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Abstract

Vehicle dynamics stability control systems rely on the entity of the so called sideslip angle and yaw rate. However,
the sideslip angle can be measured directly only with very expensive sensors, hence, its estimation has been widely
studied in the literature. Because of the large non-linearities and uncertainties in the dynamics, model-based methods
are not a good solution to estimate the sideslip angle. On the other hand, machine learning techniques require large
datasets which cover the entire working range for a correct estimation. In this paper we propose an integrated Artificial
Neural Network (ANN) and Unscented Kalman Filter (UKF) observer which uses only IMU measurements and can work
as a standalone sensor. The ANN is trained solely with numerical data obtained with a Vi-Grade model and outputs
a pseudo-sideslip angle which is used as an input for the UKF. This is based on a kinematic model which makes the
filter completely transparent to model uncertainty. A direct integration with integral damping and integral reset value
allows to estimate the longitudinal velocity of the kinematic model. A modification strategy of the pseudo-sideslip angle
is then proposed to improve the convergence of the filter’s output. The algorithm is tested on numerical data aswell as

experimental data. The results show the effectiveness of the solution.
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Introduction

Background

Over recent years, safety has become a predominant
feature in the design of road vehicles. As a result, there
has been an increase in the research and development
into Advanced Driver Assistance Systems (ADAS) and
Autonomous Vehicles (AV). These can guarantee a high level
of security by eliminating human error, particularly when the
vehicle is near the limit of adherence. In such conditions, the
vehicle is operating in the non-linear range of the tire curve,
i.e. large slip angles and, therefore, large vehicle sideslip
angle. However, these are highly unstable conditions since
even a small variation in the contact patch between tires
and road can induce in a rapid variation of available grip'.
These unstable conditions can be analysed by tracing phase
portraits and studying the stability of the equilibrium points.
Some researchers such as Edelmann et al.” and Voser et
al.” showed the existence of a bifurcation and demonstrated
that above certain values of steering angle and velocity, no
state trajectories converge to the equilibrium point since a
saddle-node bifurcation is present, making the system highly
unstable for any value of the sideslip angle. However, there
are many other conditions for which the vehicle is stable
within a certain range of sideslip angle and yaw rate. The
knowledge of the sideslip angle is, therefore, particularly
important for stability control systems such as ESP*> which
acts on independent wheel braking and, occasionally, torque
to limit the sideslip angle amplitude. This concept and be
extended to path following autonomous vehicles at limit
handling conditions for which it is important to maintain
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stability but also guarantee that the vehicle is operating in
the tire saturation region. However, the sideslip angle is also
important for tracking error purposes. In fact, as for Hu et
al.%, the velocity vector of the centre of gravity should be
along the tangent direction on the desired path to prevent a
conflict between the sideslip angle control and the yaw rate
control.

Previous work

Many types of model-based observers have been developed
over the years to estimate the sideslip angle. Wang et al.”
use a closed-loop state feedback observer based on IMU
measurements, longitudinal velocity and an inverted Dugoff
tire model®. Grip et al.” use a non-linear observer based on
asymptotic stabilization of the estimation errors guaranteed
by means of Lyapunov functions. Other approaches are the
ones of Shraim et al.'” who use sliding mode observers and
Zhao et al.'' who use moving horizon strategies. With all
these methods, the estimation is strongly influenced by the
vehicle and tire models and system uncertainties. Although
modelling errors cannot be completely eliminated with
model-based observers, the estimation can still be improved
with adaptive methods. Zhang et al.'” use a gain-scheduling
observer based on a linear-parameter-varying system whilst
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You et al.'? use online adaptive laws based on yaw rate
dynamics and lateral acceleration measurements.

The most common method based on vehicle dynamics
models used to estimate the sideslip angle is the Kalman
Filter (KF) and its derivations. Many different ways of
applying this filter can be found in the literature. Ryu
et al.'* apply linear KFs to a lateral dynamics model-
based on measurements of both GPS and IMU. Doumiati
et al.'> applied an Extended Kalman Filter (EKF) directly
to a simplified vehicle model in which the road friction
coefficient is considered to be known and a Dugoff tire
model is used. A better description of the tire dynamics is
given by Huang et al.'® and Li et al.!” who use the standard
Pacejka tire model '®. To reduce the error given by model
uncertainty, the latter use a sideslip angle rate feedback
and a sideslip damping for error accumulation. In this case,
a separate estimator is used to evaluate the road friction
coefficient. Other approaches do not use already existing tire
model but use a separate observer to estimate the tire force.
Baffet et al.!” use a Sliding Mode Observer (SMO) whilst
Lian et al.? calculate the cornering stiffness by means of
a Recursive Least Squares (RLS) regression model. These
forces are then used in a simplified vehicle model and a
EKF is applied to estimate the sideslip angle. As for Julier et
al.?! the EKF is only reliable for systems which are almost
linear within the operating frequency range. When the tires
are in the saturation region, it would be necessary to operate
at a very high frequency to assure linearity, however, this
is infeasible with state of the art ECUs. The EKF can also
become unstable due to the need to calculate the Jacobians
at every time step. To solve these problems the Unscented
Transform (UT) and Unscented Kalman Filter (UKF) can be
used. A graphical outline of this method and its differences
with the EKF can be seen in figure 1.

Actual (sampling) Linearized (EKF) uTt
sigma points ~_
\ .
(<]
mean °
|
¥ = (%) Y =)
— AT
l and covariance
'

f(x) transformed
. @ Sigmaponis
O /
A{ 1 /
utT (o]

UT covariance

Figure 1. Unscented transform?
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Morrison et al.~> and Antonov et al.”* use this to estimate
the sideslip angle on heavy duty trucks and passenger car
vehicles using high fidelity vehicle models. Chen et al. > add
an integral correction with damping and integral value reset
in to the model-based UKF to improve model uncertainty.

A completely different approach is the one based on machine
learning techniques and, specifically, supervised learning.
The main algorithm which has been used in the literature
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are Artificial Neural Networks (ANN), which have been
demostrated to be capable of approximating any function.
An application of ANNs for sideslip angle estimation has
been done by Du et al>’ who use as inputs to the network
IMU measurements as well as wheel velocity and steering
wheel angle. In this case only pure lateral behaviour is tested
and only on a small amount of manoeuvres on numerical
data. Melzi et al.?® test the algorithm also on combined
slip behaviour and on a larger number of manoeuvre types
but still limited to ISO standard manoeuvres. They use
a hidden layer with hyperbolic tangent transfer functions
and a seven degrees of freedom vehicle model to train
the network. In their work the network is trained on the
same experimental data on which the performance of the
estimation is evaluated. The problem about using wheel
velocity is that at limit handling conditions these require
preconditioning for many situations, e.g. locking of a LSD
differential. Also, since these sensors are generally attached
to a CAN line of the vehicle, it is not possible to have
a standalone sensor. Additionally, using multiple sensors
with different frequency acquisition requires some sort of
synchronization. Sasaki et al.”” and Wei et al.*” use only
lateral acceleration and yaw rate which can be measured
directly with an IMU. The former train and test the ANN on
experimental data only, the latter apply a General Regression
Neural Network (GNRR) trained on numerical data and
tested on experimental data. These works show that it is
possible to estimate the sideslip angle by means of ANN
by using only IMU measurements. The results obtained by
these researchers seem to be promising, however, they lack
of generality and show good results only on very specific
situations since the effects of vehicle speed variation and
combined slip (no longitudinal acceleration is considered)
are not addressed. Additionally, a heuristic approach is used
to define the ANN structure in these works. Another common
machine learning technique used is Adaptive Neuro-Fuzzy
Inference Systems (ANFIS), an example of which is given by
Boada et al.?' who use IMU measurements, steering wheel
angle and longitudinal velocity. By means of numerical
results the authors show that ANFIS outperforms both ANNs
and model-based estimators such as Kalman Filters.

Finally, there are many examples in the literature which
integrate the two approaches. Acosta et al.*> apply a
stochastic EKF based on a single track model and use
ANFIS for road friction estimation. Boada et al.** use
ANFIS?! to estimate “pseudo-sideslip angle” which is fed
as an input to a two degrees of freedom dynamic model
UKEF which filters the signal. GPS, IMU and steering wheel
angle measurements are used and the virtual sensor is tested
by means of numerical data. The two main issues of the
approaches analysed are the following:

1. Model-based observers are subject to model uncer-
tainty and do not work properly when external con-
ditions are varied or unknown

2. Machine learning techniques depend on the training
dataset and consequently cannot generalise the
problem. The works in the literature show that it is
feasible to estimate the sideslip angle by using only
IMU measurements but the estimation is correct only
when the tested dataset is very similar to the training
dataset.
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Proposed observer

This paper presents a novel sideslip angle estimator based on
an integrated ANN and UKEF. The first minor contribution is
that only IMU measurements are used for the estimation. The
scheme of this observer can be seen in figure 2.
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Figure 2. Proposed observer structure

The ANN is trained by means only of numerical data. The
second contribution of this paper is an algorithm used to find
the best network architecture in a numerical environment.
Like in the work of Boada et al.*, the ANN outputs a
pseudo-sideslip angle which is fed as an input to a UKF
which corrects the estimation. It will be shown how the
sideslip angle time response given by the ANN is accurate,
unlike the magnitude which is however corrected by the
UKEF. The third and main contribution of this paper is that
the UKF is based on a kinematic model of the sensor rather
than a vehicle dynamics model. The use of a kinematic model
allows to be completely free from vehicle model uncertainty
(namely the tires) and still correct the estimation given by the
ANN. The longitudinal velocity of the kinematic model is
estimated by direct integration with integral damping>* and
integral reset value correction.

Due to model uncertainty and different closed-loop
behaviour between numerical and experimental environment
(driver) the pseudo-sidelslip angle output is saturated to the
values seen during training. To improve the convergence of
the algorithm a correction strategy for the pseudo-sideslip
angle is adopted, this represents a final contribution of this
work. The proposed estimator shows very good results in
both a numerical and experimental environment also in
conditions never seen by ANN. The structure of this paper
is as follows. In section 2 the ANN and the algorithm used
to define structure and training dataset will be shown. In
Section 3 the integrated ANN-UKF algorithm and pseudo-
sideslip angle correction will be shown. Finally, in Section
4, the results of the observer on experimental data will be
shown.
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ANN module

In this section the ANN module will be described. This
module outputs a pseudo-sideslip angle which is used as a
measurement for a UKF. The neural network performance
is strongly influenced by its architecture which is normally
heuristically defined. In this work, an algorithm to define the
structure of the ANN is developed.

Architecture definition procedure

When designing a neural network, there are three main
issues®:

1. the network is not “powerful” enough to fit the data
2. the network overfits the training results
3. the networks extrapolates when deployed.

To avoid incurring into these problems an algorithm
was developed for the network’s structure definition. This
requires first dividing the dataset into three sets, a training
set over which the network is trained, a validation set used
to evaluate overfitting and a test set used to evaluate the
network. Then, some general architecture features which do
not want to be varied have to be defined. Finally, a set of m
parameters of the network’s architecture which want to be
varied have to be selected (e.g. number of neurons) together
with their initial value p® and percentage variation £* € (0, 1)
fori = 1, ..., m. The matrix of architecture parameters P and
variation vector K = [k, k% ... k™]" can at this point be
defined in the following way:

pl . k‘lpl pl pl + k’lpl pll pvlz p;17
P 2=k p? PR A
p"TL _ 'k’ﬂlp'nl p;n p'”l + .kmp’ﬂl p’l}n pj;";:" pi)n'

Given a loss function R(p, p) on any estimated /5 and real
p data, the estimated values of the training 4, validation 7},
test f and overall 6 datasets, the correspondent real values v,
7, ¢ and €, and assigning a maximum value for the training
dataset loss function /., validation dataset loss function [,
and test dataset loss function /¢, algorithm 1 can be defined.

Sideslip angle ANN - general features

Before running the algorithm, some general architecture
features have to be defined. To avoid reaching a local
minima during the optimization process, five different initial
conditions were considered for each network architecture.
These conditions were chosen so that the scaled input data
applied to the network would have a Gaussian distribution
within a range of the transfer function which would
guarantee a high initial gradient descent, i.e. speed up the
training. To train the network early stopping was used
and due to the large amount of data given to the network
the scaled conjugate gradient method was used as an
optimization algorithm. The loss function R(p, p) used to
evaluate and train the network is the root mean square error

(D).

2= (P —p)?

R(p,p) = .

(1
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Data: Datasets, General architecture features
Result: ANN estimator
1 =1;
while (1) do
for j < 1to 3 do
q= Lp{i,j}»p{i+1,2}7 ~--ap{7t+m—1,2}]
train ANN with parameters — ¢
if R(v,%) <, then
it R(n, 1) < I, then

if R(¢,{) < I then

‘ print Deploy network;

return ANN
else

‘ print Network extrapolates;
end
else
| print Network overfits;
end

else
| print Network failed;
end

6{j} = R(6.0)

end

s = index[min(9)]

Pli+m,2} = P{i,s}

Plitm,1} = Pfi,s} — k{i}Pii,s}
D{itm,3) = P{i,s} T k{i}Pii,s}
1=1+1

end
Algorithm 1: Architecture definition

A validated Vi-Grade vehicle model was used to create
the datasets which are composed only of numerical data
to reduce cost and time in the development. To keep the
computational cost low and be able to run the network
on standalone embedded automotive platforms with low
computational cost and memory, only one hidden fully
connected layer was considered, keeping the number of
neurons below one hundred. For this same reason, more
advanced architectures such as Long Short Term Memory
(LSTM)>% or Gated Recurrent Unit (GRU)3’ were not taken
into consideration.

The ANN developed in this work is based on the work of %,
The hidden layer uses hyperbolic tangent transfer functions
while the output layer uses linear transfer functions. The
hyperbolic tangent was chosen since its shape is very similar
to typical tire force curves. It is a global transfer function,
thus, it activates everywhere except close to the origin
meaning that the output will be the sum of all activation
functions.

The inputs of the network are those coming solely from
an IMU, hence, the accelerations along the three axes and
rotational velocities about the three axes. The dataset used is
composed of different manoeuvre types, for each manoeuvre
type different manoeuvre configurations were used (e.g. for
a step steer manoeuvre type, step duration and amplitude
define the configuration). The dataset manoeuvre types and
parameter range of the different configurations can be seen
in table 1.

The manoeuvres were chosen so that the network would be
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Table 1. Input manoeuvres for training and validation sets.

Manoeuvre Parameter Unit Range

Sine steer Steer amplitude  [°] 5,0-75
(Freq. response)  Steer frequency  [Hz] 0,1-5,0
Step steer Final steer angle [s] 5,0-75
(Step response)  Step duration [s] 0,1-1,0
Circuit Max lat. acc. [a] 0,1-1,0
(Combined slip)  Max long. acc. [a] 0,1-1,0

trained over the entire working range of the vehicle. For each
input manoeuvre type, a multiple of three different values
for each manoeuvre configuration parameter was chosen
(within the predefined range). This allowed to divide the data
between training and validation so that the latter was always
a subset of the former in terms of signal amplitude and
frequency. With this procedure the validation set properly
evaluated overfitting rather than extrapolation. Finally, a
test set was appropriately chosen to evaluate the network
performance. The various configurations of the manoeuvres
in the test set were not present in the training and validation
sets. Concerning the circuit, a different circuit was used to the
ones used for training and validation. The test set manoeuvre
types and configuration parameter range can be seen in table
2.

Table 2. Input manoeuvres for test set.

Manoeuvre Parameter Unit Range
Sine steer Steer amplitude  [°] 10-55
(Low freq. response)  Steer frequency  [Hz] 1,0
Sine steer Steer amplitude  [°] 10-55
(High freq. response)  Steer frequency  [Hz] 3,0
Step steer Final steer angle [°] 10-55
(Step response) Step duration [s] 0,2
Circuit Max lat. acc. [a] 0,1-1,0
(Combined slip) Max long. acc. [a] 0,1-1,0

Sideslip angle ANN - structure definition

The general structure of the network is shown in figure 3.
After having defined the general architecture, constraints and
datasets of the network, algorithm 1 was run to obtain the
exact architecture by building matrix P with the following
parameters in the following order:

Par. 1 — Number of input manoeuvres (open-loop)
Par. 2 — Ratio of sine steer to step steer manoeuvres
Par. 3 — Number of hidden layer neurons

Par. 4 — Number of delays

e o o o

The first parameter varied was the number of total
manoeuvres. Only the open-loop manoeuvre number were
varied since these can be reproduced also on a real vehicle
unlike the closed-loop manoeuvres which depend on the
driver, thus were kept constant. Generally the training
improves when increasing the number of manoeuvres,
however, with many manoeuvres and not many neurons,
the network could underfit the data as it is not powerful
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Figure 3. General structure of ANN module

enough to approximate the function. This also depends
on the number of tapped delays as these increase the
number of data, hence the dimension of the input space.
The next parameter varied was the ratio between number
of sine steer configurations and step steer configurations
within the predefined range (higher discretization) whilst
keeping the total number of manoeuvres approximately
the same. It was not possible to maintain the exact same
number of manoeuvres since multiples of three for each
parameter variation was necessary. The reason why this
ratio was chosen as a parameter is that frequency response
of a non-linear system is harder to identify respect to the
step response®. The next parameter which was varied is
the number of neurons. The higher the number the more
powerful the network, meaning it can approximate more
complicated functions, however it is also easier for the
system to overfit. The lower the number of neurons, the
harder it is to overfit but it is also more probable that the
network will underfit and not be powerful enough. The main
factor which causes a ANN to overfit, is the ratio between
input data and neurons, for this reason, the number of
neurons were varied after the total number of manoeuvres.
Finally, the number of tapped delays, which give some sort
of time memory to the ANN, was varied, considering a
frequency acquisition of 100Hz, i.e. 10 delays correspond to
0,1s.

Sideslip angle ANN - results

Running the algorithm, the system converged after one
sweep of every parameter with [, =1, =, = 0.2°. The
final structure of the ANN obtained with the proposed
algorithm is the following:

Par. 1 — 450 (1 hour and 25 minutes driving)
Par. 2 — 0,5 (225 sine steers and 225 step steers)
Par. 3 — 90 (hidden layer)

Par. 4 — 10 (equal to 0,1s in time)

The results of the algorithm are shown in figure 4.
For each step, the loss function of the training set, validation
set, test set and overall set are plotted. Every colour of
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Figure 4. Algorithm results

boxplot corresponds to a different network architecture.
Boxplots are used to consider the five networks with different
initial conditions but same architecture so that it is possible
to see the error distribution. Using five different initial
conditions for each network configuration allows to evaluate
if a network with a certain architecture and initial conditions
reaches a local minimum instead of a global minimum,
thus guaranteeing great performance for some manoeuvres
types but terrible performance for others. For this reason the
average of the loss function of the five initial conditions was
used as an evaluation criteria in the algorithm. As expected,
the performance increased with an increase in the number
of input manoeuvres. The variation of the ratio of sine
steer configurations to step steer configurations at step two
didnt influence much the performance, however, the lowest
error was given by an equal number of sine steer and step
steer configurations. At step three it can be seen how the
larger the number of neurons, the better the performance.
No overfitting occured as can be seen by the validation
boxplot. This was also due to the fact that a greater number
of manoeuvres was chosen. Finally, the number of tapped
delays which gave best performance was the lowest one. The
results of the deployed ANN on the test set can be seen
in figure 5. Specifically, for each manoeuvre type of table
2 (low frequency sine steer, high frequency sine steer, step
steer and circuit), only the manoeuvre configuration with the
highest values of I/O signals are shown. In these condition,
the vehicle is at limit handling and is operating in the non-
linear region. For confidentiality reasons, the sideslip angle
values have been normalised to the maximum value obtained
in all datasets. The ANN obtained with the proposed method
shows very good results for all types of manoeuvres in a
numerical environment. Due to different external conditions
(road friction), model uncertainty (tire model) and closed-
loop behaviour (driver) when applying this ANN to the
experimental data, the sideslip angle estimated by the ANN
saturates to the maximum value seen in the numerical
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environment as will be shown in the following section. Thus,
the value estimated by this ANN will serve as correction
measurement for the UKF.

Real — Predicted

Normalised Sideslip Angle

0 20 40 60 80 100
Time [s]

Figure 5. Sideslip angle ANN estimation on test set. a) Low
frequency sine steer. b) High frequency sine steer. c) Step
steer. d) Circuit.

UKF module

In this section the remaining part of the proposed observer
will be discussed. This is a UKF based on a kinematic model
which has as inputs the IMU measurements, the pseudo-
sideslip angle estimated by the ANN and the longitudinal
velocity given by direct integration with integral damping
and integral value reset. For a better convergence of the
observer, the output of the UKF is used to correct the pseudo-
sideslip angle so that the measurement entering the UKF and
its output asymptotically tend to the same value.

UKF algorithm

The UKF was first proposed by Julier et al.*”. Unlike the
EKF where the time update is conducted by the linearised
system by means of the Jacobi matrix, the UKF uses directly
the non-linear function model. The main idea is to use
the Unscented Transform to propagate the so-called “sigma
points” which are a group of symmetrically distributed points
around the previous estimated system states which contain
the information of the expected mean value and variance of
the system. Let us consider a non-linear system in discrete
time form with additive noise (2):

(2a)
(2b)

Xkt+1 = f(Xk,llk, tk) + Vi
Vi, = 8(Xk, tr) + Wi
where x;, € R™ represents the state vector, u; € R™ is the

input vector, y, € R? the measurement vector. The process
noise v, and measurement noise Wi are white Gaussian
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noise, i.e. zero mean and uncorrelated (3):

vi ~ N(0,R})
wi, ~ N (0,Ry)

(3a)
(3b)

where R}, and R}’ are respectively the process noise and
measurement noise covariance matrices. The UKF algorithm
can be presented considering the state vector Xj (random
variable) having mean value X;, and covariance Q.

1. Initialise mean value and variance matrix (4):

(4a)
(4b)

;(0 = E[Xo]
Qo = E[(x0 — Xo)(Xo — Xo)]

where X is the posteriori estimation of the expected mean
value for £ =0 and Q, is the posteriori estimation of the
variance matrix for £ = 0.

2. Calculate sigma points X ; € R**(n+1) (5) for k €
{1, ..., 00} according to the following:

X1 =[Xpo1 X1+ Ak X1 —Apq] (5
Ap—1=1/(n+A)Qp_y (5b)
A=a’(n+rK)—n (5¢)

where A is a scaling parameter, the constant o determines the
spread of the sigma points around x;_1 and is usually set to
a small positive value. The constant « is a secondary scaling
parameter. Many studies have been carried out to calculate
the square root of covariance matrix Q,_;. In this paper
the Cholesky factorization was used for which a positive
Hermitian positive-definite matrix B can be decomposed as
B = LL™ with L being a lower triangular matrix with real
and positive diagonal terms.

3. Time update by transforming the sigma points with the
non-linear functions (6):

Xppp—1 = 0 X1, 051, )
V-1 =h(Xp_1,t1)
and computing the priori estimation of the expected mean

value x,; (7a), variance matrix Q, (7b) and measurement
estimation y,, (7c):

(6a)
(6b)

2n

X =Y W™ X,
i=0

(7a)

2n
Q. = Z Wi (X kph1 — X [Xipp—1 — X, 17 + R},

=0
(7b)

2n
V., = Z W™ Y, ki1 (7¢)

=0

where the W; weights are (8):

We™ = A/ (n+ ) (8a)
W =N/ (n+A)+(1-a®+7) (8b)
wm™ =wl =1/{2(n+ N} i=1,...2n (80

where v is used to incorporate prior knowledge of the
distribution of the state vector (for Gaussian distributions,
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v = 2 is optimal).
4. Measurement update by computing the measurement
estimation variance Q,, . (92) and covariance matrix Q

between X, and y, (9b):

LkYk

2n

Quuye = > W Winno1 — ¥ Vi1 — ¥5 17 + RY
=0

(%a)

2n
Q. = Z wi [(Xikik—1 — X )[Vik—1 — ¥r )" (9b)
i=0

and finally calculating the Kalman gain Cj, (10a), posteriori
estimation of expected mean value X; (10b) and variance
matrix Q,, (10c):

Ky = kayk Z;klyk (10a)
X =X, + Ky — Vi) (10b)
Q. = Q; — KrQy,, k¥ (10c)

Kinematic model

The model used for the UKF (2) is a pure kinematic model,
thus, it does not depend on any tire model. The model
describes the kinematics of the vehicle’s planar motion as
in figure 6.

Figure 6. Vehicle model

Given the longitudinal acceleration a,,, the lateral accelera-
tion ay, yaw rate 7., longitudinal velocity v, lateral velocity
vy and sideslip angle § a set of differential equations (11)
can be written in the vehicle’s reference system with origin
in its centre of gravity.

(11a)
(11b)

Up = Qg + VyT;

Uy = Gy — Vg7,

From the definition of /3 (neglecting roll and pitch motions),
vy can be written as (12):

vy = v, tan 3 (12)
and consequently its derivative respect to time (13) is:
by = Oy tan 3 + v, (1 + tan® 8)3 (13)
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Substituting (12) and (13) in (11) a new set of differential
equations is obtained (14):

Uy = ay + V7, tan 3 (14a)
1

P = i tanz ) (4~ Ve e b — g tan )

(14b)

applying some trigonometric identities the sideslip angle
kinematics can be expressed by (15):

j—

a Ay .
—ycoszﬁ — L sin2B —r,
;v 20y

5)

thus the state vector becomes x = [£], the input vector u =
[ag, Gy, T, V], measurement vector y = [B] with 3 being the
pseudo-sideslip angle, v, is found by direct integration while
Qy, Gy and r,are measured with an IMU. Applying the UKF
equations to this system, the estimated sideslip angle B is
obtained.

Longitudinal velocity observer

The longitudinal velocity is kept external to the UKF to
not influence the covariance matrices and because it can be
found with good precision by direct integration with integral
damping and integral reset value (DI-IDIRV) to eliminate
integration drift. First, moving average filters with moving
windows of five tenths of a second are applied to the signals
coming from the IMU. Then, integral damping is added (16):
Uy = / [agIT + v,7, tan 8 — %sgn(izm)]dt (16)
where 7 (7 > 1) represents a damping coefficient. A fourth
order explicit Runge-Kutta numerical integration is used to
solve the equation. Finally, the integral value is reset with
the steady state value. The condition for steady state ' is that
yaw moment must be zero, i.e. 7, = 0. When this occurs, the
steady state longitudinal velocity v can be found as (17):
Ay
v = A7)
A quasi steady state condition is considered and “activated”
at time step k in the following way. Given the time
discrete system and a vector r, = [rgk_l) rgk_lﬂ), . rgk)]
composed by the yaw rate at step k and the [ previous time
steps, the following conditions must be fulfilled (18):

Ir|>e i=k—Lk—1+1,..k

k
>l >d

i=k—1

)

(18a)
(18b)

with €,d € R being small positive numbers. When this
happens, the integral value is reset to the steady state value
(17). This integral reset value method is valid under the
assumption that:

o the vehicle is not driving in a straight line on a flat
road, in which case the sidelip angle is anyhow zero

o the vehicle is a non-neutral steering vehicle, in which
case even with external disturbance or banked road the
sideslip angle is different to zero but no yaw rate is
generated.

Experimental results of this method will be shown in the next
section and show the effectiveness of the algorithm.
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Pseudo-sideslip angle correction

The pseudo-sideslip angle is based on supervised learning,
the hyperbolic tangent function used as transfer function in
the ANN has two horizontal asymptotes. Thus, the output of
the network is saturated to the maximum and minimum value
seen during the training. To increase the performance of the
UKEF, at time step k& the pseudo-sideslip angle Bk is corrected
and a corrected pseudo-sideslip angle /3’,: is obtained. This
is done with a feedback proportional correction as in the
following equation:

Bt = Cub

where the proportional gain C, at time step & is found with
the following system of equations (20):

19)

1, if | By—1 — Br—1| > Ly,

Cp = Uk, ifC,>Uy (20)
@, otherwise
Br—1

Since the correction is recursive, the lower saturation L and
upper saturation U}, are used to make the algorithm stable.

Results

In this final section, the experimental setup used to obtain
the real data will first be described. After that, the results
of the algorithm will be shown for both the longitudinal
velocity and sideslip angle estimation. It will be shown how
the structure of the estimator shows its benefits against the
standalone solutions.

Experimental setup

The experimental data was obtained on a sport saloon which
can be seen in figure 7. The vehicle was equipped with a
two axis non-contact optical sensor with halogen lamp for
sideslip angle measurement. Specifically the Kistler Correvit
S-Motion which has a measurement accuracy angle of +0.2°
and angle resolution of +0.1° was used. The measurement
is guaranteed with a minimum speed of +0.1km/h and a
maximum speed of £250km/h, accelerations up to £18g and
angle speeds up to +300°/s, with a frequency of 500Hz.
The sensor was mounted in front of the vehicle’s front
axis, hence, the velocity measurements were translated in
the centre of gravity by means of the rigid body laws. The
vehicle was also equipped with Kistler HF Sensors on both
sides of the vehicle. These are Optical Laser Height-Sensors
which were used to validate the Vi-Grade model used to train
the ANN. Also a Kistler MSW Sensor was mounted behind
the steering wheel. This is a non-contact optical steering
angle sensor capabale of measuring both steering wheel
torque and angle. This sensor was also used for numerical
model validation.

To measure accelerations and rotational velocities the MPU-
6050 three axis IMU of InvenSense was used. The noise
characteristics of the IMU are shown in table 3.

This IMU was installed in the M42A2C10 ECU of
Meccanica 42 which is composed of a AVR 32 bit CPU,
512Kb flash memory, 64Kb EEPROM and 64Kb RAM. The
maximum clock signal of the the ECU is 66MHz. This
ECU is also provided with a 4.1 bluetooth, a H-bridge with
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Figure 7. Experimental setup

Table 3. InvenSense MPU-6050 datasheet.

Parameter Unit Value Sensor
Power spectral density 400 ng/v/Hz  Acceler.
Total RMS noise 0.05 °/s-rms Gyrosc.
Low-frequency RMS noise  0.033  °/s-rms Gyrosc.
Rate noise spectral density 0.005 °/s/v/Hz Gyrosc.

30A and 40V of maximum electric capacity and 2 CAN
interfaces. The acquisition system used to convert the signals
is shown in figure 8. It is composed a Vector VN1640A
CAN/LIN interface. The device has a time stamp accuracy of
1us and can acquire CAN signals with a rate up to 2Mbit/s.
The testing was done at Marzaglia with professional test
drivers.

Figure 8. Acquisition system

IMU measurements

The acquisitions obtained during the test with the described
IMU are represented in figure 9. Specifically, the yaw rate,
longitudinal acceleration and lateral acceleration are shown.
A moving average filter with a moving window of five
tenths of a second was used to smoothen the inputs fed
to the estimator. This filter was chosen since it requires
low memory and it is capable of smoothening the high
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frequency oscillations introducing very little phase lag given
the small time window used. The results obtained from the
IMU were compared with the IMU installed in the Correvit
sensor to assure no drift in the gyroscope and accelerometer
measurements. The output of the Correvit sensor are the
longitudinal and lateral velocity. Thus, the sideslip angle was
easily calculated (12) while the longitudinal velocity was
used as a comparison value for the DI-IDIRV estimator.

50 )(aw ra}te [ /sJ

.50 1 1 1 1 1 1 1 1 1

Longitudinal acceleration [m/sz]
b T T T T T T T T
5 | | | | h i‘ | J | |

Lateral acceleration [m/sz]

o

1 1 1 H 1 1

100 150 200 250 300 350 400 450
Filter data Time [s]

0 50
* Noisy data

Figure 9. IMU measurements. a) Yaw rate. b) Longitudinal
acceleration. c) Lateral acceleration

The other IMU measurements, i.e. vertical acceleration, roll
rate and pitch rate were also filtered with the same moving
average filter. These signals are used only in the ANN while
for the UKF planar motion was considered, therefore, these
motions were neglected. The experimental data of these
signals can be seen in figure 10.

Vertical acceleration [m/sz]
T T T T T

-1
0 50 100 150 200 250 300 350 400 450
* Noisy dataFilter data Time [s]

Figure 10. IMU measurements. a) Vertical acceleration. b) Roll
rate. c) Pitch rate

Lonagitudinal velocity estimation

Based on the DI-IDIRV observer, the longitudinal velocity
of the vehicle was estimated. The same moving average
filter used to filter the IMU measurements was used to filter
the estimator’s feedback. Note that for the UKF dynamics
(15), the longitudinal velocity appears in two terms in
the denominator. Hence, it is important for the estimated
longitudinal velocity to not diverge into very small values for
correct sideslip angle estimation and numerical integration
stability. If the estimated longitudinal velocity is larger than
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the real value, the sideslip angle derivative will assume
a lower value respect to the real one. The term with the
longitudinal acceleration generally gives a small contribution
to the dynamics for normal values of sideslip angle due to
the sine multiplication. The results of the estimation can be
seen in figure 11 where the integral resets are also illustrated.
With proper tuning, the integral resets correspond to the real
longitudinal velocity. Without the integral reset, the observer
is highly unstable and the estimated longitudinal velocity
quickly diverges, making the error in the sideslip angle
estimation very large. The moving average filter applied to
the inputs and the integral damping allow to improve the
numerical integration stability.

—Correvit S-Motion--DI-IDIRV - Integral value reset
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Figure 11. Longitudinal velocity estimation

The estimated velocity profile is very similar to the measured
one. Both the velocity variations and quasi steady-state
behaviour are well observed. To better see the efficiency of
the estimation, a quantitative analysis by means of different
error estimates is shown in table 4. Specifically, the mean
absolute error (MAE), the root mean square error (RMSE),
and the correlation factor R have been calculated.

Table 4. Longitudinal velocity estimation error.
MAE [m/s] RMSE [m/s] R
0.88 1.13 0.98

Observer
DI-IDIRV

Due to the small relative magnitude of the error estimates,
it can be concluded that the proposed observer efficiently
estimates the longitudinal velocity by using only IMU
measurements.

Error - Longitudinal velocity [m/s] 30 R =0.98
a) o b)
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Figure 12. Longitudinal velocity estimation error. a) Probability
density function of the estimation error. b) Real value vs
estimated value

This is also confirmed by the results shown in figure 12.
Here, the probability density function (PDF) of the velocity
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estimation error is represented. It can be noted how the
error does not resemble a normal distribution and is random.
However, the errors are bounded between -0.5m/s and 2.5m/s
approximately. The lower error equal to -0.5m/s is very
important since, as already mentioned, the longitudinal
velocity appears only as a denominator in the sideslip angle
dynamics of the UKF. Finally, it is important to mention
that the estimated velocity is independent of the velocity
magnitude.

Sideslip angle estimation

After having discussed the longitudinal velocity estimation
and the IMU data filtering, the sideslip angle estimation can
now be discussed. The results of the pseudo-sideslip angle,
the corrected pseudo-sideslip angle and UKF estimated
sideslip angle will be shown and compared. The results
of the sideslip angle estimation is shown in figure 13,
for confidentiality reasons, the normalized sideslip angle
is plotted. The normalization has been done respect to the
maximum value seen during the network’s training shown in
figure 5. Because of external disturbances, model uncertainty
and, mostly, different closed-loop behaviour, the magnitude
of the sideslip angle is often greater values than those seen in
the numerical environment. For this reason, despite the great
effort to avoid ANN extrapolation, the ANN is not capable
of estimating correctly the experimental data in terms of
magnitude. However, the sideslip angle time response given
by the ANN is very accurate. In fact, the sideslip angle
variations are correctly estimated. As expected, the pseudo-
sideslip angle is saturated to the value seen during the
network training phase while the time response is very good.
Thus, the proposed strategy for the neural network structure
definition can be considered efficient despite needing a
magnitude correction.
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Figure 13. Sideslip angle estimation. a) ANN and Corrected
ANN estimation. b) ANN + UKF estimation

The result of the integrated ANN and UKEF seen in figure 13
show how the sideslip angle estimation is properly corrected
with the proposed method. Both the time response and the
magnitude of the estimated sideslip angle are similar to the
measured one. Note that in the first sideslip angle variation,
the sideslip angle measurement given by the Correvit sensor
is not coherent with the IMU measurements (i.e. physics of
the problem). The big discontinuity in the measured sideslip
angle plot leads to conclude that the Correvit measurement
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is wrong for time window between 20s and 25s. Excluding
this, the proposed observer is very efficient in the estimation.
This is confirmed by an absolute error time analysis of the
observer which is shown in figure 14 and the quantitative
analysis shown in table 5. In the figure, the real value versus
the estimated value is shown on the left while on the right
the sideslip angle error PDF is shown. In the table, the
MAE, RMSE and R values are reported. Additionally to the
quantitative analysis of the longitudinal velocity observer,
the mean value of the error 1 and standard deviation o were
calculated. These were calculated since the error distribution
resembles a normal distribution. The corrected ANN, which
depends on the output of the UKF (19-20), also improves the
estimation given by the ANN. The saturation in the pseudo-
sideslip angle correction assures that the observer’s output
remains stable. Since B* and ( recursively depend on each
other, the correction helps the convergence of the algorithm
in terms of speed and accuracy.
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Figure 14. Sideslip angle estimation error. a1-3) Real value vs
estimated value. b1-3) Probability density function of the
estimation error

Table 5. Sideslip angle estimation error.

Observer MAE [°] RMSE [°] R ul’l o[
ANN 0.77 2.63 0.94 0.77 250
Corrected ANN 0.36 1.34 095 0.36 1.17
ANN + UKF 0.09 0.70 0.98 0.09 0.67

For small values of the sideslip angle, the ANN estimates
very well, however, for larger values the estimation is
incorrect. The proposed algorithm properly corrects the
ANN estimate. Since for many seconds the vehicle is in a
straight line, the sideslip angle is close to zero, thus, the
correlation factor and mean absolute error have very good
values for all observers. However, the root mean square error
of the ANN is very high. The proposed ANN + UKF shows
instead very good values for all metrics with an improvement
of 73.3% on the RMSE respect to the ANN and of 47.7%
respect to the corrected ANN. Also the low mean error
and standard deviation show how the proposed observer
estimates the sideslip angle with very high precision.
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Conclusion

In this paper an integrated ANN and UKF method to estimate
the sideslip angle is proposed and tested on real data. The
estimation is given by using only measurements coming
from an IMU. The ANN is trained by means of numerical
data only. An algorithm has been proposed to select the
best neural network structure. Experimental results show
that the algorithm is effective and that the deployed ANN
can correctly predict the sideslip angle time response of
a real vehicle despite not being able to correctly estimate
its magnitude. This is mainly due to different closed-loop
behaviour and model uncertainty. By means of an novel
integrated ANN and UKF observer based on a kinematic
model, the sideslip angle estimation is corrected. The
kinematic model uses a longitudinal velocity observer based
on direct integration with integral damping and integral
value reset. The proposed method allows the sideslip angle
estimation to be transparent to vehicle and tire models due to
the use of a kinematic vehicle model rather than a dynamic
one. An additional strategy for the correction of the pseudo-
sideslip angle improves the accuracy and the convergence
of the observer. The estimated value given by the proposed
method shows very good results on experimental data.
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