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NONUNIFORMLY ELLIPTIC ENERGY INTEGRALS WITH p, q-GROWTH

GIOVANNI CUPINI – PAOLO MARCELLINI – ELVIRA MASCOLO

Carlo Sbordone is a leader in Calculus of Variations and PDEs, as well as a master in boosting all aspects of

mathematical projects and events. He was among the first one to appreciate Neil Trudinger’s work [25] on
nonuniformly linear elliptic operators and to find application - for instance - to homogenization [20], [21] and not

only to this subject [5]. It is an honor for us to dedicate this work to Carlo on the occasion of his seventieth birthday.

Abstract. We study the local boundedeness of minimizers of a nonuniformly energy integral of
the form

∫
Ω
f(x,Dv) dx under p, q-growth conditions of the type

λ(x)|ξ|p ≤ f(x, ξ) ≤ µ(x) (1 + |ξ|q)

for some exponents q ≥ p > 1 and with nonnegative functions λ, µ satisfying some summability
conditions. We use here the original notation introduced in 1971 by Trudinger [25], where λ(x) and
µ(x) had the role of the minimum and the maximum eigenvalues of an n × n symmetric matrix
(aij (x)) and

f(x, ξ) =
n∑

i,j=1

aij (x) ξiξj

was the energy integrand associated to a linear nonuniformly elliptic equation in divergence form.
In this paper we consider a class of energy integrals, associated to nonlinear nonuniformly elliptic
equations and systems, with integrands f(x, ξ) satisfying the general growth conditions above.

1. Introduction

In the recent mathematical literature a large interest received the energy integral
∫

Ω
{|Du(x)|p + |x|α|Du(x)|q} dx, (1.1)

where 1 < p ≤ q, α > 0, Ω is an open set in R
n, n ≥ 2, 0 ∈ Ω, u : Ω → R

m, m ≥ 1, and Du is the
gradient of u. See for instance [1], [3], [4], [13], [14], [15], [23], [26]. To explain the point of view of
this research, we denote as ξ the gradient variable and

f(x, ξ) := |ξ|p + |x|α|ξ|q ;

then f : Ω× R
m×n → R is a convex function with respect to ξ ∈ R

m×n which satisfies the growth
conditions

|ξ|p ≤ f(x, ξ) ≤ c (1 + |ξ|q) (1.2)

and also

|x|α||ξ|q ≤ f(x, ξ) ≤ c (1 + |ξ|q) (1.3)

for some positive constant c and for every ξ ∈ R
m×n. With respect to the condition (1.2) we can

say that f(x, ξ) enters in the p, q-growth regularity theory and, by the recent results in [6], [8], [10],

2010 Mathematics Subject Classification. Primary: 49N60; Secondary: 35J60.
Key words and phrases. nonuniformly elliptic equations, nonuniformly elliptic systems, p, q-growth conditions,

regularity, local boundedness.
Acknowledgement: The authors are members of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le

loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) .
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2 G. CUPINI – P. MARCELLINI – E. MASCOLO

we know that any local minimizer of the energy integral in (1.1) is locally bounded in Ω if p < n
and

q < p∗ =:
np

n− p

(with q ≤ p∗ if m = 1). However for the model integral (1.1) our point of view here is to take
under consideration also condition (1.3). With the symbols described more in details below, we
have that, if α < q, then λ−1 := |x|−α ∈ Lr

loc(Ω) for some r such that n
q < r < n

α . This allows us

to apply Theorem 1.1 below and to obtain that every local minimizer of the energy integral (1.1)
is locally bounded.

Let us summarize the discussion above: any local minimizer of the energy integral (1.1) is locally
bounded in Ω if either the integrand f(x, ξ) satisfies the p, q-growth in (1.2) and q < p∗, or if f(x, ξ)
is nonuniformly elliptic as in (1.3) and α < q. Of course here it would be interesting to unify the
two cases and to give a sole condition. This is one of our aims in what we propose below.

In this paper we consider the general case of nonuniformly elliptic energy integrals of p, q-growth
of the type

F(v; Ω) =

∫

Ω
f(x,Dv) dx (1.4)

with
{

λ(x)|ξ|p ≤ f(x, ξ) ≤ µ(x) (|ξ|q + 1)

λ−1 ∈ Lr
loc(Ω), µ ∈ Ls

loc(Ω)
(1.5)

for 1 < p ≤ q, for some exponents r ∈ [1,∞], s ∈ (1,∞] and for every ξ in R
m×n. The integrand

f(x, ξ) also satisfies the condition

f(x, ξ) = g(x, |ξ|) , (1.6)

where g : Ω× [0,∞) → [0,∞) is a convex ∆2 function of class C1 with respect to the last variable,
with g(x, 0) = gt(x, 0) = 0.

Theorem 1.1. Let us consider the energy integral (1.4) under the assumptions (1.5), (1.6), with
r ∈ [1,∞], s ∈ (1,∞] (if p ≤ 2 then we also require r > 1

p−1) and

1

pr
+

1

qs
+

1

p
−

1

q
<

1

n
; (1.7)

then every local minimizer of the energy integral (1.4) is locally bounded.

We observe that in the relevant case r = s = ∞ then condition (1.7) can be equivalently written
in the form q < p∗. We also point out the connection of our result with the pioneering and celebrated
paper by Trudinger [25], where it is studied the linear case of nonuniformly elliptic second order
equations (of course with p = q = 2). Indeed, if p = q, then (1.7) becomes

1

r
+

1

s
<

p

n
,

which is exactly the assumption on the summability exponents appearing in [25] in the particular
case p = q = 2.

We refer to the next Section 2 for more details. There we also fix the notation and we give the
complete statement of our main result, see Theorem 2.1, including a precise estimate for the L∞

norm. In Section 3 we give some preliminary results, while Section 4 is devoted to the proof of
Theorem 2.1.

For completeness, the regularity theory under p, q-growth conditions have been considered nowa-
days by many authors. See for instance [1], [2], [3], [4], [11], [13], [14], [16], [17], [19]; see also the
survey [22] on regularity under non standard growth.
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Our research collaboration on regularity in the calculus of variations under p, q-growth conditions
was originated in 2009 and focused in particular on the local boundedness of local minimizers ([6],
[7], [8], [9], [10]). A comparison with the previous papers and in particular with the most recent
[10] shows that here we consider the vector-valued case (with respect to the scalar one in [10]) and
we assume here quite weaker summability conditions on the coefficients.

2. The main results

Let us consider the functional

F(v; Ω) =

∫

Ω
f(x,Dv) dx, (2.1)

with Ω ⊂ R
n, n ≥ 2, open set, and f : Ω × R

m×n → R, m ≥ 1, a Carathéodory function. We
assume that there exist measurable functions λ, µ : Ω → [0,∞) such that

λ(x)|ξ|p ≤ f(x, ξ) ≤ µ(x) (|ξ|q + 1) , 1 < p ≤ q, (2.2)

for a.e. x ∈ Ω and every ξ ∈ R
m×n, where

λ−1 ∈ Lr
loc(Ω), µ ∈ Ls

loc(Ω),

for some exponents r ∈ [1,∞] and s ∈ (1,∞].
With simple computations (see Proposition 3.1 below), for every open set Ω′ compactly contained

in Ω we deduce that
∥

∥λ−1
∥

∥

−1

Lr(Ω′)
‖Dv‖p

L
pr
r+1 (Ω′;Rm×n)

≤

∫

Ω′

f(x,Dv) dx ≤ ‖µ‖Ls(Ω′) ‖Dv‖q
L

qs
s−1 (Ω′;Rm×n)

+ ‖µ‖L1(Ω′) ,

(2.3)
and therefore we have

W 1, pr
r+1
(

Ω′;Rm
)

⊃ W 1,F(Ω′;Rm) ⊃ W 1, qs
s−1
(

Ω′;Rm
)

,

where W 1,F (Ω′;Rm) denotes the set of maps u of finiteness of the integral; i.e.,

W 1,F (Ω′;Rm) := {u ∈ W 1,1(Ω′;Rm) : F(u; Ω′) < ∞}.

It is clear that if we fix appropriate conditions at the boundary of a fixed Ω′, then from standard

direct methods of the calculus of variations we derive existence of minimizers in W 1, pr
r+1 (Ω′;Rm);

at this stage we need the condition pr
r+1 > 1.

Of course any minimizer belongs also to W 1,F (Ω′;Rm).

In the vector-valued case, as suggested by well known counterexamples by De Giorgi [12], Giusti-
Miranda [18], Šverák-Yan [24], generally some structure conditions are required for everywhere
regularity. Thus, as usual in this theory, we assume that f is a radial function with respect to the
gradient variable ξ. Precisely:

there exists g : Ω× [0,∞) → [0,∞) such that, for a.e. x ∈ Ω,

f(x, ξ) = g(x, |ξ|) is a convex and C1 function with respect to ξ ∈ R
m×n. (2.4)

We also assume the so-called ∆2-condition holds:
there exists γ ≥ 1 such that

f(x, tξ) ≤ tγf(x, ξ) (2.5)

for every t > 1, for a.e. x and every ξ. This condition implies that W 1,F (Ω′;Rm) is a vector space.

We study the regularity of local minimizers of F . We recall that a function u ∈ W
1, pr

r+1

loc (Ω;Rm)
is a local minimizer of F if

F(u; Ω′) ≤ F(u+ ϕ; Ω′)
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for every open set Ω′ compactly contained in Ω and for all ϕ ∈ W 1,F(Ω;Rm) with suppϕ ⋐ Ω′.

Before stating our regularity result, we recall that, given a real number ℓ ≥ 1, ℓ∗ is its Sobolev
exponent, i.e.

ℓ∗ :=

{

nℓ
n−ℓ if ℓ < n,

any number > ℓ if ℓ ≥ n

and ℓ′ is the conjugate exponent of ℓ, i.e., 1
ℓ +

1
ℓ′ = 1. Moreover, as usual,

1

∞
has to be read as 0.

Theorem 2.1. Let us assume that (2.2), (2.4) and (2.5) hold under the summability conditions

λ−1 ∈ Lr
loc(Ω), µ ∈ Ls

loc(Ω),

for some r ∈ [1,∞], s ∈ (1,∞] such that

1

pr
+

1

qs
+

1

p
−

1

q
<

1

n
. (2.6)

If p ≤ 2 we also require r > 1
p−1 . Then, every local minimizer u ∈ W

1, pr
r+1

loc (Ω;Rm) of F is locally

bounded and there exists a positive constant c, depending on p, q, n,m, γ, such that

‖u‖L∞(BR0/2
(x0);Rm) ≤ c

{

R−q
0 ‖λ−1‖Lr(BR0

) ‖µ‖Ls(BR0
)

}ϑ1

‖|u|+ 1‖ϑ2

Lqs′ (BR0
(x0))

, (2.7)

for every x0 ∈ Ω and BR0(x0) ⋐ Ω, 0 < R0 ≤ 1, where σ := pr
r+1 (σ := p if r = ∞) and

ϑ1 :=
σ∗

p(σ∗ − qs′)
, ϑ2 :=

q(σ∗ − ps′)

p(σ∗ − qs′)
.

Remark 2.2. If r = s = ∞ inequality (2.6) reduces to q < p∗, see e.g. [7], [8], [10]. Moreover, we
observe that the assumption on the summability exponent of µ can be written as

(

σ∗

q

)′

< s ≤ ∞, (2.8)

and that, if p = q, then it becomes
1

s
+

1

r
<

p

n
.

Remark 2.3. Trudinger [25] considered nonuniformly elliptic second order differential equations,
with p = q = 2, under the following assumptions on λ and µ

λ−1 ∈ Lr
loc(Ω), λ−1µ2 ∈ Ls

loc(Ω)
1

s
+

1

r
<

2

n
.

His condition on µ is slightly stronger than ours; in fact in our context λ(x) ≤ 2µ(x) a.e. in Ω (by
(2.2); also in [25] λ(x) ≤ µ(x)) and thus

λ−1µ2 ∈ Ls
loc(Ω) ⇒ µ ∈ Ls

loc(Ω).

3. Preliminary results

We start this section with a precise statement and proof of (2.3).

Proposition 3.1. Assume that (2.2) holds, where λ−1 ∈ Lr
loc(Ω), µ ∈ Ls

loc(Ω) for some exponents

r ∈ [1,∞] and s ∈ (1,∞] (if p ≤ 2 then we also require r ≥ 1
p−1). Then for every v ∈ W

1, pr
r+1

loc (Ω;Rm)

and every open Ω′ ⋐ Ω the inequalities (2.3) hold; i.e.,

∥

∥λ−1
∥

∥

−1

Lr(Ω′)
‖Dv‖p

L
pr
r+1 (Ω′;Rm×n)

≤

∫

Ω′

f(x,Dv) dx ≤ ‖µ‖Ls(Ω′) ‖Dv‖q
L

qs
s−1 (Ω′;Rm×n)

+ ‖µ‖L1(Ω′) .
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Proof. Consider r ∈ [1,∞), v ∈ W
1, pr

r+1

loc (Ω;Rm) and an open set Ω′ ⋐ Ω. By Hölder inequality with

exponents r+1
r and r + 1,

∫

Ω′

|Dv|
pr
r+1 dx =

∫

Ω′

λ
r

r+1 |Dv|
pr
r+1λ− r

r+1 dx ≤

(
∫

Ω′

λ|Dv|p dx

)
r

r+1
(
∫

Ω′

(λ−1)r dx

)
1

r+1

.

Therefore, using the left inequality in (2.2)

∫

Ω′

f(x,Dv) dx ≥

∫

Ω′

λ|Dv|p dx ≥

(
∫

Ω′

|Dv|
pr
r+1 dx

)
r+1
r
(
∫

Ω′

(λ−1)r dx

)− 1
r

and the left inequality in (2.3) follows.

If r = ∞, that is r
r+1 = 1, consider v ∈ W 1,p

loc (Ω;R
m). The left inequality in (2.3) follows by

∫

Ω′

|Dv|p dx ≤ ‖λ−1‖L∞(Ω′)

∫

Ω′

λ|Dv|p dx

and the left inequality in (2.2).
Let us now prove the right inequality in (2.3).

Let us first consider s ∈ (1,∞). If v /∈ W 1, qs
s−1 (Ω′) the inequality trivially holds. Let us assume

v ∈ W 1, qs
s−1 (Ω′). By Hölder inequality with exponents s and s

s−1 , we obtain

∫

Ω′

µ|Dv|q dx ≤

(
∫

Ω′

µs dx

)
1
s
(
∫

Ω′

|Dv|
qs
s−1 dx

)
s−1
s

.

Using the right inequality in (2.2) we conclude.
Let us now consider s = ∞, that is s

s−1 = 1. If v /∈ W 1,q(Ω′) the inequality trivially holds. Let

us assume v ∈ W 1,q(Ω′). We obtain
∫

Ω′

µ|Dv|q dx ≤ ‖µ‖L∞(Ω′)

∫

Ω′

|Dv|q dx.

Using the right inequality in (2.2) we conclude. �

The next lemma is about a Poincaré-Sobolev type inequality.

Lemma 3.2. Consider a bounded open set Ω ⊂ R
n and let p and r be such that p > 1 and r ∈ [1,∞]

(if p ≤ 2 then we also require r ≥ 1
p−1). Let v ∈ W

1, pr
r+1

0 (Ω;Rm) (v ∈ W 1,p
0 (Ω;Rm) if r = ∞) and

let λ : Ω → [0,∞) be a measurable function such that λ−1 ∈ Lr(Ω). Then there exists a positive
constant c such that

{
∫

Ω
|v|σ

∗

dx

}
p
σ∗

≤ c‖λ−1‖Lr(Ω)

∫

Ω
λ |Dv|p dx, (3.1)

where σ := pr
r+1 (σ := p if r = ∞).

Proof. First, assume that r < ∞. By applying the Poincaré inequality and Hölder inequality with
exponents r+1

r , r + 1 we obtain

{
∫

Ω
|v|σ

∗

dx

}
p
σ∗

≤ c

{
∫

Ω
|Dv|σ dx

}
p
σ

≤ c

{
∫

Ω

(

λ
r

r+1 |Dv|σ
)

λ− r
r+1 dx

}
p
σ

≤ c‖λ−1‖Lr(BR)

∫

Ω
λ|Dv|p dx.
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Let us now discuss the case r = ∞, that implies σ = p. We have
{
∫

Ω
|v|σ

∗

dx

}
p
σ∗

≤ c

∫

Ω
|Dv|p dx ≤ c

∫

BR

λ−1 (λ|Dv|p) dx

≤ c‖λ−1‖L∞(Ω)

∫

Ω
λ|Dv|p dx.

This concludes the proof of (3.1). �

The following lemma deals with well known properties of the convex functions satisfying (2.2),
(2.4) and (2.5).

Lemma 3.3. Assume (2.2), (2.4), (2.5). Then

(i) f(x, tξ) ≤ max{1, tγ}f(x, ξ) for every t > 0 and every ξ ∈ R
m×n,

(ii) f(x, ξ + η) ≤ 2γ−1 (f(x, ξ) + f(x, η)) for every ξ, η ∈ R
m×n,

(iii) gt(x, t)t ≤ γg(x, t) for every t ≥ 0.

We also remark that a Euler’s equation holds true.

Proposition 3.4. Assume (2.2), (2.4), (2.5) and let u be a local minimizer of (2.1). Then
∫

Ω

n
∑

i=1

m
∑

α=1

∂f

∂ξαi
(x,Du) ϕα

xi
dx = 0 (3.2)

for all ϕ ∈ W 1,F (Ω;Rm), suppϕ ⋐ Ω.

Proof. Let ϕ ∈ W 1,F (Ω;Rm), suppϕ ⋐ Ω. By (2.4) also −ϕ is in W 1,F (Ω;Rm). By Lemma 3.3 we
get u+ tϕ ∈ W 1,F(Ω;Rm) for every t ∈ R. By the local minimality of u,

F(u) ≤ F(u+ tϕ) ∀t ∈ R.

To prove (3.2) it suffices to prove that

d

dt
F(u+ tϕ)

∣

∣

∣

∣

t=0

=

∫

Ω

d

dt
f(x,Du(x) + tDϕ(x))

∣

∣

∣

∣

t=0

dx.

To prove this, we need to prove that

∣

∣

∣

n
∑

i=1

m
∑

α=1

∂f

∂ξαi
(x,Du+ tDϕ)ϕα

xi

∣

∣

∣
≤ H(x) ∀ t ∈ (−1, 1)

with H ∈ L1(suppϕ). By the convexity,

f(x, ξ0)− f(x, 2ξ0 − ξ) ≤

n
∑

i=1

m
∑

α=1

∂f

∂ξαi
(x, ξ0)(ξ

α
i − (ξ0)

α
i ) ≤ f(x, ξ)− f(x, ξ0).

If ξ0 = Du(x) + tDϕ(x), ξ = Du(x) + (1 + t)Dϕ(x), we have 2ξ0 − ξ = Du(x) + (t− 1)Dϕ(x) and

f(x,Du+ tDϕ)− f(x,Du+ (t− 1)Dϕ) ≤

n
∑

i=1

m
∑

α=1

∂f

∂ξαi
(x,Du+ tDϕ)ϕα

xi

≤ f(x,Du+ (1 + t)Dϕ)− f(x,Du+ tDϕ).

Therefore, since f is non-negative,

∣

∣

∣

n
∑

i=1

m
∑

α=1

∂f

∂ξαi
(x,Du+ tDϕ)ϕα

xi

∣

∣

∣
≤ f(x,Du+ (1 + t)Dϕ) + f(x,Du+ (t− 1)Dϕ).
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Using again the convexity and Lemma 3.3 we get

f(x,Du+ (1 + t)Dϕ) ≤ tf(x,Du+ 2Dϕ) + (1− t)f(x,Du+Dϕ)

≤ f(x,Du+ 2Dϕ) + f(x,Du+Dϕ) ≤ 2γ (f(x,Du+Dϕ) + f(x,Dϕ))

≤ 22γ (f(x,Du) + f(x,Dϕ))

and, similarly,

f(x,Du+ (t− 1)Dϕ) ≤ tf(x,Du) + (1− t)f(x,Du−Dϕ)

≤ f(x,Du) + f(x,Du−Dϕ)

≤ 2γ (f(x,Du) + f(x,−Dϕ)) .

We have so proved that

∣

∣

∣

n
∑

i=1

m
∑

α=1

∂f

∂ξαi
(x,Du+ tDϕ)ϕα

xi

∣

∣

∣
≤ 23γ (f(x,Du) + f(x,Dϕ) + f(x,−Dϕ)) =: H(x).

Since u, ϕ,−ϕ ∈ W 1,F , we conclude. �

4. Proof of the main results

We first state a lemma useful for the proof of Theorem 2.1. In the statement, the functions λ,
µ, and the exponents p, q, r, are the same of the statement of Theorem 2.1. Moreover, x0 ∈ Ω and
0 < R0 ≤ 1 are such that BR0 := BR0(x0) ⋐ Ω. Fixed R ∈ (0, R0], the function η ∈ C∞

c (BR(x0))
denotes a cut-off function satisfying

0 ≤ η ≤ 1, η ≡ 1 in Bρ(x0), |Dη| ≤
2

R− ρ
, (4.1)

where 0 < ρ < R.

Lemma 4.1. Let u ∈ W
1, pr

r+1

loc (Ω;Rm) be a local minimizer of (2.1). Then for every β ≥ 0
∫

BR

λ(x)(|u| + 1)pβ |Du|p ηq dx ≤
c1

(R − ρ)q

∫

BR

µ(x)(|u| + 1)q+pβ dx (4.2)

for some c1 depending on n, m, p, q, γ, but independent of β, u, R and ρ.

Proof. We begin using Proposition 3.4, with a suitable test function.
Let us approximate the identity function id : R+ → R+ with an increasing sequence of C1

functions hk : R+ → R+, with the following properties:

hk(t) = 0 ∀t ∈ [0,
1

k
], hk(t) = k ∀t ∈ [k + 1,+∞], 0 ≤ h′k(t) ≤ 2 in [0,∞). (4.3)

Fix k ∈ N and β ≥ 0. Let Φ
(β)
k : R+ → R+ be the increasing function defined as follows

Φ
(β)
k (t) := hk(t

pβ). (4.4)

Define ϕ
(β)
k : BR(x0) → R

m,

ϕ
(β)
k (x) := Φ

(β)
k (|u(x)|)u(x)[η(x)]q . (4.5)

We have that ϕk is in W 1,f(BR(x0);R
m), suppϕ ⋐ BR(x0) (see the proof of Lemma 5.1 in [8]).
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Let us consider the Euler’s equation (3.2) with test function ϕ
(β)
k . From now on, we write ϕk

and Φk in place of ϕ
(β)
k and Φ

(β)
k , respectively. We obtain

I1 + I2 :=

n
∑

j=1

m
∑

α=1

∫

BR

∂f

∂ξαj
(x,Du)uαxj

Φk(|u|) η
q dx

+
n
∑

j=1

m
∑

α,β=1

∫

BR

∂f

∂ξαj
(x,Du)uα

uβ

|u|
uβxj

Φ′
k(|u|) η

q dx

≤ q

∣

∣

∣

∣

∣

∣

n
∑

j=1

m
∑

α=1

∫

BR

∂f

∂ξαj
(x,Du)Φk(|u|)u

α ηq−1ηxj dx

∣

∣

∣

∣

∣

∣

=: I3.

(4.6)

Now, we separately estimate I1, I2, I3.

Estimate of I1
As far as I1 is concerned, we use that f(x, ·) is convex. Thus,

I1 ≥

∫

BR

(f(x,Du)− f(x, 0)) Φk(|u|) η
q dx.

Using (2.2), we get

I1 ≥

∫

BR

f(x,Du)Φk(|u|) η
q dx−

∫

BR

µΦk(|u|) η
q dx. (4.7)

Estimate of I2

We claim that I2 ≥ 0. Indeed, by (2.4), ∂f
∂ξαj

(x,Du) = gt(x, |Du|)
uα
xj

|Du| . Therefore

n
∑

j=1

m
∑

α,β=1

∂f

∂ξαj
(x,Du)uαuβ uβxj

=

n
∑

j=1

gt(x, |Du|)

(

∑m
α=1 u

α uαxj

)2

|Du|
≥ 0.

Thus, by the monotonicity of Φk we have

I2 =

∫

BR

n
∑

j=1

gt(x, |Du|)

(

∑m
α=1 u

α uαxj

)2

|Du| |u|
Φ′
k(|u|) η

q dx ≥ 0. (4.8)

Estimate of I3
By (2.4) and (4.1) we have

I3 ≤
2mq

R− ρ

∫

A−

R∪A+
R

gt(x, |Du|)|u|Φk(|u|) η
q−1 dx, (4.9)

where

A−
R := BR ∩

{

η 6= 0, |Du| ≤
2mqL|u|

η(R − ρ)

}

and

A+
R := BR ∩

{

η 6= 0, |Du| >
2mqL|u|

η(R − ρ)

}

with L > 0 to be chosen later.
By (2.2), (2.4) and the assumption x ∈ A−

R the following inequality follows:

gt(x, |Du|)
2mq|u|

η(R − ρ)
≤

1

L
gt

(

x,
2mqL|u|

η(R− ρ)

)

2mqL|u|

η(R− ρ)
,
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and, by Lemma 3.3 (iii), (2.4) and (2.2),

1

L
gt

(

x,
2mqL|u|

η(R − ρ)

)

2mqL|u|

η(R − ρ)
≤

γ

L
g

(

x,
2mqL|u|

η(R − ρ)

)

≤
γ

L
µ(x)

{(

2mqL|u|

η(R− ρ)

)q

+ 1

}

.

Therefore

2mq

R− ρ

∫

A−

R

gt(x, |Du|)|u|Φk(|u|) η
q−1 dx

≤ γ

(

2mq

R− ρ

)q ∫

BR

µ(x)Lq−1|u|qΦk(|u|) dx +
γ

L

∫

BR

µ(x)Φk(|u|) η
q dx.

(4.10)

Let us now deal with A+
R. For a.e. x ∈ A+

R, by Lemma 3.3 (iii), (2.4) and (2.2) it follows

gt(x, |Du|)
2mq|u|

η(R − ρ)
≤

1

L
gt(x, |Du|)|Du| ≤

γ

L
f(x,Du),

thus
2mq

R− ρ

∫

A+
R

gt(x, |Du|)|u|Φk(|u|) η
q−1 dx ≤

γ

L

∫

BR

f(x,Du)Φk(|u|)η
q dx. (4.11)

By (4.9), (4.10) and (4.11) we obtain

I3 ≤ γ

(

2mq

R− ρ

)q ∫

BR

µ(x)Lq−1|u|qΦk(|u|) dx

+
γ

L

∫

BR

f(x,Du)Φk(|u|)η
q dx+

γ

L

∫

BR

µ(x)Φk(|u|) η
q dx.

(4.12)

By (4.7), (4.8), (4.10) and (4.12) we get

(

1−
γ

L

)

∫

BR

f(x,Du)Φk(|u|) η
q dx ≤ γ

(

2mq

R− ρ

)q ∫

BR

µ(x)Lq−1|u|qΦk(|u|) dx

+
(

1 +
γ

L

)

∫

BR

µ(x)Φk(|u|) η
q dx.

Choosing L = 2γ and using (2.2), we get
∫

BR

f(x,Du)Φk(|u|) η
q dx ≤ (2γ)q

(

2mq

R− ρ

)q ∫

BR

µ(x)|u|qΦk(|u|) dx

+ 3

∫

BR

µ(x)Φk(|u|) dx.

(4.13)

Inequalities (2.2) and (4.13) imply
∫

BR

λ(x)|Du|p Φk(u) η
q dx ≤

c0
(R− ρ)q

∫

BR

µ(x) {|u|q + 1}Φk(|u|) dx,

where we also used R0 ≤ 1. We recall that Φk = Φ
(β)
k and we explicitly notice that c0 is independent

of β, ρ and R. Using the monotone convergence theorem we let k go to +∞ and by the definition
of Φ we obtain

∫

BR

λ(x)|u|pβ |Du|p ηq dx ≤
c0

(R− ρ)q

∫

BR

µ(x)
{

|u|q+pβ + |u|pβ
}

dx

≤
2c0

(R− ρ)q

∫

BR

µ(x)(|u| + 1)q+pβ dx .
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In particular, if β = 0:
∫

BR

λ(x)|Du|p ηq dx ≤
2c0

(R − ρ)q

∫

BR

µ(x)(|u| + 1)q dx .

Thus, (4.2) follows. �

Proof of Theorem 2.1. Let u ∈ W
1, pr

r+1

loc (Ω;Rm) be a local minimizer of (2.1). Consider x0 ∈ Ω and
0 < R0 ≤ 1, such that BR0 := BR0(x0) ⋐ Ω. Fix also 0 < ρ < R ≤ R0 and consider a cut-off
function η satisfying (4.1). We split the proof into two steps.

Step 1. First we prove that, if δ ≥ 1 and |u|δ ∈ W 1,σ(BR), then

‖(|u| + 1)δ‖Lσ∗(Bρ) ≤c
q + δ

(R− ρ)q/p
‖λ−1‖

1
p

Lr(BR0
)‖µ‖

1
p

Ls(BR0
)×

× ‖|u|+ 1‖
q−p
p

Lqs′ (BR0
)
‖(|u| + 1)δ‖Lqs′ (BR). (4.14)

To prove the above inequality, we notice that for any β := δ − 1 ≥ 0 we have that
∫

Ω

∣

∣

∣
D((|u|+ 1)β+1ηq)

∣

∣

∣

p
λ(x) dx ≤

∫

Ω

(

qηq−1|Dη|
)p

(|u|+ 1)(β+1)pλ(x) dx

+ (β + 1)p
∫

Ω
λ(x)ηqp(|u|+ 1)pβ|Du|p dx. =: J1 + J2. (4.15)

To estimate J1 we observe that

J1 ≤ c
qp

(R − ρ)p

∫

BR

(|u|+ 1)(β+1)pλ(x) dx ≤ c
qp

(R− ρ)p

∫

BR

(|u|+ 1)q+βpλ(x) dx. (4.16)

Since ηqp ≤ ηq, we can estimate J2 using Lemma 4.1. Thus,

J2 ≤ c
(β + 1)p

(R − ρ)q

∫

BR

µ(x) (|u|+ 1)q+pβ dx. (4.17)

By Lemma 3.2 applied to v = (|u|+ 1)β+1ηq the inequality (3.1) holds, that is
{
∫

Ω

(

(|u|+ 1)β+1ηq
)σ∗

dx

}
p
σ∗

≤ c‖λ−1‖Lr(BR0
)

∫

Ω
λ(x)

∣

∣

∣
D((|u|+ 1)β+1ηq)

∣

∣

∣

p
dx. (4.18)

Collecting this inequality, (4.15), (4.16) and (4.17), we get
{
∫

Ω

(

(|u|+ 1)β+1ηq
)σ∗

dx

}
p
σ∗

≤ c‖λ−1‖Lr(BR0
)

qp

(R − ρ)p

∫

BR

λ(x)(|u| + 1)q+βp dx

+ c‖λ−1‖Lr(BR0
)
(β + 1)p

(R− ρ)q

∫

BR

µ(x) (|u|+ 1)q+pβ dx.

By (2.2) λ ≤ 2µ a.e., and R0 ≤ 1, so we get
{
∫

Ω

(

(|u|+ 1)β+1ηq
)σ∗

dx

}
p
σ∗

≤ c‖λ−1‖Lr(BR0
)
qp + (β + 1)p

(R − ρ)q

∫

BR

µ(x)(|u|+ 1)q+βp dx. (4.19)

By Hölder inequality and µ ∈ Ls
loc(Ω) we obtain

∫

BR

µ(x)(|u| + 1)q+βp dx ≤ ‖µ‖Ls(BR0
)

(
∫

BR

(|u|+ 1)(q+βp)s′ dx

)
1
s′

. (4.20)
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If p = q, (4.19) and (4.20) give

‖(|u|+ 1)β+1‖Lσ∗(Bρ) ≤ c
q + β

R− ρ
‖λ−1‖

1
p

Lr(BR0
)‖µ‖

1
p

Ls(BR0
)‖(|u|+ 1)β+1‖Lps′ (BR),

that is (4.14) holds for q = p and δ = β + 1.
If p < q, let us apply Hölder inequality in the last integral in (4.20):

(
∫

BR

(|u|+ 1)(q+βp)s′ dx

)
1
s′

=

(
∫

BR

(|u|+ 1)(q−p)s′(|u|+ 1)(β+1)ps′ dx

)
1
s′

≤

(
∫

BR

(|u|+ 1)qs
′

dx

)
q−p
qs′
(
∫

BR

(|u|+ 1)(β+1)qs′ dx

)
p
qs′

. (4.21)

Then, (4.19), (4.20) and (4.21) give

‖(|u|+ 1)β+1‖Lσ∗(Bρ) ≤c
q + β + 1

(R − ρ)q/p
‖λ−1‖

1
p

Lr(BR0
)‖µ‖

1
p

Ls(BR0
)×

× ‖|u|+ 1‖
q−p
p

Lqs′ (BR0
)
‖(|u| + 1)β+1‖Lqs′ (BR).

Since δ = β + 1, we get that (4.14) holds also for p < q.

Step 2. Let us define G(x) := max{1, |u(x)|}. Now, we prove the boundedness of G, and then
of u, using the Moser’s iteration technique. The inequality (4.14) implies that for any δ ≥ 1,

‖Gδ‖Lσ∗(Bρ) ≤ c
q + δ

(R − ρ)q/p
‖λ−1‖

1
p

Lr(BR0
)‖µ‖

1
p

Ls(BR0
)‖G‖

q−p
p

Lqs′ (BR0
)
‖Gδ‖Lqs′ (BR). (4.22)

Now, we prove the boundedness of G, and then of u, using the Moser’s iteration technique. For all

h ∈ N define δh =
(

σ∗

qs′

)h−1
, Rh = R0/2 +R0/2

h and ρh = Rh+1. Notice that the choice of δh has

been done in such a way that δ1 = 1 and δhσ
∗ = δh+1qs

′. By (4.22), replacing δ, R and ρ with δh,

Rh and ρh, respectively, we have that G ∈ Lδhqs
′

(BRh
) implies G ∈ Lδh+1qs

′

(BRh+1
). Precisely,

‖G‖|
Lδh+1s

′q(BRh+1
)
= ‖G‖Lδhσ∗

(BRh+1
) = ‖Gδh‖

1
δh

Lσ∗(BRh+1
)

≤

{

c q+δh
(Rh−ρh)q/p

‖λ−1‖
1
p

Lr(BR0
)‖µ‖

1
p

Ls(BR0
)‖G‖

q−p
p

Lqs′ (BR0
)

}
1
δh

‖G‖
Lδhqs′ (BRh

)
(4.23)

holds true for every h. For instance, if h = 1, we get

‖G‖Lσ∗ (B3R0/4
) ≤ c

q + 1

R
q/p
0

‖λ−1‖
1
p

Lr(BR0
)‖µ‖

1
p

Ls(BR0
)‖G‖

q−p
p

Lqs′ (BR0
)
‖G‖Lqs′ (BR0

).

Notice that the right hand side is finite, because u ∈ W 1,σ, so u ∈ Lσ∗

and, by (2.8), qs′ < σ∗.
Since

∞
∑

h=1

1

δh
=

∞
∑

i=0

(

qs′

σ∗

)i

=
σ∗

σ∗ − qs′
,

an iterated use of (4.23) implies the existence of a constant c such that

‖G‖L∞(BR0/2
(x0)) ≤ c

(

‖λ−1‖Lr(BR0
) ‖µ‖Ls(BR0

)

Rq
0

)
σ∗

p(σ∗−qs′)

‖G‖
σ∗(q−p)

p(σ∗−qs′)

Lqs′ (BR0
)
‖G‖Lqs′ (BR0

(x0))
.

The inequality above implies that u is in L∞(BR0/2(x0);R
m) and the estimate (2.7). �
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