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Abstract. The paper is devoted to exhibiting a proof of an an-
alytical extension of the well-known Loomis-Whitney inequality.
Such a proof is completely independent of the original one and it
is based on the technique of optimal transport, which leads also to
fully characterize the equality case.

1. Introduction

The Loomis-Whitney inequality is one of the most natural and pow-
erful inequalities of geometric type. It gives a sharp upper estimate of
the measure of a Borel set A in Rn, n ≥ 2, in terms of the (n − 1)-
contents of the orthogonal projections Ak of A on the coordinate hy-
perplanes e⊥k , being ek, k = 1, . . . , n, the standard orthonormal basis
for Rn. Precisely,

(1) Hn(A)n−1 ≤
n∏
k=1

Hn−1(Ak) ,

where Hr denotes the r-dimensional Hausdorff measure. Clearly, in (1)
equality holds when A is a coordinate box.

The original proof of (1) by Loomis and Whitney [18] goes back to
1949 and it is based on a discrete approach. Over the years numerous
authors dealt with this inequality and gave suitable extensions, gen-
eralizations and variants. Moreover, the LW-inequality was used as a
tool to apply in different contexts. The papers [6] and [7] contain a
sufficiently comprehensive list of references of such a broad presence in
literature.

The present paper is devoted to give a proof of the following analyt-
ical extension of (1):
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Theorem 1.1. Let f(x) be a bounded nonnegative measurable func-
tion with compact support in Rn, n ≥ 2, and define in Rn−1, for
k = 1, . . . , n, the functions

fk(x1, . . . , xk−1, xk+1, . . . , xn) = sup
xk

f(x1, . . . , xk−1, xk, xk+1, . . . , xn).

Then

(2)

∫
Rn

fn/(n−1)(x) dx

n−1

≤
n∏
k=1

∫
Rn−1

fk(x) dx .

Equality in (2) holds if and only if f = α1A, where A is a Cartesian
product of bounded measurable subsets of R and α is a nonnegative
constant.

Note that if f = 1A , then (2) gives the original LW-inequality (1).
Inequality (2) was proved by Bobkov and Nazarov in [2] (Proof of

Lemma 3.1) by making a direct use of LW-inequality (1).
Instead, we give here a proof of (2), based on the technique of optimal

transport, which does not depend of (1). Consequently in such a way
we give also a new original proof of (1).

In addition, the technique we use permits to give a characterization
of functions satisfying equality in (2), that was not given in [2]. These
functions are multiple of the characteristic functions of the sets giving
equality in (1), as expressed by Corollary 2 in [11].

In recent years the use of techniques based on optimal transport al-
lowed to find simple and elegant proofs of important geometric and
functional inequalities, like those of isoperimetric type. In this regard,
see, for instance, [20], [10], [9], [12], [13], [8] and, for a general pre-
sentation of the subject, [23, Ch. 21]. At the same time the present
paper enters in a current research area devoted to obtain functional in-
equalities which are extensions of classical geometric inequalities. For
instance, in the recent paper [1], analytic versions of some local Loomis-
Whitney inequalities are obtained. In this setting, classical inequalities
as the uniform cover inequality by Bollobás and Thomason [3] are in-
cluded. See also [4].

It is interesting to remark that, in spite of appearances, (2) implies
an inequality of the same type as the one proved by Gagliardo [16] and
Nirenberg [21]. Such an inequality, for every function f(x) ∈ C1(Rn)
with compact support, can be written in the following form:

(3) ‖f‖ n
n−1
≤ 1

2

n∏
k=1

(

∫
Rn

|〈ek,∇f(x)〉| dx)1/n,
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where 〈·, ·〉 stands for the scalar product and ∇ for the gradient. For
every k, it turns out that the term

∫
Rn |〈ek,∇f(x)〉| dx is the measure

of the projection of the subgraph of f onto e⊥k where every point of
the projection must be counted according to its multiplicity. Thus, for
every k,

∫
Rn−1

fk(x) dx ≤
∫
Rn |〈ek,∇f(x)〉| dx, so (2) implies (3). For

more details see [24], where an extension to general directions of the
Gagliardo-Nirenberg inequality is proved (Theorem 5.1) by the use of
the Loomis-Whitney inequality.

Acknowledgements. The three authors have been partially sup-
ported by INdAM through GNAMPA, by a PRIN Project of Italian
MIUR and by a Strategic Project of University of Florence.

2. Proof of Theorem 1.1

Let us denote by Ω the support of f(x) and assume, without loss of
generality, that

(4) ‖f‖ n
n−1

= 1.

Consider the probability measure µ in Rn with density [f(x)]
n

n−1 and
support Ω and the uniform probability measure ν with density ` and
support R = [−`1, `1] × · · · × [−`n, `n], where `1, · · · , `n must satisfy
the condition

(5) 2n`
n∏
k=1

`k = 1.

It is well known (see, for instance, [5], [19], [20]) that there exists a
convex function ϕ : Rn → R such that ∇ϕ : Rn → R transports µ
onto ν and solves the Monge-Kantorovich minimization problem with
quadratic cost between µ and ν. The monotone map T = ∇ϕ is referred
to as the Brenier map.

The function ϕ satisfies the equation

(6) ` det(D2ϕ) = f
n

n−1 , a.e. in Ω,

or equivalently

(7) f−
1

n−1 (det(D2ϕ))1/n =
1

`1/n
, a.e. in Ω ,

where D2ϕ denotes the Hessian matrix of ϕ. We have to note that,
without further assumptions, D2ϕ must be interpreted in the Alexan-
drov sense, i.e. as the absolutely continuous part of the distributional
Hessian of the convex function ϕ, which is defined almost everywhere.
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Analogously ∆ϕ, as the trace of D2ϕ, will denote throughout the ab-
solutely continuous part of the distributed Laplacian of ϕ. This is in
any case sufficient for our aims and guarantees the consistency of all
integrals we are going to consider and the validity of integration by
parts (for further details, see, for instance, [9]).

By the inequality between arithmetic and geometric mean, from (7)
we deduce that

(8)
1

n
f−

1
n−1 ∆ϕ ≥ 1

`1/n
, a.e. in Ω ,

where equality holds if and only if D2ϕ is a multiple of the n × n

identity matrix In, i.e. if and only if D2ϕ = `−1/nf
1

n−1 In, a.e. in Ω, by
the virtue of (6). Rewrite (8) as

1

`1/n
f

n
n−1 ≤ 1

n
f∆ϕ

and integrate both sides of this inequality on Ω to obtain:

(9)
1

`1/n
≤ 1

n

∫
Ω

f∆ϕdx =
1

n

n∑
k=1

∫
Ω

f
∂2ϕ

∂x2
k

dx1 . . . dxn .

For any t ≥ 0, define Ωt = {x ∈ Ω : f(x) ≥ t}. By the layer cake
representation of f , we have that

(10)

∫
Ω

f
∂2ϕ

∂x2
k

dx1 . . . dxn =

+∞∫
0

∫
Ωt

∂2ϕ

∂x2
k

dx1 . . . dxn dt ,

for every k, 1 ≤ k ≤ n. Let Ωk
t be the orthogonal projection of Ωt along

ek. For any y = (y1, . . . , yk−1, yk+1, . . . , yn) ∈ Ωk
t , denote by ωkt (y) the

chord of Ωt obtained as the intersection of Ωt and the line issued from
y and parallel to ek, i.e.

ωkt (y) = {s ∈ R : (y1, . . . , yk−1, s, yk+1, . . . , yn) ∈ Ωt} .
Thus we have that

(11)

∫
Ωt

∂2ϕ

∂x2
k

dx1 . . . dxn =

∫
Ωk

t

∫
ωk
t (y)

∂2ϕ

∂x2
k

dxk dy ≤
∫
Ωk

t

∫
ω̂k
t (y)

∂2ϕ

∂x2
k

dxkdy,

where ω̂kt (y) stands for the convex hull of ωkt (y), i.e.

ω̂kt (y) = [αk(y; t), βk(y; t)] ,

where
αk(y; t) = inf ωkt (y) , βk(y; t) = supωkt (y) .

The inequality follows from the fact that ∂2ϕ
∂x2k
≥ 0.
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Then

(12)

∫
ω̂k
t (y)

∂2ϕ

∂x2
k

dxk =
∂ϕ

∂xk

∣∣∣∣βk(y;t)

αk(y;t)

≤ 2`k,

since ∇ϕ : Rn → R. Coupling (7) and (8) yields

(13)

∫
Ωt

∂2ϕ

∂x2
k dx1 . . . dxn

≤ 2`kHn−1(Ωk
t ),

that in turn, through (10), gives

(14)

∫
Ω

f
∂2ϕ

∂x2
k dx1 . . . dxn

≤ 2`k

+∞∫
0

Hn−1(Ωk
t ) dt.

Let us recall that, for k = 1, . . . , n, the function fk : Rn−1 → R is
defined by

fk(x1, . . . , xk−1, xk+1, . . . , xn) = sup
xk

f(x1, . . . , xk−1, xk, xk+1, . . . , xn),

where we identify (x1, . . . , xk−1, xk+1, . . . , xn) with (x1, . . . , xk−1, 0, xk+1, . . . , xn)
and Rn−1 with e⊥k .

Note that the graph of fk is nothing but the projection of the graph
of f along ek and that
(15)∫
Ωk

fk(x1, . . . , xk−1, xk+1, . . . , xn) dx1 . . . dxk−1dxk+1 . . . dxn =

+∞∫
0

Hn−1(Ωk
t ) dt.

If we set, for simplicity,

Fk =

∫
Ωk

fk(x1, . . . , xk−1, xk+1, . . . , xn) dx1 . . . dxk−1dxk+1 . . . dxn,

then (9), (14) and (15) give

(16)
1

`1/n
≤ 1

n

n∑
k=1

∫
Ω

f
∂2ϕ

∂x2
k

dx1 . . . dxn ≤
2

n

n∑
k=1

`kFk.

Now, the parameters `1, . . . , `n minimizing the right-hand side of (16)
under the condition (5) are

`i =

n∏
k=1

F
1/n
k

2`1/nFi
, i = 1, . . . , n.
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Thus

(17)
2`1/n

n

n∑
k=1

`kFk =
n∏
k=1

F
1/n
k .

By (16) and (17) we deduce that 1 ≤
n∏
k=1

F
1/n
k , that is inequality (2),

owing to the normalization condition (4).
To prove the second part of the Theorem, assume that in (2) the

equality sign holds.
The first step consists in showing that f is a multiple of a character-

istic function. To do this, denote by fσ the function whose superlevel
sets Ωσ,t, for every nonnegative t, are obtained by a sequence of succes-
sive Steiner symmetrizations of the superlevel sets Ωt of f , with respect
to the coordinate hyperplanes. It is well known that

(18) Hn−1(Ωσ,t) = Hn−1(Ωt) ,

(19) Hn−2(Ωk
σ,t) ≤ Hn−2(Ωk

t ) , k = 1, . . . , n.

By (18) and (19) we deduce that fσ satisfies equality in (2), too. This
imply, in particular, that for k = 1, . . . , n, inequality in (12) is just an
equality:

(20)
∂ϕ

∂xk
(βk(y; t))− ∂ϕ

∂xk
(αk(y; t)) = 2`k ,

for almost all y ∈ Ωk
t and for almost all t ≥ 0. Let us take y and t1 < t2,

satisfying (20).
Thus

(21)
∂ϕ

∂xk
(βk(y; ti)) = `k ,

∂ϕ

∂xk
(αk(y; ti)) = −`k , i = 1, 2.

Denote, for simplicity, βk(y; t2) = p, βk(y; t1) = q and ps = sp+(1−s)q,
where s ∈ [0, 1]. The convexity of ϕ implies that

〈∇ϕ(ps)−∇ϕ(q), ps − q〉 ≥ 0 , 〈∇ϕ(p)−∇ϕ(ps), p− ps〉 ≥ 0.

Hence, since ps − q = s(p − q), p − ps = (1 − s)(p − q) and p − q is
parallel to ek, by (21) we conclude that

〈∇ϕ(ps), ek〉 = `k ,

for every s ∈ [0, 1]. This means that the set Ik = (Ωσ,t1 \Ωσ,t2)
⋂

Γσ,t2,k,
being Γσ,t2,k the cylinder based on Ωk

σ,t2
and parallel to ek, is mapped

by ∇ϕ on the boundary of R. Thus, Ik has zero measure, for every k =
1, . . . , n, because∇ϕ is a mass transport, which implies that Ωσ,t1\Ωσ,t2

also has zero measure.
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Since t1 and t2 are arbitrary, the conclusion is that fσ coincides a.e.
with a multiple of a characteristic function, and consequently f is so,
i.e. f(x) = c χΩ(x), for some c > 0 and for almost all x ∈ Ω.

The fact that f(x) = c χΩ(x) satisfies equality in (2) implies that Ω
is one of the sets satisfying equality in the classical Loomis-Whitney
inequality (1). Thus, we could use the characterization of those sets
given in [EFKY16] and end the proof by concluding that Ω must be
the Cartesian product of bounded measurable subsets of R.

Nevertheless, to get the same conclusion, we show that one can use
an alternative and independent argument which still relies on the mass
transport.

The equality condition we are assuming implies that (8) holds with
equality sign. We already noted that this happens if and only if D2ϕ
is a multiple of the identity matrix. That is, by (7), if and only if

D2ϕ = `−1/nf
1

n−1 In, a.e. in Ω. We already know that f = c χΩ. Thus,

D2ϕ = ρIn a.e. in Ω, where ρ = `−1/nc
1

n−1 , and the map of the mass
transport on each connected component of Ω is ∇ϕ(x) = ρx+v, where
v depends on the component. Thanks to homogeneity, without loss of
generality, we can assume ρ = 1.

Since equality must hold in (12),∫
ω̂k
t (y)

dxk = 2`k ,

for almost every t > 0, y ∈ Ωk and for every k. Therefore, for every
coordinate direction, almost all the chords of Ω have constant length
and, by Fubini’s theorem, we obtain that

Hn(Ω) = Hn−1(Ωk) · 2`k
and an induction argument yields

(22) Hn(Ω) =
n∏
k=1

2`k .

Let Pk be the projection of Ω on the ek-axis, 2pk = H1(Pk) and
Sk(x) = Ω

⋂
(e⊥k +x). Arguing as before for the section Sk(x), we have

that, for every k, Hn−1(Sk(x)) =
n∏

i=1,i 6=k
2`i and Hn(Ω) = 2pk

n∏
i=1,i 6=k

2`i.

Thus, by (22), pk = `k, for every k, and

Hn(Ω) =
n∏
k=1

2pk = Hn(P1 × · · · × Pn) .
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Since Ω ⊆ P1 × · · · × Pn, we conclude that Ω = P1 × · · · × Pn, up to
a set of zero measure.

The proof is concluded.
�

As a final remark we recall that the paper [11, Corollary 2] contains
the following stability result for the LW inequality (1):

if a body A in Rn satisfies

Hn(A) ≥ (1− ε)
n∏
k=1

Hn−1(Ak)1/(n−1),

then there exists a body B which is the Cartesian product of bounded
measurable subsets of R such that Hn(A∆B) ≤ cHn(B)ε, where c is a
constant depending only on n.

The proof of this result is based on a clever use of some concepts
from information theory, like the entropy of a random variable.

On the other hand, mass transport techniques have been often used
to recover stability results for classical inequalities (see, for example,
[13], [14], [22], [15], [17]). Unfortunately, the use of these techniques
here, when simply restricted to characteristic functions, seems to lead
to a stability of order

√
ε and we can only conjecture that also for

inequality (2) a stability of order ε holds.
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