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On the Existence of Almost-Periodic Solutions for

the 2D Dissipative Euler Equations

Luigi C. Berselli and Luca Bisconti

Abstract. In this paper we study the two-dimensional dissipative Euler
equations in a smooth and bounded domain. In presence of a large enough
dissipative term (or equivalently a small enough external force) precise
uniform estimates on the modulus of continuity of the vorticity are proved.
These allow us to show existence of Stepanov almost-periodic solutions.

1. Introduction

In this paper we prove some results related with the long-time behavior of the Euler
equations (with dissipation) for incompressible fluids in two space dimensions,
aimed at proving existence of almost-periodic solutions. For the Euler equations,
it is well-known that in the 2D case it is possible to prove –for smooth enough
data– existence and uniqueness of smooth solution, for all positive times, see also
the discussion in the next section for certain less-standard results. It is also clear
that without any smoothing or dissipation, one cannot expect to have uniform
boundedness of the energy and of other interesting quantities as the enstrophy or
higher norms of the velocity. In order to study general properties as attractors or
existence of almost-periodic solutions (where uniform bounds seem requested) we
consider the so-called dissipative Euler equations

(1.1)

∂tu+ χu+ (u ·∇)u+∇π = f in ]0,+∞[×Ω,

∇ · u = 0 in ]0,+∞[×Ω,

u · n = 0 on ]0,+∞[×Γ,

u0(0, x) = u0(x) in Ω,

where Ω ⊂ 2 is a bounded open set, with smooth boundary Γ; n is the unit
outward normal vector on Γ, the vector u(t, x) = (u1(t, x), u2(t, x)) is the velocity
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Keywords: Euler equations, continuous and Dini-continuous functions, almost-periodic solutions,
transport equation..
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of the fluid, π(t, x) is the kinematic pressure, and f = f(t, x) is the external force
field.

The damping term χu (with a constant χ > 0) models the bottom friction in
some 2D oceanic models (when the system is considered in a bounded domain;
in that case, the system is called the viscous Charney-Stommel barotropic ocean
circulation model of the gulf stream) or the Rayleigh friction in the planetary
boundary layer (with space-periodic boundary conditions). The positive constant
χ is the Rayleigh friction coefficient (or the Ekman pumping/dissipation constant)
or also the sticky viscosity, when the model is used to study motion in presence
of rough boundaries, see for instance Gallavotti [23]. Early existence results can
be found in Barcilon, Constantin, and Titi [3], while links between the driven
and damped 2D Navier-Stokes, attractors, and statistical solutions are proved
in Ilyin, Miranville, and Titi [25], Constantin and Ramos [18], and Constantin,
Tarfulea, and Vicol [19]. In recent years the present model has been considered
by a number of authors, see for instance [11, 13, 16, 17, 24]. The system (1.1)
represents (probably) the “weakest” dissipative modification of the Euler equations
and results on the long-time behavior of the damped/driven Navier-Stokes do not
directly pass to the limit as the “viscosity goes to zero” hence, a completely different
treatment is required to study the problem without viscosity. This is why here we
use some specific topologies, which are not derived from the classical Hölder or
Sobolev norms.

The main result we will prove is the existence of almost-periodic solutions in
the sense of Stepanov, (cf. [10]) with values in L2(Ω), under certain restrictions on
the relative sizes of external force and dissipation term, see Theorem 5.1 for the
precise statement.

To this end we need to show precise estimates, uniform in time, for the vorticity.
The boundedness of the vorticity, beside being enough to show uniqueness of weak
solutions, is not enough to prove results of “asymptotic stability,” which is one of
the main points generally requested to prove existence of almost-periodic solutions,
see Amerio and Prouse [1]. For dissipative equations this is now well-established
(see also the recent results in [9] for an inverse problem) but the Euler system does
not directly fit with the assumptions needed to use abstract results, and this is the
motivation to resort to some stronger topology. In particular, the minimum amount
of regularity needed to quantitatively estimate the difference of two solutions over
large time-intervals seems to be the represented by the supremum (with respect
to the x variable) norm of the gradient of velocity. The topology of Hölder spaces
looks not adapted to this problem, hence we resort to something quite sharp, being
the Dini-norm of the vorticity field. We point out that the use of this topology
on continuous functions dates back to Beirão da Veiga [5] in the context of global
well-posedness of the 2D Euler equations, while in questions of stability the role
of Dini-continuous vorticity has been first recognised by Koch [29], even if the
application to almost-periodic solutions and some of the techniques we apply here,
are to our best knowledge original.
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2. Notation and preliminary facts

Here and in the sequel, we suppose, without loss of generality, the diameter of the
bounded set Ω to be equal to one. To avoid technical complications, we assume
also that Ω is simply connected, referring to the cited bibliography how to modify
the proofs to deal also with this case. With a standard notation in mathematical
fluid mechanics, let V denote the space of infinitely differentiable vector fields u
on Ω with compact support strictly contained in Ω, and satisfying the constraint
∇ ·u = 0. We introduce the space H of measurable vector fields u : Ω → 2 which
are square integrable, divergence free, and tangential to the boundary Γ:

H :=
{
u ∈ [L2(Ω)]2 : ∇ · u = 0 in Ω, u · n = 0 on Γ

}
.

In H the normal trace is well-defined in H−1/2(Γ) and moreover H is a separable
Hilbert space with the inner product of [L2(Ω)]2, denoted in the sequel by 〈·, ·〉
and corresponding norm ‖ . ‖2, see for instance [33]. (This space is also the closure
of V with respect to the norm ‖ · ‖2). As usual we will also denote by ‖ . ‖p the
Lp-norm with respect to the space variables belonging to Ω. Let V ⊂ H be the
following subspace:

V :=
{
u ∈ [H1(Ω)]2 : ∇ · u = 0 in Ω, u · n = 0 on Γ

}
.

The space V is a separable Hilbert space with the inner product induced by
[H1(Ω)]2 and its natural norm denoted by ‖ · ‖1,2. Let us also introduce the
tri-linear form on V , defined as

b(u, v, w) :=

∫

Ω
(u ·∇) v · w dx.

Since we study time-evolution problems, given a Banach space X, we de-
note for p ∈ [1,+∞] the usual Bochner spaces Lp(0, T ;X) with associated norm

‖f‖pLp(0,T ;X) :=
∫ T
0 ‖f(s)‖pX ds, (the lower upper bound of ‖f(s)‖X if p = +∞),

while Lp
loc(X) is the space of measurable functions *→ X belonging to Lp(T1, T2;X),

for any couple T1 ≤ T2 ∈ .
The definition of weak solution (see [13]) for the system (1.1), is the following:

Definition 2.1. We say that a function u is a weak solution to (1.1) on [0,+∞),
provided that the following four properties hold true:

u ∈ C([0,+∞[;H) ∩ L∞
loc(0,+∞;V ) with ∂tu ∈ L2

loc(0,+∞;V ′),(2.1a)

and a.e. t ≥ t0 ≥ 0 and for all v ∈ V

‖u(t)‖22 + 2χ

∫ t

t0

‖u(s)‖22 ds ≤ ‖u(t0)‖22 +
∫ t

t0

〈f(s), u(s)〉 ds,(2.1b)

‖u(t)‖21,2 ≤ ‖u(t0)‖21,2 e−χ(t−t0) +
1

χ

∫ t

t0

‖f(s)‖21,2 e−χ(t−s) ds,(2.1c)

〈u(t)− u(t0), v〉+
∫ t

t0

(
χ 〈u(s), v〉+ b(u(s), u(s), v)

)
ds =

∫ t

t0

〈f(s), v〉 ds.(2.1d)
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The following existence theorem is proved in [13], by adapting the well-known
technique developed by Yudovich [35], which is based on approximation by a special
Navier-Stokes system and by using a-priori estimates in L2(Ω) on both velocity
and vorticity, obtained from the momentum equation and from (2.2).

Theorem 2.1. Given u0 ∈ V and f ∈ L2
loc(0,+∞;V ), there exists at least a

weak solution for (1.1). Such a weak solution is unique if curlu0 ∈ L∞(Ω) and
curl f ∈ L1

loc(0,+∞;L∞(Ω)).

In the context of existence and uniqueness of solutions in broader classes than
with bounded vorticity we want also to recall the recent results by Bernicot and
Hmidi [6], Azzam and Bedrossian [2], and references therein.

We now recall the definition of some further functional spaces that will be
widely used in the sequel. We denote by Lp

uloc(X), the Banach space of uniformly
locally p-integrable functions on , defined for 1 ≤ p < +∞ by

Lp
uloc(X) :=

{
u : → X, u ∈ Lp

loc( ;X) : sup
t∈

∫ t+1

t
‖u(s)‖pX ds < ∞

}
,

endowed with the norm

‖u‖Lp
uloc(X) :=

[
sup
t∈

∫ t+1

t
‖u(s)‖pX ds

]1/p
.

We give now the precise definition of the almost-periodic functions we will use.

Definition 2.2. We say that a function f ∈ L2
uloc(X) is Stepanov 2-almost-

periodic (or simply Stepanov almost-periodic) if the set of its translates is relatively
compact in the L2

uloc(X)-topology. The space of Stepanov almost-periodic will be
denoted by S2(X)

The condition that f ∈ S2(X) reads as follows: f ∈ L2
uloc(X) and for any

sequence {rm} we can find a sub-sequence {rmk
} and a function f̃ ∈ L2

uloc(X)
such that

sup
t∈

∫ t+1

t
‖f(s+ rmk

)− f̃(s)‖22 ds → 0.

Results and further properties of Stepanov spaces can be found for instance in the
classical book by Besicovitch [10].

In the study of 2D Euler equations fundamental estimates are obtained by the
analysis of the transport equation for the vorticity. In the case of the dissipative
equations (1.1) the equation satisfied by the vorticity ξ = curlu := ∂1u2 − ∂2u1 is
the following

(2.2) ∂tξ + (u ·∇) ξ + χ ξ = φ,

where φ := curl f . By a change of variables we can also write

∂tη + (u ·∇) η = φ eχt,
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with η := ξ eχt, coming back to a transport equations, without zero order terms.
Since we work with space-time functions we also define ΩT := [0, T ] × Ω and

we use the following notation: for a given T > 0

|||f |||L∞ := sup
(x,t)∈ΩT

|f(t, x)|.

What makes very special the two-dimensional Euler equations is also that the con-
nection between velocity and vorticity can be made very explicit by the use of
the stream-function, being particularly neat in the case of a simply-connected do-
main. Let ψ := −∆−1θ be the solution of the Poisson equation with homogeneous
Dirichlet data {

−∆ψ = θ in Ω,

ψ = 0 on Γ,

then the vector v := ∇⊥ψ := (−∂2ψ, ∂1ψ) satisfies





curl v = θ in Ω,

∇ · v = 0 in Ω,

v · n = 0 on Γ,

and for this reason we use the following notation v = ∇⊥(−∆−1θ) := curl−1 θ.
The use of the vorticity equation, being a non-local transport equation, is also

at the basis of the classical existence results of classical solutions, dating back to
Lichtenstein, Hölder, Wolibner, Leray, Schaeffer, and Kato. See also the historical
account in Brezis and Browder [15, §11].

As will be clear later on, in order to prove some sharp estimates on the growth
of the vorticity, we will use a particular topology, namely that of Dini-continuous
functions CD(Ω) ⊂ C(Ω). This space is the subset of continuous functions f : Ω →

n such that

‖f‖CD
:= ‖f‖L∞ + [f ]CD

:= ‖f‖L∞ +

∫ 1

0
ω(f,σ)

dσ

σ
< +∞,

where, for σ > 0, the quantity ω(f,σ) denotes the modulus of continuity of f ,
defined as follows:

ω(f,σ) := sup
{
|f(x)− f(y)| with x, y ∈ Ω, |x− y| < σ

}
.

As it will be clear in the next section, the main reason for using this space is that
the following potential-theoretic estimate holds true:

(2.3) ∃C0 = C0(Ω) > 0 : ‖∇u‖∞ ≤ C0‖ curlu‖CD
,

where curlu is the vorticity. Some classical (well-known) results dating back to
Dini [21] imply in fact that the second derivatives of −∆−1f are bounded (but
more precisely also continuous) if f ∈ CD(Ω), while the simple boundedness of
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f is not enough (recall that −∆−1f is the solution of the Poisson problem with
vanishing Dirichlet data and right-hand side equal to f .) We do not exclude
further extensions to other functional settings as Besov or multiplier spaces as in
Vishik [34] or Koch and Sickel [30], however here we are not interested in these
kind of technicalities, but rather focusing on a functional setting which is properly
defined also in the case of a domain with boundary.

3. A basic estimate on the Dini-norm of the vorticity

We start proving existence and uniqueness of strong solutions to the Euler dissi-
pative equations.

Definition 3.1. We say that a vector field u is a strong solution to (1.1) in
[0, T ] if u ∈ C([0, T ];C(Ω)) is divergence-free, tangential to the boundary, and
with curlu ∈ C([0, T ];C(Ω)), ∂tu ∈ L1(0, T ;L2(Ω)), π ∈ L1(0, T ;W 1,2(Ω)), is a
weak solution and in addition

‖ curlu(t)‖∞ ≤ ‖ curlu0‖∞ +

∫ t

0
‖ curl f(s)‖∞ eχs ds ∀ t ∈ [0, T ].

These solutions are called “strong solutions” since they are unique and continu-
ously dependent on the data, but not classical, since a priori ∇u ∈ C([0, T ];Lp(Ω))
for all p < +∞, but ∇u may be not point-wise defined. The proof is an easy adap-
tion of the sharp results of Hadamard well-posedness proved in [5]. Nevertheless,
since we will use these results (which are a sort of endpoint for the well-posedness
of the Euler equations), which seem not to be very diffused in the literature, we
sketch out the proof and we make some remarks in order to make the presentation
self-contained.

The main theorem of existence and uniqueness for strong solutions is the fol-
lowing, which is proved below after some preliminary lemmas.

Theorem 3.1. Let be given u0 ∈ H with curlu0 ∈ C(Ω). Assume also that
f ∈ L1(0, T ;H) with curl f ∈ L1(0, T ;C(Ω)), and χ > 0. Then, there exists a
unique strong solution of the dissipative Euler equations in [0, T ].

By using a classical approach (see the discussion in [15] and other remarks
in [8]) the proof is based on a representation’s formula for the vorticity, by means
of characteristics U(t, s, x), which are solutions of the following Cauchy problem
for ordinary differential equations






dU(t, s, x)

dt
= u(t, U(t, s, x)),

U(s, s, x) = x,

where (t, s, x) ∈ [0, T ]2 ×Ω, while u is the sought velocity field. From the solution
of above family of Cauchy problems problem one can easily infer (cf. [29, Eq. (7)])
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that

(3.1) |∇U(t, s, x)| ≤ e

∣∣∣
∫ t
s supx∈Ω |∇u(τ, x)| dτ

∣∣∣
∀ (t, s, x) ∈ [0, T ]2 × Ω.

Moreover, (cf. Kato [27]) the following potential-theoretic estimates for the charac-
teristics hold true: If ξ ∈ L∞(ΩT ), and if u = curl−1 ξ , then ∃ c1 > 0 (depending
only on Ω, and hence independent of T ) such that

(3.2)

|||u|||L∞ ≤ c1|||ξ|||L∞ ,

|u(t, x)− u(t, y)| ≤ c1|||ξ|||L∞ |x− y| log
(

e

|x− y|

)
∀ t ∈ [0, T ], ∀x 1= y.

Further, it is well-known that under boundedness of vorticity, characteristics are
uniquely defined and are Hölder continuous, see e.g. [5], and they satisfy

(3.3)
|U(t, s, x)− U(t1, s1, x1)| ≤

c1|||ξ|||L∞ |t− t1|+ e(1 + c1|||ξ|||L∞)(|x− x1|α + |s− s1|α),

where the exponent is defined by α := e−c1|||ξ|||L∞ T .
To construct the strong solution u to (1.1) we consider the following Banach

space

X :=
{
θ : ΩT → : θ ∈ C(ΩT )

}
,

and we define a map J : X → X by

[Jθ](t, x) := ξ0(U [θ](0, t, x)) e−χt +

∫ t

0
φ(s, U [θ](s, t, x)) e−χ(t−s) ds,

where ξ0 = curlu0 is the initial vorticity, while φ = curl f , u[θ] = curl−1 θ, and
the characteristics U [θ](t, s, x) are constructed tracing the trajectories by using the
field u[θ].

We first show that this mapping has a fixed point, hence that this fixed point is
the vorticity of a strong solution of the dissipative Euler equations. This solution is
also a weak solution and uniqueness follows by standard results on weak solutions
to the Euler equations with bounded vorticity. We split the proof in two lemmas,
following step-by-step the approach in [5].

Lemma 3.1. Let us define the convex set

K :=
{
θ ∈ X : |||θ|||L∞ ≤ R

}
,

where R := ‖ curlu0‖∞ +
∫ T
0 ‖ curl f(s)‖∞eχs ds.

Then, the inclusion J(K) ⊂ K holds true and moreover J(K) is a family of
equicontinuous functions in ΩT .
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Proof. The bound |||Jθ|||L∞ ≤ R is obvious as well as the equicontinuity of the
family ξ0(U [θ](0, t, x)) e−χt (in fact ξ0 is continuous on Ω and there is a composition
with the uniformly continuous U [θ] as follows by using (3.3)).

For the integral appearing in the definition of Jθ we write
∣∣∣∣

∫ t

0
φ(s, U [θ](s, t, x)) e−χ(t−s) ds−

∫ t1

0
φ(s, U [θ](s, t1, x1)) e

−χ(t1−s) ds

∣∣∣∣

≤
∣∣∣∣

∫ t

t1

‖φ(s)‖∞ eχs ds

∣∣∣∣+ |e−χt − e−χt1 |
∫ T

0
‖φ(s)‖∞ eχs ds

+

∫ t

0
|φ(s, U [θ](s, t, x))− φ(s, U [θ](s, t1, x1))| eχs ds.

The first and second term from the right-hand side clearly go to zero uniformly
as t1 → t, by the absolute continuity of the integral and the continuity of the
exponential function. For the last one observe that the function

-(s, ε) := sup
|z−z1|<ε

eχs |φ(s, z)− φ(s, z1)|,

satisfies the bound -(s, ε) ≤ 2 eχs‖φ(s)‖∞ and -(s, ε) → 0 as ε → 0 for a.e.
s ∈ [0, T ]. Hence, we can apply Lebesgue dominated convergence theorem to
show that its integral can be made as small as we wish. Combining this with the
continuity of characteristics gives the thesis. For further details, see the proof of [5,
Thm. 2.1]. !

We then use some compactness results to employ a fixed-point argument.

Lemma 3.2. The mapping J has a fixed point.

Proof. In order to show existence of a fixed point we need to just show that the
mapping J is continuous with respect to the L∞(ΩT ) topology. (This result –or
some of its variations– seems to be part of the mathematical folklore and its proof
is sketched in [5, Theorem 2.2] and [27, Lemma 2.8]. For the reader’s convenience
we include an elementary and complete alternative proof.)

By the compactness of the mapping –which is ensured by equicontinuity and
the Ascoli-Arzelà theorem– it follows that all the other hypotheses of Schauder
fixed point theorem are satisfied.

To this end, let be given {θm}m ⊂ K such that θm → θ uniformly in ΩT . The
unique function um such that um = curl−1 θm satisfies um → u uniformly in ΩT .
We show now that Um(t, s, x) → U(t, s, x) uniformly in [0, T ]2 ×Ω, where Um is a
solution of 





dUm(t, s, x)

dt
= um(t, Um(t, s, x)), t ∈ [0, T ]

Um(s, s, x) = x, s ∈ [0, T ].

Fix some ε ∈]0, 1[. Then, there exists N = N(ε) ∈ such that

sup
(x,t)∈ΩT

|un(t, x)− u(t, x)| < ε, ∀n > N.
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Define then ζn,s(t) := |Un(t, s, x) − U(t, s, x)|2 and observe that, for n > N , and
by using (3.2) and the bound R on the elements of the set K

∣∣∣∣
dUn(t, s, x)

dt
−

dU(t, s, x)

dt

∣∣∣∣

≤ |un(Un(t, s, x))− u(Un(t, s, x))|+ |u(Un(t, s, x))− u(U(t, s, x))|

≤ ε+ c1R|Un(t, s, x)− U(t, s, x)| log
(

e

|Un(t, s, x)− U(t, s, x)|

)
.

Define now for some λ ∈]0, 1[ (small enough in a way which will be fixed later on)

τn := inf{t > s : ζn,s(t) ≥ λ2}.

Note that τn is strictly larger than s, since ζn,s(s) = 0 and ζn,s is a continuous
function of its arguments. We then obtain in [s, τn]

∣∣∣∣
dζn,s
dt

∣∣∣∣ ≤ 2λ ε+ c2 ζn,s log

(
e

ζn,s

)
.

We define then Zn,s(t) := 2λ ε
c2

+ ζn,s(t) and, with simple calculations after opti-
mization in ε ∈]0, 1], we can see that for

0 < λ < λ0 :=

√
1

e
+

1

c22
−

1

c2
,

it holds for s < t < τn

2λ ε+ c2 ζn,s(t) log

(
e

ζn,s(t)

)
≤ c2 Zn,s(t) log

(
e

Zn,s(t)

)
.

We recall the fact that from the differential inequality





y′(t) ≤ C y(t) log

(
e

y(t)

)
,

y(0) = y0,

we have by direct integration

y(t) ≤ e
(y0
e

)e−C t

t ≥ s,

consequently applying this to the function Zn,s we have

Zn,s(t) ≤ e

(
2λ ε

c2 e

)e−c2 t

≤ e

(
2λ ε

c2 e

)e−c2 T

∀ t ∈ [s,min{τn, T}],

provided that 0 < ε < ε0, where ε0 := min{1, c2 e
2λ0

}. Hence, we obtain

(3.4) ζn,s(t) ≤
2λ ε

c2
+ e

(
2λ ε

c2 e

)e−c2 T

∀ t ∈ [s,min{τn, T}].
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Since 2λ ε
c2

+ e
(

2λ ε
c2 e

)e−c2 T

is monotonically increasing in λ, the quantity ζn,s(t) is

bounded by the value assumed at λ = λ0. Hence we can choose 0 < ε1 < ε0 small
enough such that

2λ0 ε

c2
+ e

(
2λ0 ε

c2 e

)e−c2 T

≤ λ2 ∀ ε ∈]0, ε1[.

This shows that, for small enough ε > 0 the same bound (3.4) holds for all s ∈
[0, T ], for all t ∈ [s, T ], and for all x ∈ Ω. Consequently, ζn,s goes to zero uniformly
when ε goes to zero. The same reasoning can be used also for t ∈ [0, s], hence we
obtain that Um converges uniformly to U in [0, T ]2 × Ω.

Finally, from the definition of J (being composition of uniformly continuous
functions) it follows that if θm → θ, then Jθm → Jθ uniformly. !

We can now give the proof of the existence result for strong solutions.

Proof of Theorem 3.1. By calling ξ ∈ K the fixed point of the map J , it satisfies
ξ = Jξ, i.e.,

(3.5) ξ(t, x) = ξ0(U(0, t, x)) e−χt +

∫ t

0
φ(s, U(s, t, x)) e−χ(t−s) ds t ∈ [0, T ].

By a standard argument (adapting for instance that in [5, Lemmas 2.3-2.4] and [27,
Lemma 2.4]) we obtain that x *→ U(t, s, x) is measure preserving (since ∇ · u = 0,
where u := curl−1 ξ). By multiplying (3.5) by a smooth test function Ψ, by
integrating over ]0, T [×Ω, and with a change of variables in the multiple integrals
it follows that the scalar ξ satisfies

∫ T

0

∫

Ω

[
ξ
∂Ψ

∂t
+ (ξ u) ·∇Ψ− χ ξΨ+ φΨ

]
dxdt = 0 ∀Ψ ∈ C∞

0 (]0, T [×Ω)

and u is (also) a weak solution of the dissipative Euler equations. Finally the
basic uniqueness results as in Yudovich [35] and Bardos [4] (see also Bessaih and
Flandoli [12, 13] for the dissipative case) show that the solution is unique. !

We prove now the fundamental estimate needed to prove existence of almost-
periodic solutions to the dissipative Euler equations. The main point is a uniform
(in time) bound for the Dini–norm of the vorticity. To this end we recall that
the existence of classical (since now all terms are point-wise defined) solutions to
the Euler equations such that ξ ∈ C([0, T ];CD(Ω)) is not new. This appeared
first in Beirão da Veiga [5, Thm. 1.4] and again and in an independent way (with a
slightly-different proof) in Koch [29, Thm. 2]. We do not reproduce here the proof,
which is also in this case based on the representation formula (3.5) and Schauder
fixed point theorem, but we give just the main point, which is a uniform estimate
for the Dini–norm of the vorticity.
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Theorem 3.2. In addition to the hypotheses of Theorem 3.1 let us assume that
curlu0 ∈ CD(Ω)) and that curl f ∈ L1

loc(0,+∞;CD(Ω)). Then, for any T > 0,
the unique strong solution of the dissipative Euler equations is such that curlu ∈
C([0, T ];CD(Ω)).

Moreover, if curl f ∈ L∞(0,+∞;CD(Ω)), then there exists χ0 > 0 (depending
on the initial datum ξ0, the force f , and the domain Ω, cf. (3.8)) such that if
χ > χ0, then

(3.6) sup
t≥0

‖ curlu(t)‖CD
≤ C < +∞.

where C = C(ξ0, f,χ,Ω).

Proof. We know yet from the previous Theorem 3.1, for any χ > 0, the existence
and uniqueness of a strong solution corresponding to the data (u0, f). In partic-
ular, adapting [5, Thm. 1.4] and [29, Thm. 2] it is straightforward to show that
the solution is such that curlu ∈ C([0, T ];CD(Ω)). For the reader’s convenience
we recall that the main point is to check that the fixed point of the mapping J
satisfies ξ = Jξ ∈ C([0, T ];CD(Ω)). This allows to use on the Schauder fixed point
argument in the topology of L∞(ΩT ).

We show now that the presence of a large-enough dissipative constant χ the
representation formula allows us to obtain uniform bounds on the Dini-norm of
the vorticity over all positive times. For any given T > 0, ξ is the fixed point of
the mapping J , hence it satisfies (3.5). We show now an uniform bound for the
Dini-norm of ξ. First the L∞(Ω) bound is straightforward

‖ξ(t)‖∞ ≤ ‖ξ0‖∞e−χt + sup
t≥0

‖φ(t)‖∞
1− e−χt

χ
∀ t ≥ 0,

and it shown also in [13]. In the calculations which follow we are assuming that
we have a unique solution such that ξ ∈ C([0, T ];CD(Ω)). This implies that U is
Lipschitz continuous (especially in the space variable) and that its Lipschitz-norm
is bounded by the Dini-norm of ξ. We will work on a given interval [0, T ] and then
we will show that the estimates are independent of T , for large enough χ > 0.

We estimate the Dini-continuity of η = ξ eχt, where ξ is the vorticity of the
solution, hence such that ξ = Jξ on [0, T ]. Observe that, from the equation satisfied
by η we have the representation formula

η(t, x) = ξ0(U(0, t, x)) +

∫ t

0
φ(s, U(s, t, x)) eχs ds,

and clearly

‖η(t)‖∞ ≤ ‖ξ0‖∞ + sup
t≥0

‖φ(t)‖∞
eχt − 1

χ
.

Moreover, we observe that [η(t)]CD
= [ξ(t)]CD

eχt, as easily follows from the defi-
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nition. We estimate the Dini-semi-norm of η as follows:

(3.7)

[η(t)]CD
:=

∫ 1

0
sup

|x−y|≤ρ
|η(t, x)− η(t, y)|

dρ

ρ

≤
∫ 1

0
sup

|x−y|≤ρ
|ξ0(U(0, t, x))− ξ0(U(0, t, y))|

dρ

ρ

+

∫ t

0

∫ 1

0
sup

|x−y|≤ρ
|φ(s, U(s, t, x))− φ(s, U(s, t, y))| eχs dρ

ρ
ds

=: B1 +B2.

Next, we estimate separately B1 and B2. For the first term, making a change of
variable by means of the unitary diffeomorphism U(0, t, x), we have that

B1 ≤
∫ 1

0
sup

|x−y|≤ρ‖∇U(0,t,·)‖∞

|ξ0(x)− ξ0(y)|
dρ

ρ

≤
∫ 1

0
sup

|x−y|≤ρ
|ξ0(x)− ξ0(y)|

dρ

ρ
+ 2‖ξ0‖∞

∫ ‖∇U(0,t,·)‖∞

1

dρ

ρ

≤ [ξ0]CD
+ 2‖ξ0‖∞ log ‖∇U(0, t, ·)‖∞,

(where the term 2‖ξ0‖∞ log ‖∇U(0, t, ·)‖∞, is set to zero if ‖∇U(0, t, ·)‖∞ < 1)
and, by appealing to (3.1), we obtain

B1 ≤ [ξ0]CD
+ 2‖ξ0‖∞

∫ t

0
‖∇u(s)‖∞ ds

≤ [ξ0]CD
+ 2C0‖ξ0‖∞

∫ t

0
‖ξ(s)‖CD

ds

≤ [ξ0]CD
+ 2C0‖ξ0‖∞

∫ t

0
‖η(s)‖CD

e−χs ds.

For the term B2, by making the change of variables by means of U(s, t, x), we have
that

B2 ≤
∫ t

0

∫ 1

0
sup

|x−y|≤ρ‖∇U(s,t,·)‖∞

|φ(s, x)− φ(s, y)|
dρ

ρ
eχs ds

≤
∫ t

0
[φ(s)]CD(Ω)e

χs ds+ 2‖φ(s)‖∞
∫ t

0

∫ ‖∇U(s,t,·)‖∞

1

dρ

ρ
eχs ds

≤ sup
t≥0

[φ(t)]CD

∫ t

0
eχsds+ 2 sup

t≥0
‖φ(t)‖∞

∫ t

0
log ‖∇U(s, t, ·)‖∞ eχs ds

≤ sup
t≥0

[φ(t)]CD

∫ t

0
eχsds+ 2 sup

t≥0
‖φ(t)‖∞

∫ t

0
log ‖∇U(s, t, ·)‖∞ eχs ds

≤ sup
t≥0

[φ(t)]CD

∫ t

0
eχs ds+ 2 sup

t≥0
‖φ(t)‖∞

∫ t

0

∫ t

s
‖∇u(τ)‖∞ eχs dτ ds.
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Changing the order of integration in the last integral we have

B2 ≤ sup
t≥0

[φ(t)]CD

∫ t

0
eχsds+ 2 sup

t≥0
‖φ(t)‖∞

∫ t

0

∫ τ

0
‖∇u(τ)‖∞ eχs ds dτ

≤ sup
t≥0

[φ(t)]CD

eχt − 1

χ
+ 2C0 sup

t≥0
‖φ(t)‖∞

∫ t

0

∫ τ

0
‖ξ(τ)‖CD

eχs ds dτ

≤ sup
t≥0

[φ(t)]CD

eχt − 1

χ
+ 2C0 sup

t≥0
‖φ(t)‖L∞

∫ t

0
‖ξ(τ)‖CD

eχτ − 1

χ
dτ

≤ sup
t≥0

[φ(t)]CD

eχt

χ
+

2C0

χ
sup
t≥0

‖φ(t)‖∞
∫ t

0
‖η(τ)‖CD

dτ.

Collecting all the estimates we get the following inequality, where Φ := sup
t

‖φ(t)‖CD

‖η(t)‖CD
≤ ‖ξ0‖CD

+
2Φ

χ
eχt + 2C0

[
‖ξ0‖CD

+
Φ

χ

] ∫ t

0
‖η(s)‖CD

ds.

By using Gronwall lemma we get

‖η(t)‖CD
≤

[
‖ξ0‖CD

+
2Φ

χ
−

2Φχ

χ2 − 2C0(Φ+ ‖ξ0‖CD
χ)

]
e

2C0t(Φ+‖ξ0‖CD
χ)

χ

+
2Φχ

χ2 − 2C0(Φ+ ‖ξ0‖CD
χ)

etχ

and consequently

‖ξ(t)‖CD
≤

[
‖ξ0‖CD

+
2Φ

χ
−

2Φχ

χ2 − 2C0(Φ+ ‖ξ0‖CD
χ)

]
e t

2C0(Φ+‖ξ0‖CD
χ)

χ −χ

+
2Φχ

χ2 − 2C0(Φ+ ‖ξ0‖CD
χ)

,

which is uniformly bounded on [0 +∞[ if

2C0Φ+ 2C0‖ξ0‖CD
χ− χ2 < 0,

that is if

(3.8) χ > χ0 := C0‖ξ0‖CD
+
√
C2

0‖ξ0‖2CD
+ 2C0Φ.

!

Remark 3.1. In order to obtain directly continuity of the mapping J and also
uniform estimates, the Hölder topology seems not suitable. The reader can also
compare with [5, Rem. 2.2] and also the related observation on the non-continuity
in [29, p. 494] of C1,α-under simple rigid rotations. The fixed point and other
arguments require also to handle these topologies, especially when looking for prop-
erties valid for arbitrary positive times. The connection between continuity of the
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mapping t *→ u(t), the growth in a critical way of different norms (Dini, Hölder
and Sobolev), and the long-time behavior is especially addressed in [29]. Moreover,
in a recent work of Kiselev and Šverák [28] it is shown that for the Euler equations
(that is in the case χ = 0) it is possible to find smooth initial data producing so-
lutions with sharp growth in derivatives of the vorticity, such that an exponential
growth for ‖∇u‖L∞ follows.

Remark 3.2. Especially in connection with the existence of attractors, hence with
uniform bounds together with a condition of semi-group a similar approach is used
in [8], using other arguments, strictly related with the Hadamard well-posedness.
Results concerning the existence of certain strong global-attractors are announced
in [7]

4. Existence of solutions defined on the whole real line

This section is devoted to prove the existence of weak solutions to (1.1) defined on
the whole real axis. To do so, we follow the analysis carried out in [31, § 3] and
in [13, § 1], to obtain the following result.

Theorem 4.1. Assume that f ∈ L2
loc

( ;V ) and that curl f ∈ L∞( ;CD(Ω)).
Then, if χ > χ1(f,Ω) :=

√
2C0Φ > 0 (cf. (3.8), with Φ := ‖ curl f‖L∞( ;CD)),

there exists a weak solution ũ to (1.1), defined on , which verifies

(4.1) sup
t∈

‖∇ũ(t)‖∞ ≤ C2,

with C2 := C0C1, and the constants C0, C1 are given in (2.3) and (4.3), respec-
tively.

Proof. We consider the system (1.1) in [−k,+∞), k ∈ , with initial datum
uk(−k) = 0 (and so ξk(−k) ≡ 0). Arguing as in the proof of Theorem 3.2, we get
the existence of a unique strong solution uk to (1.1), on the interval [−k,+∞),
such that curluk ∈ C([−k,+∞);CD(Ω)).

As a further consequence of the results in Theorem 3.2, it follows that if χ > χ1,
then

(4.2) sup
t≥−k

‖ curluk(t)‖CD
≤ C1 < +∞,

where

(4.3) C1(f,χ,Ω) :=
2Φχ

χ2 − 2C0Φ

is the constant C = C(ξ0, f,χ,Ω), introduced in (3.6), in the case when ξ0 = 0.
Let us set now

ũk(t) :=

{
uk(t) for t ∈ [−k,∞),
0 for t ∈ (−∞,−k].
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Clearly, relation (4.2) still remains true for ũk, k ∈ , and, by appealing to the
inequality (2.3), we get

1

C0
sup
t∈

‖∇ũk(t)‖∞ ≤ sup
t∈

‖ curl ũk(t)‖CD
≤ C1.

In particular, we have that ∇ũk is uniformly bounded in × Ω by C2. There-
fore, there is a sub-sequence of ũk (labeled again ũk) and a function with ∇ũ ∈
L∞( ;L∞(Ω)) such that

(4.4) ∇ũk ⇀ ∇ũ in L∞( ;L∞(Ω))-weak(,

and, due to the weak( lower semi-continuity of the norm, we also get

sup
t∈

‖∇ũ(t)‖∞ ≤ C2.

Next, we show that ũ is a solution to (1.1) in the distributional sense and that
verifies relations (2.1a)-(2.1d). In such a way, we will retrieve the existence of a
weak solution to (1.1), defined on , with the property that ‖∇ũ(t)‖∞ is uniformly
bounded on the whole real line. This latter fact will be crucial in order to prove
the existence of S2(H)-almost-periodic solutions to (1.1) (see below for details).

Let L > 0 be an arbitrary number. By using (2.1d) for the sequence ũk we get

|〈ũk(t)− ũk(s),ϕ〉| ≤χ
∫ t

s
|〈ũk(τ),ϕ〉| dτ +

∫ t

s
|b(ũk(τ), ũk(τ),ϕ)| dτ

+

∫ t

s
|〈f(τ),ϕ〉| dτ,

for all ϕ ∈ V, and for all −k ≤ s ≤ t ≤ L. By the boundedness of ∇ũk in
L∞( ;L∞(Ω)), and the hypotheses on f , it follows that ũk(t)− ũk(s) is bounded
in L2

loc(−∞, L;V ′). In particular, the sequence ũk is bounded in L2
loc(−∞, L;V )∩

W 1,2
loc (−∞, L;V ′). By using classical compactness arguments, we can extract a

sub-sequence (still labeled as ũk) such that

ũk → ũ in L2(−L,L;H)-strong,

ũk ⇀ ũ in L∞(−L,L;V )-weak(,

ũk ⇀ ũ in L2(−L,L;V )-weak,

∂tũk ⇀ ∂tũ in L2(−L,L;V ′)-weak,

∃E ⊂ [−L,L] of zero Lebesgue meas. s.t. ∀ t ∈ [−L,L]
∖
E, ũk(t) → ũ(t) in H,

and the limit ũ coincides with that in (4.4), due to the uniqueness of the limit
for the convergence in distribution. Moreover, by using the standard interpolation
theory (see, e.g. [13, 33]), it follows that ũ ∈ C( ;H), and so condition (2.1a) is
verified.

As a consequence of the strong convergence of ũk to ũ in L2
loc( ;H), for any

compact interval [−L,L] ⊆ , we can pass to the limit in equation (2.1d), proving
that ũ is solution to (1.1) in the space of distributions D′( ;V ′).
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Now, take inequality (2.1b) for ũk, i.e.,

(4.5) ‖ũk(t)‖22 + χ

∫ t

−k
‖uk(s)‖22 ds ≤

∫ t

−k
|〈f(s), ũk〉| ds for a.e. t ∈ [−k, L].

Using again the strong convergence of ũk to ũ in L2
loc( ;H), passing to the

limit on both sides of the above inequality, it follows that the left-hand side
of (4.5) converges to ‖ũ(t)|22 + χ

∫ t
−k ‖ũ(s)‖

2
2 ds and the right-hand-side converges

to
∫ t
−k〈f(s), ũ(s)〉 ds, and then for all k ∈

‖ũ(t)‖22 + χ

∫ t

−k
‖ũ(s)‖22 ds ≤

∫ t

−k
|〈f(s), ũ(s)〉| ds for a.e. t ∈ [−k,+∞].

Thus, ũ verifies (2.1b).
Finally, relation (2.1c) easily follows by exploiting the same argument used

in [13, § 3] and the solution to elliptic problem for ũ = curl−1 ξ̃, as explained in
the previous section. !

The previous result lead to the definition below.

Definition 4.1. Provided that f ∈ L2
loc

( ;V ), we say that a weak solution u to
the dissipative Euler equation (1.1) is “global” if it verifies (2.1a) on , and the
properties (2.1b)-(2.1d) hold for a.e. t, t0 ∈ , with t ≥ t0.

Remark 4.1. Since u is tangential to the boundary, and Ω is bounded then the
Poincarè inequality holds, consequently, from ∇u ∈ L∞( ×Ω) it follows that also
u is uniformly bounded.

4.1. Some remarks on uniform bounds in Hilbert spaces

Simpler and more standard techniques can be used to show the following uniform
bounds, which are nevertheless too weak for the existence of almost-periodic solu-
tions. We report them for the reader convenience and also to show in a different
way some related estimates, which (contrary to the previous section) hold true
for any positive χ. We point out that they are useless to show certain asymp-
totic equivalence properties, that is to quantitatively estimate the difference of
two solutions starting from different initial data, explaining the critical role of the
functional setting we use and of the restrictions on the dissipation constant χ.

Lemma 4.1. In addition to the hypotheses of Theorem 2.1 assume that f ∈
L2
uloc(0,+∞;H). Then, weak solutions u to (1.1) are defined for all t ≥ 0, they

belong to L∞(0,+∞;H), and the following estimate holds true

(4.6) ‖u(t)‖22 ≤ ‖u0‖22 e−χt +
3

χ2
‖f‖2L2

uloc(0,+∞;H) t ∈ [0,∞).



Almost periodic solutions for the 2D dissipative Euler equations 17

Proof. Consider the dissipative Euler equation (1.1) and using u as test function,
we get the following inequality

d

dt
‖u‖22 ≤ −χ‖u‖22 +

1

χ
‖f‖22.

Notice that the calculations can be made rigorous by considering the same equa-
tions along Galerkin approximate functions, or using the fact that the solution is a
weak solution over [0, T ], for all positive T . Set z(t) := ‖u(t)‖22 and β(t) := ‖f(t)‖22
(in particular β ∈ L1

uloc(0,+∞)). Now, to estimate z in L∞(0,+∞), we fol-
low a more or less classical argument as in [31, Prop. 2.1]. Suppose there exists
t ∈ [0,+∞[ such that z(t) ≤ z(t+ 1). Then, it follows that

0 ≤ z(t+ 1)− z(t) =

∫ t+1

t
∂tz(s) ds ≤ −χ

∫ t+1

t
z(s) ds+

1

χ

∫ t+1

t
β(s) ds,

that is

χ

∫ t+1

t
z(s) ds ≤

1

χ

∫ t+1

t
β(s) ds ≤

1

χ
‖β‖L1

uloc(
+).

Observe now that for every τ,σ ∈ [t, t+ 1], it holds that

|z(τ)− z(σ)| ≤
∫ t+1

t

∣∣∣∣−χz(s) +
1

χ
β(s)

∣∣∣∣ ds ≤
2

χ
‖β‖L1

uloc(
+).

By the integral mean-value theorem, it follows that there exists ζ ∈ (t, t+ 1) such

that z(ζ) =
∫ t+1
t z(s) ds, so we obtain

z(t) ≤ z(t+ 1) ≤|z(t+ 1)− z(ζ)|+
∫ t+1

t
z(s) ds

≤
2

χ
‖β‖L1

uloc(
+) +

1

χ2
‖β‖L1

uloc(
+) ≤

3

χ2
‖β‖L1

uloc(
+),

and the above estimate holds for every t ∈ [0,∞) such that z(t) ≤ z(t+1). Instead,
in the case when z(t) > z(t+ 1), one repeats the same procedure for z(t− 1) and
z(t). Continuing in this manner, we need to estimate z(t) on [0, 1]. The estimate
in [0, 1] follows by applying the Gronwall inequality Hence, we find (4.6). !

By using the same approach, one can easily show also the following result.

Lemma 4.2. In addition to the hypotheses of Theorem 2.1 assume that f ∈
L2
uloc(0,+∞;V ). Then, weak solutions u to (1.1) belong to L∞(0,∞;V ), and the

following estimate holds true

‖u(t)‖21,2 ≤ ‖u0‖21,2 e−χt +
3

χ2
‖f‖2L2

uloc(
+;V ) t ∈ [0,∞).
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If f ∈ L2
uloc(V ), these two lemmas are then enough to show, by the same

argument with the initial value problem in [−k,+∞) and letting then k → +∞
that

∃C > 0 : ‖u(t)‖1,2 ≤ C ∀ t ∈ .

The same argument as before implies then the following result

Theorem 4.2. In addition to the hypotheses of Theorem 2.1 assume that f ∈
L2
uloc( ;V ). Then, here exists a weak solution ũ to (1.1), defined on , such that

sup
t∈

‖ũ(t)‖1,2 ≤ C < +∞.

The reason why this latter result is useless is that the estimate for u ∈ V do not
imply any kind of uniqueness. A bounded vorticity is enough to obtain uniqueness,
but to estimate in a uniform way the difference of two solutions a bound on the
gradient in L∞(Ω) seems necessary and the larger space in which we are able to
prove this result is that of Dini-continuous vorticities.

5. Existence of almost-periodic solutions

We finally prove existence of almost-periodic solutions, under the natural as-
sumption that the external force field f ∈ S2(H) and is also such that curl f ∈
L∞( ;CD(Ω)). With these hypotheses we will show that the global weak solution
built up in Theorem 4.1 is S2(H)-almost-periodic as well, but a restriction on the
size of χ is needed.

To reach this goal, some preliminary facts will be provided first. Let f and f̂
be two external force fields satisfying the hypotheses of Theorem 4.1, and take u
and û the associated global weak solutions constructed as in Theorem 4.1. Denote
the differences w := u− û and g := f − f̂ . Taking the difference between the two
equations satisfied by u and û we get

∂tw + χw +∇(π − π̂) = −(u ·∇)w − (w ·∇) û+ g.

Now, taking the L2-product with w we obtain

1

2

d

dt
‖w(t)‖22 + χ‖w(t)‖22 ≤ |b(w(t), û(t), w(t))|+ ‖w(t)‖ ‖g(t)‖

≤ ‖w(t)‖22‖∇û(t)‖∞ +
χ

2
‖w(t)‖22 +

1

2χ
‖g(t)‖22

≤ C2‖w(t)‖22 +
χ

2
‖w(t)‖22 +

1

2χ
‖g(t)‖22,

where we used the inequality (4.1). Hence, we get with standard manipulations

(5.1) ‖w(t)‖22 ≤ ‖w0‖22 e (2C2−χ)(t−t0) +
1

χ

∫ t

t0

‖g(τ)‖22 e (2C2−χ)(t−τ) dτ,

where w0 = u0 − û0, t, t0 ∈ with t ≥ t0.
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Remark 5.1. Let u be a global weak solutions constructed as in Theorem 4.1.
Given the external force field f as in the hypotheses, it is always possible to choose
the parameter χ large enough such that χ >

√
2C0Φ, in order that from the exis-

tence result it follows

sup
t∈

‖∇u(t)‖∞ ≤ C2.

Thus, in order to have 2C2 − χ < 0, it is sufficient to take

χ >
√
6C0Φ >

√
2C0Φ.

For the reminder of this section we always assume that 2C2 − χ is strictly
negative. We are now ready to proceed to the proof of our main result.

Theorem 5.1. Suppose that the hypotheses of Theorem 4.1 are verified and also
that f ∈ S2(H). Moreover, suppose that χ > χ2 :=

√
6C0Φ. Then, there exists a

weak solution u to (1.1) such that u ∈ S2(H).

Proof. We prove that the global solution u to (1.1), constructed as in the previous
section, belongs to S2(H). As usual we argue by contradiction, see for instance
Foias [22], for early results on the Navier-Stokes equations with “large viscosity”,
instead of the large dissipation used here (Notice that in that case the condition on
the viscosity is used to ensure global regularity for the three-dimensional problem).

Therefore, there is a sequence {hm} and a function f̃ such that

(5.2) sup
t∈

∫ t+1

t
‖f(s+ hm)− f̃(s)‖22 ds → 0,

and there exist a sequence {tk}, two sub-sequences {hmk
}, {hnk

} (of {hm}), and
a constant δ0 > 0 such that

(5.3) 0 < δ0 ≤
∫ tk+1

tk

‖u(s+ hmk
)− u(s+ hnk

)‖22 ds ∀k ∈ .

Since f is S2(H)-almost-periodic, by relation (5.2), one has that (up to a sub-
sequence k′ still denoted by k) there exist f∗

1 and f∗
2 such that

(5.4)

sup
t∈

∫ t+1

t
‖f(s+ tk + hmk

)− f∗
1 (s)‖22 ds → 0,

sup
t∈

∫ t+1

t
‖f(s+ tk + hnk

)− f∗
2 (s)‖22 ds → 0.

Applying the triangle inequality twice, it can be easily proved that f∗
1 = f∗

2 =: f∗

(for details see [31, Thm 4.1]).
For any k ∈ , and corresponding to the external force fields fk

1 (r) := f(r +
tk + hmk

) and fk
2 (r) := f(r + tk + hnk

), we can construct two global solutions
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uk
1(r) := u(r + tk + hmk

) and uk
2(r) := u(r + tk + hnk

), with r ∈ . Hence,
relation (5.3) can be rewritten as follows

(5.5) δ0 ≤
∫ tk+1

tk

‖uk
1(s− tk)− uk

2(s− tk)‖22ds =
∫ 1

0
‖uk

1(s)− uk
2(s)‖22 ds,

and observe that under our hypotheses

sup
t∈

‖∇uk
i (t)‖∞ ≤ C2 < +∞, for i = 1, 2,

where C2 is given in (4.1).
Following the lines of reasoning in the proof of Theorem 4.1, from uk

1 and
uk
2 we can extract sub-sequences (still labeled uk

1 and uk
2) strongly converging in

L2
loc( ;H) to the global weak solutions u1 and u2, respectively. Thus, passing to

the limit in (5.5), we get

(5.6) δ0 ≤
∫ 1

0
‖u1(s)− u2(s)‖22 ds.

On the other hand, exploiting inequality (5.1), we get (recall that χ− 2C2 > 0)

∫ 1

0
‖uk

1(s)− uk
2(s)‖22 ds

≤‖uk
1(t0)− uk

2(t0)‖22
∫ 1

0
e (2C2−χ)(s−t0) ds

+
1

χ

∫ 1

0
ds

∫ s

t0

‖fk
1 (τ)− fk

2 (τ)‖22e (2C2−χ)(s−τ) dτ

≤
1

χ− 2C2
‖uk

1(t0)− uk
2(t0)‖22 e (χ−2C2)t0

(
1− e−(χ−2C2)

)

+
1

χ

∫ 1

0
e−(χ−2C2)s ds

∫ 1

t0

‖fk
1 (τ)− fk

2 (τ)‖22 e (χ−2C2)τ dτ,

and consequently

(5.7)

∫ 1

0
‖uk

1(s)− uk
2(s)‖22 ds ≤

1

χ− 2C2
‖uk

1(t0)− uk
2(t0)‖22 e (χ−2C2)t0

+
1

χ

∫ 1

t0

‖fk
1 (s)− fk

2 (s)‖22 e(χ−2C2)s ds.

Here, without loss of generality, we can assume that t0 ≤ 0, and recall that ‖uk
i ‖2

is bounded uniformly. Then, fix t0 < 0 small enough, such that it holds

1

χ− 2C2
‖uk

1(t0)− uk
2(t0)‖22 e (χ−2C2)t0 <

δ0
4
.

In order to estimate the second term on the right-hand side of (5.7), we use a well-
known argument used for instance in [26, Lemma 4.1]. Given t0 ≤ 0 determined
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from the previous inequality, let M ∈ such that t0 + (M − 1) ≤ 1 ≤ t0 + M .
Therefore, we have that

∫ 1

t0

‖fk
1 (s)− fk

2 (s)‖22 e (χ−2C2)s ds

≤
M∑

m=1

∫ t0+m

t0+m−1
‖fk

1 (s)− fk
2 (s)‖22 e (χ−2C2)s ds

≤
M∑

m=1

∫ t0+m

t0+m−1
‖fk

1 (s)− fk
2 (s)‖22 e (χ−2C2)(m+2−M) ds

= e (χ−2C2)(2−M)
M∑

m=1

e (χ−2C2)m

∫ t0+m

t0+m−1
‖fk

1 (s)− fk
2 (s)‖22 ds,

where we used that χ − 2C2 > 0 and also that from the definition of M it fol-
lows t0 ≤ 2 − M . Hence, adding to both sides m ∈ the upper bound for the
exponential in the interval [t0 + (m− 1), t0 +m] follows.

Next, by using explicit expression for the summation of a geometric sum, we
obtain

e (χ−2C2)(2−M)
M∑

m=1

e (χ−2C2)m

∫ t0+m

t0+m−1
‖fk

1 (s)− fk
2 (s)‖22 ds,

≤ e (χ−2C2)(2−M) max
m=1,...,M

∫ t0+m

t0+m−1
‖fk

1 (s)− fk
2 (s)‖22 ds ·

M∑

m=1

e(χ−2C2)m

≤
e(χ−2C2)(M+1) − 1

eχ−2C2 − 1
e (χ−2C2)(2−M) sup

t≥t0

∫ t+1

t
‖fk

1 (s)− fk
2 (s)‖22 ds

≤
e3(χ−2C2)(M+1)

eχ−2C2
sup
t∈

∫ t+1

t
‖fk

1 (s)− fk
2 (s)‖22 ds

Next, recall that, due to (5.4), fk
i , for i = 1, 2, converges to f∗ in L2

uloc(H), as
k goes to +∞. Hence, by collecting the estimates and for fixed t0 ≤ 0 and for k
large enough, we obtain

1

χ

∫ 1

t0

‖fk
1 (s)− fk

2 (s)‖22 e(χ−2C2)s ds

≤
1

χ

e 3(χ−2C2)(M+1)

eχ−2C2
sup
t∈

∫ t+1

t
‖fk

1 (s)− fk
2 (s)‖22 ds <

δ0
4
.

Hence, by collecting all the estimates, we get

∫ 1

0
‖uk

1(s)− uk
2(s)‖22 ds <

δ0
2
,
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and since uk
i converges strongly in L2 to ui (and also a.e. up to a redefinition on

a subset E ⊂ of Lebesgue measure zero), we obtain that

∫ 1

0
‖u1(s)− u2(s)‖22 ds ≤

δ0
2
,

contradicting (5.6) and the assertion is proved. !

5.1. Further regularity of almost-periodic solutions

By using a classical characterization of Stepanov almost-periodic functions and a
Theorem of Dafermos [20] we can prove also the following easy corollary.

Corollary 5.1. Suppose that the hypotheses of Theorem 5.1 are verified. Then,
there exists a weak solution u to (1.1) such that u ∈ S2(V ∩ W 1,q(Ω)), for all
q < ∞, and curlu ∈ S(C(Ω)).

The proof of this corollary is based first on a characterization of Stepanov
almost-periodicity in terms of Bohr-Bochner almost-periodicity, see Bochner [14].
To this end, recall that if we set t *→ ut(s) = u(t + s), with s ∈ [0, 1], then
for u ∈ L2

uloc( ;X) we can define the map t *→ u∗ := ut, which belongs to
C( ;L2(0, 1;X)). Then, u ∈ S2(X) (Stepanov almost-periodic with values in X),
if and only if u∗ ∈ AP ( ;L2(0, 1;X)), that is Bohr-Bochner almost-periodic with
values in L2(0, 1;X) (Recall that a function is Bohr-Bochner almost-periodic if it
continuous and its translates are relatively compact in the C0-topology.)

Further, we will apply the following lemma due to Dafermos [20].

Lemma 5.1. Let Y, Z be complete metric spaces, continuously embedded in a
Hausdorff space W . Suppose that

u : → Y ∩ Z

is almost-periodic in Y and its range is relatively compact in Z. Then, u is almost-
periodic in Z. (Here almost-periodicity is in the sense of Bohr-Bochner)

Next, we will need the following compactness result à la Aubin-Lions (in par-
ticular we use a version valid for non-reflexive spaces as proved by Dubinskĭı, see
Simon [32])

Lemma 5.2. Let be given three Banach spaces Y1 ↪→↪→ X ↪→ Y2 (that is the first
inclusion is compact and the second continuous) the set F functions f : [0, T ] → Y2

such that there exists C > 0

F := {f ∈ L2(0, T ;Y1), ft ∈ L2(0, T ;Y2) : ‖f‖L2(0,T ;Y1) + ‖ft‖L2(0,T ;Y2) ≤ C}

is relatively compact in L2(0, T ;X).
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Proof of Corollary 5.1. We observe that by easy computations we have

ut ∈ L2
uloc( ;L2(Ω)).

In fact, by testing the equation (1.1) by ut and by Young inequality we get

1

2
‖ut‖22 +

χ

2

d

dt
‖u‖22 ≤ ‖u‖22‖∇u‖2∞ + ‖f‖22,

hence, by using the previously obtained bounds for ‖u‖2 and ‖∇u‖∞, and inte-
grating over a generic interval [t, t+ 1] we obtain that

ut ∈ L2
uloc( ;H),

since ∇ · ut = 0 and (ut · n)|Γ = 0.
By defining the following Banach space

E(Ω) :=
{
v : Ω → 2 : v ∈ V ∩ C(Ω), ∇v ∈ C(Ω), curl v ∈ CD(Ω)

}
,

we can observe that we are in the following situation about the time-translates

v∗(s) ∈ C( ;L2(0, 1; E(Ω))) (v∗)t(s) ∈ C( ;L2(0, 1;H)).

We use the compactness result from Lemma 5.2 with Y1 = E(Ω), X = F(Ω)
and Y2 = H, where

F(Ω) :=
{
v : Ω → 2 : v ∈ H ∩ C(Ω), ∇v ∈ Lq(Ω) ∀q < ∞, curl v ∈ C(Ω)

}
.

Let us briefly show the compactness of the inclusion E(Ω) ↪→↪→ F(Ω). Let be
given a sequence {fn} bounded in E(Ω), hence

∃C : ‖fn‖V ∩L∞ + ‖∇fn‖L∞ + ‖ curl fn‖CD
≤ C ∀n ∈ .

We recall now that the embedding of CD(Ω) into C(Ω) is compact, since (cf. [29,
p. 498]) for x close enough to y

|φ(x)− φ(y)| ≤
‖φ‖CD∣∣ log |x− y|

∣∣ ∀φ ∈ CD(Ω),

hence we have equicontinuity and Ascoli-Arzelà theorem applies. Thus with this
observation and by using classical Rellich-Kondrachov results on Sobolev spaces,
we can extract a sub-sequence (relabelled as {fn}) and find f ∈ F(Ω) such that

fn⇀f V ∩W 1,q(Ω), ∀ q < ∞

fn
∗
⇀ f W 1,∞(Ω),

fn → f H ∩ C0,α(Ω), ∀α < 1

curl fn → curl f L∞(Ω)

∇fn → ∇f Lq(Ω), ∀q < ∞
where in particular, we used that the Lq-norm of the gradient, for all q < ∞ can be
controlled with that of the curl and with the divergence (which is vanishing), for
functions tangential to the boundary. This is a by product of the representation
formulas coming from the potential theory. Hence, by recalling that u ∈ S2(H)
by Theorem 5.1, all the hypotheses of Lemma 5.1 are satisfied with Y = X =
L2(0, 1;H) and Z = L2(0, 1;F(Ω)), ending the proof. !
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Univ. Padova 32 (1962) 261–294. MR 0147798 (26 #5311)

[23] G. Gallavotti, Foundations of fluid dynamics, Texts and Monographs in
Physics, Springer-Verlag, Berlin, 2002, Translated from the Italian. MR 1872661
(2003e:76002)

[24] A. A. Ilyin, Euler equations with dissipation, Mat. Sb. 182 (1991), no. 12, 1729–1739.
MR 1138632 (92k:35218)

[25] A. A. Ilyin, A. Miranville, and E. S. Titi, Small viscosity sharp estimates for the
global attractor of the 2-D damped-driven Navier-Stokes equations, Commun. Math.
Sci. 2 (2004), no. 3, 403–426. MR 2118851 (2006b:37165)

[26] D. A. Jones and E. S. Titi, Determining finite volume elements for the 2D Navier-
Stokes equations, Phys. D 60 (1992), no. 1-4, 165–174. MR 1195597 (93j:35133)

[27] T. Kato, On classical solutions of the two-dimensional nonstationary Euler equation,
Arch. Rational Mech. Anal. 25 (1967), 188–200. MR 0211057 (35 #1939)
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