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GROUPS WHOSE DEGREE GRAPH HAS THREE

INDEPENDENT VERTICES

SILVIO DOLFI, KHATOON KHEDRI, AND EMANUELE PACIFICI

Abstract. Let G be a finite group, and let cd(G) denote the set of degrees

of the irreducible complex characters of G. This paper is a contribution to
the study of the degree graph of G, that is, the prime graph built on the set

cd(G). Namely, we characterize finite groups whose degree graph has three
independent vertices (i.e., three vertices that are pairwise non-adjacent). Our

result turns out to be a generalization of several previously-known theorems

concerning the structure of the degree graph.

1. Introduction

Let G be a finite group. A well-established research field in Character Theory
is the study of the set cd(G), whose elements are the degrees of the irreducible
complex characters of G. In fact, many results in the literature show that even
this relatively small set of positive integers encodes nontrivial information about
the structure of G; in particular, there is a significant interplay between the group
structure and the “arithmetical structure” of cd(G) (i.e., the way in which the
numbers in this set decompose into prime factors).

An important tool that has been devised in order to analyze this aspect of cd(G),
is the degree graph ∆(G) of G; this is the simple undirected graph whose vertex set
V(G) consists of all the prime numbers that divide some element in cd(G), while
a subset {p, q} of V(G) belongs to the edge set E(G) if and only if pq divides an
element in cd(G).

In the case whenG is a finite solvable group, a fundamental theorem by P.P. Pálfy
([19]) establishes that the size of a set of independent vertices in ∆(G) is at most
two; in other words, if π is a subset of V(G) such that |π| ≥ 3, then there exist
p, q ∈ π such that {p, q} belongs to E(G). Another equivalent formulation is the
following: ifG is solvable, then the complement graph of ∆(G) contains no triangles.
As immediate consequences, the number of connected components of ∆(G) is at
most 2; if ∆(G) is disconnected, then each connected component induces a complete
subgraph of ∆(G), whereas, in the connected case, the diameter of ∆(G) is at most
three. (We note that Palfy’s result has been recently extended by Z. Akhlaghi,
C. Casolo and the authors in [1]: for a finite solvable group G, the complement
graph ∆(G) does not contain any cycle of odd length, and it is therefore a bipartite
graph.)

As for non-solvable groups, the situation is different; while the diameter of ∆(G)
(in the connected case) turns out to be at most three for any finite group G ([14]
and [15]), this graph may have sets of independent vertices whose size is larger than
two. For instance, the degree graph of the alternating group Alt(5) is an empty
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2 S. DOLFI, K. KHEDRI, AND E. PACIFICI

triangle and, in general, ∆(PSL2(2a)) has three connected components for every
a ≥ 2 (see Proposition 2.6). Nevertheless, a universal bound for the size of a set of
independent vertices in ∆(G) was established by A. Moretó and P.H. Tiep in [18],
and this bound turns out to be in fact three. Therefore, three is also the maximum
number of connected components of ∆(G).

The aim of the present paper is to investigate in which respect the structure of a
finite group G is influenced by the existence of three independent vertices in ∆(G).
The relevance of this aspect might be suggested by the fact that the finite groups
whose degree graph has three connected components are completely characterized
as direct products of the kind PSL2(2a)×A, where a ≥ 2 and A is an abelian finite
group (see [13]). The main result of the paper is the following.

Theorem A. Let G be a finite group, and let π ⊆ V(G) be such that |π| = 3.

Then π is an independent set of ∆(G) if and only if Oπ′(G) = S × A, where A is
abelian and S ' SL2(pa) or S ' PSL2(pa), for a prime p ∈ π and positive integer
a. Moreover, writing π = {p, q, s}, then q divides pa + 1, s divides pa − 1 and q, s
are both odd primes.

Since, in the setting of Theorem A, both pa + 1 and pa − 1 have odd prime
divisors, we observe that the cardinality pa of the defining field can neither be a
Mersenne nor a Fermat prime and that pa 6= 2, 9.

As more or less immediate consequences of Theorem A, we derive some of the
aforementioned (and previously known) results. In particular, we obtain the bound
of three for the size of an independent set of vertices, as well as the bound of three
for the diameter of the degree graph of any finite group (in the connected case).

Corollary B. Let G be a finite group, and π a set of vertices of ∆(G) with |π| = 4.
Then there exist two vertices in π that are adjacent in ∆(G).

Corollary C. Let G be a finite group such that ∆(G) is connected. Then the
diameter of ∆(G) is at most three.

Finally, we also re-obtain the characterization of finite groups whose degree graph
has three connected components.

Corollary D. Let G be a finite group. Then ∆(G) has three connected components
if and only if G ' PSL2(2a)×A with A abelian.

We conclude by mentioning that every group considered in the following discus-
sion is assumed to be a finite group.

2. Proofs

We start with some results concerning some relevant properties of group ac-
tions on finite modules. The following setting arises naturally in problems related
to coprimality with a fixed prime q of all degrees of irreducible characters lying
over characters of a minimal normal subgroup which are extendible to their inertia
subgroup.

Let H and V be finite groups, and assume that H acts by automorphisms on V .
Given a prime number q, we say that the pair (H,V ) satisfies Nq if

(a) q divides |H : CH(V )| and
(b) for every non-trivial v ∈ V , there exists a Sylow q-subgroup Q of H such that

Q E CH(v).
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We refer to [2] for a thorough analysis of this and related module actions. We recall
that, as shown for instance by Lemma 4 of [22], if (H,V ) satisfies Nq, then V is
an elementary abelian r-group for a suitable prime r and that V is an irreducible
GF(r)[H]-module.

Note also that, if K is a normal subgroup of H such that q divides |K/CK(V )|,
then (K,V ) satisfies Nq as well.

Let r be a prime number and n a positive integer; as customary, we denote
by Γ(rn) the semilinear group on the field GF(rn), and by Γ0(rn) the subgroup
of Γ(rn) induced by the field multiplications. Given a group G and a faithful G-
module V over GF(r), r a prime, we say that G is a semilinear group on V , and
write G ≤ Γ(V ), if there exists an injective homomorphism φ : G → Γ(rn), where
rn = |V |, such that the additive group GF(rn)+ of GF(rn) (with the G-module
structure carried by φ) and V are isomorphic G-modules. In this setting, given
H ≤ G, we write H ≤ Γ0(M) if φ(H) ≤ Γ0(rn) for φ as above.

Lemma 2.1. Let K be a subgroup of Γ(V ), |V | = rn, r a prime. Write K0 =
K ∩ Γ0(V ). Assume that (K,V ) satisfies Nq. Then

(a) q divides n, (rn − 1)/(rn/q − 1) divides |K0| and (q, rn − 1) = 1;
(b) q divides |K/F(K)|.

Proof. (a) follows from Lemma 3.5 in [4]. (b) is immediate, by observing that
condition Nq implies that Oq(K) ≤ CK(V ) = 1.

Theorem 2.2. Let H be a group, r a prime, and V a faithful GF(r)[H]-module of
order rn. Let K be a normal subgroup of H and assume that, for a prime q, the
pair (K,V ) satisfies Nq. Then the following conclusions hold.

(a) If K has a normal q-complement and r 6= q, then H ≤ Γ(V ).
(b) If K is solvable, then either (i) H ≤ Γ(V ), or (ii) r = q = 3, |V | = 32 and

H ' SL2(3) or H ' GL2(3).

Proof. In the setting of (a), we can assume that the Sylow q-subgroups of K are
abelian; in fact, denoting by U be the normal q-complement of K and by Q a Sylow
q-subgroup of K, the subgroup K0 = UZ(Q) is characteristic in K (hence normal
in H), and the pair (K0, V ) satisfies Nq. Therefore, we can use K0 in the role of
K. As there is no loss of generality in this replacement, with a slight abuse, we
keep denoting this subgroup by K.

Now, for v ∈ V , let Q ∈ Sylq(K) be such that Q E CK(v). Since CK(v) has a
normal q-complement and Q E CK(v) is abelian, then Q is central in CK(v); as
r 6= q, the Main Theorem of [2] implies K ≤ Γ(V ).

On the other hand, if K is solvable (as in the assumption of (b)) then, by [2,
Corollary 10], either conclusion (ii) of (b) holds, or K ≤ Γ(V ) as well. Thus, we
will finish the proof starting from the assumption K ≤ Γ(V ) and showing that
H ≤ Γ(V ).

Let K0 = K ∩ Γ0(V ). By Lemma 2.1, we get that q does not divide |Γ0(V )| =
rn − 1; moreover, q divides n and (rn − 1)/(rn/q − 1) divides |K0|.

Assume first that the pair (r, n) does not have a primitive prime divisor: then,
by Zsigmondy’s Theorem, either r is a Mersenne prime, i.e. r = 2k−1 for a suitable
k ≥ 2 and n = 2, or (r, n) = (2, 6).

In the former case, the arithmetical conditions recalled above imply q = 2 and
r + 1 | |K0|; but then 2k divides |K0|, a contradiction as q = 2 does not divide
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|Γ0(V )|. On the other hand, assume (r, n) = (2, 6); in this case we get q = 2 and
9 | |K0|. In particular, K has a cyclic subgroup C of order 9, which turns out to
be characteristic in K as C is the unique Sylow 3-subgroup of O3(K) (a subgroup
of O3(Γ(26)) ' D18 × C7). As a consequence, C is normal in H and, since the
action of C on V is clearly irreducible, an application of [17, Theorem 2.1] yields
H ≤ Γ(V ), as wanted.

In view of the above discussion, we can assume that there exists a primitive
prime divisor t for the pair (r, n), and therefore t divides |K0|. If T0 is the subgroup
of order t of K0, clearly T0 is a characteristic subgroup of K and hence T0 E H.
Moreover, since t is a primitive prime divisor of (r, n), the action of T0 on V is
irreducible. Therefore, as above, an application of Theorem 2.1 in [17] completes
the proof.

In what follows, given a G-module V and a subgroup H of G, we will use the
(slightly shorter) notation VH for CV (H).

Proposition 2.3. Let (G,V ) satisfy Nq, and let Q be a Sylow q-subgroup of G.
Let |V | = ra, |VQ| = rb (where r is a prime and a, b positive integers). Then the
following hold.

(a) If q = 2, then r = 2.

(b) |G : NG(Q)| = ra − 1

rb − 1
.

(c) b divides a and 1 ≤ b < a; if q 6= r, then b < a/2.
(d) If r 6∈ {2, q}, then there exists a primitive prime divisor t of ra−1 and t divides
|G|.

Proof. Claims (a) and (b) are (2) and (3), respectively, of [2, Proposition 8]. As
regards (c), it follows from (b) that b divides a; note that b = a implies Q ≤ CG(V ),
against the assumption q | |G/CG(V )|. If b = a/2, then |G : NG(Q)| = ra/2 + 1
and hence r = q.

Consider finally Claim (d). Since r 6= q, by (c) we have a 6= 2; moreover, as
r 6= 2, then ra 6= 26. By Zsigmondy’s Theorem, there exists a primitive prime
divisor t of ra − 1 and, by (b), t divides |G : NG(Q)|.

The next lemma is similar to Lemma 14 of [2].

Lemma 2.4. Assume that (G,V ) satisfies Nq and let K be a normal subgroup of G
with |K| coprime to q. Let X ≤ K and let Y = CG(X). If q divides |G : CG(VX)|,
then (Y, VX) satisfies Nq.

Proof. Since CG(VX) 6= G, then VX 6= 1. Let v ∈ VX \ {1}; as (G,V ) satisfies Nq,
there exists Q ∈ Sylq(G) with Q E CG(v). Since X ≤ CK(v) and [Q,CK(v)] ≤
Q ∩K = 1, we see that Q ≤ Y . So Q E CG(v) ∩ Y = CY (v). Observe also that q
divides |Y/CY (VX)|, because otherwise CG(VX) would contain a Sylow q-subgroup
of G, against one of the assumptions. Hence, (Y, VX) satisfies Nq.

We remark that the proof of the next result depends, via [12, Theorem 2.2 and
Theorem 2.3], on the classification of finite simple groups. The classification is also
used in Propostion 2.8 and Proposition 2.9.

Theorem 2.5. Let (G,V ) satisfy Nq and assume that (|V |, |G|) = 1. Then
G/CG(V ) is a subgroup of Γ(V ).
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Proof. Let G be a counterexample of minimal order. Hence, CG(V ) = 1. Let Q be
a Sylow q-subgroup of G. Write |V | = ra and |CV (Q)| = rb, where r is a suitable
prime obviously different from q.

By part (b) of Theorem 2.2, G is non-solvable; in particular, by the Odd Order
Theorem, we have r 6= 2.

Now, Claim (a) of Proposition 2.3 yields q 6= 2 as well, whereas Claim (d)
ensures the existence of a primitive prime divisor t ∈ π(G) of (r, a). We remark
that a divides t− 1, so a+ 1 ≤ t. In what follows, we will denote by T a subgroup
of order t of G.

Let K E G such that G/K is simple. If q ∈ π(K), then (K,V ) satisfies Nq, and
the minimality of G yields K ≤ Γ(V ). This in turn implies the solvability of G via
part (b) of Theorem 2.2, and this is not the case. Therefore, q does not divide |K|
and G = Oq′(G).

If G/K is abelian, then K is a normal q-complement of G and hence G would
be solvable by part (a) of Theorem 2.2, a contradiction.

Thus G/K is a non-abelian simple group; this being true for every maximal
normal subgroup K of G, it follows that G is perfect. This implies, in particular,
that every cyclic normal section of G is central in G.

Let T ∈ Sylt(G) and T0 = T ∩K. Then G = KNG(T0) = KCG(T0), because
Aut(T0) is abelian. But if T0 6= 1, then CG(T0) is cyclic (being isomorphic to a
subgroup of the multiplicative group of a finite field, as V is an irreducible T0-
module) and hence G = K, a contradiction. So T acts coprimely on K and, for
every p ∈ π(K), there is a T -invariant Sylow p-subgroup P of K. By [2, Lemma 6],
if p is odd then T centralizes P and hence K = QCK(T ), where Q is a T -invariant
Sylow 2-subgroup of K. Hence, [T g,K] ≤ O2(K) for all g ∈ G. As TGK = G

and Oq′(G) = G, it follows TG = G and hence K/O2(K) is central in G/O2(K).
Therefore, G/O2(K) is a quasi-simple group.

Consider now the “iterated commutator subgroup” Ej = [K,G, · · · , G], where
G appears j times; observe that, by the paragraph above, Ej lies in O2(K) for
every j ≥ 1 (note also that Ej is clearly normal in G). Now, let j0 be the smallest
positive integer such that Ej0 = Ej0+1, and set E := Ej0 . Taking into account that
G is perfect, Theorem 4.22 of [11] yields that K/E is central in G/E, so G/E is
quasi-simple. In particular, since Theorems 2.2 and 2.3 of [12] show that G itself
cannot be quasi-simple under our assumptions, we have E > 1.

We claim that E is an extraspecial 2-group. In fact, let A be an abelian char-
acteristic subgroup of E. Then AT ≤ G acts irreducibly on V , because the order
of T is a primitive prime divisor of (r, a); moreover, V viewed as a module for A is
homogeneous, as otherwise it would have t homogeneous components, against the
fact that a = dim(V ) < t. As a consequence A is cyclic, so we have established
that every abelian characteristic subgroup of E is cyclic. In this situation, Theo-
rem 1.2 of [17] yields that E = E0W , where either E0 is extraspecial or of order 2,
whereas W has a cyclic subgroup U that is characteristic in E and of index at most
2 in W ; moreover, E0U is also a characteristic subgroup of E. Now, the fact that
[E,G] = E together with the fact that every cyclic normal section of G is central
in G, easily implies that W = 1. For the same reason, E cannot be cyclic (since
E 6= 1), and therefore E is an extraspecial 2-group, as claimed.

Write |E/Z(E)| = 22n. By [17, Corollary 2.6], we have that 2n divides a =
dim(V ). Also, observe that E1 = [E, T ] 6= 1 (because the centralizer of T in
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GL(V ) is cyclic and E is not) and that (see for instance [5, Lemma 2.2]) E1 is
extraspecial (say of order 22m+1), such that T acts fixed-point freely on E1/Z(E1).
By Lemma 2.4(i) in [6], we get t ≤ 2m + 1 ≤ 2n + 1 ≤ a+ 1 ≤ t. We conclude that
t = 2n + 1 = a+ 1, and therefore a = 2n.

Note that E 6' Q8, as NG(E)/CG(E) is non-solvable. Let x be a non-central
involution of E; let X = 〈x〉 and Y = CG(X). As x 6∈ Z(E), then dim(VX) = a/2:
in fact, the dimension of the fixed-point space of X in V is invariant by extensions
of the ground field, and it is equal to [χX , 1X ] = χ(1)/2 = a/2, because χ(x) = 0,
where χ is the (Brauer, but also ordinary as r 6= 2) character corresponding to V
on a suitable extension of GF(r).

So, by (c) of Proposition 2.3, |VX | > |VQ| and this yields that q divides |G :
CG(VX)|. Hence (Y, VX) satisfies Nq by Lemma 2.4. As Y < G, by minimality
Y/CY (VX) ≤ Γ(VX) and part (a) of Lemma 2.1 gives that q divides dim(VX) = a/2
which is a power of 2, against q 6= 2.

Proposition 2.6. Let S ' PSL2(pa) or S ' SL2(pa), with p prime and a ≥ 1. Let
π+ = π(pa + 1) and π− = π(pa − 1). For a subset π of vertices of ∆(S), we denote
by ∆π the subgraph of ∆ = ∆(S) induced by the subset π. Then

(a) if p = 2, ∆(S) has three connected components, {p}, ∆π+
and ∆π− , and each

of them is a complete graph.
(b) if p > 2 and pa > 5, then ∆(S) has two connected components, {p} and

∆π+∪π− ; moreover, both ∆π+
and ∆π− are complete graphs, no vertex 6= 2

in π+ is adjacent to any vertex 6= 2 in π− and 2 is adjacent to all other vertices
in ∆π+∪π− .

Proof. It is well-known (see for instance [7, Theorems 38.1, 38.2]) that, for a ≥ 2

cd(SL2(2a)) = cd(PSL2(2a)) = {1, 2a − 1, 2a, 2a + 1}

and that for p 6= 2 and pa > 5

cd(PSL2(pa)) = {1, pa − 1, pa, pa + 1,
1

2
(pa + ε)} where ε = (−1)

pa−1
2

cd(SL2(pa)) = {1, pa − 1, pa, pa + 1,
1

2
(pa + ε)} where ε = ±1

(while cd(PSL2(5)) = {1, 3, 4, 5} and cd(SL2(5)) = {1, 2, 3, 4, 5, 6}).

Proposition 2.7. Let G be an almost-simple group with socle S ' PSL2(pa), where
p is a prime. If s is a prime divisor of |G/S|, then s is adjacent in ∆(G) to every
prime in π(p2a − 1).

Proof. This follows from Theorem A of [20].

Proposition 2.8. Let G be an almost-simple group with socle S and let σ = π(S)
be the set of prime divisors of the order of S. Then

(a) G/S has a central cyclic σ-complement A/S and A/S has a regular orbit on
Irr(S).

(b) If q and s are distinct non-adjacent vertices of ∆(G), then G does not have
abelian Hall {q, s}-subgroups and |{q, s} ∩ σ| ≥ 1. If s 6∈ σ, then S is a simple
group of Lie Type in characteristic q.
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Proof. (a) The first assertion follows by [18, Lemma 2.10]) and the second by [18,
Proposition 2.6],

(b) By part (a) we may assume that, say, q ∈ π(S). If s 6∈ π(S), both conclusions
follow form [18, Theorem 2.7]; if s ∈ π(S), one applies [18, Lemma 2.8].

Proposition 2.9. Let G be an almost-simple group with socle S and let π ⊆ V(G)
with |π| = 3. Then the subgraph of ∆(G) induced by π is empty if and only if
π ∩ π(G/S) = ∅, S ' PSL2(pa) where p is a prime, a is a positive integer, π =
{p, q, s}, q divides pa + 1, s divides pa − 1 and q, s 6= 2.

Proof. By Proposition 2.6, one readily sees that the above conditions are sufficient
for the subgraph of ∆(G) induced on π to be an empty triangle.

We now prove the other implication. By Proposition 2.8, |π ∩ π(S)| ≥ 2. If say,
s 6∈ π(S) then by Proposition 2.8, S is a finite simple group of Lie type both in
characteristic p and q. As the only examples of double characteristic are PSL2(4) '
PSL2(5), PSL2(7) ' PSL3(2) and PSU4(2) ' PSp4(3)), we get a contradiction by
observing that the outer automorphism groups of those groups have order 2. Hence,
π ⊆ π(S) and then S ' PSL2(pa) for a prime p and a positive integer a, by [18,
Lemma 2.9]. By Proposition 2.7, no prime in π can divide |G/S|. Observing that
in the degree graph ∆(PSL2(pa)) the vertex p (the characteristic) is an isolated
vertex, that both π(pa + 1) and π(pa − 1) induce complete subgraphs and that if
p 6= 2 then 2 is adjacent to all vertices distinct from p, the conditions q, s 6= 2 and
(say) q ∈ π(pa + 1), s ∈ π(pa − 1) are immediate.

Proposition 2.10. Let G be a finite group, M a non-abelian minimal normal
subgroup of G and C = CG(M). Then the following conclusions hold.

(a) If q is a prime divisor of |G/MC| and q does not divide |M |, then there exists
θ ∈ Irr(M) such that q divides |G : IG(θ)|.

(b) If q is a prime divisor of |G/C|, then there exists θ ∈ Irr(M) such that q divides
χ(1) for all χ ∈ Irr(G|θ).

(c) If M is not a simple group, then ∆(G/C) is a complete graph.

Proof. We first consider Claim (a). Write M = S1 × · · · × Sk, where the groups
Si are isomorphic to a suitable non-abelian simple group S, and k ≥ 1. Set K =⋂k
i=1 NG(Si), so K is the kernel of the permutation action of G on the set Ω =
{S1, . . . , Sk}. Let q ∈ π(K) \ π(S). By Proposition 2.8, Out(S) has a cylic normal
(central) Sylow q-subgroup, and hence K/M has a normal Sylow q-subgroup Q0.
If Q0 6= 1, then Q0 does not act trivially on the set of the conjugacy classes of M .
Hence, there exists θ ∈ Irr(M) such that q divides |G : IG(θ)|. If Q0 is trivial, then
q divides |G/K| and we can apply (a consequence of) Lemma 8 of [3]: there exist
disjoint subsets Γ1,Γ2 of Ω such that q divides the index of the intersection I of the
setwise stabilizers of Γ1 and Γ2 in G. Given non-principal irreducible characters
φ1, φ2 of S with distinct degrees, consider θ ∈ Irr(M) which is the product of
irreducible characters θi of Si such that θi(1) = φ1(1) if Si ∈ Γ1, θi(1) = φ2(1) if
Si ∈ Γ2 and θi = 1Si

otherwise. One easily checks that IG(θ) = I and this finishes
the proof of (a).

Claim (b) is clear if q ∈ π(M), and it follows from (a) if q 6∈ π(M). As for (c),
this is the Main Theorem of [16].

We are now ready to prove Theorem A.
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Proof of Theorem A. We first observe that, by [10, Corollary 11.29], the π-parts of

the irreducible character degrees of G and of Oπ′(G) are the same. Thus, we can

henceforth assume that G = Oπ′(G).
The sufficiency of the condition follows from Proposition 2.9. We now start

proving the converse. We will first establish the following claim:

G has a composition factor S ' PSL2(pa) such that π ⊆ π(S).

LetG be a minimal counterexample to the above claim, and letN be a non-trivial
normal subgroup of G. If π ⊆ V(G/N), then G would not be a counterexample.
So, for every minimal normal subgroup N of G there exists a prime t ∈ π such G/N
has an abelian normal Sylow t-subgroup.

As the first step, we show that G has a unique minimal normal subgroup. In
order to do this, we first prove that if N is minimal normal in G, t ∈ π, t 6∈ V(G/N),
then there exists θ ∈ Irr(N) such that for every χ ∈ Irr(G|θ) the prime t divides
the degree χ(1). This is certainly true if t ∈ π(N) and N is nonabelian (just take
any θ ∈ Irr(N) with t | θ(1)). Let T ∈ Sylt(G), t ∈ π, such that TN/N is abelian
and normal in G/N . Assume next that N is nonabelian and that t 6∈ π(N). Since
t ∈ V(G), we have [T,N ] 6= 1 and hence by coprimality there is (a conjugacy class
of N and thus) an irreducible character θ of N , that is not invariant in TN . By
Clifford Theory, then t | χ(1) for all χ ∈ Irr(G | θ). Finally, assume that N is
abelian, |N | = rk, r a prime. If r 6= t, then CN (T ) = 1 and (by coprimality), t
divides [TN : ITN (θ)] for every non-principal θ ∈ Irr(N). If N is a t-group, then
T E G and N = T ′. So, again, if θ ∈ Irr(N) is non-principal, then t divides χ(1)
for every χ ∈ Irr(G|θ).

Now, if N1 and N2 are distinct minimal normal subgroups of G and ti ∈ π are
such that ti 6∈ V(G/Ni) for i = 1, 2, then we observe that t1 6= t2; otherwise G
would have an abelian normal Sylow t-subgroup for t = t1 = t2. By the previous
paragraph, there are characters θi ∈ Irr(Ni) such that ti divides the degree of every
irreducible character of G lying over θi, for i = 1, 2. Hence, the product t1t2 divides
the degree of every χ ∈ Irr(G) lying above θ1 × θ2 ∈ Irr(N1 ×N2), a contradiction.
Therefore, there exists an unique minimal normal subgroup N of G.

If N is nonabelian, then CG(N) = 1 and by part (c) of Proposition 2.10, N is
simple. Hence G is almost-simple with socle N and we conclude by Proposition 2.9.

We will next derive a contradiction, under the assumption that N is abelian and
that π 6⊆ V(G/N). Let then N be elementary abelian of order rk, where r is a
suitable prime, and let p ∈ π such that p 6∈ V(G/N). Let P be a Sylow p-subgroup
of G. We have two cases:

(I) r 6= p; in this case N is not contained in the Frattini subgroup Φ(G), as
otherwise G would have a normal abelian Sylow p-subgroup, a contradiction. So,
there exists a complement H of N in G and hence every θ ∈ Irr(N) extends to
IG(θ). Since N = [P,N ], p divides [H : IH(θ)], for every non-principal θ ∈ Irr(N).
We remark that in this case CH(N) = 1, as N = F(G).

(II) N ≤ P , where P is a Sylow p-subgroup of G; so P E G and N = P ′. Let H
be a p-complement of G. H acts faithfully on P = F(G) and hence also on P/N ,
because N ≤ Φ(P ). By coprimality, for every θ ∈ Irr(N) there exists ψ ∈ Irr(P | θ)
such that IH(ψ) = IH(θ) and ψ extends to IG(ψ) = PIH(θ). If θ is non-principal,
then p divides ψ(1).
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Write π = {p, q, s}. By Gallagher’s theorem, in both cases (I) and (II) the
inertia subgroup IH(θ), for every non-principal θ ∈ Irr(N), contains a Hall {q, s}-
subgroup L of H, L E IH(θ) and L is abelian. So, in particular, H has abelian
Hall {q, s}-subgroups.

We now consider the cases (I) and (II) separately.

(I): Assume r 6= p, so the complement H of N in G acts faithfully on N . Let
B be the solvable radical of H. Note that if q divides |B|, then (B,N) satisfies
Nq and hence part (b) of Theorem 2.2 yields the solvability of H, a contradiction.
Arguing similarly for the prime s, we deduce that B is a {q, s}′-group. Hence,
{q, s} ∈ V(H/B) = π(H/B). Let A/B be a chief factor of H/B and let C/B =
CH/B(A/B). Note that {q, s}∩π(H/C) cannot be empty, since p 6∈ π(G/C) because

H ' G/N has a normal Sylow p-subgroup, and Oπ′(H) = H. On the other hand,
if {q, s} ⊆ π(H/C) then A/B is simple by part (c) of Proposition 2.10, thus H/C
is almost simple. But Lemma 2.8 yields that H/C has no abelian Hall {q, s}-
subgroups, again a contradiction. We conclude that, q ∈ π(H/C) and s 6∈ π(H/C).
Then, by Proposition 2.10(b), there exists θ ∈ Irr(A/B) such that q | χ(1) for all
χ ∈ Irr(H/B) lying over θ; moreover, since s ∈ V(C/B) = π(C/B) (because C/B
has no non-trivial abelian normal subgroups), there exists ψ ∈ Irr(C) such that
s | ψ(1). So, every irreducible character of H/B lying over θ×ψ ∈ Irr(A/B×C/B)
has a degree divisible by qs, the final contradiction which rules out (I).

(II) Assume nowN = P ′; so P E G, and we can consider a complementH of P in
G. Let L = CH(N). Note that L has abelian normal Sylow q-subgroups and Sylow
s-subgroups, because IH(λ) has this property if λ is any non-principal character in
Irr(N), and L ≤ IH(λ). So either q or s does not divide |L|, because the abelian
normal Hall {q, s}-subgroup of L has a regular orbit on Irr(P/N). Say, (s, |L|) = 1.
As a consequence, we get s | |H/L|, so (H,N) satisfies Ns and Theorem 2.5 yields
H/L ≤ Γ(N). Thus, by Lemma 2.1 H has a normal s-complement and s divides
|H/L : F(H/L)|. If q divides |H/L| as well, the same argument yields that q divides
|H/L : F(H/L)|. But [17, Proposition 17.3] implies now that q and s are adjacent
vertices in ∆(H/L), thus in ∆(G), against the assumptions.

Our conclusion so far is that q 6∈ π(H/L). So, let 1 6= Q ≤ L be a Sylow q-
subgroup of H; recall that Q is normal in L, thus normal in H. Let V = P/N ; so
V = [V,Q]×CV (Q). If 1 6= α ∈ Irr([V,Q]) and β ∈ Irr(CV (Q)), then IH(α× β) =
IH(α)∩ IH(β) contains a unique Sylow s-subgroup S of H. By letting α fixed and

varying β, we deduce that S centralizes CV (Q). As Oπ′(H) = H, we conclude
that H centralizes CV (Q), so, writing [V,Q] = P0/N , we have that P0H E G.
Note that P0 is non-abelian, as otherwise by coprime action P0 = [P0, Q]×N and
[P,Q] = [P,Q,Q] hence (as [P,Q] ≤ P0) [P0, Q] = [P,Q] E G, against the fact that
N is the only minimal normal subgroup of G. We deduce that π ⊆ V(P0H) and this
yields P0 = P , because of the minimality of G. Hence, V is a faithful H-module
and (H,V ) satisfies Ns. By applying part (a) of Theorem 2.2 (or, alternatively,
Theorem 2.5 as the action is coprime), we get the final contradiction which rules
out (II) as well.

The claim in the second paragraph of this proof is now established. Let A/B
be a non-abelian chief factor of G with A/B ' T k, T = PSL2(pa) with π ⊆ π(T ).
Clearly, then k = 1. Moreover, Proposition 2.6 yields π = {p, q, s} where q divides
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pa + 1, s divides pa − 1 and q, s 6= 2. Note that, in particular, pa is neither a
Mersenne nor a Fermat prime and pa 6= 2, 9.

Next, we prove that G has a unique non-abelian composition factor of order
divisible by some prime in π. Assume that there is, in a chief series containing
A and B, another non-abelian chief factor C/D of G with π ∩ π(C/D) 6= ∅. If
A ≤ D, then CG/B(A/B) has a normal section isomorphic to C/D (since Out(A/B)
is solvable) and hence we get an edge between two primes in π in the subgraph
∆(A/B ×CG/B(A/B)) of ∆(G), a contradiction. If C ≤ B, then similarly (using
also Proposition 2.10(c)) we get that CG/D(C/D) has a normal section isomorphic
to A/B and we get a contradiction in a similar way.

So, there exist subgroups A,B E G, with A = A′ (i.e. A perfect) such that
A/B ' T = PSL2(pa) with π ⊆ π(T ) and both B and G/A π-solvable. Let
C = CG(A/B); so G/C is almost simple with socle isomorphic to T and by Propo-
sition 2.7 every prime divisor of |G/AC| is adjacent in ∆(G) to all the primes in

both π(pa − 1) and π(pa + 1). Therefore, G/AC is a π′-group. As Oπ′(G) = G, we
get AC = G. So, G/B = A/B×C/B and this implies that π∩V(C/B) = ∅, so C/B

has a normal abelian Hall π-subgroup D/B; again, the assumption Oπ′(G) = G
yields C = D.

In order to complete the proof, we can assume that G = A is perfect. In fact,
A certainly satisfies the hypotheses of this theorem, so, if A < G, induction yields
that A is isomorphic either to PSL2(pa) or to SL2(pa). Now, if 2 ∈ π (which implies
2 = p), then B = 1, and we get G = A×D; on the other hand, if 2 6∈ π and D0 is
the Hall 2′-subgroup of D, it can be easily checked that G = A×D0. In any case,
the conclusion of this theorem is satisfied by G and we are done.

Note that we can also assume that B > 1, as G/B ' PSL2(pa). We will show
that then G ' SL2(pa), with p 6= 2. Let M ≤ B be such that B/M is a chief factor
of G.

Assume first that M = 1. It is enough to show that B ≤ Z(G): as G is perfect,
then G will be the Schur representation group of G/B and hence G ' SL2(pa).

In this situation B is a minimal normal subgroup of G, which is in fact (el-
ementary) abelian; otherwise B would be a non-abelian simple group by Propo-
sition 2.10(c), whence G/BCG(B) would be solvable and we would have G =

B×CG(B) because G is perfect; but this gives Oπ′(G) < G, a contradiction. Let us
assume, working by contradiction, that B is non-central in G. Thus, CB(G/B) = 1

Then let λ be any non-principal character in Irr(B). Setting I = IG(λ), we see
that I < G, so I/B is isomorphic to a proper subgroup of PSL2(pa). Recall that
the subgroups of PSL2(pa) are of the following types (see [8, II.8.27] or [21, Chapter
3, Theorem 6.25]), where d = (2, pa− 1): (i) dihedral groups of order (2(pa± 1))/d
and their subgroups; (ii) semidirect products of elementary abelian groups of order
pa by cyclic groups of order (pa − 1)/d and their subgroups; (iii) A4 (unless p = 2
and a is odd); S4 (when p2a ≡ 1 (mod 16)); A5 (when pa(p2a − 1) ≡ 0 (mod 5));
(iv) PSL2(pb) or PGL2(pb), where b divides a (for p 6= 2, PSL2(pa) has a subgroup
isomorphic to PGL2(pb) if and only if a/b is even).

Considering the indices of the above listed subgroups, and recalling that |G : I|
cannot be a multiple of more than one prime in π (and also that the characteristic
p is in π and that if p 6= 2 then all primes in π are odd), we can rule out that I/B
is of type (i).
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As for type (iii), if I/B ' A4 or I/B ' S4, then we get p = 2 and (say) q = 3.
In the latter case, (as 2 cannot divide |G : I|), we must have G/B ' PSL2(23), but
PSL2(23) does not have subgroups isomorphic to S4.

If I/B ' A4, then the Schur representation group of I/B is a {2, 3}-group. If
Irr(I | λ) contains a linear character, then Gallagher’s theorem yields that there
exists ψ ∈ Irr(I | λ) such that ψ(1) = 3; on the other hand, any nonlinear character
in Irr(I | λ) has a degree divisible by 2 or 3. In any case, we get a contradiction.

In order to rule out type (iii), it remains to consider the case I/B ' A5. In this
situation, certainly p divides |G : I|, therefore we have {q, s} = {3, 5}; it will be
enough to show that Irr(I | λ) contains a character of degree divisible by 3 (to this
end, we can assume that λ does not extend to I). Set B0 = ker(λ), and observe
that I/B0 does not split over B/B0, as otherwise λ would have an extension to
I; moreover, B/B0 is central in I/B0. As a consequence, we get I/B0 ' SL2(5).
Now, the characters in Irr(I | λ) are precisely the faithful characters of I/B0; among
those, there is a character of degree 6, as wanted.

Consider now type (iv): I/B ' PSL2(pb) or PGL2(pb), where b divides a (note
that we already considered the case pb ∈ {4, 5}, i.e., I/B ' A5). Clearly p divides
|G : I|, therefore we have (say) q ∈ π(pb + 1) and s ∈ π(pb − 1). If pb = 9, then
I/B ' PSL2(9) ' A6 or PGL2(9), and we have p = 3; but since both q and s
cannot appear in |G : I|, one of them should be 2, which is impossible. So we
can assume pb 6= 9. Let I0 be the normal subgroup of I (with |I : I0| ∈ {1, 2})
such that I0/B ' PSL2(pb) and let B0 = ker(λ). If I0/B0 does not split over
B/B0, then B/B0 ≤ (I0/B0)′ and, as B/B0 ≤ Z(I0/B0) as well, we deduce that
I0/B0 ' SL2(pb), the representation group of I0/B. But SL2(pb) has faithful
characters of degree pb+1 (as well as pb−1), and hence there exists θ ∈ Irr(I0|λ) such
that q divides θ(1). If I0/B0 splits over B/B0, then one gets the same conclusion
by Gallagher’s theorem. Therefore, there exists ψ ∈ Irr(I|λ) such that q divides
ψ(1) and hence a χ ∈ Irr(G|λ) such that pq divides χ(1), a contradiction.

Finally, assume that I/B is of type (ii); then (say) q ∈ π(pa + 1) divides |G : I|.
Observe that I/B is a Frobenius group with kernel P/B (a Sylow p-subgroup of
G/B) and cyclic complement C/B. Moreover, s divides |C/B|. Now, since I/B
has irreducible characters of degree divisible by s, we get that λ does not extend
to I. Therefore, as every Sylow subgroup of I/B other than P/B is cyclic, [10,
(11.31)] yields that λ does not extend to P . As a consequence, if β ∈ Irr(I|λ), then
p divides β(1) and pq divides the degree of βG ∈ Irr(G), a contradiction. Therefore,
B is central in G and hence G ' SL2(pa).

Assume finally, working by contradiction, that M > 1: then induction yields
that G/M ' SL2(pa), p 6= 2 and that M is minimal normal in G. Again, M is
abelian. In fact, if M is non-solvable then M is simple by Proposition 2.10(c); so
G/MCG(M) is solvable and hence G = M ×CG(M) because G is perfect; but this

gives Oπ′(G) < G, a contradiction.
If M has a complement in G, then every character λ ∈ Irr(M) extends to IG(λ).

If M has no complement in G, then M ≤ Φ(G) and so B ≤ F(G); it follows
that M is a 2-group. Recall that G/M ' SL2(pa) contains just one involution
and that a Sylow 2-subgroup Q of SL2(pa) is a generalized quaternion group. An
application of [8, V.25.3] yields that the Schur representation group of Q is Q itself;
as a consequence, for each λ ∈ Irr(M), the group IG(λ)/ker(λ) splits over its central
subgroup M/ker(λ), and again λ extends to IG(λ). Now, using Gallagher’s theorem
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([10, (6.17)]) and the subgroup structure of G/M , one readily shows that there is a
χ ∈ Irr(G) such that two distinct primes in π divide χ(1), the final contradiction.

We can formulate Theorem A in a slightly different way

Theorem 2.11. Let G be a group, and π an independent set of vertices of ∆(G)
with |π| = 3. Then there exist normal subgroups S and C = CG(S) of G such that

(a) S is a 2-dimensional special or projective special linear group over a finite field
F of characteristic p;

(b) |C ∩S| ∈ {1, 2} and the prime divisors of |G/SC| are adjacent to all primes in
V(S) \ {p}; in particular, G/SC is a π′-group;

(c) V(C) ∩ π = ∅.

Proof. The existence of S E G as in (a) follows from Theorem A; also, |F| 6= 9. So,
the Schur multiplier of S has order either 1 or 2. Now Clifford Theory yields (c)
and, recalling Proposition 2.7, also (b).

As an immediate consequence of Theorem A, we derive the Main Theorem of
[18].

Corollary B. Let G be a group, and π a set of vertices of ∆(G) with |π| = 4.
Then at least two vertices in π are adjacent in ∆(G).

Proof. Assume, working by contradiction, that π is an independent set of ∆(G)
with |π| = 4, and let π0 be a subset of π such that |π0| = 3. By Theorem A, there
exists a unique non-abelian composition factor S of G such that π(S)∩π0 6= ∅ (and
in fact, π0 ⊆ π(S)). Since it is possible to choose the set π0 in several ways (where
two distinct choices produce subsets that have a non-empty intersection), we get a
clear contradiction.

Corollary C. Let G be a group such that ∆(G) is connected. Then the diameter
of ∆(G) is at most three.

Proof. Assume, working by contradiction, that u and v are two vertices of ∆(G)
having distance 4; let u = p1 − p2 − p3 − p4 − p5 = v a minimal path linking
them. Then {p1, p3, p5} is independent in ∆(G) and we can apply Theorem 2.11:
using its notation, we easily deduce that C must be abelian (every vertex of ∆(C)
is adjacent to all vertices of ∆(S), as one readily checks in the direct product
S/Z ×C/Z, where Z = C ∩ S). Let π+ = π(pa + 1) and π− = π(pa − 1) and (say)
p ∈ {p1, p3} ⊆ π+ ∪ {p}, p5 ∈ π−. Hence, d∆(G)(p2, p5) > 2 and p2 6= p 6= p5.
If SC < G, then we get a contradiction by Proposition 2.7. If G = SC, then
∆(G) = ∆(S), again a contradiction by Proposition 2.6.

Corollary D. Let G be a group. Then ∆(G) has three connected components if
and only if G ' PSL2(2a)×A with A abelian.

Proof. Take a vertex pi, i = 1, 2, 3, in each connected component of ∆(G); then
π = {p1, p2, p3} is independent in ∆(G). Using Theorem 2.11 and its notation,
we easily deduce that C is abelian and, by Proposition 2.7, that G = SC. The
characteristic of S must be 2, otherwise two vertices in π belong to the same
connected component of ∆(S) and then of ∆(G). We conclude that G = S×C.
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