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GLOBAL WELL-POSEDNESS OF THE TWO-DIMENSIONAL

HORIZONTALLY FILTERED SIMPLIFIED BARDINA

TURBULENCE MODEL ON A STRIP-LIKE REGION

Abstract. We consider the 2D simplified Bardina turbulence model, with
horizontal filtering, in an unbounded strip-like domain. We prove global ex-
istence and uniqueness of weak solutions in a suitable class of anisotropic
weighted Sobolev spaces.
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1. Introduction

In the present paper we give some results mainly connected with the regularity
and the long-time behavior of the viscous simplified Bardina turbulence model (with
horizontal filtering) in a strip-like region Ω ⊆ R

2, aimed at proving existence and
uniqueness of weak solutions in a suitable class of weighted Sobolev spaces.

The Bardina closure model for turbulence was introduced in 1980 by J. Bardina,
J. H. Ferziger and W. C. Reynolds in [7], and later simplified and analyzed in [18]
and in [12]. Indeed, the 3D simplified Bardina turbulence system was proposed
in [18] as a regularization model, for small values of the scale parameter α, of the
3D Navier–Stokes equations for the purpose of numerical simulations. Analysis of
the global behavior of the pertinent solutions in a bounded domain, with periodic
boundary conditions, appears in [12]. Global well-posedness for the 2D simplified
Bardina model was established in [13]. Again, in space-periodic domains, the invis-
cid simplified Bardina model is a regularizing system for the 3D Euler equations;
this because it is globally well-posed and it approximates the 3D Euler equations
without adding spurious regularizing terms (see [18]).

The behavior of the solutions for the simplified Bardina model (in both 2D and
3D cases) changes considerably depending on whether the integration domain is
bounded. This is a basic point in studying general properties as regularity on
the long-time period and dynamics (in particular, existence of attractors). More
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generally, this remark applies to the solutions of a broader class of dissipative
systems (see, e.g., [4, 15, 21, 24]). In fact, unlike the case of bounded domains, for
some types of solutions to PDEs in unbounded regions (such as spatially periodic
patterns, travelling waves, etc...), we can not expect to have uniform control on
the energy; rather the energy of these solutions may blow up to infinity. Again,
due to the unboundedness of Ω, compactness for the semigroup solution operator
can not be retrieved by using standard Sobolev embeddings (there are no compact
inclusions). Hence, in this case, the standard choices for bounded domains of the
phase space, as Lp(Ω), W k,p(Ω) or Hp(Ω), 1 ≤ p < +∞, k ∈ N, do not seem
appropriate.

Even in the promising situation in which the solutions are bounded as |x| → +∞
in Ω, i.e. they belong to L∞(Ω), the study of their behavior is not necessarily sim-
plified since this space is analytically awkward to use: on one hand, strong require-
ments on the initial data are needed to have solutions in such a space; on the other
hand, the study of dynamics in this phase space results to be more intricate since
one does not have at disposal analytical semigroups, maximal regularity properties
for semigroups, etc...

A reasonable alternative is using weighted Sobolev spaces (see, e.g., [1, 5, 21])
that, in principle, can contain sufficiently regular, spatially bounded solutions on the
long-time period. In such a situation it is possible to study the semigroup generated
by the considered system and to check whether it admits a global attractor in a
suitable weighted phase space. A main advantage of this approach is that weighted
Sobolev spaces are rather handy to use since they enjoy regularity, interpolation
and embedding properties which are similar to those of the usual Sobolev spaces
W k,p(Ω) for bounded domain.

However, proving estimates in such spaces is more complicated than in the stan-
dard ones and, for our analysis, we find convenient to follow the same path as in
[6] (see also [14, 22]). In so doing, we consider the 2D Navier–Stokes system in
terms of a stream function, v, and derive formally the 2D simplified Bardina with
horizontal filtering.

We now introduce the considered 2D simplified Bardina model for the potential
v connected with the vector field v = (v1, v2) (here, v is a regularizing vector field
associated with the velocity field, u, of the 2D Navier–Stokes equations (1.3) below,
i.e. v ≈ u and v1 = ∂2v, v2 = −∂1v), on the strip-like region Ω ⊂ R

2, i.e.:

(1.1)
(1 − α2∂21)∆∂tv +B(v, v)− ν(1 − α2∂21)∆

2v = g, x ∈ Ω and t ∈ R
+,

v|t=0 = v0(x), x = (x1, x2) ∈ Ω,
v(x, t) = 0, ∇v(x, t) = 0, ∂1∇v(x, t) = 0, x ∈ ∂Ω and t ∈ R

+,

where B(v, v) := ∂2v∂1∆v − ∂1v∂2∆v, α > 0 is a scale parameter, ν > 0 is the
kinematic viscosity, g is a forcing term, and the domain Ω is defined by the following
inequalities (see [6, 14, 22]):

(1.2) b1(x1) ≤ x2 ≤ b2(x1), x1 ∈ R,

where b1 and b2 are twice continuously differentiable functions bounded over the
entire x1-axis according to

−M ≤ b1(x1) ≤ x2 ≤ b2(x1) ≤M, x1 ∈ R,

|b′i(x1) + bi(x1)| ≤ c, i = 1, 2.
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In order to formally derive system (1.1), we consider the 2D Navier–Stokes equa-
tions in the space periodic setting Ω = T

2 (although it would be sufficient to con-
sider periodicity only in the x1-direction), i.e.

(1.3)
∂tu+∇ · (u⊗ u)− ν∆u+∇π = f(x, t) , x ∈ Ω and t ∈ R

+,
∇ · u = 0 , x ∈ Ω and t ∈ R

+,
u|t=0 = u0 , x ∈ Ω,

where u(x, t) = (u1, u2) is the velocity field, π(x, t) denotes the pressure, f(x, t) =
(f1, f2) is the external force, and ν > 0 the kinematic viscosity.

First, we rewrite the Navier–Stokes equations (1.3) in terms of the vorticity
ξ := curlu := ∂1u2 − ∂2u1 ∈ R and then we introduce the stream function ω
associated to the velocity field u, i.e. a scalar function ω ∈ R such that u =
curlω = (∂2ω,−∂1ω) ∈ R

2 (notice that ξ = −∆ω), to get

(1.4)
∆∂tω +B(ω, ω)− ν∆2ω = g,
ω|t=0 = ω0,

where the bilinear operator B is as above (i.e. B(ω, ω) = ∂2ω∂1∆ω − ∂1ω∂2∆ω)
and g = ∂2f1 − ∂1f2.

For a function w, we introduce the horizontal filter (related to the horizontal
Helmholtz operator), given by

(1.5) Ah = I − α2∂21 , and wh := A−1
h w.

As discussed in [3, 16, 17], from the point of view of the numerical simulations, this
filter is less memory consuming with respect to the standard one. Further, another
interesting feature of this filter is that, even in the case of domains which are not
periodic in the vertical direction, there is no need to introduce artificial boundary
conditions for the Helmholtz operator (see, e.g., [3, 8, 9, 10, 11]).

We set v := ωh (and (v1, v2) = v := uh , with v1 = ∂2v, v2 = −∂1v) and solve
the interior closure problem by using the approximations

B(ω, ω)
h

≈ B(ωh , ωh)
h

=: B(v, v)
h

,

to get the following initial value problem:

∆∂tv +B(v, v)
h

− ν∆2v = gh ,
v|t=0 = ω0

h .

By applying the operator Ah = I − α2∂21 to the above system, term by term, and
considering the obtained equations on the channel-like domain described by (1.2)
(introducing suitable boundary conditions), we get (1.1). Here and in the sequel,
for simplicity, we always assume that g(x, t) = g(x).

Set the following anisotropic Sobolev spaces:

H2,h
0 = {f ∈W 1,2(Ω) : ∂1∇f ∈ L2(Ω),∇ · f = 0 and f |∂Ω = 0},

and

H3,h = {f ∈W 2,2(Ω) : ∂1∆f ∈ L2(Ω)}.

As first step in our analysis we provide an existence theorem to (1.1) in standard
anisotropic Sobolev spaces. In this case we deal with a proper class of weak solutions
to the considered problem (see Definition 3.1 below). This result reads as follows.
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Theorem 1.1. Let v0 ∈ H3,h∩H2,h
0 and g ∈ L2. Then, there exists a unique weak

solution v of the problem (1.1).

In the main theorem of the paper we prove that the global weak solution v = v(t)
in Theorem 1.1 is actually defined in a suitable class of anisotropic weighted Sobolev
spaces (see Theorem 3.1 below).

In proving Theorem 3.1 we do not follow directly the scheme behind the stan-
dard Aubin–Lions lemma, rather we use a different compactness method (see [23,
Corollary 2.34], see also Lemma 5.2 below) by which we perform our analysis on
approximating open bounded subsets O of Ω. This result allows us to surmount the
difficulties due to the boundary conditions and the unboundedness of the considered
domain Ω.

The results obtained here open the way to the analysis of dynamics in terms of
attractors; this will be the matter of a forthcoming paper.

Plan of the paper. In Section 2 we introduce the main notation and we also
give some preliminary results. In Section 3 we give the precise definition of weak
solution, we state our main result (Theorem 3.1) and we also present some remarks
on the existence of weak solutions. Section 4 is devoted to the proof of Theorem 1.1.
In Section 5, we study problem (1.1) in suitable Sobolev weighted spaces proving
Theorem 3.1. Finally, the appendix is dedicated to the properties of the weight
functions used to define the weighted Sobolev spaces used in Theorem 3.1.

2. Notation and preliminary results

In what follows, we denote by Lp := Lp(Ω), and W k,p := W k,p(Ω), with
Hk := W 2,k, k, p ∈ N, the usual Lebesgue and Sobolev spaces, respectively. Also,
we denote by ( , ) and ‖ · ‖ the standard L2-inner product and norm in L2(Ω), re-
spectively. We denote by (Hk)′ the dual space to Hk, k, p ∈ N, and this notation
will be adapted in a straightforward manner, when it makes sense, to the further
spaces that will be introduced in the sequel.

Given a Banach space X , for p ∈ [1,∞), we denote the usual Bochner spaces

Lp(0, T ;X) with associated norm ‖f‖pLp(0,T ;X) :=
∫ T

0
‖f(s)‖pXds (the lower bound

of ‖f(s)‖X if p = ∞), with ‖ · ‖X the norm of X .
Hereafter, C will denote a dimensionless constant which might depend on the

shape of the domain Ω and that may assume different values, even in the same line.
Let us introduce the following function spaces:

H := {f ∈ L2(Ω) : ∇ · f = 0 and f = 0 on ∂Ω},

H1,h := {f ∈ L2(Ω) : ∂1f ∈ L2(Ω)},

H2,h := {f ∈ H1,h : ∂1∇f ∈ L2(Ω)},

H3,h := {f ∈ H2,h : ∂1∆f ∈ L2(Ω)},

and H l,h
0 := H l,h ∩H , l = 1, 2, 3.

2.1. Weighted Sobolev spaces: Basic properties and related inequalities.

Here, we consider a family of functions ϕρ(x, α1, α2, ǫ, γ) = ϕ(x, α1, α2, ǫ, ρ, γ) en-
joying the following properties, analogue to those listed in [14, §2.2, (A), pg. 383 ]
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(see also [6]):

ϕ ≥ 1, ϕ(x, α1, α2, ǫ, ρ, γ) = ϕ(ǫx, α1, α2, 1, ρ, 1)
γ,

ϕ(x, α1, α2, 1, ρ, γ) does not depend on ρ if |x| ≤ ρ,

ϕ(x, α1, α2, 1, ρ, γ) = ϕ(ρ+ 1, α1, α2, 1, ρ, γ) as |x| ≥ ρ+ 1

ϕ(x, α1, α2, ǫ, ρ1, γ) ≥ ϕ(x, α1, α2, ǫ, ρ2, γ) for ρ1 ≥ ρ2 ≥ 1, γ ≥ 0,

lim
ρ→+∞

ϕ(x, α1, α2, 1, ρ, γ) = (1 + |x1|
α1 + |x2|

α2)
γ
2 =: φ(x, α1, α2, 1, γ/2),

where we have introduced the anisotropic weight function φ(x, α1, α2, ǫ, γ) = (1 +
|ǫx1|

α1 + |ǫx2|
α2)γ (see, e.g., [6, 15]), which is suitable for the anisotropic Sobolev

spaces we will consider in the sequel (see the definition of H l,h
γ , l = 1, 2, 3, below).

For the remainder of the paper we always assume α1 = 3, α2 = 2 and we use
the compact notations φ := φ(x, ǫ, γ) := φ(x, 3, 2, ǫ, γ) and ϕ := ϕ(x, ǫ, ρ, γ) :=
ϕ(x, 3, 2, ǫ, ρ, γ).

Again, arguing as in [6, 14], we take ψ := ϕ1/2. Notice that we can choose ϕ so
that

(2.1) |∂βψ2| ≤ Cǫ|β|ψ2 for every multi-index β = (β1, β2), |β| ≤ 3 and β2 ≤ 2.

This property will play a crucial role in the subsequent computations.

We denote by H l
γ := H l

γ(Ω) the space of functions equipped with the following
norm:

‖v‖2l,γ :=
∑

|β|≤l

‖∂βv‖2γ ,

where

‖v‖2γ :=

∫

Ω

|v|2(1 + |x1|
3 + |x2|

2)γdx, γ > 0 and ∂β :=
∂β1+β2

∂xβ1

1 ∂x
β2

2

, (β1, β2) ∈ N
2.

Using the above notation, we introduce the further spaces

(2.2)

Hγ := H0,γ := {f ∈ H : ‖f‖γ < +∞},

H1,h
γ := {f ∈ H : ‖∂1f‖γ < +∞},

H2,h
γ := {f ∈ H1,h ∩H : ‖∂1∇f‖γ < +∞},

H3,h
γ := {f ∈ H2,h ∩H : ‖∂1∆f‖γ < +∞}.

Let us recall the following results taken from [6] (see also [14]).

Proposition 2.1. If v ∈ H1
0 (Ω), then

(2.3)
∣

∣‖ψ∇v‖ − ‖∇(ψv)‖
∣

∣ ≤ Cǫ‖ψv‖.

If v ∈ H2
0 , then it holds true that

(2.4)
∣

∣‖ψ∆v‖ − ‖∆(ψv)‖
∣

∣ ≤ Cǫ‖ψ|v|+ ψ|∇v|‖.

Next, we have a weighted version of the classical Poincaré inequality.

Proposition 2.2. Let v ∈ H1
0 with v|∂Ω = 0. Then it holds true that

(2.5) ‖ψv‖ ≤ 2λ−1
1 ‖ψ∇v‖.

Let ǫ in the definition of ϕ be sufficiently small. Let v ∈ H2 ∩H1
0 . Then

(2.6) ‖ψ∇v‖ ≤ 2λ
− 1

2

1 ‖ψ∆v‖.
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Proposition 2.3. It holds true that

‖v‖1,γ ≤ ‖ψ∇v‖ ∀v ∈ H1
γ , v|∂Ω = 0,(2.7)

and

‖v‖2,γ ≤ ‖ψ∆v‖ ∀u ∈ H2
γ , v|∂Ω = 0.(2.8)

We also have the following controls in the L4-norm.

Proposition 2.4. Let v ∈ H1
γ , with v|∂Ω = 0. Then

(2.9)
‖ψv‖L4 ≤ C‖∇(ψv)‖ ≤ C‖ψ∇v‖+ C‖v∇ψ‖

≤ C‖ψ∇v‖+ Cǫ‖vψ‖.

Further, if v ∈ H2
γ , with v|∂Ω = 0, then

(2.10) ‖ψ∇v‖L4 ≤ Cǫ‖ψ∇v‖+ C‖ψ∆v‖.

3. Weak solutions and existence results

Consider the simplified-Bardina model (1.1). Observe that the bilinear form

B(u, v) := ∂2v∂1∆u− ∂1v∂2∆u = ∂1(∂2v∆u)− ∂2(∂1v∆u)

is such that
(

B(u, v), w
)

=

∫

∂1(∂2v∆u)w − ∂2(∂1v∆u)w =

∫

∂1v∆u∂2w − ∂2v∆u∂1w

=−

∫

∂1w∆u∂2v − ∂2w∆u∂1v = −
(

B(u,w), v
)

,

and

(

B(u, v), v
)

=0,

where the second line is obtained integrating by parts and exploiting the boundary
conditions. Here and in the sequel, unless stated otherwise, we drop the dx in the
space-integrals to keep the notation as compact as possible.

We now give the following definition.

Definition 3.1. Given v0 ∈ H3,h ∩ H2,h
0 and g ∈ L2(Ω), we say that v ∈

L∞
loc(R;H

2,h
0 ∩H3,h) is a weak solution of (1.1) if vt ∈ L2

loc(R;H
2,h
0 ) and

(∇vt,∇h) + α2(∂1∇vt, ∂1∇h) + ν(∆v,∆h) + να2(∂1∆v, ∂1∆h)

=
(

B(v, v), h
)

− (g, h)

for every h ∈ H2,h
0 ∩H3,h(Ω), for a.e. t ∈ R (and the initial datum is assumed in

weak sense).

In the next section we give a proof of Theorem 1.1 that guarantees existence and
uniqueness of a weak solution to problem (1.1).

The anisotropic weighted Sobolev spaces introduced in (2.2) provide the appro-
priate functional framework for studying the existence of weak solutions to (1.1)
enjoying extra regularity properties. Then, in Section 5 we prove our main result,
that reads as follows.
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Theorem 3.1. Let g ∈ H0,γ. Then, for any v0 ∈ H3,h
γ ∩H2,h

0 and T > τ given, the

weak solution v of (1.1) provided by Theorem 1.1 is such that v ∈ L∞(τ, T ;H2,h
γ )∩

L2(τ, T ;H3,h
γ ) ∩ C(τ, T ;H1,h

γ ) and vt ∈ L2(τ, T ;H1,h
γ ).

Corollary. Under the hypotheses of Theorem 3.1 it holds true that v ∈
L∞
loc(0,∞;H2,h

γ ) ∩ L2
loc(0,∞;H3,h

γ ) ∩ C(0,∞;H1,h
γ ) and vt ∈ L2

loc(0,∞;H1,h
γ ).

4. Existence in anisotropic Sobolev spaces

This section is devoted to the proof of Theorem 1.1, which provides the existence
of a unique weak solution of the problem (1.1). Since the proof follows standard
methods, we proceed formally in order to find appropriate a priori estimates. A
rigorous proof can be easily obtained by introducing a Galerkin approximation and
finding similar estimates.

We are now ready to proceed with the proof of Theorem 1.1.

Proof of Theorem 1.1. Testing formally (1.1) against v, we get

1

2

d

dt

(

‖∇v‖2 + α2‖∂1∇v‖
2
)

+ ν
(

‖∆v‖2 + α2‖∂1∆v‖
2
)

≤ |(g, v)|.(4.1)

Since |(g, v)| ≤ λ−1
1 ‖g‖ · ‖∆v‖ ≤ 1

2νλ2

1

‖g‖2 + ν
2‖∆v‖

2, we deduce

d

dt

(

‖∇v‖2 + α2‖∂1∇v‖
2
)

+ ν
(

‖∆v‖2 + α2‖∂1∆v‖
2
)

≤
1

νλ21
‖g‖2,

which implies

‖∇v(t)‖2 + α2‖∂1∇v(t)‖
2 + ν

∫ t

0

(

‖∆v(s)‖2 + α2‖∂1∆v(s)‖
2
)

ds

≤
1

νλ21
‖g‖2t+ ‖∇v(0)‖2 + α2‖∂1∇v(0)‖

2,

so that v ∈ L∞
loc(0,∞;H2,h

0 ) ∩ L2
loc(0,∞;H2,h

0 ∩H3,h).
Multiplying (1.1) against vt and integrating over Ω, we get

(4.2)

ν

2

d

dt

(

‖∆v‖2 + α2‖∂1∆v‖
2
)

+‖∇vt‖
2+α2‖∂1∇vt‖

2

≤ |
(

g, vt
)

|+ |
(

B(v, v), vt
)

|.

We have |(g, vt)| ≤ λ
−1/2
1 ‖g‖ · ‖∇vt‖ ≤ ‖g‖2

λ1
+ ‖∇vt‖

2

4 and, thanks to the Hölder,
the Gagliardo–Nirenberg and the Young inequalities, we have also

|(B(v, v), vt)| ≤ ‖∂1v‖L∞‖∆v‖ ‖∂2vt‖+ ‖∂2v‖L4‖∆v‖ ‖∂1vt‖L4

≤ ‖∂1∆v‖ ‖∆v‖ ‖∇vt‖+ C‖∆v‖2‖∂1∇vt‖

≤
‖∇vt‖

2

4
+
α2

2
‖∂1∇vt‖

2 + Cν(‖∆v‖2 + α2‖∂1∆v‖
2)‖∆v‖2,

for a suitable constant C = C(λ1, α, ν) > 0. Plugging this estimate in (4.2), we
obtain

ν
d

dt

(

‖∆v‖2 + α2‖∂1∆v‖
2
)

+ ‖∇vt‖
2 + α2‖∂1∇vt‖

2

≤ C‖g‖2 + Cν(‖∆v‖2 + α2‖∂1∆v‖
2)‖∆v‖2.
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Since we have already proved that v ∈ L2
loc(H

2), an application of the Grönwall
lemma gives the claimed regularity of v (here we use the full regularity of v0), and
consequently by the previous inequality, the regularity of vt.

Lastly, notice that the proof of the uniqueness of weak solutions is quite standard
and very similar to the proof of uniqueness for the case of a bounded domain (mainly
because of the validity of the Poincaré inequality) and this last part of the proof is
left to the reader. �

5. Weak solutions in anisotropic weighted Sobolev spaces

In what follows we prove the main result of the paper, i.e. Theorem 3.1. Let
us consider the weigth function φ = (1 + |x1|

3 + |x2|
2)γ , γ > 0, introduced in

Subsection 2.1, and the approximating function ϕ = ϕ(x, ǫ, ρ, γ) with ψ = ϕ
1

2 .
We state the following technical lemma.

Lemma 5.1. Under the assumption γ ≤ 2/3, setting ψ = ϕ1/2, then it holds true
that

(5.1) |∂βψ2| ≤ Cǫ|β|ψ, β = (β1, β2), 0 < |β| ≤ 3, β2 ≤ 2.

The precise construction of the weight function ϕ and the proof of this lemma
are postponed to Appendix A. For the remainder of the paper we always assume
that γ ≤ 2/3.

In the proof of existence in weighted spaces, we will use the following result (see
also [20, Theorem 2.2] and [2]) to overcome the difficulties arising because of the
unboundedness of the strip-like region Ω.

Lemma 5.2 (Corollary 2.34, [23]). Let Θ be a bounded set of Rd, X ⊂ E Banach
spaces with compact injection. Consider 1 ≤ p < q ≤ +∞. Suppose that F ⊂
Lp(Θ;E) satisfies

(i) ∀W ⊂⊂ Θ, lim
k→0

sup
f∈F

‖τkf − f‖Lp(W ;E) = 0 (where τkf is the translation

given by τkf(x) = f(x+ k)),

(ii) F is bounded in Lq(Θ;E) ∩ L1(Θ, X).

Then, F is precompact in Lp(Θ;E).

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Since H3,h
γ ∩H2,h

0 is separable and the set V = {v ∈ C∞
0 (Ω) :

∇ · v = 0} is dense in H3,h
γ ∩ H2,h

0 , there exists a sequence of linearly inde-

pendent elements {w1, w2, . . .} ⊂ V which is complete in H3,h
γ ∩ H2

0 . Denote

Hm := span{wj}j=1,...,m and consider the projector Pm(v) =
∑m

j=1(v, wj)wj . A
function

vm =

m
∑

j=1

amj (t)wj(x)

is an m-approximate solution of Equation (1.1) if

(∇vmt ,∇wj) + α2(∂1∇v
m
t , ∂1∇wj) + ν(∆vm,∆wj) + να2(∂1∆v

m, ∂1∆wj)

=
(

B(vm, vm), wj

)

− (g, wj)

for every j = 1, . . . ,m. The existence of solutions is guaranteed by the Peano
theorem.
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We split the proof in a number of steps.

(1) We establish a priori estimates for {vm} in the space L∞
loc(0,∞;H2,h

γ ) ∩

L2
loc(0,∞;H3,h

γ ).
(2) We show that {vm} satisfies condition (ii) of Lemma 5.2: F := {vm|O} is

bounded in L∞(τ, T ;H2,h
γ (O)) ∩ L1(τ, T ;H3,h

γ (O)), where O is any open
subset in Ω and Θ := (τ, T ).

(3) We show that {vm} satisfies condition (i) of Lemma 5.2:
lim
k→0

sup
m∈N

‖τkv
m − vm‖L2(τ,T−k;H2,h

γ (O)) = 0.

(4) We apply Lemma 5.2 and extract a subsequence still denoted by vm|O
converging to some v in L2(τ, T ;H2,h

γ (O)). In particular, we observe that
the relations in the previous two points are uniform with respect to O.

(5) The limiting function v is a weak solution.
(6) By interpolation, we obtain the time continuity of v with values in H1,h

γ (Ω).

STEP 1: Establishing a priori estimates in L∞
loc(0,∞;H2,h

γ ) ∩ L2
loc(0,∞;H3,h

γ ).
Here, we proceed again formally by dealing with v and the equation satisfied by

it. However, the a priori estimates that we are about to derive can be rigorously
justified. Indeed, a rigorous proof uses vm instead of v and wj as test functions, as
it will be made in the second and third steps below.

We multiply equation (1.1) by vψ2 in L2(Ω) and use integration by parts to get

(5.2)

1

2

d

dt

(

‖ψ∇v‖2 + α2‖ψ∂1∇v‖
2
)

+ ν‖ψ∆v‖2 + να2‖ψ∂1∆v‖
2

=
(

B(v, v) − g, vψ2
)

−

∫

∇vt v∇ψ
2 + α2

∫

∂21∇vt v∇ψ
2

− α2

∫

∂1∇vt∇v∂1ψ
2 − ν

∫

∆v v∆ψ2 − 2ν

∫

∆v∇v∇ψ2

− 2να2

∫

∂1∆v∂1∇v∇ψ
2 − να2

∫

∂1∆v∂1v∆ψ
2 − να2

∫

∂1∆v∆v∂1ψ
2

− 2να2

∫

∂1∆v∇v∂1∇ψ
2 − να2

∫

∂1∆v v∂1∆ψ
2

=
(

B(v, v) − g, vψ2
)

+

10
∑

j=1

Lj .

In particular, we have used that

−

∫

∂21∆
2v vψ2 =

∫

∂1∆
2v∂1vψ

2 +

∫

∂1∆
2vv∂1ψ

2

=−

∫

∂1∇∆v∂1∇vψ
2 −

∫

∂1∇∆v∂1v∇ψ
2

−

∫

∂1∇∆v∇v∂1ψ
2 −

∫

∂1∇∆vv∂1∇ψ
2

=

∫

∂1∆v∂1∆vψ
2 + 2

∫

∂1∆v∂1∇v∇ψ
2 +

∫

∂1∆v∂1v∆ψ
2

+

∫

∂1∆v∆v∂1ψ
2 + 2

∫

∂1∆v∇v∂1∇ψ
2 +

∫

∂1∆vv∂1∆ψ
2

and noticed that all boundary terms are zero.
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Proceeding as in [14], we immediately have the existence of a constant C =
C(λ1, ν, α) > 0 such that

(5.3)

(

B(v, v), vψ2
)

=

∫

[

∂1v∆v∂2(vψ
2)− ∂2v∆v∂1(vψ

2)
]

=

∫

[

∂1v∆v v∂2ψ
2 − ∂2v∆v v∂1ψ

2
]

≤ 2‖v‖L∞‖ψ∆v‖‖ψ∇v‖

≤ ǫν‖ψ∆v‖2 + Cǫ‖ψ∇v‖2

and
∣

∣

(

g, vψ2
)∣

∣ ≤ C‖ψg‖2 + ǫν‖ψ∆v‖2,

where to control v in L∞-norm we use Agmon’s inequality and the regularity pro-
vided by Theorem 1.1.

Then, we estimate the terms Li, i = 1, . . . , 10. Let us start with L1, to get

(5.4)

|L1| ≤

∣

∣

∣

∣

∫

∇vt v∇ψ
2

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

vt∇v∇ψ
2

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

vtv∆ψ
2

∣

∣

∣

∣

≤ Cǫ

∫

|ψ∇v||vt|+ Cǫ2
∫

|ψv||vt|

≤ Cǫ(‖ψ∇v‖2 + ‖vt‖
2)

where we used the relation (5.1). Similarly, we also have that

|L2| ≤α
2

∣

∣

∣

∣

∫

∂1∇vt∂1v∇ψ
2

∣

∣

∣

∣

+ α2

∣

∣

∣

∣

∫

∂1∇vtv∂1∇ψ
2

∣

∣

∣

∣

≤α2

∣

∣

∣

∣

∫

∂1vt∂1∇v∇ψ
2

∣

∣

∣

∣

+ α2

∣

∣

∣

∣

∫

∂1vt∂1v∆ψ
2

∣

∣

∣

∣

+ α2

∣

∣

∣

∣

∫

∂1vt∇v∂1∇ψ
2

∣

∣

∣

∣

+ α2

∣

∣

∣

∣

∫

∂1vtv∂1∆ψ
2

∣

∣

∣

∣

≤ǫα2C‖∂1vt‖
2 + ǫCα2(‖ψ∂1∇v‖

2 + ‖ψ∇v‖2).

Also in this case we conclude by using (5.1). For the term L3 we have

|L3| ≤ α2

∣

∣

∣

∣

∫

∂1∇vt∇v∂1ψ
2

∣

∣

∣

∣

≤ α2

∣

∣

∣

∣

∫

∂1vt∆v∂1ψ
2

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

∂1vt∇v∂1∇ψ
2

∣

∣

∣

∣

≤ ǫα2C‖∂1vt‖
2 + ǫα2C(ν‖ψ∆v‖2 + ‖ψ∇v‖2).

Next, for the terms L4 and L5, using the same inequalities we get

|L4| ≤2ν

∫

|∆v||v||∆ψ2| ≤ 2νǫ2
∫

|ψ∆v||ψv|

≤ǫ2ν‖ψ∆‖2 + Cǫ2‖ψv‖2,
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and

|L5| ≤2ν

∣

∣

∣

∣

∫

∇v∆v∇ψ2

∣

∣

∣

∣

≤ǫν‖ψ∆v‖2 + ǫνC‖ψ∇v‖2.

Again, for the terms L6, L7 and L8 we have

|L6| ≤να
2

∣

∣

∣

∣

∫

∂1∇v∂1∆v∇ψ
2

∣

∣

∣

∣

+ να2

∣

∣

∣

∣

∫

∂1∇v∂1∇v∆ψ
2

∣

∣

∣

∣

≤ǫνα2‖ψ∂1∆v‖
2 + Cǫ‖ψ∂1∇v‖

2,

|L7| ≤να
2

∣

∣

∣

∣

∫

∂1∆v∂1v∆ψ
2

∣

∣

∣

∣

≤ να2ǫ2
∫

|ψ∂1∆v||ψ∂1v|

≤ǫ2να2‖ψ∂1∆ψ‖
2 + Cǫ2α2ν‖ψ∇v‖2

and

|L8| ≤να
2

∣

∣

∣

∣

∫

∂1∆v∆v∂1ψ
2

∣

∣

∣

∣

≤ να2ǫ

∫

|ψ∂1∆v||ψ∆v|

≤
να2ǫ

2
‖ψ∂1∆v‖

2 +
να2ǫ

2
‖ψ∆v‖2.

Finally, for the last two terms, exploiting similar estimates, we get

|L9| ≤να
2ǫ2

∫

|ψ∂1∆v||ψ∇v|

≤ǫνα2‖ψ∂1∆v‖
2 + Cǫ2ψ‖∇v‖2

and

(5.5)
|L10| ≤να

2

∫

|∂1∆v||v||∂1∆ψ
2| ≤ να3ǫ2

∫

|ψ∂1∇∆v||ψv|

≤ǫ3να2‖ψ∂1∆v‖
2 + Cǫ3‖ψv‖2.

Using (5.2) along with the estimates (5.3)–(5.5) we get

1

2

d

dt

(

‖ψ∇v‖2 + α2‖ψ∂1∇v‖
2
)

+ ν‖ψ∆v‖2 + να2‖ψ∂1∆v‖
2

≤ǫC‖vt‖
2 + ǫα2C‖∂1vt‖

2 + ǫνC‖ψ∆v‖2

+ ǫνα2C‖ψ∂1∆v‖
2 + ǫC‖ψ∇v‖2 + C‖ψg‖2.

Using the control on ‖vt‖ and ‖∂1vt‖ provided by Theorem 1.1 together with the
Grönwall inequality, we get the claimed regularity on v, i.e. v ∈ L∞

loc(0,∞;H2,h
γ ) ∩

L2
loc(0,∞;H3,h

γ ). This concludes STEP 1.

Before proceeding with the next steps, we open a parenthesis to outline the
scheme behind the remaining part of the proof. Until now, we have used v in place
of vm for a matter of convenience; however, in view of extracting a convergent
subsequence of {vm}, here below we will employ this latter notation. From the
above estimates, we can extract a subsequence of {vm}, still denoted by {vm}, such
that

vm ⇀ ṽ weak-star in L∞(τ, T ;H2,h
γ (Ω)),

vm ⇀ ṽ weak in L2(τ, T ;H3,h
γ (Ω)).



12 LUCA BISCONTI, DAVIDE CATANIA

Moreover, as a consequence of the estimates in the proof of Theorem 1.1 we also
have that

(5.6) vm → ṽ strong in L2(τ, T ;H2,h(Ω)).

To conclude our argument, obtaining that {vm} is relatively compact in
L2(τ, T ;H2,h

γ (Ω)), we would need some control on dvm/dt.
When it is possible to choose a special basis wj ∈ C∞

0 (Ω) to generate the
Galerkin elements vm(x, t) =

∑m
j=1 a

m
j (t)wj(x), m ∈ N, such that a uniform con-

trol on ‖dvm/dt‖L2(τ,T ;H1,h
γ )(Ω) holds true, this is enough to use a compactness

result à la Aubin–Lions to get the existence of a subsequence such that vm → ṽ in
L2(τ, T ;H2,h

γ (Ω)), and even more.
Here, using Lemma 5.2, we obtain a similar result but not on the whole domain

Ω. Actually, what we are going to prove is the following: for any bounded open set
O ⊂ Ω, there exists a subsequence of {vm} (depending on O and relabeled {vm|O})
satisfying

(5.7) vm|O → v|O in L2(τ, T ;H1,h
γ (O)).

Since we also have that {vm} is weakly convergent to ṽ in L2(τ, T ;H3,h
γ ), due

to the uniqueness of the limit it follows that (ṽ)|O = v|O for every bounded subset
O ⊂ Ω. This fact along with (5.7) will be enough to prove that ṽ is a weak solution
to (1.1) defined in L∞

loc(0,∞;H2,h
γ ) ∩ L2

loc(0,∞;H3,h
γ ). Indeed, to conclude our

analysis on Ω×(τ, T ), and to prove that the weak formulation for vm is stable when
m→ +∞, we consider a proper family of test functions with separate variables and
bounded supports (see, e.g., [2]). Let {wj}j=1,...,m be the basis of the space Hm

approximating H3,h
γ ∩H2

0 , for m ∈ N. Let σ = σ(t) be a continuously differentiable
function on [τ, T ] with σ(T ) = 0. Then, we set the following weak formulation
(where wj(x)σ(t) are the tests) on Ω× (τ, T ):
∫ T

τ

(ψ∇vmt , ψ∇wj)σdt+ α2

∫ T

τ

(ψ∂1∇v
m
t , ψ∂1∇wj)σdt + ν

∫ T

τ

(ψ∆vm, ψ∆wj)σdt

+ να2

∫ T

τ

(ψ∂1∆v
m, ψ∂1∆wj)σdt +

∫ T

τ

(ψB(vm, vm), ψwj

)

σdt

=

∫ T

τ

(ψg, ψwj)σdt

for all j = 1, . . . ,m. Using Lemma 5.2 (the intersection suppwj ∩ Ω is bounded)
we will prove that the above relation passes to the limit as m→ +∞.

To proceed to the next steps, and prove that Lemma 5.2 applies to our case, we
set X = H3,h

γ (O), E = H2,h
γ (O), where O is any open set included in Ω. Also, we

choose p = 2, q = +∞ and, as already mentioned, we denote by Θ = (τ, T ) ⊆ R

the time interval, and by F = {vm|O} the approximating sequence.

STEP 2: The approximating sequence {vm} satisfies condition (ii) in Lemma 5.2.
The boundedness of vm in L∞(τ, T ;H2,h

γ (O)) ∩ L1(τ, T ;H3,h
γ (O)), O ⊂ Ω open

and bounded, follows directly from the boundedness of vm in L∞
loc(0,∞;H2,h

γ ) ∩

L2
loc(0,∞;H3,h

γ ) proved in STEP 1. This concludes STEP 2.

STEP 3: The approximating sequence {vm} satisfies condition (i) in Lemma 5.2.
First, we will prove that {vm|O} is relatively compact in L2(τ, T ;H2,h

γ (O)) for
all bounded subsets O ⊂ Ω by using Lemma 5.2. We only have to check that {vm}
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satisfies condition (i) in Lemma 5.2, i.e.,

lim
k→0

sup
m∈N

‖τkv
m − vm‖L2(τ,T−k;H2,h

γ (O)) = 0.

Also here, to keep the notation as compact as possible, we write v in place
of vm. Consider k > 0 arbitrarily small and set Vk(t) := (v(t + k) − v(t)). We
take the product of (1.1) against −ψ2wj , integrate in time over (t, t+ k) ⊂ (τ, T );
subsequently, we multiply it by

amj (t+ k)− amj (t) ,

and by summing over j, we reach (here below, we reintroduce the dx in the space-
depending integrals)

(5.8)

‖ψ∇Vk(t)‖
2 + α2‖ψ∂1∇Vk(t)‖

2

=− ν

∫ t+k

t

∫

ψ∆v ψ∆Vk(t)dxds − να2

∫ t+k

t

∫

ψ∂1∆v ∂1∆Vk(t)dxds

+

∫ t+k

t

(

B(v, v) − g, Vk(t)ψ
2
)

ds−

∫

∇Vk(t)Vk(t)∇ψ
2dx

+ α2

∫

∂21∇Vk(t)Vk(t)∇ψ
2dx− α2

∫

∂1∇Vk(t)∇Vk(t)∂1ψ
2dx

− ν

∫ t+k

t

∫

∆v Vk(t)∆ψ
2dxds− 2ν

∫ t+k

t

∫

∆v∇Vk(t)∇ψ
2dxds

− 2να2

∫ t+k

t

∫

∂1∆v∂1∇Vk(t)∇ψ
2

− να2

∫ t+k

t

∫

∂1∆v∂1Vk(t)∆ψ
2dxds

− να2

∫ t+k

t

∫

∂1∆v∆Vk(t)∂1ψ
2dxds

− 2να2

∫ t+k

t

∫

∂1∆v∇Vk(t)∂1∇ψ
2dxds

− να2

∫ t+k

t

∫

∂1∆v Vk(t)∂1∆ψ
2dxds

from which, integrating on (τ, T − k) in dt, we get

(5.9)

∫ T−k

τ

‖ψ∇Vk(t)‖
2dt+ α2

∫ T−k

τ

‖ψ∂1∇Vk(t)‖
2dt

=− ν

∫ T−k

τ

∫ t+k

t

∫

ψ∆v ψ∆Vk(t)dxdsdt

− να2

∫ T−k

τ

∫ t+k

t

∫

ψ∂1∆v ∂1∆Vk(t)dxdsdt

+

∫ T−k

τ

∫ t+k

t

(

B(v, v)− g, Vk(t)ψ
2
)

dsdt+

∫ T−k

τ

10
∑

j=1

Jj .
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For the terms in the right-hand side of the above equality, exploiting the Fubini’s
theorem along with the properties of the following functions

s =







τ if s ≤ τ
s if τ < s ≤ T − k
T − k if s > T − k

and s− k =







τ if s− k ≤ τ
s− k if τ < s− k ≤ T − k
T − k if s− k > T − k

which are used to change the order of integration, we get

ν

∣

∣

∣

∣

∫ T−k

τ

∫ t+k

t

∫

ψ∆v(s)ψ∆Vk(t)dxdsdt

∣

∣

∣

∣

≤ ν

∫ T−k

τ

∫ t+k

t

‖ψ∆v(s)‖‖ψ∆Vk(t)‖dsdt

≤ ν

∫ T−k

τ

‖ψ∆Vk(t)‖

∫ t+k

t

‖ψ∆v(s)‖dsdt

≤ ν

∫ T

τ

‖ψ∆v(s)‖

∫ s

s−k

‖ψ∆Vk(t)‖dtds

≤ ν

∫ T

t

‖ψ∆v(s)‖
(

∫ s

s−k

1dt
)1/2(

∫ s

s−k

‖ψ∆Vk(t))‖
2dt

)1/2

ds

≤ 2νk1/2(T − τ)1/2‖ψ∆v‖L2(τ,T ;L2)

(

∫ T

τ

‖ψ∆v(s)‖2ds
)1/2

≤ 2νk1/2(T − τ)1/2‖ψ∆v‖2L2(τ,T ;L2)

≤ Cνk1/2(T − τ)1/2 .

With similar computations, we also obtain that

να2

∣

∣

∣

∣

∫ T−k

τ

∫ t+k

t

∫

ψ∂1∆v ∂1∆Vk(t)dxdsdt

∣

∣

∣

∣

≤ 2να2k1/2‖ψ∂1∆v‖
2
L2(τ,T ;L2)(T − τ)1/2

≤ Cνα2k1/2(T − τ)1/2.

Now, by exploiting (2.9), we have that
∣

∣

∣

∣

∫ T−k

τ

∫ t+k

t

(

B(v, v), ψ2Vk(t)
)

dsdt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ T−k

τ

∫ t+k

t

∫

[

∂1v∆Vk(t)∂2ψ
2 − ∂2v∆Vk(t)∂1ψ

2
]

dxdsdt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T−k

τ

∫ t+k

t

∫

[

∂1v∆v ψ
2∂2Vk(t)− ∂2v∆v ψ

2∂1Vk(t)
]

dxdsdt

∣

∣

∣

∣

≤Cǫ

∫ T−k

τ

∫ t+k

t

‖∆v‖
(

‖∇∂1v‖+ ‖∇∂2v‖
)(

‖ψ∇Vk(t)‖+ ǫ‖ψVk(t)‖
)

dsdt

+ C

∫ T−k

τ

∫ t+k

t

‖ψ∆v‖
(

‖∇∂1v‖ + ‖∇∂2v‖
)(

‖ψ∆Vk(t)‖+ ǫ‖ψ∇Vk(t)‖)dsdt

≤Ck1/2(T − τ)1/2
(

‖v‖2L2(τ,T ;H1
γ)

+ ‖v‖2L2(τ,T ;H2
γ)
)

≤Ck1/2(T − τ)1/2.



HORIZONTALLY FILTERED BOUSSINESQ EQUATION ON A STRIP-LIKE REGION 15

Now, we estimate the terms Ji, i = 1, . . . , 10. Let us start with J1 to get

(5.10)

∫ T−k

τ

|J1|dt ≤ ǫ

∫ T−k

τ

∫

|ψ∇Vk(t)| |ψVk(t)|dxdt

≤ ǫ

√

2

λ1

∫ T−k

τ

‖ψ∇Vk(t)‖
2dt.

For the terms J2 and J3 we have that

(5.11)

∫ T−k

τ

|J2|dt ≤α
2ǫ

∫ T−k

τ

∫

|ψ∂1∇Vk(t)| |ψ∂1Vk(t)|dt

+ α2ǫ

∫ T−k

τ

∫

|ψ∂1∇Vk(t)| |ψVk(t)|dt

≤Cα2ǫ

∫ T−k

τ

‖ψ∂1∇Vk(t)‖
2dt

+ Cα2ǫ

∫ T−k

τ

‖ψ∂1∇Vk(t)‖‖ψ∇Vk(t)‖dt

≤Cα2ǫ

∫ T−k

τ

‖ψ∂1∇Vk(t)‖
2dt

+ Cα2ǫ(T − τ)1/2‖ψ∇v‖L∞(τ,T ;L2)‖ψ∇v‖L2(τ,T ;L2)

and that

(5.12)

∫ T−k

τ

|J3|dt ≤α
2ǫ

∫ T−k

τ

∫

|ψ∂1∇Vk(t)| |ψ∇Vk(t)|dxdt

≤Cα2ǫ

∫ T−k

τ

‖ψ∂1∇Vk(t)‖‖ψ∇Vk(t)‖dt

≤Cα2ǫ

∫ T−k

τ

‖ψ∂1∇Vk(t)‖
2dt

+ Cα2ǫ(T − τ)1/2‖ψ∇v‖L∞(τ,T ;L2)‖ψ∇v‖L2(τ,T ;L2).

Next, for the terms J4 and J5 we have

∫ T−k

τ

|J4|dt ≤ν

∫ T−k

τ

∫ t+k

t

∫

∆v Vk(t)∆ψ
2dxdsdt

≤ǫν

∫ T−k

τ

∫ t+k

t

‖∆v(s)‖ ‖ψVk(t)‖dsdt

≤Cǫνk1/2(T − τ)1/2‖ψv‖L2(τ,T ;L2),

where we used again (5.1), and

∫ T−k

τ

|J5|dt ≤2ǫν

∫ T−k

τ

∫ t+k

t

‖ψ∆v(s)‖ ‖ψ∇Vk(t)‖dsdt

≤4νǫk1/2‖v‖L2(τ,T ;H1
γ)

∫ T

τ

‖ψ∆v(s)‖ds

≤Cνǫk1/2(T − τ)1/2‖v‖2L2(τ,T ;H2
γ)
.



16 LUCA BISCONTI, DAVIDE CATANIA

J6 is estimated as follows:

∫ T−k

τ

|J6|dt ≤2να2ǫ

∫ T−k

τ

∫ t+k

t

‖ψ∂1∆v‖ ‖ψ∂1∇Vk(t))‖dsdt

≤4νǫk1/2α2‖v‖L2(τ,T ;H2,h
γ )

∫ T

τ

‖ψ∂1∆v(s)‖ds

≤Cνǫk1/2(T − τ)1/2α2‖v‖2
L2(τ,T ;H3,h

γ )
.

In a very similar way we also get

∫ T−k

τ

|J7|dt ≤νǫα
2Ck1/2‖v‖L2(τ,T ;H1,h

γ )

∫ T

τ

‖ψ∂1∆v(s)‖ds,

∫ T−k

τ

|J8|dt ≤να
2ǫCk1/2‖v‖L2(τ,T ;H2

γ)

∫ T

τ

‖ψ∂1∆v(s)‖ds,

∫ T−k

τ

|J9|dt ≤να
2ǫCk1/2‖v‖L2(τ,T ;H1

γ)

∫ T

τ

‖ψ∂1∆v(s)‖ds,

and

∫ T−k

τ

|J10|dt ≤να
2ǫCk1/2‖v‖L2(τ,T ;L2

γ)

∫ T

τ

‖ψ∂1∆v(s)‖ds.

Whence, for i = 7, 8, 9, 10, we have that

(5.13)

∫ T−k

τ

|Ji|dt ≤ Ck1/2(T − τ)1/2‖v‖2
L2(τ,T ;H3,h

γ )
.

To conclude we reabsorb the terms (5.10), (5.11) and (5.12) in the left-hand side of
(5.8). Then, using standard manipulations along with the above estimates we get

∫ T−k

τ

‖ψ∇Vk(t)‖
2dt+α2

∫ T−k

τ

‖ψ∂1∇Vk(t)‖
2dt ≤ C(T − τ)1/2k1/2 → 0 as k → 0;

this concludes STEP 3.

STEP 4: Application of Lemma 5.2 to {vm|O}.
By Lemma 5.2, we deduce that {vm|O} is relatively compact in the space

L2(τ, T ;H2,h
γ (O)), uniformly with respect to O, and we can extract a subse-

quence, still denoted by {vm|O}, that strongly converges in L2(τ, T ;H2,h
γ (O))} for

all O ⊂ Ω. Therefore, vw → v in L2(τ, T ; (H2,h
γ )loc(Ω)) for a suitable v.

By STEP 1 we have that {vm} is also bounded in L2(τ, T ;H3,h
γ ) (let us recall that

vm|O is the restriction of vm to O), and hence vm ⇀ ṽ weakly in L2(τ, T ;H3,h
γ (Ω)).

Thus, due to the uniqueness of the limit, one has that (ṽ)|O = v on every ball
O ⊂ Ω. Therefore v is defined on Ω and v ∈ L2(τ, T ;H3,h

γ (Ω)).

STEP 5: The limiting function v is a weak solution.
We now show that v is a weak solution of problem (1.1). Hence, we have to

check that, for any wj ∈ H3,h
γ ∩ H2

0 (the elements of the basis for the considered
test functions), the weak formulation for vm passes to the limit as m → +∞.
It is enough to verify that the nonlinear term passes to the limit, i.e., setting
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Ω′ = suppwj ∩ Ω, we take into account the difference

∣

∣

∣

∣

∣

∫ T

τ

(

B(vm, vm), ψ2wjσ
)

dt−

∫ T

τ

(

B(v, v), ψ2wj

)

σdt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

τ

(

B(vm, vm − v), ψ2wj

)

σdt+

∫ T

τ

(

B(vm − v, v), ψ2wjσ
)

dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

τ

∫

Ω

[

∂1(v
m − v)∆vm∂2(ψ

2wj)− ∂2(v
m − v)∆vm∂1(ψ

2wj)
]

σdxdt

+

∫ T

τ

∫

Ω

[

∂1v∆(vm − v)∂2(ψ
2wj)− ∂2v∆(vm − v)∂1(ψ

2wj)
]

σdxdt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

τ

∫

Ω′

[

∂1(v
m − v)∆vm∂2(ψ

2wj)− ∂2(v
m − v)∆vm∂1(ψ

2wj)
]

σdxdt

+

∫ T

τ

∫

Ω′

[

∂1v∆(vm − v)∂2(ψ
2wj)− ∂2v∆(vm − v)∂1(ψ

2wj)
]

σdxdt

∣

∣

∣

∣

∣

.

We estimate singularly the above terms, so that

∣

∣

∣

∣

∣

∫ T

τ

∫

Ω′

[

∂1(v
m − v)∆vm∂2(ψ

2wj)
]

σ

∣

∣

∣

∣

∣

dxdt

≤C

∫ T

τ

∫

|∂1(v
m − v)| |ψ∆vm|

(

|ψ∂2wj |+ ǫ|ψwj |)dxdt

≤C

∫ T

τ

‖ψ∆vm‖ ‖∂1(v
m − v)‖L4

(

‖ψ∂2wj‖L4 + ǫ‖ψwj‖L4

)

dt

≤C‖wj‖H3,h
γ

∫ T

τ

‖ψ∆vm‖ ‖∂1∇(vm − v)‖dt.

Again, for the second term

∣

∣

∣

∣

∣

∫ T

τ

∫

Ω′

∂2(v
m − v)∆vm∂1(ψ

2wj)
]

σdxdt

∣

∣

∣

∣

∣

≤C

∫ T

τ

∫

|∂1∂2(v
m − v)| |ψ∆vm| |ψwj |dxdt

+ C

∫ T

τ

∫

|∂2(v
m − v)| |ψ∂1∆v

m| |ψwj |dxdt

≤C‖ψwj‖L∞

[

∫ T

τ

‖∂1∇(vm − v)‖ ‖ψ∆vm‖dt

+

∫ T

τ

‖∇(vm − v)‖ ‖ψ∂1∆v
m‖dt

]
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and
∣

∣

∣

∣

∣

∫ T

τ

∫

Ω′

[

∂1v∆(vm − v)∂2(ψ
2wj)σdxdt

∣

∣

∣

∣

∣

≤C

∫ T

τ

∫

|ψ∂1∇v| |∇(vm − v)|
(

|ψ∂2wj |+ |ǫψwj |
)

dxdt

+ C

∫ T

τ

∫

|ψ∂1v| |∇(vm − v)|
(

|ǫψwj |+ |ǫψ∂2wj |+ |ǫψ∇wj |+ |ψ∂2∇wj |
)

dxdt

≤C

∫ T

τ

‖∇(vm − v)‖ ‖ψ∂1∇v‖L4

(

‖ψ∂2wj‖L4 + ‖ǫψwj‖L4

)

dxdt

+ C

∫ T

τ

‖ψ∂1v‖L∞‖∇(vm − v)‖
(

‖ǫψwj‖+ ‖ǫψ∂2wj‖+ ‖ǫψ∇wj‖+ ‖ψ∂2∇wj‖
)

dxdt

≤C‖wj‖H3,h
γ

∫ T

τ

‖∇(vm − v)‖ (‖ψ∂1∇v‖+ ‖ψ∂1∆v‖)dt.

Analogously, we have that
∣

∣

∣

∣

∣

∫ T

τ

∫

Ω′

∂2v∆(vm − v)∂1(ψ
2wj)σdxdt

∣

∣

∣

∣

∣

≤C

∫ T

τ

∫

Ω′

|∂2∇v| |∇(vm − v)| |∂1(ψ
2wj)|dxdt

+ C

∫ T

τ

∫

Ω′

|∂2v| |∇(vm − v)| |∂1∇(ψ2wj)|dxdt

≤C‖wj‖H3,h
γ

∫ T

τ

‖∇(vm − v)‖ ‖ψ∂2∇v‖dt

+

∫ T

τ

‖∇(vm − v)‖ ‖ψ∂2v‖L4‖
(

‖ǫψwj‖L4 + ‖ǫψ∂1wj‖L4

+ ‖ǫψ∇wj‖L4 + ‖ψ∂1∇wj‖|L4

)

dt

≤C‖wj‖H3,h
γ

∫ T

τ

‖∇(vm − v)‖ ‖ψ∂2∇v‖dt .

Therefore, all the above four terms go to 0 as m goes to +∞.

STEP 6: Continuity, i.e. v ∈ C([0, T ], H1,h
γ ), T > 0.

Fix any T > 0. First, we notice that vt, ∂1vt ∈ L2(0, T ;H1
γ(Ω)

′) since, thanks

to Theorem 1.1, they belong to L2(0, T ;H1(Ω)) and H1
γ ⊂ H1 ⊂ (H1

γ)
′. More-

over, from Theorem 3.1, we have in particular that v, ∂1v ∈ L2(0, T ;H1
γ(Ω)). By

interpolation, we conclude that v, ∂1v ∈ C([0, T ];L2
γ(Ω)), which is the claim.

�

Appendix A. Properties of the weight function

First, we introduce the function φ(x, ǫ, γ) = φ(x, 3, 2, ǫ, γ) = (1+ |ǫx1|
3+ |ǫx2|

2)γ

and observe that

(A.1) |∂βφ| ≤ Cǫ|β|φ1/2,

for every multi-index β = (β1, β2), 0 < |β| ≤ 3 and β2 ≤ 2, provided 0 < γ ≤ 2/3.



HORIZONTALLY FILTERED BOUSSINESQ EQUATION ON A STRIP-LIKE REGION 19

Actually, |∂1φ| ≤ 3ǫφ1/2 if and only if

|∂1(1 + |ǫx1|
3 + |ǫx2|

2)γ | =
3γǫ|ǫx1|

2

(1 + |ǫx1|3 + |ǫx2|2)1−γ
≤ 3ǫ(1 + |ǫx1|

3 + |ǫx2|
2)γ/2,

which is satified provided that

(A.2) 2 ≤ 3

(

1−
1

2
γ

)

⇐⇒ 0 < γ ≤
2

3
.

Clearly, under this hypothesis we also have that |∂2φ| ≤ 3ǫφ1/2.
Moreover, we have that the following relation holds true:

|∂21(1 + |ǫx1|
3 + |ǫx2|

2)γ | ≤
6ǫ2|ǫx1|

(1 + |ǫx1|3 + |ǫx2|2)1−γ
+

9(1− γ)ǫ2|ǫx1|
4

(1 + |ǫx1|3 + |ǫx2|2)2−γ

≤ 15ǫ2(1 + |ǫx1|
3 + |ǫx2|

2)γ/2,

provided that γ ≤ 4/3. Under this last condition one can easily check that |∂βφ| ≤
Cǫ|β|φ1/2 for every multi-index β = (β1, β2), |β| ≤ 2. More in general, taking
γ ≤ 2/3, as in (A.2), we have (A.1).

Now, consider the map g(τ), τ ≥ 0 (see [6, (3.5), p. 561]), given by

(A.3)

g(τ) = 1/4 + τ2, 0 ≤ τ ≤ 1/2

g(τ) = τ, 1/2 ≤ τ ≤ ρ

g(τ) = ρ+ 1/2− (ρ+ 1− τ)2/2, ρ ≤ τ ≤ ρ+ 1

g(τ) = ρ+ 1/2, τ ≥ ρ+ 1,

and obviously g(τ) = τ when ρ = +∞, τ ≥ 1/2.
Define the weight function ϕ as

(A.4) ϕ(x1, x2, ǫ, ρ, γ) :=
(

g
(

(1 + |ǫx1|
3 + |ǫx2|

2)1/2
)

)2γ

;

then it holds true that

lim
ρ→+∞

ϕ(x1, x2, ǫ, ρ, γ) = (1 + |ǫx1|
3 + |ǫx2|

2)γ .

We are ready to show Lemma 5.1.

Sketch of the proof of Lemma 5.1. This is due, essentially, to the fact that 0 ≤ g′ ≤
1, g′(τ) ≡ 0 when τ > ρ+1, to g(τ) ∼ τ when 1/2 ≤ τ ≤ ρ+1, and to the properties
of the weight φ when γ ≤ 2/3.

Take
τ = φ(x, 3, 2, ǫ, 1/2) = (1 + |ǫx1|

3 + |ǫx2|
2)1/2

and begin by considering |β| = 1, with ∂β = ∂1 (the case of ∂β = ∂2 is easier and
left to the reader). We want to prove that

(A.5) |∂1ϕ| = 2γg(φ)2γ−1g′(φ)|∂1φ| ≤ Cǫϕ1/2,

where φ := φ(x, 3, 2, 1/2).
From |∂1φ| = 3ǫ|ǫx1|

2/2φ ≤ Cǫ|ǫx1|
1/2 and the definition (A.3), we get

|∂1ϕ| ≤



















γǫC(1/4 + φ2)2γ−1|ǫx1|
1/2, 0 ≤ φ ≤ 1/2

γǫCφ2γ−1|ǫx1|
1/2, 1/2 ≤ φ ≤ ρ

γǫC
(

ρ+ 1/2− (ρ+ 1− φ)2/2
)2γ−1

(ρ+ 1− φ)|ǫx1|
1/2, ρ ≤ φ ≤ ρ+ 1

0 φ ≥ ρ+ 1.
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Consider the case of ∂1ϕ when ρ ≤ φ ≤ ρ+ 1, the others are similar.
The condition |∂1ϕ| ≤ ǫCϕ1/2 yields if we show that

γǫ
(

ρ+1/2−(ρ+1−φ)2/2
)2γ−1

(ρ+1−φ)|ǫx1|
1/2 ≤ ǫC

(

ρ+1/2−(ρ+1−φ)2/2
)γ

,

i.e.

γ
(

ρ+ 1/2− (ρ+ 1− φ)2/2
)γ−1

(ρ+ 1− φ)|ǫx1|
1/2 ≤ C.

Hence, recalling that ρ ≤ φ ≤ ρ+ 1, we obtain

(A.6)

(ρ+ 1− φ)|ǫx1|
1/2

(

ρ+ 1/2− (ρ+ 1− φ)2/2
)1−γ ≤

|ǫx1|
1/2

(

ρ+ 1/2− (ρ+ 1− φ)2/2
)1−γ

≤
|ǫx1|

1/2

ρ1−γ
≤
φ1/3

ρ1−γ
≤

(1 + ρ)1/3

ρ1−γ

which is bounded for γ ≤ 2/3. Then, relation (A.5) follows.
Now, consider the case of the second derivatives (actually we take into account

just the mixed partial derivatives ∂βϕ = ∂212ϕ ). We have that

∂2

(

2γg(φ)2γ−1g′(φ)∂1φ
)

=2γ(2γ − 1)g(φ)2γ−2(g′(φ))2∂2φ∂1φ

+ 2γg(φ)2γ−1g′′(φ)∂2φ∂1φ+ 2γg(φ)2γ−1g′(φ)∂212φ

=:A1 + A2 +A3.

Let ρ ≤ φ ≤ ρ+ 1. In what follows we develop the calculations only for this case;
the others are similar, if not more elementary.

We prove that |Ai| ≤ Cǫ2ϕ1/2, for i = 1, 2, 3. First consider A1. Recalling that
x2 is bounded, we have that

|A1| ≤ Cǫ2g(φ)2γ−2
(

ρ+ 1− φ
)2
|ǫx1|

1/2 ≤ Cǫ2g(φ)2γ−2|ǫx1|
1/2,

and hence condition |A1| ≤ Cǫ2ϕ1/2 follows by requiring

(A.7) ǫ2g(φ)2γ−2|ǫx1|
1/2 ≤ Cǫ2g(φ)γ or equivalently g(φ)γ−2|ǫx1|

1/2 ≤ C,

with ρ ≤ φ ≤ ρ+ 1. Exploiting the same computations as in (A.6), we obtain

|ǫx1|
1/2

(

ρ+ 1/2− (ρ+ 1− φ)2/2
)2−γ ≤

|ǫx1|
1/2

ρ2−γ
≤
φ1/3

ρ2−γ
≤

(1 + ρ)1/3

ρ2−γ
≤ C,

where the last inequality is satisfied for γ ≤ 5/3.
As for A2, one can see that |A2| ≤ Cǫ2g(φ)2γ−1|ǫx1|

1/2. So |A2| ≤ Cǫ2ϕ1/2 if

ǫ2g(φ)2γ−1|ǫx1|
1/2 ≤ Cǫ2g(φ)γ or equivalently g(φ)γ−1|ǫx1|

1/2 ≤ C,

which is certainly verified under the assumption that γ ≤ 2/3.
Since |A3| ≤ Cg(φ)2γ−1|∂212φ|, the condition |A3| ≤ Cǫ2ϕ1/2 is satisfied provided

that

(A.8) ǫ2g(φ)2γ−1 |ǫx1|
2|ǫx2|

φ3
≤ Cǫ2g(φ)γ , that is g(φ)γ−1 |ǫx1|

2|ǫx2|

φ3
≤ C.

We conclude using the fact that γ ≤ 2/3 and that

|ǫx1|
2|ǫx2|

φ3
≤
φ7/3

φ3
≤ 1 .
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Using the previous computations along with the fact that g′′′(τ) ≡ 0, the general
case (5.1) follows directly. �
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