is 2d>

i , and the number of edges
connecting Gi to grids G j with j
= i is 2d>

i + 2d<
i = 6, where the equality follows from the fact that G is a cubic graph.

• Block 3 (right portion of Gi in Fig. 5): The first column has the top vertex connected to M . All remaining columns of Gi
do not have connections with M , with the exception of the rightmost column, which has two edges connecting its top
and bottom vertices to M . This block extends from the column with index 4n2 − 3 + 2d<

i to the column with index 6n4,
and the block contains 3 edges connecting Gi to M .

Altogether, the above blocks provide a total number of edges connecting Gi and M equal to (4n2 −3 −2d>
i) +2d>

i +3 = 4n2,
as anticipated.

To define the edges in each of these three blocks, we need to introduce some auxiliary notation. In what follows, for
every i ∈ [n], we denote by N<

i the set of “backward” neighbors of vi , that is, N<
i = { j : (vi, v j) ∈ E ∧ j ∈ [i − 1]}. Similarly,

the set of “forward” neighbors of vi is the set N>
i = { j : (vi, v j) ∈ E ∧ j ∈ [n] \ [i]}. We then have d<

i = |N<
i | and d>

i = |N>
i |.

As already observed, we must have d>
i + d<

i = 3 since G is a cubic graph. For every i ∈ [n] and j ∈ [i] we also define
d<, j

i = |N<
i ∩ [j − 1]|; in words, d<, j

i is the number of backward neighbors of vi having index strictly smaller than j. Note
that d<,i = d< for every i ∈ [n].
i i

P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356 1343
Fig. 6. Block 2 is composed by all columns of Gi representing connections between grids of G ′ that correspond to edges of the source graph G .

For every i ∈ [n] and h ∈ [d>
i], we denote by nh

i the index of the h-th forward neighbor of vi from left to right: formally,
nh

i is the value j such that j ∈ N>
i and |[j − 1] ∩ N>

i | = h − 1. Finally, for every i ∈ [n + 1], we define σi = 4n2(i − 1) + 1. This
quantity will be used in the construction of G ′ below as an offset when locating the index of the next available column,
from left to right, in the M component. For instance, we have σ1 = 1 since in M the first block with 4n2 connections to G1
starts at column 2, as already anticipated.

We are now ready to specify precisely each of the three blocks of edges connecting each Gi to the other grids.

Block 1 For any h ∈ [
2n2 − 2 − d>

i

]
, G ′ includes the edges (see Fig. 5)

(
m1,αi,h , g2n4+1,2h−1

i

)
,
(

g2n4+1,2h
i ,m1,αi,h+1

)
,

where αi,h = σi + (2h − 1). In addition to the above edges, there is one edge connecting node g1,1
i with M that is associated

with Block 1. However, in order to simplify the presentation, it is more convenient to list this edge under Block 3 below.

Block 2 We now add to G ′ the edges that are derived from the original graph G . For every i ∈ [n] and for every h ∈ [
d>

i

]
,

that is, for any forward edge (vi, vnh
i
) in G , G ′ includes the four edges (see Fig. 6)

(
m1,βi,h , g

2n4+1,γi,h
i

)
,

(
g

1,γi,h
i , g

2n4+1,γ ′
i,h

nh
i

)
,

(
g

2n4+1,γ ′
i,h+1

nh
i

, g
1,γi,h+1
i

)
,

(
g

2n4+1,γi,h+1
i ,m1,βi,h+1

)
,

where βi,h = σi + 4n2 − 4 − 2d>
i + (2h − 1), γi,h = 4n2 − 4 − 2d>

i + (2h − 1), and γ ′
i,h = 4n2 − 3 + 2d<,i

nh
i

. Observe that

βi,1 = αi,2n2−2−d>
i

+ 1, so that the two runs of edges defined by Blocks 1 and 2, connecting grid Gi to grid M , are one next
to the other. We have thus added to G ′ , for any edge (vi, v j) of G , two edges connecting the two grids Gi and G j , and two
edges connecting grid Gi to grid M .

Combining Blocks 1 and 2 together, we have added a total of 4n2 − 4 edges from grid Gi to grid M , for every i ∈ [n].

Block 3 Finally, G ′ includes the four edges (see Fig. 5)(
m1,σi+1−3, g

1,4n2−3+2d<
i

i

)
,
(

g1,6n4

i ,m1,σi+1−2
)

,
(

m1,σi+1−1, g1,1
i

)
,
(

g2n4+1,6n4

i ,m1,σi+1
)

.

Combining all three blocks, we have a total of 4n2 edges connecting Gi to M . We further note that each vertex of Gi has
at most one edge connecting to vertices outside Gi ; this property will play an important role later in our proofs.

So far we have specified G ′ as if it were a (plain) graph; however, G ′ is a permutation multigraph. The coloring of the
edges of G ′ , that is, the definition of the two edge sets A and B , is specified below by describing the Hamiltonian path of
red edges and the Hamiltonian path of green edges. Some of the edges specified above are included in both the red and
green paths; these are double edges in the multigraph G ′ .

Red path The red path is schematically represented in Fig. 7. The path starts from l3n4+1,1 (that is, the bottom left corner
of L) and travels horizontally through the n4 bottom lines of L, alternating the left-to-right and the right-to-left directions
and moving upward, until it reaches node l2n4+1,1 coming from previous node l2n4+2,1. Then the path continues traveling
horizontally through the three components L, M and R , once again alternating the horizontal directions. The path eventually
reaches the node m1,1 coming from previous node l1,12n4

, since 2n4 + 1 is always odd. At this point, the red path continues
horizontally, from left to right, until it arrives at some node m1,σi+1−1, i ∈ [n]; let us call xi such a node. Observe that xi is

1344 P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356
Fig. 7. The red path across graph G ′ . The displayed pattern that connects grid M with grid Gi is repeated for every i ∈ [n].

Fig. 8. The green path across graph G ′ . Grid M is connected with grid Gi , i ∈ [n], through three different patterns, displayed in the figure, one for each of
the three blocks of Gi .

the penultimate node in the first row of M , from left to right, that is connected with a node in the leftmost column of Gi
(see Fig. 5).

Next, the path moves one step forward from xi to the leftmost column of Gi , reaching node g1,1
i . Now, the path starts

traveling horizontally from the first to the last row of Gi , alternating the left-to-right direction with the right-to-left direc-

tion, until it arrives at g2n4+1,6n4

i . Afterward, the red path returns to M by reaching the node to the right of xi . The path
then continues horizontally from left to right, repeating the process of visiting the components Gi for i ∈ [n], as described
above, eventually reaching node rn4+1,1 from previous node m1,8n4+1. The path can now visit the remaining nodes of R by
traveling horizontally and alternating the left-to-right and the right-to-left directions, until it reaches node r1,12n4

, where
the path stops.

Green path The green path is schematically represented in Fig. 8. The path starts from l1,1 (that is, the top left corner of L).
It travels vertically, alternating the top-to-bottom direction with the bottom-to-top direction and moving rightward, until it
reaches node l1,12n4

from previous node l2,12n4
. The path then moves to m1,1, travels vertically down to m2n4+1,1, moves

one step to the right to node m2n4+1,2 and again travels vertically up to m1,2. From now on, as soon as there is an edge
exiting M and reaching some yet unvisited node in the last row of some grid Gi , the green path follows such an edge and
travels vertically through the current column in Gi , until it reaches a node xi in the first row. We need to distinguish two
cases for xi .

• If xi has no edge exiting Gi , then the green path makes a step to the vertex to the right of xi . This means that we are
in Block 1 of Gi .

P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356 1345
• On the other hand, if xi has an edge exiting Gi , then the green path follows this edge thus reaching a node in the last
row of a grid G j , for some j > i (as in Fig. 5). This means that we are visiting the first part of Block 2 of Gi , where edges
(vi, v j) in the source graph G with j > i are encoded by our construction. The path then travels vertically through two
columns in G j , until it reaches the node in the bottom row of the second column, and, from there, it returns to Gi at
the vertex to the right of xi .

From the vertex to the right of xi , the green path continues vertically down in the current column of Gi . Upon reaching
the bottom vertex of this column, the path exits Gi and comes back to some node in the top row of M . Such node is placed
in the column of M adjacent at the right to the last column of M that the green path had visited before its exit to Gi . Then
the green path proceeds downward, along the current column of M , it moves to the next column at the right, and alternates
its direction to reach the node in the first row of M . The above process is then iterated, until all the columns in Blocks 1
and 2 of the current grid Gi have been visited.

When the green path reaches node m1,σi+1−3, it exits M and reaches the top node in the column of Gi with index
4n2 − 3 + 2d<

i (see Fig. 5), entering for the first time Block 3 of the current grid Gi . We remark that this step represents a
switch in the construction of the green path, in the following sense. Blocks 1 and 2 of Gi are visited by the green path in
such a way that odd-indexed columns are visited bottom-to-top and even-indexed columns are visited top-to-bottom. On
the other hand, when Block 3 of Gi is entered, we revert the previous pattern in such a way that odd-indexed columns are
visited top-to-bottom and even-indexed columns are visited bottom-to-top.

Once Block 3 of Gi is entered, the green path travels vertically through its columns, by alternating direction and moving
rightward, never leaving Gi at its intermediate nodes. In this way the path eventually reaches the node g1,6n4

i , at which
point it can return to M , reaching the topmost node in the column with index σi+1 − 2 (see again Fig. 5).

At this point the columns with indices σi+1 − 2, σi+1 − 1, and σi+1 are visited vertically, alternating the top-to-bottom
direction with the bottom-to-top direction and moving rightward. After this step, the green path is located at the bottom of
column σi+1 + 1, coming from the bottom of column σi+1, and it moves upward to the first line of M , where the path is
ready to start visiting the next grid Gi+1. This is done by iterating all of the process described above.

When all of the grids Gi have been visited, there are no more edges exiting M . The path then continues vertically,
alternating the top-to-bottom direction with the bottom-to-top direction and moving rightward, until it reaches node
m2n4+1,8n4+1, which forms the lower-right corner of M . The path can now move one step to the right to node r3n4+1,1,
and visit the remaining nodes of R by traveling vertically and alternating the vertical direction. In the end, the green path
ends at node r3n4+1,12n4

.

Double edges Some edges are included in both the red path and the green path. These are double edges in G ′ , and count
double when computing the width function. Double edges occur on the first and the last columns of the various component
grids Gi , L, M , and R , where the red path crosses from one row to the next, and on the upper and lower rows of these
grids, where the green path crosses from one column to the next. There are no duplicate edges in the interior of any grid.
There are also no duplicate edges between any two grids, with the only exceptions of the points where the green path
connects L to M , and the point where the green path connects M to R .

To be used later, we need to establish exact values for the cutwidth of the multigraph grids Gi , L, M , and R . In order to
do so, we define a multigraph grid Xm , which consists of the (regular) grid X =
[H, W] with the following double edges

• from x1,i to x1,i+1, for any i odd in [W − 1]
• from xH,i to xH,i+1, for any i even in [W − 1]
• from xi,1 to xi+1,1, for any i odd in [H − 1]
• from xi,W to xi+1,W , for any i even in [H − 1].

The set of edges of the grid X is contained in the set of edges of the multigraph grid Xm . Hence the cutwidth of Xm is at
least min{H + 1, W + 1}, which is the cutwidth of X as reported at the beginning of Section 3.2. Without loss of generality,
let us assume H ≤ W , and let us consider the linear arrangement ν of Xm such that, for any xi, j , ν(xi, j) = (j − 1)H + i if j
is even, and (j − 1)H + H − i otherwise. It is easy to verify that ν induces a maximum width equal to H + 1. This proves
that the cutwidth of the multigraph grid Xm is still min{H + 1, W + 1}.

Observe that the multigraph grid R which we use in G ′ has a set of edges which is a proper subset of the set of edges
of Xm , for appropriate values of H and W . The subset relation follows from the fact that R does not have double edges
at the portion of its leftmost column that connects with M . Similarly, the multigraph grid L has a set of edges which is a
proper subset of the set of edges of an upside-down instance of Xm . Thus both L and R have cutwidth min{H + 1, W + 1}.
Consider now grid M . The set of its edges is a proper subset of the edges of an upside-down instance of Xm . This follows
from the fact that M does not have double edges at its leftmost and rightmost columns, where it connects with L and R ,
respectively. Furthermore, the green path through M sometimes leaves the first row of M to connect to some grid Gi , as
depicted in Fig. 8. Thus we can claim a cutwidth of min{H + 1, W + 1} for this grid as well. It is easy to verify that each
of the green paths through grids L, M , and R corresponds to a linear arrangement that realizes the maximum width of
min{H + 1, W + 1} for these grids.

1346 P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356
Finally, each grid Gi can be split into two parts. The first part consists of what we have called Blocks 1 and 2, and the
second part consists of Block 3. The first part is a grid with a proper subset of the edges of an upside-down instance of Xm ,
for appropriate values of H and W . This is so because the green path at Block 2 repeatedly leaves Gi to connect to three
other grids G j , j
= i, irrespective of whether these connections are backward or forward in the source graph G . The second
part of Gi is an instance of Xm , for appropriate values of H and W . The difference between these two parts is due to the
fact that, when moving from Block 2 to Block 3, the green path switches to a “reversed” pattern, as already observed in
this section. An optimal linear arrangement for Gi can be defined by following the green path within each column of this
grid, and moving from one column to the next in a left to right order. The maximum width in the first part of Gi , with
the exception of the last column, is then min{H + 1, W + 1}, and this is also the maximum width in the second part, with
the exception of the first column. It is not difficult to verify that, even for the positions corresponding to the two adjacent
columns above, this arrangement induces a maximum width of min{H + 1, W + 1}. We have thus found that all of the grid
components in G ′ have cutwidth of min{H + 1, W + 1}.

We conclude our construction by setting k′ = 3n4 + 2n3 + 2k + 2 in the target instance 〈G ′, k′〉 of the PMCW problem.

3.3. MBW to PMCW

We show here that if G admits a partition of its nodes into two equal size subsets, inducing a cut of size at most k, then
G ′ admits a linear arrangement ν ′ whose maximum width is at most k′ .

Lemma 2. If 〈G, k〉 is a positive instance of MBW then 〈G ′, k′〉 is a positive instance of PMCW.

Proof. We specify a linear arrangement of G ′ having width no greater than k′ at each position. We arrange the vertices
within each grid component Gi , as well as within grid components R , M , and L, to be contiguous to one another. Within
each grid component, we arrange the vertices in column-major order proceeding through the columns from left to right;
within each column, we place vertices in the order specified by the green path of G ′ . This is the same linear arrangement
for each multigraph grid that has been presented in the paragraph “Double Edges”, at the end of Section 3.2. Disregarding
edges that are not internal to the grid itself, this results in a maximal width of H + 1 for each individual grid, as already
discussed.

We concatenate the linear arrangements for the grid components in a manner corresponding to a solution of the MBW
problem given by 〈G, k〉. To this end, let V 1 and V 2 be the sets in a partition of the vertices in G such that |V 1| = |V 2| and
at most k edges in G have one endpoint in V 1 and the other endpoint in V 2.

Our linear arrangement begins with the grid components Gi for all i such that vi ∈ V 1, in any order, then concatenates
components L, M , and R , and finally adds Gi for all i such that vi ∈ V 2, in any order. Each position in the linear arrangement
within component L has at most 3n4 +2 edges internal to L, since the height of L’s grid is 3n4 +1. In addition, each position
within L has 4n2 edges connecting M to each of the n

2 components Gi to the left of L, for a total of 2n3 edges. Finally,
each position within L has at most 2k edges connecting components Gi and G j for i, j such that vi ∈ V 1, v j ∈ V 2 and
(vi, v j) ∈ E . Thus, the total width at each position within L is at most 3n4 + 2 + 2n3 + 2k = k′ . The same analysis applies to
each position within R .

At all other positions in the linear arrangement, we have smaller width. This is because, for positions within each Gi ,
we have at most 2n4 + 2 edges from the grid Gi itself, at most 2n3 edges from M to any G j standing on the same side
as Gi with respect to M , and no more than 3n edges from some G j to some Gh , since the source graph G is cubic and
each connection between two vertices in G corresponds to two arcs connecting the associated grids in G ′ . For positions
within M , we have at most 2n4 + 2 edges internal to M , at most 4n3 edges from M to some Gi , and 2k < 3n edges from
some Gi to some G j . Finally, positions between grid components have at most 2n3 edges from M to some Gi , at most 3n
edges from some Gi to some G j , and, in the case of positions between M and either L or R , 2n4 + 1 edges connecting M
to either L or R . Thus, all positions outside grids L and R have a width bound of 2n4 +O(n3).

We conclude that the maximum width of the linear arrangement is that of the L and R components, 3n4 + 2 + 2n3 +
2k = k′ . Then 〈G ′, k′〉 is a positive instance of PMCW. �
3.4. PMCW to MBW

In this section we shall prove that if G ′ admits a linear arrangement ν ′ whose maximum width is at most k′ , then our
source graph G admits a partition into two equal size subsets of nodes inducing a cut of size at most k. To this aim, we
need to develop several intermediate results. Informally, our strategy is to investigate the family of linear arrangements for
G ′ having maximum width bounded by k′ + n2. We show that, in these arrangements, two important properties hold for
the grid components L, M, R and Gi , i ∈ [n], of G ′ , described in what follows.

• The first property states that, for each grid component, a subset of its nodes must appear all in a row in the linear
arrangement. We call such a subset the kernel of the grid. In other words, nodes from different kernels cannot be
intermixed, and each linear arrangement induces a total order among the kernels. In addition, the kernels of the grids L,

P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356 1347
M , R must appear one after the other in the total order, and the kernels of the grids Gi can only be placed to the left
or to the right of the kernels of L, M , R . We therefore call L, M , R the middle grids.

• We illustrate the second property by means of an example. Consider one of the middle grids, say L. Assume that, under
our liner arrangement, there is a grid X with kernel to the left of L’s kernel and a grid Y with kernel to the right of L’s
kernel. Assume also some edge e of G ′ , connecting a node x from X with a node y from Y . If x and y are in the kernels
of their respective grids, edge e must cross over L’s kernel, contributing one unit to the width of G ′ at each gap i within
L’s kernel. If x and y are not in the kernels of their respective grids, it is possible to “misplace” one of these two nodes,
say x, moving it to the opposite side with respect to L’s kernel, in such a way that e no longer contributes to the width
at i. The second property states that, if we do this, we will bring new edges, internal to grid X , into the count of width
at i. This means that, if our goal is the one of optimizing the width at i, we will have no gain in misplacing node x or
node y.

With the two properties above, we can then show that exactly n
2 of the Gi grids must be placed to the left of the middle

grids L, M, R , and all of the remaining Gi grids must be placed to the right of the middle grids, which eventually leads to
the fact that if 〈G ′, k′〉 is a positive instance of PMCW then 〈G, k〉 is a positive instance of MBW.

We start with some preliminary results, needed to prove the first property above. Let V 1 and V 2 be sets of
nodes from some graph with V 1 ∩ V 2 = ∅, and let E be the set of edges of the graph. We write δ (V 1, V 2) =
|{(u, v) : (u, v) ∈ E ∧ u ∈ V 1 ∧ v ∈ V 2}|.

Lemma 3. For any grid X =
[H, W] with W ≥ 2H + 1 and for any partition of its nodes in two sets V 1 and V 2 with |V 1| ≥ H2 and
|V 2| ≥ H2 , we have δ (V 1, V 2) ≥ H.

Proof. We distinguish the following three cases.

(i) For each h with 1 ≤ h ≤ H there exist wh,1 and wh,2 with 1 ≤ wh,1, wh,2 ≤ W such that xh,wh,1 ∈ V 1 and xh,wh,2 ∈ V 2.
This implies that, for each row of the grid, there exists at least one edge connecting one node in V 1 to one node in V 2.
Hence, δ (V 1, V 2) ≥ H .

(ii) There exists h with 1 ≤ h ≤ H such that, for any w with 1 ≤ w ≤ W , xh,w ∈ V 1. In this case, for each w with
1 ≤ w ≤ W , either there exists hw with 1 ≤ hw ≤ H such that xhw ,w ∈ V 2 (and, hence, the w-th column of X con-
tributes to δ (V 1, V 2) by at least one unit) or else, for all h with 1 ≤ h ≤ H , xh,w ∈ V 1. This latter case can happen at
most

⌊ |V 1|
H

⌋
times: this implies that the former case happens at least W −

⌊ |V 1|
H

⌋
times. Hence,

δ (V 1, V 2) ≥ W −
⌊ |V 1|

H

⌋
≥ W H − |V 1|

H
= |V 2|

H
≥ H,

where the last inequality is due to the fact that |V 2| ≥ H2.
(iii) There exists h with 1 ≤ h ≤ H such that, for any w with 1 ≤ w ≤ W , xh,w ∈ V 2. We can deal with this case similarly to

the previous one.

The lemma thus follows. �
Corollary 1. For any grid X =
[H, W] with W ≥ 2H + 1, for any linear arrangement ν of X, and for any i with H2 ≤ i ≤ H W − H2 ,
wd(X, ν, i) ≥ H.

Proof. The result follows by observing that, for any i with H2 ≤ i ≤ H W − H2, we can define a partition of the nodes of the
grid by including in V 1 all the nodes x such that ν(x) ≤ i and by including in V 2 all the other nodes. Since this partition
satisfies the hypothesis of the previous lemma, we have that wd(X, ν, i) ≥ H . �

Let ν be an arbitrary linear arrangement for the nodes of G ′ . We denote by νi (respectively, νL , νM , and νR) the linear
arrangement of Gi (respectively, L, M , and R) induced by ν . Moreover, for any node x of Gi (respectively, L, M , and R) and
the associated position p = ν(x) under ν , we denote by pi = νi(x) (respectively, pL = νL(x), pM = νM(x), and pR = νR(x))
the corresponding position of x under νi (respectively, νL , νM , and νR).

We now introduce the notion of kernel, which plays a major role in the development of our proofs below. Consider any
linear arrangement ν of G ′ and any of the grids Gi . The kernel K (ν)

i relative to ν and Gi is a set of positions p of the
nodes of G ′ under ν such that

(
2n4 + 1

)2 ≤ pi ≤ (
6n4

) (
2n4 + 1

) − (
2n4 + 1

)2
. Corollary 1 implies that for any p ∈ K (ν)

i ,
wd(Gi, νi, pi) ≥ 2n4 + 1.

Similarly, we define the kernel K (ν)
L (respectively, K (ν)

R) as the set of positions p of the nodes of G ′ under ν such that (
3n4 + 1

)2 ≤ pL, pR ≤ (
12n4

) (
3n4 + 1

) − (
3n4 + 1

)2
. Again, Corollary 1 implies that for any p ∈ K (ν)

L (respectively, p ∈ K (ν)
R),

we have wd(L, νL, pL) ≥ 3n4 + 1 (respectively, wd(R, νR , pR) ≥ 3n4 + 1). We define the kernel K (ν) as the set of positions p
M

1348 P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356
of the nodes of G ′ under ν such that
(
2n4 + 1

)2 ≤ pM ≤ (
2n4 + 1

) (
8n4 + 1

) − (
2n4 + 1

)2
. Corollary 1 implies that for any

p ∈ K (ν)
M we have wd(M, νM , pM) ≥ 2n4 + 1.

Observe that, for any i ∈ [n], we have |K (ν)
i | = (2n4 +1)(6n4) −2((2n4 +1)2) +1 ≥ 3n8 for n sufficiently large. Furthermore,

for n sufficiently large, we have |K (ν)
L | = |K (ν)

R | = (3n4 + 1)(12n4) − 2((3n4 + 1)2) + 1 ≥ 17n8, and |K (ν)
M | = (2n4 + 1) ×

(8n4 + 1) − 2(2n4 + 1)2 + 1 ≥ 7n8.
Recall that in our construction in Section 3.2 we have set k′ = 3n4 + 2n3 + 2k + 2. From now on, we denote by ν ′ any

linear arrangement of G ′ having maximum width at most k′ + n2. For any two sets of positive integers A and B , we will
write A < B if each element of A is smaller than every element in B .

Lemma 4. Let ν ′ be a linear arrangement of G ′ having maximum width at most k′ + n2 , and let K(ν ′) = {K (ν ′)
L , K (ν ′)

M , K (ν ′)
R } ∪ {K (ν ′)

i :
i ∈ [n]}. For any pair of kernels K ′, K ′′ ∈K(ν ′) with K ′
= K ′′ , either K ′ < K ′′ or K ′′ < K ′ .

Proof. We first consider the kernels in {K (ν ′)
i : i ∈ [n]}. Let p, p′ ∈ K (ν ′)

i be two positions such that pi = p′
i − 1. Assume

that there exists a position q ∈ K (ν ′)
j , j
= i, such that p < q < p′ . We know (by Corollary 1 and definition of kernel) that

wd(Gi, ν ′
i , pi) ≥ 2n4 + 1 and wd(G j, ν ′

j, q j) ≥ 2n4 + 1. Since Gi and G j have disjoint edge sets, and since in between p and
q there is no position associated with a node from Gi , we conclude that wd(G ′, ν ′, q) ≥ 4n4 + 2 > k′ + n2, for n sufficiently
large. This is in contrast with our assumption about the linear arrangement ν ′ .

Essentially the same argument can be used when we consider all of the kernels in K(ν ′) . �
Intuitively, the above lemma states that in any linear arrangement ν ′ of G ′ with maximum width at most k′ + n2, the

kernels of the grid components of G ′ cannot overlap one with the other. As a consequence, ν ′ induces an ordering of the
nodes of the source graph G which is determined by the positions of the corresponding kernels.

Lemma 5. Let ν ′ be a linear arrangement of G ′ having maximum width at most k′ + n2 . Then either K (ν ′)
L < K (ν ′)

M < K (ν ′)
R or K (ν ′)

R <

K (ν ′)
M < K (ν ′)

L .

Proof. Assuming K (ν ′)
L < K (ν ′)

R , we show below that, under ν ′ , kernel K (ν ′)
R cannot be placed in between kernels K (ν ′)

L

and K (ν ′)
M . Essentially the same argument can be used to show that kernel K (ν ′)

L cannot be placed in between kernels K (ν ′)
M

and K (ν ′)
R .

Assume that we have K (ν ′)
L < K (ν ′)

R < K (ν ′)
M . Since the number of nodes of L which lie to the left of K (ν ′)

R is at least equal
to 17n8, and since at most n4(12n4) nodes of L can belong to its last n4 rows, we have that at least 5n8 nodes of the first
2n4 + 1 rows of L lie to the left of K (ν ′)

R . On the other hand, since at least 7n8 nodes of M belong to K (ν ′)
M , we have that at

least 7n8 nodes of M lie to the right of K (ν ′)
R .

Let us now consider the grid X =
[2n4 + 1, 12n4 + 8n4 + 1] composed by the (2n4 + 1) upper rows of L and all of
the rows of M . We apply Lemma 3 to X . If we define V 1 (respectively, V 2) as the set of nodes of X contained in K (ν ′)

L

(respectively, K (ν ′)
M), we have that both |V 1| and |V 2| are greater than (2n4 + 1)2. Then we have that at least 2n4 + 1 edges

internal to X cross over all positions (gaps) of K (ν ′)
R . From the definition of kernels, there are at least 3n4 + 1 edges internal

to K (ν ′)
R crossing over each position of K (ν ′)

R . Adding these together, we have at least 5n4 + 2 edges at each position of K (ν ′)
R ,

which is greater than k′ + n2 (for n sufficiently large).

The case of K (ν ′)
R < K (ν ′)

L can be dealt with in a very similar way and the lemma thus follows. �
In the following, without loss of generality, we will always assume that K (ν ′)

L < K (ν ′)
M < K (ν ′)

R . By applying essentially the
same argument from the proof of Lemma 5, we can show that K (ν ′)

i cannot lie between K (ν ′)
L and K (ν ′)

M or between K (ν ′)
M

and K (ν ′)
R , which implies the following result.

Lemma 6. Let ν ′ be a linear arrangement of G ′ having maximum width at most k′ + n2 . For any i ∈ [n], either K (ν ′)
i < K (ν ′)

L or
K (ν ′)

i > K (ν ′)
R .

So far we have seen that kernels always appear in some total order in the linear arrangements we are interested in,
and with the kernels of grids L, M and R all in a row. We move on now with a second property of the family of linear
arrangements we are looking at. As already described above, this property states that, if our goal is the one of optimizing
the width at certain gaps, then misplacing nodes that are not in a kernel does not result in any gain. We first provide two
results about general grids, and then come back to G ′ and our linear arrangements.

P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356 1349
Lemma 7. Let X =
[H, W] and let S be a set of nodes of X such that |S| ≤ W (H − e − 2) with e ≥ 0 and there exists w with
1 ≤ w ≤ W such that, for any h with 1 ≤ h ≤ H, xh,w ∈ S (in other words S contains an entire column of the grid). Then, δ(S, S)

contains at least e + 2 edges in distinct rows, where S denotes the set of nodes of the grid which do not belong to S.

Proof. For each h with 1 ≤ h ≤ H , either there exists w with 1 ≤ w < W such that (xh,w ∈ S ∧ xh,w+1 ∈ S) ∨ (xh,w ∈
S ∧ xh,w+1 ∈ S) (in this case, the row contributes at least by one horizontal edge to δ(S, S)), or, for any w with 1 ≤ w ≤ W ,
xh,w ∈ S . This latter case, however, can happen at most

⌊ |S|
W

⌋
times. Since |S| ≤ W (H − e − 2), we have that the first case

happens at least e + 2 times, thus proving the lemma. �
Lemma 8. Let X =
[H, W] and let S be a set of nodes of X such that |S| ≤ W (H − |F | − 2), where F is a subset of the set of nodes
of the first row or of the last row which belong to S. Then, δ(S, S) contains at least |F | edges not included in the first row or in the last
row.

Proof. For each w with 1 ≤ w ≤ W such that x1,w ∈ F ∨ xH,w ∈ F , either there exists h with 1 ≤ h < H such that (xh,w ∈
S ∧ xh+1,w ∈ S) ∨ (xh,w ∈ S ∧ xh+1,w ∈ S) (in this case, the column contributes at least by one vertical edge to δ(S, S)), or,
for any h with 1 ≤ h ≤ H , xh,w ∈ S (that is, S includes the entire w-th column). If this latter case happens at least once,
then we can apply the previous lemma with e = |F |, thus obtaining that δ(S, S) contains at least |F | + 2 horizontal edges
on distinct rows, which implies that δ(S, S) contains at least |F | edges not included in the first row or in the last row.
Otherwise, δ(S, S) contains at least |F | vertical edges: indeed, if x1,w ∈ S and xH,w /∈ S or vice versa, then at least one
vertical edge of the w-th column is in δ(S, S), otherwise at least two vertical edges of this column are in δ(S, S) (since, in
this case, we have both to exit from S and to enter again in S). �

We need to introduce some additional notation. From now on, we denote by l∗ the first gap from left to right occurring
between two vertices of K (ν ′)

L , and we denote by r∗ the first gap from left to right occurring between two vertices of K (ν ′)
R .

For any i ∈ [n], we define the value αi as follows. If K (ν ′)
i > K (ν ′)

L , αi is the number of nodes of the first or of the last
row of Gi whose position under ν ′ is smaller than l∗ and which are endpoints of an edge exiting Gi . Otherwise, αi is the
number of nodes of the first or of the last row of Gi whose position is greater than l∗ and which are endpoints of an edge
exiting Gi . Similarly, we denote by αM the number of nodes of the first row of M whose position is smaller than l∗ and
which are endpoints of an edge exiting M .

Lemma 9. For any linear arrangement ν ′ of G ′ having maximum width at most k′ + n2 and for any i ∈ [n], there exist at least αi
distinct edges within Gi which cross over l∗ .

Proof. First observe that αi ≤ 4n2 + 6 because there are 4n2 edges connecting Gi to M and 6 edges connecting Gi to other
grids G j . We only study the case in which K (ν ′)

i > K (ν ′)
L , since the other case can be proved in the same way.

Let V i be the vertex set of Gi . Let P(Gi) = {p : (ν ′)−1(p) ∈ V i} and let Si = {p : (ν ′)−1(p) ∈ V i ∧ p < l∗} (clearly, |Si | ≥ αi).
Since |P(Gi)| = 12n8 + 6n4 ≤ 13n8 and |K (ν ′)

i | ≥ 3n8, and since Si is a subset of P(Gi) − K (ν ′)
i , we are guaranteed that

|Si | ≤ 10n8. Because 10n8 ≤ (6n4)(2n4 + 1 −αi − 2) (assuming n ≥ 4) we have the precondition |Si | ≤ (6n4)(2n4 + 1 −αi − 2)

that we need in order to apply Lemma 8. Lemma 8 implies that there exist at least |αi | distinct edges connecting Si to Si

(that is, edges within Gi): these edges clearly cross over l∗ . �
Similarly, we can prove the following result.

Lemma 10. For any linear arrangement ν ′ of G ′ having maximum width at most k′ + n2 , there exist at least αM distinct edges within
M which cross over l∗ .

From now on, let κ(ν ′)
l be the number of kernels K (ν ′)

i such that K (ν ′)
i < K (ν ′)

L and let κ(ν ′)
r be the number of kernels K (ν ′)

i

such that K (ν ′)
i > K (ν ′)

R . Let also τ (ν ′) denote the number of edges (vi, v j) in G such that K (ν ′)
i < K (ν ′)

L and K (ν ′)
j > K (ν ′)

L .

Lemma 11. Let ν ′ be a linear arrangement of G ′ having maximum width at most k′ + n2 . There exist at least κ(ν ′)
l · (4n2) + 2τ (ν ′)

distinct edges which cross over l∗, not including edges internal to L or R.

Proof. We define I(ν
′)

L as the set of integers i ∈ [n] such that K (ν ′)
i < K (ν ′)

L . Thus we have |I(ν ′)
L | = κ

(ν ′)
l . We also define J (ν ′)

L

as the set of integers j ∈ [n] such that K (ν ′)
j > K (ν ′)

L and there exists i ∈ I(ν
′)

L with (vi, v j) ∈ E , where E is the set of edges
of G .

1350 P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356
For each i ∈ I(ν
′)

L , let us consider the 4n2 distinct edges connecting Gi to M , along with each pair of edges connecting Gi

to each grid G j such that K (ν ′)
j > K (ν ′)

L and (vi, v j) ∈ E . Let also E be the set of all these edges, for every i ∈ I(ν
′)

L . Thus we
have |E | = κl · (4n2) + 2τ (ν ′) .

Consider now an arbitrary edge e ∈ E . Let x be one of the two endpoints of e, and assume that x belongs to some grid X
among the n +3 grid components of G ′ . We say that x is misplaced if, under ν ′ , the kernel of X is placed at some side with
respect to l∗ and x is placed at the opposite side. From the definition of E , it is easy to see that if none of the endpoints of
e are misplaced, or else if both of the endpoints of e are misplaced, then e must cross over l∗ . On the other hand, if exactly
one of the endpoints of e is misplaced, then e does not cross over l∗ .

Consider then the set of all the misplaced endpoints of some edge in E . By construction of G ′ , these endpoints are
distinct and belong to the first row or to the last row of some grid component of G ′ . Furthermore, the edges in E are
all single rather than multiple edges, as already observed in Section 3.2. By definition of αM and αi , i ∈ [n], we have that
αM + ∑

i∈(I(ν
′)

L ∪ J (ν
′)

L)
αi is greater than or equal to the number of all the misplaced endpoints of some edge in E , and from

the above observations we have that the latter number is in turn greater than or equal to the number of edges in E which
do not cross over l∗ . By Lemmas 9 and 10, it follows that, among the edges within M and among the edges within the
components Gi , i ∈ (I(ν

′)
L ∪ J (ν ′)

L), there exist αM +∑
i∈(I(ν

′)
L ∪ J (ν

′)
L)

αi distinct edges which cross over l∗ . This quantity plus the
number of edges in E which cross over l∗ gives us the desired result. �

We are now ready to show the inverse relation of the statement in Lemma 2. In what follows we focus our attention on
linear arrangements of G ′ having maximum width at most k′ . The reason why all of the previous lemmas in this section
have been stated for linear arrangements with maximum width at most k′ + n2 is because in Section 4 we need to refer to
this extended class.

Lemma 12. If 〈G ′, k′〉 is a positive instance of PMCW then 〈G, k〉 is a positive instance of MBW.

Proof. Let ν ′ be a linear arrangement of G ′ having maximum width bounded by k′ = 3n4 + 2n3 + 2k + 2, and consider
quantity wd(G ′, ν ′, l∗). From Lemma 11 there are at least κ(ν ′)

l ·(4n2) +2τ (ν ′) distinct edges which cross over l∗ , not including
edges internal to the grids L or R . In addition, recall that there are at least 3n4 + 1 edges internal to L that are crossing
over l∗ . This is because of Corollary 1 and because of the way we have defined kernels. If κ(ν ′)

l > n
2 , the number of edges

contributing to wd(G ′, ν ′, l∗) would be at least 3n4 + 1 + (n
2 + 1) · 4n2 = 3n4 + 2n3 + 4n2 + 1 > 3n4 + 2n3 + 2k + 2 = k′ , for

sufficiently large values of n, where the inequality follows from the fact that k is bounded by the number of edges in G ,
which is 3n

2 . This is against our assumptions on ν ′ . Thus we must conclude that κ(ν ′)
l ≤ n

2 . Similarly, we can prove that κ(ν ′)
r

cannot be greater than n
2 . Hence, we have that κ(ν ′)

l = κ
(ν ′)
r = n

2 .
Using the above fact in Lemma 11, we have that the number of edges external to L and R crossing over l∗ is at least

2n3 + 2τ (ν ′) . Including the edges internal to L gives at least 3n4 + 2n3 + 2τ (ν ′) + 1 edges crossing over l∗ . Since the width
of l∗ is at most 3n4 + 2n3 + 2k + 2, it also follows that τ (ν ′) ≤ k + 1

2 . This means that the number of edges (vi, v j) in G such
that K (ν ′)

i < K (ν ′)
L and K (ν ′)

j > K (ν ′)
L is at most k. Hence, by partitioning the nodes of G according to the position of their

corresponding kernels under ν ′ , we have an equal size subset partition whose cut is at most k. �
3.5. Cutwidth and internal boundaries

We can now present the main results of Section 3.

Theorem 1. The problem PMCW is NP-complete.

Proof. Let G be a cubic graph with n > 1 vertices, and let k > 0 be some integer. From Lemma 2 and from Lemma 12, we
have that 〈G, k〉 is a positive instance of MBW if and only if 〈G ′, k′〉 is a positive instance of PMCW. This relation shows that
an algorithm for PMCW could be used to solve MBW, and thus PMCW is NP-hard.

To conclude the proof, we observe that the problem PMCW is in NP because a linear arrangement of a graph can be
guessed in polynomial time and its maximum width can be computed in polynomial time as well. �

We can now deal with a decision problem associated with the problem of finding a linear parsing strategy for a syn-
chronous rule that minimizes the number of internal boundaries, defined in (3).

P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356 1351
Fig. 9. Extended edges for the permutation multigraph corresponding to the SCFG rule s of Eq. (1).

Theorem 2. Let s be a synchronous rule with r nonterminals and with associated permutation πs, and let k be some positive integer.
The problem of deciding whether

min
σ

max
i∈[r]

ib(πs,σ , i) ≤ k

is NP-complete.

Proof. We have already observed that the relation cw(Gs) = minσ maxi∈[r] ib(πs, σ , k) directly follows from Lemma 1. The
statement then follows from Theorem 1. �
4. Relating permutation multigraphs to SCFGs

As discussed in Section 2, our main goal is finding efficient ways of parsing synchronous context-free rules. In this
section, we use our results on permutation multigraphs to prove NP-hardness for optimizing both space complexity and
time complexity of linear parsing strategies for SCFG rules. We begin by examining space complexity, and then generalize
the argument to prove our result on time complexity.

4.1. Space complexity

Optimizing the space complexity of a parsing strategy is equivalent to minimizing the maximum that the fan-out function
achieves across the steps of the parsing strategy (6). According to the definition of the fan-out function (5), fan-out consists
of the two terms ib and eb, accounting for the internal and the external boundaries, respectively, realized at a given step
by a linear parsing strategy. Let s be a synchronous rule with Gs the associated permutation multigraph. We have already
seen in Lemma 1 a relation between the ib term and the width function for Gs . In order to make precise the equivalence
between the fan-out problem and the cutwidth problem for Gs , we must now account for the eb term.

Let bR and eR be the first and the last vertices of the red path in Gs , and let bG and eG be the first and the last vertices
of the green path. We collectively refer to these vertices as the endpoints of Gs , and we define V e = {bR , eR , bG , eG}.
Let σs be some linear parsing strategy for rule s, and let νs be the corresponding linear arrangement for Gs , as defined
in Section 3.1. Informally, we observe that under σs the number of external boundaries at a given step i is the number
of vertices from the set V e that have been seen to the left of the current position i under νs (including i itself). Using
definition (5) and Lemma 1, this suggests that we can represent the fan-out at i as the width of an augmented permutation
multigraph containing special edges from the vertices in V e , where the special edges always extend past the right end of
any linear arrangement. We introduce below some mathematical definitions that formalize this idea.

Assume Gs has n nodes and set of edges E . We define the extended width at position i ∈ [n] − 1 to be

ewd(Gs, νs, i) = wd(Gs, νs, i) +
∑
v∈Ve

I(νs(v) ≤ i) . (9)

The contribution of the endpoints to the extended width can be visualized as counting, at each position in the linear
arrangement, an additional set of edges running from the endpoint of the red and green paths all the way to the right end
of the linear arrangement, as shown in Fig. 9. We will refer to these additional edges as extended edges. To simplify the
notation below, we also let ewd(Gs, νs, n) = 4.

Let πs be the permutation associated with synchronous rule s. Observe that the first term in (9) corresponds to the
number of internal boundaries ib(πs, σs, i), by Lemma 1, and the second term counts the number of external boundaries
eb(πs, σs, i). We can then write, for each i ∈ [n]

fo(πs,σs, i) = 1
ewd(Gs, νs, i) , (10)
2

1352 P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356
which will be used below to assess the complexity of the fan-out problem. Finally, we define the extended cutwidth of Gs

as

ecw(Gs) = min
ν

max
i∈[n]

ewd(Gs, ν, i) . (11)

From (10) and (11) we see that the extended cutwidth of Gs is related to the optimal computational complexity that we can
achieve when parsing synchronous rule s with the techniques described in Section 2.2. With such motivation, we investigate
below a decision problem related to the computation of the extended cutwidth of a permutation multigraph.

From now on, we assume that 〈G, k〉 is an instance of MBW, where G is a cubic graph with n vertices. We also assume
that G ′ and k′ are constructed from G and k as in Section 3.2.

Lemma 13. If 〈G, k〉 is a positive instance of MBW, then ecw(G ′) ≤ k′ + 2.

Proof. Under the assumption that 〈G, k〉 is a positive instance of MBW, consider the linear arrangement ν used in the proof
of Lemma 2 to show that 〈G ′, k′〉 is a positive instance of PMCW. We already know that the maximum (regular) width of ν
is at most k′ . With the exception of the first column of grid L and the last column of grid R , the extended width under ν at
positions within L and R is two greater than the (regular) width, because the vertices bR and bG are both to the left, while
eR and eG are to the right. For positions in the first column of L, the extended width is one greater than the width, because
only bG is to the left, as depicted in Fig. 8.

The critical point is the last column of R . We observe that the edges connecting vertices in the grid components Gi and
M contribute to the extended width at positions within R always in the same amount. We thus focus our analysis on the
only edges that are internal to R . Recall that eR is the topmost vertex in the last column of R . We let i be the position
of eR under ν . At position i − 1 the contribution to the extended width of the edges internal to R consists of 3n4 + 1 red
edges and one green edge; see again Fig. 8. At the next position i, one red edge and one green edge internal to R are lost.
However, these two edges are replaced by one new red edge from R and one new extended edge impinging on vertex eR .
Thus the extended width at positions i − 1 and i must be the same. For all of the next positions corresponding to vertices
in the last column of R , the contribution to the extended width of the edges internal to R always decreases.

From the above observations, we conclude that the extended width at positions within grid components L and R is
bounded by k′ + 2 = 3n4 + 2n3 + 2k + 4. As already observed in the proof of Lemma 2, the width at all of the remaining
positions for ν is lower by n4 +O(n3), and this must also be the case for the extended width, since this quantity exceeds
the (regular) width by at most four. The existence of linear arrangement ν thus implies ecw(G ′) ≤ k′ + 2. �

Let ν ′ be a linear arrangement of G ′ having maximum width at most k′ + n2. Then ν ′ satisfies the hypotheses of all
of the lemmas in Section 3.4 constraining the linear arrangement of the kernels of the grid components of G ′ . However,
contrary to the case of the regular cutwidth, the extended cutwidth is not invariant to a reversal of a linear arrangement.
This is so because the extended edges always end up at a position to the right of the right end of any linear arrangement.
For this reason we can no longer assume that in ν ′ we have L < R . Let then XL and XR be the leftmost and the rightmost,
respectively, of L and R under ν ′ . Let also e∗ be the rightmost of l∗ and r∗ .

We already know from the first part of the proof of Lemma 12 that the number of kernels to the left of K (ν ′)
XL

is n
2 , and

this is also the number of kernels to the right of K (ν ′)
XR

. Using this fact, the following result can easily be shown using the
same argument presented in the proof of Lemma 11. As in Section 3.4, let τ (ν ′) denote the number of edges (vi, v j) in G

such that K (ν ′)
i < K (ν ′)

XL
and K (ν ′)

j > K (ν ′)
XR

.

Lemma 14. Let ν ′ be a linear arrangement of G ′ having maximum width at most k′ + n2 . There are at least n
2 · (4n2) + 2τ (ν ′) distinct

edges which cross over e∗, not including edges internal to the grids L or R.

The proof of the next lemma uses arguments very similar to those already exploited in the proof of Lemma 9 and in the
proof of Lemma 12.

Lemma 15. If ecw(G ′) ≤ k′ + 2, then 〈G, k〉 is a positive instance of MBW.

Proof. Let ν ′ be a linear arrangement of G ′ having maximum extended width bounded by k′ + 2 = 3n4 + 2n3 + 2k + 4. Since
the maximum (regular) width of G ′ is at most its maximum extended width, ν ′ satisfies the hypotheses of all of the lemmas
in Section 3.4 constraining the arrangement of the kernels and the misplaced nodes from the grid components of G ′ .

From Lemma 14 there are at least 2n3 + 2τ (ν ′) distinct edges which cross over e∗ , not including edges internal to the
grids L or R . In addition, there are at least 3n4 + 1 edges internal to XR that are crossing over e∗ . Finally, consider the two
endpoints of either the red or green path appearing in the first and in the last lines of XL , and let αe be the number of
such endpoints that have been misplaced to the right of e∗ under ν ′ . Note that we have 0 ≤ αe ≤ 2.

P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356 1353
Let P(XL) = {p : (ν ′)−1(p) ∈ XL} and let S XL = {p : (ν ′)−1(p) ∈ XL ∧ p > e∗}. Because |P(XL)| = 36n8 + 12n4 and |K XL | ≥
17n8, we know that |S XL | ≤ |P(XL) − K L′ | ≤ 20n8. Therefore |S XL | ≤ (12n4)(3n4 + 1 − αe − 2) and we can apply Lemma 8
with X = XL and S = S XL . From Lemma 8, there are at least αe edges internal to XL that cross over e∗ . Along with the
2 − αe extended edges departing from XL , this accounts for two additional edges that cross over e∗ .

Combining all of the above contributions, the total number of edges crossing over e∗ is at least 3n4 + 2n3 + 2τ (ν ′) + 3.
Since the extended width of e∗ is at most 3n4 + 2n3 + 2k + 4, it also follows that τ (ν ′) ≤ k + 1

2 . This means that the number
of edges (vi, v j) in G such that K (ν ′)

i < K (ν ′)
L and K (ν ′)

j > K (ν ′)
L is at most k. Hence, by partitioning the nodes of G according

to the position of their corresponding kernels under ν ′ , we have an equal size subset partition whose cut is at most k. �
Theorem 3. Let G be a permutation multigraph and let k be a positive integer. The problem of deciding whether ecw(G) ≤ k is
NP-complete.

Proof. By Lemmas 13 and 15, an algorithm that decides whether ecw(G) ≤ k can be used to solve MBW. Thus the problem
in the statement of the theorem is NP-hard. The problem is in NP because the maximum extended width of a linear
arrangement can be verified in polynomial time. �
Theorem 4. Let s be a synchronous rule with r nonterminals and with associated permutation πs, and let k be a positive integer. The
problem of deciding whether

min
σ

max
i∈[n]

fo(πs,σ , i) ≤ k

is NP-complete, where σ ranges over all linear parsing strategies for s.

Proof. The NP-hardness part directly follows from Theorem 3, along with (10) and (11). The problem is also in NP, because
the maximum value of the fan-out for a guessed linear parsing strategy can be computed in polynomial time. �

We have already discussed how fan-out is directly related to the space complexity of the implementation of a linear
parsing strategy. From Theorem 4 we then conclude that optimization of the space complexity of linear parsing for SCFGs
is NP-hard.

4.2. Time complexity

We now turn to the optimization of the time complexity of linear parsing for SCFGs. It turns out that at each step of a
linear parsing strategy, the time complexity is related to a variant of the notion of width, called modified width, computed
for the corresponding position of a permutation graph. With this motivation, we investigate below the modified width and
some extensions of this notion, and we derive our main result in a way which parallels what we have already done in
Section 4.1.

We start with some additional notation. Let G = (V , E) be an undirected (multi)graph such that |V | = n > 1, and let ν
be some linear arrangement of G . For any i ∈ [n], the modified width of G at i with respect to ν , written mwd(G, ν, i), is
defined as |{(u, v) ∈ E : ν(u) < i < ν(v)}|. Informally, mwd(G, ν, i) is the number of distinct edges crossing over the vertex
at position i-th in the linear arrangement ν . Again in case of multigraphs the size of the previous set should be computed
taking into account multiple edge occurrences. The following result is a corollary to Lemma 3.

Corollary 2. For any grid X =
[H, W] with W ≥ 2H + 1, for any linear arrangement ν of X, and for any i with H2 < i ≤ H W − H2 ,
mwd(X, ν, i) ≥ H − 2.

Proof. Modified width at the vertex in position i can be related to the (regular) width of the gaps before and after position i,
and the degree �(ν−1(i)) of the vertex at position i

mwd(X, ν, i) = 1

2
(wd(X, ν, i − 1) + wd(X, ν, i) − �(ν−1(i))) .

For each i with H2 < i ≤ H W − H2, we can use Corollary 1 and write

mwd(X, ν, i) ≥ H − 1

2
�(ν−1(i)) .

Because vertices in a grid have degree at most four, we have mwd(X, ν, i) ≥ H − 2. �

1354 P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356
Let s be a synchronous rule and let Gs be the associated permutation multigraph. Let also νs be a linear arrangement
for Gs . We define the extended modified width at i ∈ [n] as

emwd(Gs, νs, i) = wd(Gs, νs, i) +
∑
v∈Ve

I(νs(v) ≤ i) . (12)

Again, the contribution of the endpoints of Gs to the extended modified width can be visualized as counting, at each
position in the linear arrangement, an additional set of edges running from the endpoint of the red and green paths all the
way to the right end of the linear arrangement, as shown in Fig. 9. The extended modified cutwidth of Gs is

emcw(Gs) = min
ν

max
i∈[n]

emwd(Gs, ν, i) ,

where ν ranges over all possible linear arrangements for Gs .
From now on, we assume that 〈G, k〉 is an instance of MBW, where G is a cubic graph with n vertices. We also assume

that G ′ and k′ are constructed from G and k as in Section 3.2.

Lemma 16. If 〈G, k〉 is a positive instance of MBW, then emcw(G ′) ≤ k′ .

Proof. Consider the linear arrangement used in Lemma 13 to show that ecw(G ′) ≤ k′ + 2. The critical points in that linear
arrangement are all within the L and R components. At all positions in these components, each vertex has two edges
extending to its right and two edges extending to its left (one red and one green in each case). Thus, at these positions, the
extended modified cutwidth is less than the extended cutwidth by two. �
Lemma 17. If emcw(G ′) ≤ k′ , then 〈G, k〉 is a positive instance of MBW.

Proof. Assume a linear arrangement ν ′ for G ′ having maximum extended modified width bounded by k′ . The maximum
(non-extended) modified width of G ′ must be smaller than or equal to k′ , and the maximum (non-extended, non-modified)
width of G ′ must be smaller than or equal to k′ + 4, because the maximum degree of vertices in G ′ is four. Since the
maximum width of G ′ under ν ′ is bounded by k′ +n2, we apply Lemma 14 and conclude that there are at least 2n3 + 2τ (ν ′)

distinct edges which cross over the vertex to the left of the gap e∗ , not including edges internal to the grids L or R .
By Corollary 2, the number of edges internal to XR which cross over the vertex to the left of the gap e∗ is at least

3n4 − 1. Finally, consider the two endpoints of either the red or green path appearing in the first and in the last lines of XL ,
and let αe be the number of such endpoints that have been misplaced to the right of e∗ under ν ′ , with 0 ≤ αe ≤ 2. We
apply the same argument as in the proof of Lemma 15, and conclude that there are at least αe edges internal to XL that
cross over the vertex to the left of the gap e∗ . Along with the 2 − αe extended edges departing from XL , this accounts for
two additional edges that cross over the vertex to the left of the gap e∗ .

Combining all of the above contributions, the total number of edges crossing over the vertex to the left of the gap
e∗ is at least 3n4 + 2n3 + 2τ (ν ′) + 1. Since the extended modified width of the vertex to the left of the gap e∗ is at
most k′ = 3n4 + 2n3 + 2k + 2, it also follows that τ (ν ′) ≤ k + 1

2 . This means that the number of edges (vi , v j) in G such
that K (ν ′)

i < K (ν ′)
XL

and K (ν ′)
j > K (ν ′)

XR
is at most k. Hence, by partitioning the nodes of G according to the position of their

corresponding kernels under ν ′ , we have an equal size subset partition whose cut is at most k. �
Theorem 5. Let G be a permutation multigraph and let k be a positive integer. The problem of deciding whether emcw(G) ≤ k is
NP-complete.

Proof. By Lemmas 17 and 16, an algorithm that decides whether emcw(G) ≤ k can be used to solve MBW. Thus decid-
ing whether emcw(G) ≤ k is NP-hard. The problem is in NP because the maximum extended modified width of a linear
arrangement can be verified in polynomial time. �

We now relate the notion of extended modified width for a permutation multigraph and the time complexity of a parsing
algorithm using a linear strategy. Let s be a synchronous rule with r nonterminals having the form in (8), and let Gs be the
permutation multigraph associated with s. Let also σs be some linear parsing strategy defined for s, and let νs be the linear
arrangement associated with σs , as defined in Section 3.1. Recall from Section 2.2 that the family of parsing algorithms we
investigate in this article use parsing states to represent the boundaries (internal and external) that delimit the substrings
of the input that have been parsed at some step, following our strategy σs .

For some i with i ∈ [r − 1], let us consider some parsing state with state type (s, σs, i). In the next parsing step i + 1, we
move to a new state with state type (s, σs, i + 1) by adding to our partial analyses the (i + 1)-th pair of nonterminals from
the right-hand side of s, defined according to σs . As already observed in Section 2.2, this operation involves some updates
to the sequence of boundaries of our old state of type (s, σs, i). More precisely, the new state is constructed from the old
state by removing a number δ(−) of boundaries, and by adding a number δ(+) of new boundaries. From the definition of Gs ,
i+1 i+1

P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356 1355
we know that δ(−)
i+1 is the number of backward edges at vertex i +1, and δ(+)

i+1 is the number of forward edges at vertex i +1,
where backward, forward, and vertex i + 1 are all defined relative to the linear arrangement νs and include the extended
edges. We also have δ(−)

i+1 + δ
(+)
i+1 = �(ν−1

s (i + 1)), where �(ν−1(i + 1)) is the degree of the vertex at position i + 1.
The total number of boundaries ti+1 involved in the parsing step i + 1 is then the number of boundaries for state type

(s, σs, i), which includes the δ(−)
i+1 boundaries that need to be removed at such step, plus the new boundaries δ(+)

i+1 . We
already know that ewd(Gs, νs, i) is the number of boundaries for (s, σs, i). We can then write

ti+1 = ewd(Gs, νs, i) + δ
(+)
i+1

= ewd(Gs, νs, i) − δ
(−)
i+1 + δ

(−)
i+1 + δ

(+)
i+1

= emwd(Gs, νs, i + 1) + �(ν−1
s (i + 1))

= emwd(Gs, νs, i + 1) + 4 .

That is, the total number of boundaries involved in a parsing step is the number of boundaries that are not affected by the
step, which correspond to edges passing over a vertex in the linear arrangement, emwd(Gs, νs, i + 1), plus the number of
boundaries opened or closed by adding the new nonterminal, which is the vertex’s degree �(ν−1

s (i + 1)).
Let w1 and w2 be the input strings in our synchronous parsing problem, and let n be the maximum between the lengths

of w1 and w2. Observe that there may be O(nti+1) different instantiations of parsing step i + 1 in our algorithm. In order to
optimize the time complexity of our algorithm, relative to synchronous rule s, we then need to choose a linear arrangement
that achieves maximum extended modified width of emcw(Gs). From Theorem 5, we then conclude that optimization of
the time complexity of linear parsing for SCFGs is NP-hard.

5. Discussion

In this section, we discuss the implications of our results for machine translation. Synchronous parsing is the problem
of finding a suitable representation of the derivations of a string pair consisting of one string from each language in the
translation. In the context of statistical machine translation, this problem arises when we wish to analyze string pairs
consisting of known parallel text in, say, English and Chinese, for the purposes of counting how often each SCFG rule is
used and estimating its probability. Thus, synchronous parsing corresponds to the training phase of a statistical machine
translation system. Our results show that it is NP-hard to find the linear synchronous parsing strategy with the lowest
space complexity or the lowest time complexity. This indicates that learning complex SCFG rules from parallel text is a hard
problem. Practical systems can, however, avoid this problem by imposing a limit on the number of nonterminals in a rule,
or by using heuristics to find good parsing strategies [15].

A separate, but closely related, problem arises when translating new Chinese sentences into English, a problem known as
decoding. A simple decoding algorithm consists of parsing the Chinese string with the Chinese side of the SCFG, and simply
reading the English translation off of the English side of each rule used. This can be accomplished in time O(n3) using the
CYK parsing algorithm for (monolingual) context-free grammars, since we use only one side of the SCFG.

More generally, we may wish to compute not only the single highest-scoring translation, but a compact representation
of all English translations of the Chinese string. Just as the chart constructed during monolingual parsing can be viewed
as a non-recursive CFG generating all analyses of a string, we can parse the Chinese string with the Chinese side of the
SCFG, retain the resulting chart, and use the English sides of the rules as a non-recursive CFG generating all possible English
translations of the Chinese string. However, in general, the rules cannot be binarized in this construction, since the Chinese
and English side of each rule are intertwined. This means that the resulting non-recursive CFG has size greater than O(n3),
with the exponent depending on the maximum length of the SCFG rules. One way to reduce the exponent is to factor each
SCFG rule into a sequence of steps, as in our linear SCFG parsing strategies.

Machine translation systems do, in fact, require such a representation of possible translations, rather than simply taking
the single best translation according to the SCFG. This is because the score from the SCFG is combined with a score from an
English N-gram language model in order to bias the output English string toward hypotheses with a high prior probability,
that is, strings that look like valid English sentences. In order to incorporate scores from an English N-gram language model
of order m, we extend the dynamic programming algorithm to include in the state of each hypothesis the first and last m −1
words of each contiguous segment of the English sentence. Thus, the number of contiguous segments in English, which is
the fan-out of the parsing strategy on the English side, again enters into the complexity [15]. Given a parsing strategy with
fan-out fc on the Chinese side and fan-out fe on the English side, the space complexity of the dynamic programming table
is O(n fc V 2 fe(m−1)), where n is the length of the Chinese input string, V is the size of the English vocabulary, and m is the
order of N-gram language model. Under the standard assumption that each Chinese word has a constant number of possible
English translations, this is equivalent to O(n fc+2 fe(m−1)). Thus, our NP-hardness result for the space complexity of linear
strategies for synchronous parsing also applies to the space complexity of linear strategies for decoding with an integrated
language model.

Similarly, the time complexity of language-model-integrated decoding is related to the time complexity of synchronous
parsing through the order m of the N-gram language model. In synchronous parsing, the time complexity of a step com-
bining of state of type (s, σ , k) and a nonterminal (A1,k+1, A2,π−1(k+1)) to produce a state of type (s, σ , k + 1) is O(na+b+c),

1356 P. Crescenzi et al. / Journal of Computer and System Sciences 81 (2015) 1333–1356
where a is the number of boundaries in states of type (s, σ , k), b the number in nonterminal (A1,k+1, A2,π−1(k+1)), and c
the number in type (s, σ , k + 1). If we rewrite a as ac + ae , where ac is the number of boundaries in Chinese and ae is the
number of boundaries in English, then the exponent for the complexity of synchronous parsing is:

ae + be + ce + ac + be + ce

and the exponent for language-model-integrated decoding is:

(m − 1)(ae + be + ce) + ac + be + ce

Note that these two expressions coincide in the case where m = 2. Since we proved that optimizing the time complexity
of linear synchronous parsing strategies is NP-complete, our result also applies to the more general problem of optimizing
time complexity of language-model-integrated decoding for language models of general order m.

Open problems This article presents the first NP-hardness result regarding parsing strategies for SCFGs. However, there is a
more general version of the problem whose complexity is still open. In this article, we have restricted ourselves to linear
parsing strategies, that is, strategies that add one nonterminal at a time to the subset of right hand side nonterminals
recognized so far. In general, parsing strategies may group right hand side nonterminals hierarchically into a tree. For some
permutations, hierarchical parsing strategies for SCFG rules can be more efficient than linear parsing strategies [15]. Whether
the time complexity of hierarchical parsing strategies is NP-hard is not known even for the more general class of LCFRS.
An efficient algorithm for minimizing the time complexity of hierarchical strategies for LCFRS would imply an improved
approximation algorithm for the well-studied graph-theoretic problem of treewidth [26]. Minimizing fan-out of hierarchical
strategies, on the other hand, is trivial, for both LCFRS and SCFG. This is because the strategy of combining all right hand
side nonterminals in one step (that is, forming a hierarchy of only one level) is optimal in terms of fan-out, despite its high
time complexity.

References

[1] A.V. Aho, J.D. Ullman, Syntax directed translations and the pushdown assembler, J. Comput. Syst. Sci. 3 (1969) 37–56.
[2] A.V. Aho, J.D. Ullman, The Theory of Parsing, Translation, and Compiling, vol. 1, Prentice-Hall, Englewood Cliffs, NJ, 1972.
[3] P.M. Lewis II, R.E. Stearns, Syntax-directed transduction, J. ACM 15 (3) (1968) 465–488.
[4] S. Shieber, Y. Schabes, Synchronous tree-adjoining grammars, in: Proceedings of the 13th International Conference on Computational Linguistics,

COLING-90, Helsinki, vol. III, 1990, pp. 253–258.
[5] Y. Schabes, S.M. Shieber, An alternative conception of tree-adjoining derivation, Comput. Linguist. 20 (1994) 91–124.
[6] D. Chiang, Evaluation of grammar formalisms for applications to natural language processing and biological sequence analysis, Ph.D. thesis, University

of Pennsylvania, 2004.
[7] D. Chiang, Hierarchical phrase-based translation, Comput. Linguist. 33 (2) (2007) 201–228.
[8] M. Galley, M. Hopkins, K. Knight, D. Marcu, What’s in a translation rule?, in: Proceedings of the 2004 Meeting of the North American Chapter of the

Association for Computational Linguistics, NAACL-04, Boston, 2004, pp. 273–280.
[9] P.F. Brown, S.A. Della Pietra, V.J. Della Pietra, R.L. Mercer, The mathematics of statistical machine translation: parameter estimation, Comput. Linguist.

19 (2) (1993) 263–311.
[10] P. Koehn, F.J. Och, D. Marcu, Statistical phrase-based translation, in: Proceedings of the 2003 Meeting of the North American Chapter of the Association

for Computational Linguistics, NAACL-03, Edmonton, Alberta, 2003, pp. 48–54.
[11] D.H. Younger, Recognition and parsing of context-free languages in time n3, Inf. Control 10 (1967) 189–208.
[12] J. Earley, An efficient context-free parsing algorithm, Commun. ACM 6 (8) (1970) 451–455.
[13] G. Satta, E. Peserico, Some computational complexity results for synchronous context-free grammars, in: Proceedings of Human Language Technology

Conference and Conference on Empirical Methods in Natural Language Processing, HLT/EMNLP, Vancouver, Canada, 2005, pp. 803–810.
[14] D. Gildea, D. Štefankovič, Worst-case synchronous grammar rules, in: Proceedings of the 2007 Meeting of the North American Chapter of the Associa-

tion for Computational Linguistics, NAACL-07, 2007, pp. 147–154.
[15] L. Huang, H. Zhang, D. Gildea, K. Knight, Binarization of synchronous context-free grammars, Comput. Linguist. 35 (4) (2009) 559–595.
[16] P. Crescenzi, D. Gildea, A. Marino, G. Rossi, G. Satta, Optimal head-driven parsing complexity for linear context-free rewriting systems, in: Proceedings

of the 49th Annual Meeting of the Association for Computational Linguistics, ACL-11, 2011, pp. 450–459.
[17] C. Gómez-Rodríguez, M. Kuhlmann, G. Satta, D. Weir, Optimal reduction of rule length in Linear context-free rewriting systems, in: Proceedings of the

2009 Meeting of the North American Chapter of the Association for Computational Linguistics, NAACL-09, 2009, pp. 539–547.
[18] B. Sagot, G. Satta, Optimal rank reduction for linear context-free rewriting systems with fan-out two, in: Proceedings of the 48th Annual Meeting of

the Association for Computational Linguistics, Uppsala, Sweden, 2010, pp. 525–533.
[19] C. Gómez-Rodríguez, M. Kuhlmann, G. Satta, Efficient parsing of well-nested linear context-free rewriting systems, in: Human Language Technologies:

the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Los Angeles, California, 2010, pp. 276–284.
[20] K. Vijay-Shankar, D.L. Weir, A.K. Joshi, Characterizing structural descriptions produced by various grammatical formalisms, in: Proceedings of the 25th

Annual Conference of the Association for Computational Linguistics, ACL-87, Stanford, CA, 1987, pp. 104–111.
[21] H. Seki, T. Matsumura, M. Fujii, T. Kasami, On multiple context-free grammars, Theor. Comput. Sci. 88 (1991) 191–229.
[22] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison–Wesley, Reading, MA, 1979.
[23] T. Bui, S. Chaudhuri, T. Leighton, M. Sipser, Graph bisection algorithms with good average case behavior, Combinatorica 7 (1987) 171–191.
[24] F. Makedon, C. Papadimitriou, I. Sudborough, Topological bandwidth, SIAM J. Algebr. Discrete Methods 6 (1985) 418–444.
[25] J.D.P. Rolim, O. Sýkora, I. Vrto, Optimal cutwidths and bisection widths of 2- and 3-dimensional meshes, in: 21st International Workshop on Graph-

Theoretic Concepts in Computer Science, 1995, pp. 252–264.
[26] D. Gildea, Grammar factorization by tree decomposition, Comput. Linguist. 37 (1) (2011) 231–248.

http://refhub.elsevier.com/S0022-0000(15)00040-9/bib41686F3A363961s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib41686F556C6C3732s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib4C6577697353746561726E733638s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib536869656265723A3930434Fs1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib536869656265723A3930434Fs1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib53483934s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib436869616E673A3034s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib436869616E673A3034s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib436869616E67434Cs1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib67616C6C65792D6E6161636C3034s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib67616C6C65792D6E6161636C3034s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib42726F776E3A3933s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib42726F776E3A3933s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib4B6F65686E2D6E6161636C3033s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib4B6F65686E2D6E6161636C3033s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib596F756E6765723A3637s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib4561726C65793A3730s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib53617474613A3035s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib53617474613A3035s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib67696C6465612D73746566616E6B6F7669633A323030373A6D61696Es1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib67696C6465612D73746566616E6B6F7669633A323030373A6D61696Es1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib4875616E673A32303039s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib686561642D64726976656E2D61636C3131s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib686561642D64726976656E2D61636C3131s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib676F6D657A2D6E6161636C3039s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib676F6D657A2D6E6161636C3039s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib7361676F742D73617474613A323031303A41434Cs1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib7361676F742D73617474613A323031303A41434Cs1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib676F6D657A2D6E6161636C3130s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib676F6D657A2D6E6161636C3130s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib4C43465253s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib4C43465253s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib53656B693931s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib486F7063726F66743A3739s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib4275693A31393837s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib4D616B65646F6E3A313938357032313838s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib44424C503A636F6E662F77672F526F6C696D53563935s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib44424C503A636F6E662F77672F526F6C696D53563935s1
http://refhub.elsevier.com/S0022-0000(15)00040-9/bib67696C6465612D636C3131s1

	Synchronous context-free grammars and optimal linear parsing strategies
	1 Introduction
	2 Preliminaries
	2.1 Synchronous context-free grammars
	2.2 Parsing strategies for SCFGs
	2.3 Fan-out and optimization of parsing

	3 Permutation multigraphs and cutwidth
	3.1 Permutation multigraphs
	3.2 Construction of permutation multigraph G'
	3.3 MBW to PMCW
	3.4 PMCW to MBW
	3.5 Cutwidth and internal boundaries

	4 Relating permutation multigraphs to SCFGs
	4.1 Space complexity
	4.2 Time complexity

	5 Discussion
	References

