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Purpose: Metabolomics is a global study of metabolites in biological samples. In this study

we explored whether serum metabolomic spectra could distinguish between early and

metastatic breast cancer patients and predict disease relapse.

Methods: Serum samples were analysed from women with metastatic (n ¼ 95) and predom-

inantly oestrogen receptor (ER) negative early stage (n ¼ 80) breast cancer using high reso-

lution nuclear magnetic resonance spectroscopy. Multivariate statistics and a Random

Forest classifier were used to create a prognostic model for disease relapse in early

patients.

Results: In the early breast cancer training set (n ¼ 40), metabolomics correctly distin-

guished between early and metastatic disease in 83.7% of cases. A prognostic risk model

predicted relapse with 90% sensitivity (95% CI 74.9e94.8%), 67% specificity (95% CI

63.0e73.4%) and 73% predictive accuracy (95% CI 70.6e74.8%). These results were repro-

duced in an independent early breast cancer set (n ¼ 40), with 82% sensitivity, 72% speci-

ficity and 75% predictive accuracy. Disease relapse was associated with significantly
; CERM, Center of Magnetic Resonance; CPMG, CarrePurcelleMeiboomeGill; ER, oestrogen
, proton nuclear magnetic resonance; HER2, human epidermal growth factor receptor 2;
Sloan-Kettering Cancer Center; NOESY1D, nuclear overhauser effect spectroscopy pulse
operating curves.
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lower levels of histidine ( p ¼ 0.0003) and higher levels of glucose ( p ¼ 0.01), and lipids

( p ¼ 0.0003), compared with patients with no relapse.

Conclusions: The performance of a serummetabolomic prognostic model for disease relapse

in individuals with ER-negative early stage breast cancer is promising. A confirmation

study is ongoing to better define the potential of metabolomics as a host and tumour-

derived prognostic tool.

ª 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights

reserved.
1. Introduction et al., 2007). Breast cancer has been associated with marked
Breast cancer is themost commonmalignancy andmost com-

mon cause of cancer death in women (Ferlay et al., 2010).

There is marked heterogeneity in breast cancer biology and

disease behaviour. Among individuals with seemingly similar

disease as assessed by clinico-pathological features, immuno-

histochemistry and molecular platforms, outcomes can be

substantially different.

The window of opportunity for curative intervention in

breast cancer is in early stage disease. Following surgical exci-

sion of the breast lesion and surgical sampling and/or dissec-

tion of axillary nodes, patients might be offered loco-regional

radiotherapy and/or post-operative (adjuvant) systemic ther-

apy. The rationale behind this approach is that residualmicro-

metastatic disease might be eradicated by chemotherapy,

targeted anti-human epidermal growth factor receptor 2

(HER2) therapy and/or targeted endocrine therapy. If not erad-

icated, micrometastases might progress to incurable dissemi-

nated breast cancer.

In current clinical practice adjuvant therapy is indicated on

the assumption of residualmicrometastases. The primary dis-

ease is assessed using traditional clinico-pathologic features

with or without gene profiling, and an estimation of the risk

of recurrence is thus made (Paik et al., 2004; Ravdin et al.,

2001). Micrometastatic disease is detectable, as circulating

tumour cells in the peripheral blood and disseminated tumour

cells in the bone marrow, although not all patients with

micrometastases will develop clinically evident macrometa-

static disease (Braun et al., 2005; Stathopoulou et al., 2002;

Xenidis et al., 2003). Factors beyond the presence of microme-

tastases, such as tumour cell dormancy, host immunity, and

the microenvironment, influence the clinical outcome.

Novel prognostic and predictive biomarkersmay refine risk

assessment and guide use of systemic therapy in individuals

with early breast cancer. In this setting there are promising

tools such as the various eomics, including metabolomics, a

science dedicated to the global study of small molecules and

metabolites (Nicholson, 2006). Metabolomics combines high

resolution data-rich analytical methodology with advanced

chemometric data interpretation. The ‘metabolome’, the

extensive analysis of hundreds of metabolites in a biological

specimen, can be considered the downstream end product

of the complex interaction of genome, transcriptome and pro-

teome. By its very nature of being downstream itmay be a very

sensitive tool for phenotype assessment.

The metabolome is affected by physiological, pathological

and iatrogenic factors (Griffin, 2003; Urbanczyk-Wochniak
metabolic shifts, which have been demonstrated inmany pre-

clinical and clinicalmetabolomic studies of breast cells, breast

tissue, serum and urine (Aboagye and Bhujwalla, 1999;

Budczies et al., 2012; Katz-Brull et al., 2002; Li et al., 2011;

Mackinnon et al., 1997; Mountford et al., 2001; Singer et al.,

1995). Metabolomics has been explored as a tool for diagnosis

of breast cancer, refined sub-classification of breast cancer,

and prediction of treatment sensitivity (Li et al., 2011;

Mountford et al., 2001; Asiago et al., 2010; Borgan et al., 2010;

Giskeodegard et al., 2012; Oakman et al., 2011; Slupsky et al.,

2010).

A potential strength of serum and urine metabolomic ana-

lyses is that this approach provides a composite metabolomic

snapshot of both the tumour and the host. By comparing sam-

ples from patients with early versus metastatic disease, host

features conducive to tumour progressionmight be identified,

with incorporation of both tumour and host factors from the

outset.

In view of the need for more refined prognostic estimation

in early breast cancer, we undertook this study to explore

whether metabolomics can add prognostic information in in-

dividuals with early breast cancer.We assessed serummetab-

olomic profiles in breast cancer patients using proton nuclear

magnetic resonance (1H NMR) spectroscopy, with two hypoth-

eses: (1) serum metabolomic profiles would be different be-

tween women following surgery for early breast cancer and

women with metastatic disease, due to tumour-specific

changes in the 1H NMR detectable metabolomic profile; and

(2) some patients with early breast cancer would be recog-

nized by metabolomic analysis as having metastatic disease

due to the presence of residual micrometastases.

We report serummetabolomic distinction betweenwomen

following surgery for early breast cancer and women with

metastatic disease, and further, we report metabolomic clas-

sification of a minority of early patients as metastatic, in

whom future disease relapse was more likely.
2. Patients and methods

This was a collaborative project between the Breast Cancer

Medicine Service, Memorial Sloan-Kettering Cancer Center

(MSKCC), New York, United States; the Center of Magnetic

Resonance (CERM), University of Florence, Sesto Fiorentino,

Italy; and the ‘Sandro Pitigliani’ Medical Oncology Depart-

ment, Hospital of Prato, Prato, Italy.

http://dx.doi.org/10.1016/j.molonc.2014.07.012
http://dx.doi.org/10.1016/j.molonc.2014.07.012
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The study protocol was approved by the Institutional

Ethics Committees at both MSKCC and the Hospital of Prato.

2.1. Patients

Serum samples were selected from the MSKCC breast can-

cer biobank. Patients attending the breast cancer medicine

service at MSKCC who provide written informed consent

and undergo standard serum biochemical analyses

routinely have left over serum stored at �80 �C for future

research purposes. The Breast Cancer Medicine Service

maintains a database of all clinico-pathological data and

clinical outcomes.

This database was reviewed to identify cohorts of women

with early and metastatic breast cancer. Eligible early breast

cancer patients were required to have a post-operative serum

sample, collected before starting adjuvant therapy and within

90 days of surgery, with either documented disease relapse or

follow-up of at least five years with no relapse. Patients with

relapse were included regardless of oestrogen receptor (ER)

status. Conversely, the group without relapse was restricted

to patients with ER-negative disease, as five years of follow-

up was felt to be inadequate to exclude a relapse in ER-

positive disease in which relapse may occur out to 10 years.

As this was a retrospective study, all identified and suitable

early breast cancer patients, based on the above criteria,

were included. Eligible metastatic breast cancer patients

were required to have a post-diagnosis serum sample, and

were unrestricted with regards to ER status and duration of

metastatic disease.

Study serum samples (500 ml) were maintained at �80 �C
from collection until transfer over dry ice from MSKCC to

CERM, where they were again stored at �80 �C until analysis.

Serum samples and corresponding clinico-pathological data

were anonymized prior to transfer.

2.2. 1H NMR spectral acquisition

Frozen serum samples were thawed at room temperature and

shaken before use. A phosphate sodium buffer (300 ml, 70 mM,

pH 7.4) was added in a 1:1 ratio before analysis. The mixture

was homogenized by vortexing for 30 s. 450 ml were trans-

ferred into a 4.25 mm NMR tube (Bruker BioSpin srl).
1H NMR spectra for all samples were acquired using a

Bruker 600 MHz metabolic profiler (Bruker BioSpin) operating

at 600.13 MHz proton Larmor frequency and equipped with a

5 mm CPTCI 1He13C/31Pe2H cryoprobe including a z axis

gradient coil, an automatic tuning-matching (ATM) and an

automatic sample changer. A BTO 2000 thermocouple served

for temperature stabilization at the level of approximately

0.1 K at the sample. Before measurement, samples were

kept for at least three minutes inside the NMR probehead for

temperature equilibration (300 K).

For each sample, three 1H NMR spectra were acquired with

water peak suppression: (i) a standard nuclear Overhauser ef-

fect spectroscopy pulse sequence (NOESY1Dpresat; Bruker),

(ii) a CarrePurcelleMeiboomeGill (CPMG; Bruker) spin-echo

sequence to suppress signals arising from high molecular

weight molecules, (iii) a diffusion edited sequence

(ledbpgppr2s1d; Bruker) with a diffusion time of 120 ms.
2.3. 1H NMR spectral processing

Free induction decays were multiplied by an exponential

function equivalent to a 1.0 Hz line-broadening factor before

applying Fourier transform. Transformed spectra were manu-

ally corrected for phase and baseline distortions and cali-

brated (TMSP peak at 0.00 ppm) using TopSpin (Version 2.1,

Bruker). Each 1D spectrum in the range between 0.02 and

10.00 ppm was segmented into 0.02 ppm chemical shift bins

and the corresponding spectral areas were integrated using

AMIX software (version 3.8.8, Bruker BioSpin). Regions be-

tween 4.5 and 6.0 ppm containing residual water signal were

removed. The total spectral area was calculated on the

remaining bins and data normalization was carried out prior

to pattern recognition. Binning is a means to reduce the num-

ber of total variables and to compensate for small shifts in the

signals, making the analysis more robust and reproducible

(Holmes et al., 1994; Spraul et al., 1994). Using 0.02 ppm

binning, the dimension of the systemwas reduced to 416 bins.

2.4. Statistical analysis

A statistical analysis planwas prepared before starting the an-

alyses, based on the results of a prior study from our group

(Oakman et al., 2011), where we first observed clusterization

of serum metabolomic spectra from early and advanced

breast cancer patients.

The size of the early breast cancer group was not pre-

defined and was based on the availability of suitable cases

with adequate clinical follow-up data and matched serum

samples. In contrast, it was determined that a sample size of

95 patients with metastatic breast cancer would be expected

to provide sufficient power (power ¼ 0.9, p < 0.05) to detect a

meaningful difference between this metastatic disease group

and the early breast cancer group (Cohen’s d ¼ 0.5).

The group of early breast cancer patients was randomly

split into two independent cohorts of equal patients number.

Initial analyses were restricted to patients in the first cohort

(hereafter referred to as the training set). The first step was

to establish if serum metabolomic profiles could distinguish

between patients with metastatic breast cancer and patients

post-recent surgery for operable primary breast cancer. This

analysis was unsupervised as to whether early breast cancer

patients developed relapse.

For discriminative models, a Random Forest (RF) classifier

(Breiman, 2001) was built to separate early breast cancer pa-

tients from patients with metastatic disease. RF is a classifica-

tion algorithm that uses an ensemble of unpruned decision

trees,eachofwhich isbuiltonabootstrapsampleof thetraining

data using a randomly selected subset of variables. RF can deal

with large numbers of predictor variables simultaneously, even

in the presence of complex non linear interactions (Strobl et al.,

2009) and it is almost immune fromtheoverfittingdue to the to-

tal number of variables in the data. This algorithm has many

strengths in metabolomics: i) it is applicable when there are

more variables than samples; ii) it is relatively insensitive to

noise; iii) it allows visualization of data in a reduced discrimi-

nant space using the proximity matrix calculated during the

process of forest growing; iv) the percentage of trees in the for-

est that assign one sample to a specific class can be interpreted

http://dx.doi.org/10.1016/j.molonc.2014.07.012
http://dx.doi.org/10.1016/j.molonc.2014.07.012
http://dx.doi.org/10.1016/j.molonc.2014.07.012
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asaprobabilityofclassbelonging; andv) it givesanunbiasedes-

timate of the classification error using the out-of-bag samples,

avoiding the need for time-consuming cross validation. The al-

gorithm begins with the selection of many bootstrap samples

from the original data. In a typical bootstrap sample, approxi-

mately 63% of the original observations occur at least once. Ob-

servations in the original data set that do not occur in a

bootstrap sample are defined as out-of-bag (OOB) observations.

A classification tree is fitted to each bootstrap sample but at

each node only a small number of randomly selected variables

(i.e. bins) are available for binarypartitioning. The treesare fully

grown, and each is used to predict the OOB observations. The

predicted class of an observation is calculated by the majority

voteof theOOBpredictions for that observation. This classifica-

tionrulewasusedtodiscriminatebetweenearlyandmetastatic

patients. The percentage of the total number of trees in the for-

est that classified a sample as early or metastatic can be inter-

preted as the probability of that sample belonging to that

group. The percentage of trees in themodel classifying an early

patient asmetastaticwas interpreted asameasureof themeta-

bolic risk of that patient. Hence, for early patients, a score that

expressed the probability of being metastatic was created and

designated as the ‘RF risk score’. For each patient, three ‘RF

risk scores’ were derived using the three types of spectra. We

assumedthathigher scorescorrelatedwithhigher riskofdevel-

oping a relapse. Importantly, the calculated RF score is not a

simple summation of the levels of several metabolites, but

rather, is a complex multivariate entity created using as input

the whole binned spectral data.

For all calculations, the R package ‘Random Forest’ (Liaw

and Wiener, 2002) was used to grow a forest of 1000 trees, us-

ing the default settings. Separate models were built for NOE-

SY1D, CPMG and Diffusion edited spectra. Statistical

analyses were performed using the R statistical environment

(Ihaka and Gentleman, 1996).

Thesecondstepwas to test thehypothesis thatmetabolomic

classification of some early patients as metastatic was due to

metabolomic detection of signals frommicrometastatic disease

with likelihood for progression to metastatic disease. Using

receiver operating characteristics (ROC) analysis, the perfor-

mances of the three RF risk scores were compared with actual

breast cancer outcome. Disease relapse was defined as loco-

regional and/or distant breast cancer recurrence documented

according to conventional clinico-radiological criteria, with pa-

thology confirmation required in the case of equivocal findings.

A prognostic model was created using the CPMG RF risk

score. The model was restricted to the CPMG score as this

had the highest predictive value in the training set. CPMG RF

risk scores were scaled to yield an integer score range of

0e100. Using actual follow-up data for patients who relapsed,

a CPMG RF score cut-off was calculated in the training set by a

judicious choice between sensitivity and specificity, then

maintained as a constant when used for the prediction of

relapse risk of all the samples in the ‘validation’ set. In addi-

tion, the CPMG RF risk score was evaluated in univariate and

multivariate analyses firstly with tumour size, nodal status

and age, and secondly with the Adjuvant!Online (http://

www.adjuvantonline.com) relapse risk score, to assess the

prognostic value of the metabolomic risk score in the context

of known clinico-pathological variables.
2.5. Data reproduction in an independent set of patients

The process of choosing an appropriate threshold of the CPMG

RF score was a supervised analyses, in the sense that creation

and optimization of the model required information about

actual relapse. For this reason, the results required testing in

an independent set of early stage patients, designated for

simplicity as the validation set. However, in this context the

word ‘validation’ does not mean that results confirmed

through the validation set should be considered definitive.

2.6. Metabolite analysis

The NMR spectrum from each sample was aligned with refer-

ence to trimethylsilylpropionic-acid at 0 ppm. Spectral regions

within the range 0.5e9.0 ppm were analysed after excluding

the region between 4.5 and 6.0 ppm that contained the water

peak.

Differential metabolites levels between the metastatic and

early cohorts were analysed using the non parametric Wil-

coxon test. The intensities of the peaks were compared in

the raw spectra (without normalization) and after adjustment

for multiple testing using the Benjamini and Hochberg proce-

dure (Benjamini and Hochberg, 1995) to control the false dis-

covery rate. p values of <0.05 were considered significant.
3. Results

3.1. Patients

From the MSKCC serum bank, 95 women with metastatic

breast cancer and 80womenwith early operable breast cancer

were identified. Stored serum samples had been collected be-

tween 2003 and 2010. Clinical and pathological characteristics,

which are listed in Table 1, were obtained from the biobank

database, with reference back to the patient’s electronic med-

ical record if clarification was required.

Most women with early breast cancer had received post-

operative systemic therapy: 54 (68%) women received chemo-

therapy. Of note, only 9 of 24 HER-2 positive patients received

trastuzumab-based adjuvant therapies. Three women (4%)

had ER-positive disease and all three received adjuvant endo-

crine therapywithout chemotherapy. Aminority of early stage

patients (n¼ 7 (9%)) had receivedneo-adjuvant chemotherapy.

Inclusion of these patients was considered reasonable as all

seven patients had a wash-out period of at least three weeks

between last dose of chemotherapy and post-surgery blood

sampling, andpatientsmay still have had residualmicrometa-

static disease not eradicated by neo-adjuvant treatment.

Early breast cancer patients were randomly split into a

trainingset (n¼40)andavalidationset (n¼40).Of the80patients

with early stage disease, 21 had documented disease relapse, 10

of whomwere in the training set and 11 in the validation set.

Patients with metastatic disease were similar in age to

those in the early breast cancer cohort. The majority of meta-

static patients (62%) had ER-positive disease. Twenty-four % of

patients had HER2 negative disease. The median time from

diagnosis of metastatic disease until blood sample was 59

days (range 2e1737). Samples from metastatic breast cancer

http://www.adjuvantonline.com
http://www.adjuvantonline.com
http://dx.doi.org/10.1016/j.molonc.2014.07.012
http://dx.doi.org/10.1016/j.molonc.2014.07.012
http://dx.doi.org/10.1016/j.molonc.2014.07.012


Table 1 e Patient and tumour characteristics.

Characteristic Metastatic
breast cancer

n ¼ 95

Early breast cancer

All
n ¼ 80

Training set
n ¼ 40

Validation set
n ¼ 40

Age, mean (range) years 53 (28e80) 53 (31e88) 56 (31e88) 51 (32e78)

Tumour size

<2 cm NA 59 (74%) 29 (73%) 30 (75%)

�2 cm 19 (24%) 10 (25%) 9 (23%)

Unknown 2 (2%) 1 (2%) 1 (2%)

Grade

I 1 (1%) 0 0 0

II 11 (11%) 2 (3%) 1 (2%) 1 (2%)

III 69 (73%) 69 (86%) 34 (85%) 35 (88%)

Unknown 14 (15%) 9 (11%) 5 (13%) 4 (10%)

Lymph node involvement

Node negative NA 41 (51%) 19 (48%) 22 (55%)

Node positive 39 (49%) 21 (52%) 18 (45%)

ER

Positive 59 (62%) 3 (4%) 2 (5%) 1 (2%)

Negative 33 (35%) 77 (96%) 38 (95%) 39 (98%)

Unknown 3 (3%) 0 0 0

HER2

Positive 23 (24%) 24 (30%) 14 (35%) 10 (25%)

Negative 71 (75%) 55 (69%) 25 (63%) 30 (75%)

Unknown 1 (1%) 1 (1%) 1 (2%) 0

Neo-adjuvant chemotherapy NA 7 (9%) 3 (8%) 4 (10%)

Adjuvant chemotherapy

None NA 16 (20%) 7 (17%) 9 (22%)

Chemotherapy 54 (68%) 27 (68%) 27 (68%)

Chemotherapy þ anti-HER2 therapy 9 (11%) 5 (13%) 4 (10%)

Unknown 1 (1%) 1 (2%) 0

Endocrine therapy 3 (4%) 2 (5%) 1 (2%)

ER: oestrogen receptor; HER2: human epidermal growth factor receptor 2; NA: not applicable.
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patients were drawn before starting a new line of therapy for

advanced disease. Of the 95 patients with advanced disease,

56 were deceased at the time of the present analysis. Median

overall survival for the deceased patients was 19 months

(range 1e58 months).

3.2. Spectra

NMR spectra of samples were obtained using NOESY1D, CPMG

and Diffusion editing, and showed clear signals for multiple

metabolites and small molecules.

3.3. Training set

Supervised analysis using RF showed spectra clusterization

from early and metastatic patients (Figure 1). Accuracy in pre-

dicting early or metastatic status was 83.7% (95% CI

83.6e83.9%) for CPMG, 86.7% (95% CI 86.4e86.8%) for NOE-

SY1D, and 84.4% (95% CI 83.6e85.1%) for Diffusion editing.

3.4. Comparison between RF risk scores and actual
relapse

Next, the hypothesis that metabolomic classification of some

early patients as metastatic was due to the presence of resid-

ual micrometastatic disease was tested by comparing metab-

olomic RF risk scores and actual relapse (Figure 2). Using ROC
analyses, the best prediction for RF score was seen with the

CPMG spectra, with area under the curve (AUC) of 0.863,

compared with AUC 0.817 and 0.607 for NOESY1D and Diffu-

sion editing spectra, respectively.
3.5. Relapse prediction by CPMG RF risk score

The RF score is a continuous variable. In order to use this

approach to create a predictive model, a CPMG RF risk score

threshold for relapse was required. Accuracy of the RF risk

score was maximized using a threshold of �53, which yielded

sensitivity of 90% (95% CI 74.9e94.8%), specificity of 67% (95%

CI 63.0e73.4%), and overall accuracy for predicting likelihood

of relapse of 73% (95% CI 70.6e74.8%). For raw data, see

Additional Table 1.
3.6. Data reproduction in an independent set of patients

The validation set was evaluated using an unsupervised anal-

ysis. Spectra of the validation samples were classified as

either ‘metastatic’ or ‘early’ using the CPMG RF risk score

model derived from the training set. Comparison between

metabolomic classification and actual outcome demonstrated

high correlation with AUC 0.824 (Figure 3). Using the CPMG RF

risk score threshold�53, sensitivity, specificity, and predictive

accuracy were 82%, 72% and 75%, respectively.

http://dx.doi.org/10.1016/j.molonc.2014.07.012
http://dx.doi.org/10.1016/j.molonc.2014.07.012
http://dx.doi.org/10.1016/j.molonc.2014.07.012


Figure 1 e Clusterization of serum metabolomic profiles. Discrimination between metastatic (green, n [ 95) and early (red, n [ 40) breast cancer

patients using the random forest classifier. (a) CPMG; (b) NOESY1D; (c) Diffusion.



Figure 2 e Training set. Comparison between metabolomic classification and actual relapse. The receiver operator curves (ROC) and the area

under the curve (AUC) scores are presented for CPMG, NOESY1D and Diffusion.
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3.7. Comparison of RF risk score with known prognostic
factors

The known prognostic factors age, tumour size and nodal sta-

tus were compared with CPMG RF risk score in univariate and

multivariate analyses. As all early stage patients had grade 3

tumours, histological grade was not included in the model.

In a univariate analysis tumour size, nodal status and RF

risk scorewere all significantly associatedwith relapse predic-

tion. Coefficients on univariate regression were 1.08, p ¼ 0.008

for tumour size; 0.69, p ¼ 0.011 for nodal status; and 7.24,

p ¼ 0.000138 for RF risk score, while the coefficient for age

was not statistically significant (�0.008, p ¼ 0.68). In themulti-

variate regression model, which included tumour size, nodal
Figure 3 e Validation set. Comparison between CPMG random

forest risk score metabolomic classification and actual relapse The

receiver operator curve (ROC) and the area under the curve (AUC)

score are presented for the CPMG analysis.
status and RF score, tumour size and RF score showed a trend

toward significance (coefficients of 0.70, p ¼ 0.062, and 4.34,

p¼ 0.060 for tumour size and RF risk score, respectively), while

nodal status was no longer significantly associated with

relapse (coefficient 0.40, p ¼ 0.32), suggesting a moderate

dependence between these variables.

As an alternative means of evaluating the independent

prognostic value, the RF risk scorewas compared in univariate

and multivariate models with relapse risk as predicted by

Adjuvant!Online (AoL). AoL is an accepted and validated tool

that provides prognostic data based upon a patient’s clinico-

pathologic profile, incorporating data on age, comorbidities,

tumour size, grade, nodal status and ER status. It provides es-

timates of 10-year risk of disease relapse and death. For the

comparison with RF risk score, AoL risk score was calculated

as the 10-year risk of cancer relapse (in absence of adjuvant

therapy) using AoL (Standard Version 8.0). AoL risk score

was significantly associated with relapse in the univariate

model, with regression coefficient of 0.04, p¼ 0.0038. However,

in amultivariate analysis that incorporated AoL risk score and

RF risk score, only RF risk remained statistically significantly

associated with relapse (coefficient: 4.64, p ¼ 0.03), demon-

strating that RF risk score has independent prognostic value.
3.8. Analysis of confounding factors

3.8.1. ER status
Due to the inclusion criteria for early stage patients, there was

a difference in ER status between the early and metastatic pa-

tient groups. In order to test for any confounding effects of the

ER status on theNMR profile, ER status predictionwas attemp-

ted using the Random Forest approach. This approach was

based on the principle that if no discrimination between ER-

positive and ER-negative patients on evaluation of the metab-

olomic spectra was seen, it implied that no observable effects

related to ER status are embedded in the serum NMR profile,

thus excluding ER status as a confounder in the present ana-

lyses of the spectra. For prediction, samples from 92

http://dx.doi.org/10.1016/j.molonc.2014.07.012
http://dx.doi.org/10.1016/j.molonc.2014.07.012
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metastatic patients were utilized (59 ER-positive, 33 ER-

negative). Samples from three patients with unknown ER sta-

tus were excluded. The overall accuracy for prediction of ER

status was 51.2% (95% CI 50.9e51.5%, p ¼ 0.68), with a sensi-

tivity of 46.2% (45.6e46.7%), and a specificity of 54.0% (95% CI

53.7e54.2%). These data suggest that ER status was not

encoded in the serum metabolome of patients and, therefore,

that ER status should not be considered a confounding factor

in the risk prediction analyses.

Furthermore, the analyses comparing spectra of early and

metastatic patients was repeated including only the ER-nega-

tive patients from both groups (n ¼ 77, and n ¼ 33 in the early

and metastatic groups, respectively), and showed comparable

results to the original analysis that incorporated all patients

irrespective of ER status. Overall accuracy was 82.4% (95%CI

82.3e82.6%), with a sensitivity of 82.4% (95% CI 82.2e82.6%),

and a specificity of 82.5% (95% CI 82.3e82.7%), demonstrating

again that a significant metabolic difference does exist be-

tween the metastatic and early cohorts.

3.8.2. Timing of serum sample
The time interval between surgery and the date of blood sam-

pling, which ranged from five to 80 days in the early breast

cancer cohort, was also explored as a potential confounder.

A model using the Random Forest classification was build to

evaluate if time interval between surgery and serum sample

collection could be predicted from the metabolomic data.

For this purpose a dichotomous variable was created, dividing

early samples into two categories: an interval of less than 30

days between surgery and collection and an interval of at least

30 days. No significant discrimination in metabolomic spectra

was seen based on this variable (accuracy ¼ 53.6%, 95% CI

53.5e53.8%), supporting lack of confounding by time interval

between surgery and serum sample collection.

3.9 Metabolites

An analysis of the NMR spectra was conducted to identify

which metabolites were contributing to the metastatic pro-

files. These metabolites were compared with metabolites

contributing to the profiles from early patients. All metastatic

patients and all early patients were included in these ana-

lyses. Relative serum concentrations of metabolites were esti-

mated through integration of the signals in the NMR spectra

and the comparison was performed using univariate Wil-

coxon test. Compared with profiles from early patients, serum

profiles from patients with metastatic disease had signifi-

cantly lower levels of histidine and significantly higher serum

levels of glucose, lactate, tyrosine and lipids. After correcting

for multiple testing, differences in tyrosine and lactate levels

were no longer statistically significant, while the other three

metabolites remained significantly different. Figure 4 depicts

the discriminant metabolites and the associated unadjusted

and adjusted p values.
4. Discussion

In this study we employed serum 1H NMR spectral profiling

and advanced chemometric data analysis methods to identify
a metabolomic signal associated with disease recurrence in

individuals with early breast cancer.

We observed distinction between serummetabolomic pro-

files of early andmetastatic breast cancer patients. This obser-

vation is consistent with results of our previous study, where

we found a discrimination between patients with early dis-

ease, whose blood sample was drawn pre-operatively, and pa-

tients with metastatic disease, with sensitivity of 75%,

specificity of 69%, and predictive accuracy of 72% (Oakman

et al., 2011), and with recently published data from Jobard

et al., who similarly demonstrated significant differentiation

between serum metabolomic profiles of early and metastatic

breast cancer patients (Jobard et al., 2014).

Furthermore in this current study we observed the prom-

ising performance by metabolomics for identification of early

patients with and without subsequent relapse. In particular,

we identified a CPMG RF signature in a training set of early

breast cancer patients, with the predictive utility of thismodel

reproduced in an independent set of patients. Clinical studies

clearly demonstrate that, while adjuvant chemotherapy im-

proves disease free survival, many patients treated with sur-

gery alone remain disease free in the long term. After 30

years of follow-up in node-positive disease and 20 years of

follow-up in node-negative ER-negative disease, approxi-

mately one quarter and one half of patients, respectively,

were disease free after surgery alone (Bonadonna et al., 2005).

There is still limited clinical capacity to identify these individ-

uals who do not require, and obtain no benefit from, adjuvant

intervention. With further validation, incorporation of this

approach into relapse risk assessment might allow identifica-

tion of patients with low metabolomic risk of relapse, who

have been cured by surgery alone, and thus who might be

spared adjuvant treatment and its associated toxicities.

Patients with subsequent disease relapse have the most to

potentially gain from adjuvant systemic therapy. A strength of

our study is that serum samples were collected prior to adju-

vant therapy and within a short period post-operatively (5e80

days), a clinically meaningful time for making adjuvant treat-

ment decisions. A recent study from Asiago et al. used a com-

bination of NMR and gas chromatographyemass spectroscopy

(GCeMS) to identify a serum metabolomic signal for early

detection of metastatic disease in individuals undergoing sur-

veillance following early breast cancer (Asiago et al., 2010).

These results are intriguing; howevermetastatic breast cancer

is incurable, whether diagnosed early or late and there

currently is no advantage to early detection of low volume,

asymptomatic metastatic disease. In contrast, detection of a

post-operative signal of micrometastatic disease and admin-

istration of curative-intent adjuvant systemic treatment

might alter clinical outcomes.

Many metabolites have been shown to correlate with

breast cancer development and progression (Aboagye and

Bhujwalla, 1999; Singer et al., 1995). Marked changes are re-

ported in cellular phospholipid metabolism, glycolysis and

amino acid metabolism (Aboagye and Bhujwalla, 1999; Katz-

Brull et al., 2002; Li et al., 2011; Griffin and Shockcor, 2004).
1H NMR metabolomic profiles contain qualitative and quanti-

tative information on hundreds of metabolites and small mol-

ecules (Aranibar et al., 2011; Serkova and Niemann, 2006). A

strength of non-targeted global spectrum analysis over

http://dx.doi.org/10.1016/j.molonc.2014.07.012
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Figure 4 e Discriminant metabolites. Discriminant metabolites (p < 0.05) between profiles from early (green, n [ 80) and metastatic (red,

n [ 95) breast cancer patients. Box and whisker plots: horizontal line within the box [ mean; bottom and top lines of the box [ 25th and 75th

percentiles, respectively; bottom and top whiskers [ 5th and 95th percentiles, respectively. Median values (arbitrary units) are provided in the

associated table, along with raw p values and p values adjusted for multiple testing. pts: patients.
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targeted analysis of specific metabolites is the lack of need to

make any assumptions on the identity of the metabolites that

are relevant for the selected pathology. Non-targeted profiles

capture a downstream readout of genetic signal, post-
genomic signalling, cross-talk between signalling pathways,

and environmental influence. The complex metabolomic

signal that correlates with disease relapse is presumed to

contain metabolites relevant to residual micrometastatic

http://dx.doi.org/10.1016/j.molonc.2014.07.012
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disease and metabolites relevant to the host’s systemic

response to the tumour.

In the current study the RF risk model used the entire NMR

spectra. Subsequently the spectra were interrogated to iden-

tify key discriminating metabolites. Patients with metastatic

disease were characterized by lower serum levels of histidine

and higher serum levels of glucose, lactate, tyrosine and

lipids, compared with post-operative early breast cancer sub-

jects who did not relapse. These results are consistent with

recent findings of Asiago et al., who also observed a reduction

in serum histidine and an increase in tyrosine and lactate in

womenwith a recurrent breast cancer, with respect to women

with a history of primary breast cancer without recurrence

(Asiago et al., 2010). Similarly, Jobard et al. demonstrated

higher levels of histidine in early compared with metastatic

breast cancer patients, while levels of several metabolites

including phenylalanine, pyruvate, glutamate and glycerol

were relatively higher in metastatic patients. Lipid levels

were also elevated, although this difference did not reach sta-

tistical significance (Jobard et al., 2014). High lipids have been

associated with high tumour cell proliferation, high cell mem-

brane turnover and lipid activity in intracellular signal trans-

duction (Aboagye and Bhujwalla, 1999; Katz-Brull et al., 2002;

Cuadrado et al., 1993). Increased serumNMR intensity for lipid

signals has also been attributed to inflammatory response in

cancer (Bertini et al., 2012). We found significantly higher in-

tensity of lipid signal resonances in patients with metastatic

disease which may, at least in part, reflect a non-specific in-

flammatory response. Further cross-study comparison of spe-

cific metabolites is limited due to diversity in biospecimen

(tissue, urine and serum), metabolomic platform (NMR and/

or MS) and chemometric approach in published metabolomic

literature in breast cancer to date.

One of the great challenges of metabolomic analyses is

variation: innate physiological variability for individuals and

biological variability for tumours. For any one person the pro-

file may change with diet, diurnal rhythm, body flora, drugs,

pathology and exercise. Between individuals, there is meta-

bolic variation based on age, gender, race and hormonal status

(Bollard et al., 2005). In this study, serum samples were

sourced from one hospital and a single sample was analysed

for each patient. In future studies it will be important to collect

more than one sample per patient and to standardize the

collection procedures (for instance, by defining a specific

time of the day for blood samples drawing, preferably before

any food and/or medication intake). In addition, in future

studies it will be important to have samples collected in a

limited time frame, while in the presented study samples

were collected between years 2003 and 2010.

There are limitations of our study. Firstly, patient numbers

are limited. We included all suitable early breast cancer pa-

tients identified in the MSKCC serum biobank and clinical

database, andmoreover we were able to reproduce results ob-

tained in the training set in a small but independent ‘valida-

tion’ cohort. Nonetheless, further evaluation of the RF risk

model in a larger patient cohort is required before any incor-

poration of a metabolomic risk model into clinical practice.

Furthermore, the majority of early breast cancer patients in

this study (79%) received adjuvant systemic therapy. This is

a potential confounding factor, as chemotherapy may have
changed the outcome predicted from the post-operative,

pre-chemotherapy sample. Early stage patients who were

classified as metastatic by the metabolomic prognostic model

may have been cured by adjuvant chemotherapeutic eradica-

tion of micrometastatic disease, in which case the utility of

the model would be underestimated. Conversely, patients

classified as early stage by the model may have had residual

disease that was subsequently eradicated, a scenario where

the prognostic value of the model would be overestimated.

This can be particularly relevant in the subset of HER-2 posi-

tive patients who received trastuzumab-based adjuvant

therapies.

In the current study, the analyses focused on early patients

with ER-negative disease, with ER-negative disease

comprising 96% of the early stage cohort. Patients with ER-

positive disease were excluded unless they had relapsed

within five years, due to concern that follow-up of five years

was not of adequate duration to evaluate relapses in ER-

positive disease, where recurrences may occur out to ten

years. Importantly, we evaluated the performance of the RF

risk model in the early stage patients excluding the three pa-

tients with ER-positive disease and found no significant differ-

ence in results (data not shown). Furthermore, metabolomic

spectra showed no significant clusterization based on ER sta-

tus, suggesting that ER status, while being clinically relevant,

did not unduly influence the utility of the metabolomic risk

model, and that differences in ER status between the early

and metastatic disease groups did not confound the results

obtained. Nonetheless, it will be important to explore whether

the results from this prognostic model are reproducible in pa-

tients with ER-positive early breast cancer. A follow-up study

has now been commenced, which aims to evaluate themetab-

olomic risk model in a much larger cohort of women with

early stage, and ER-positive, breast cancer, thus addressing

two limitations of the current study.

It is also of interest to explore how metabolomic ap-

proaches might be integrated with other prognostic informa-

tion derived from the host, tumour and micrometastatic

disease. Based on this concept, in a separate ongoing study,

we are exploring whether there is prognostic synergy between

metabolomic serum analyses and genomic assessment of the

tumour.
5. Conclusions

The complexity of breast cancer biology and behaviour sug-

gests that a multi-platform approach to risk assessment in

early breast cancer is preferable to optimize risk prediction ac-

curacy. In this study we have identified a serum metabolomic

prognostic model for prediction of disease relapse in individ-

uals with early stage breast cancer, that appears to have inde-

pendent prognostic value over known prognostic clinico-

pathological variables. Importantly, results of this study

should be seen as exploratory, due to the aforementioned lim-

itations such as retrospective design, limited sample size, and

lack of data relating to ER-positive early stage patients. None-

theless, our results are promising as they suggest, for the first

time, that detection of host and/or tumour-derived metabolo-

mic signals assessed on serum samples taken before adjuvant

http://dx.doi.org/10.1016/j.molonc.2014.07.012
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therapy may be informative with regard to individual patient

outcomes. A validation study is ongoing, which aims to better

define the potential of metabolomics as a host and tumour-

derived prognostic tool.
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