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Abstract

The paper addresses Kalman filtering over a peer-to-peer sensor network with a careful eye towards data transmission scheduling
for reduced communication bandwidth and, consequently, enhanced energy efficiency and prolonged network lifetime. A novel
consensus Kalman filter algorithm with event-triggered communication is developed by enforcing each node to transmit its
local information to the neighbors only when this is considered as particularly significant for estimation purposes, in the sense
that it notably deviates from the information that can be predicted from the last transmitted one. Further, it is proved how
the filter guarantees stability (mean-square boundedness of the estimation error in each node) under network connectivity
and system collective observability. Finally, numerical simulations are provided to demonstrate practical effectiveness of the
distributed filter for trading off estimation performance versus transmission rate.

Key words: Distributed Kalman filtering; sensor networks; event-triggered communication; sensor fusion.

1 Introduction

Nowadays, wireless sensor networks (WSNs) are getting
an ever increasing usage in a wide range of on-line mon-
itoring tasks (e.g. navigation, tracking, environmental
and power system monitoring, etc.) that require recur-
sive estimation of the state of a linear or nonlinear dy-
namical system. Since the individual nodes of the sensor
network are usually low-cost, battery-supplied devices
with scarce energy resources, it becomes of paramount
importance for networked state estimation to limit as
much as possible data transmission which represents by
far the most energy consuming node task.

In this respect, simple ways to limit the communication
bandwidth are periodic and random transmission at a
prescribed rate, whose effects on distributed Kalman
filter stability and estimation performance are analyzed
in Battistelli et al. (2012b) for a centralized network
wherein all nodes transmit their local data (either mea-
surements or estimates) to a fusion center. It is natu-
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ral to expect however that a data-driven transmission
strategy could easily outperform periodic and random
scheduling. These considerations motivate the grow-
ing interest towards the development of data-driven
(or event-triggered) logics for scheduling data commu-
nication. Interested readers are referred to Suh et al.
(2007); Marck and Sijs (2010); Shi et al. (2011); Battis-
telli et al. (2012a); Shi et al. (2014); Sijs et al. (2014);
Trimpe and D’Andrea (2014); Han et al. (2015); Shi
et al. (2016), and references therein, for an overview on
the stability properties and performance achievable by
these strategies on a centralized network. A great deal of
work (Olfati-Saber, 2009; Stankovic et al., 2009; Farina
et al., 2010; Kamal et al., 2013; Ugrinovskii, 2013; Bat-
tistelli and Chisci, 2014; Battistelli et al., 2015; Noack
et al., 2016) has concerned distributed state estimation
over a peer-to-peer network wherein there is no fusion
center and each node (peer) operates in the same way
and can only exchange data with a limited subset of
neighbors. All these references, however, have consid-
ered the situation wherein each node broadcasts data
to neighbors after each update of the local information.
In this respect, recent work (Yan et al., 2013; Liu et al.,
2015; Li et al., 2012; Meng and Chen, 2014; Wu et al.,
2015; Li et al., 2016) has addressed distributed state
estimation with event-triggered communication. In par-
ticular Yan et al. (2013) and Liu et al. (2015) proposed
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measurement-based transmission tests on the distance
between the current and latest transmitted measure-
ments and, respectively, on the innovation. Conversely
(Li et al., 2012; Meng and Chen, 2014; Wu et al., 2015;
Li et al., 2016) developed event-triggered distributed
state estimators all relying on the consensus Kalman fil-
ter of Olfati-Saber (2009) but differing for the adopted
triggering condition. This paper presents a novel event-
triggered distributed state estimator based on a dif-
ferent consensus Kalman filtering approach (Battistelli
and Chisci, 2014; Battistelli et al., 2015) as well as on a
different transmission triggering condition which essen-
tially requires that the local estimate and/or covariance
of a given node be sufficiently far away from the ones
that could be computed by neighbors, exploiting only
the transmitted data. It is proved that the proposed dis-
tributed Kalman filter algorithm with event-triggered
communication enjoys nice stability properties (i.e.,
mean-square boundedness of the state estimation error
in all nodes) under minimal requirements of network
connectivity and collective system observability extend-
ing, in a non trivial way, the results of Battistelli and
Chisci (2014); Battistelli et al. (2015); Battistelli and
Chisci (2016) already available for the full transmission
case. This paper extends preliminary work carried out
in (Battistelli et al., 2016) with the stability analysis.

2 Distributed State Estimation Setting

This paper addresses distributed state estimation (DSE)
over a network in which each node can process local data
as well as exchange data with neighbors. Further, some
nodes (called sensor nodes) have also sensing capabili-
ties, i.e., they can sense data from the environment. No-
tice that the presence of nodes without sensing capabil-
ities serves only the purpose of improving network con-
nectivity. In the sequel, the sensor network will be de-
noted as (N ,A,S) where: N = {1, . . . , N} is the set of
nodes; A ⊆ N × N is the set of arcs (edges); S ⊆ N
is the subset of sensor nodes. A directed edge (i, j) ∈ A
from node i to node j means that i can send messages
to j, and we say that j is an out-neighbor of i and i is an
in-neighbor of j. For each node i ∈ N , Ni ⊆ N will de-

note the set of its in-neighbors, i.e.Ni
4
= {j : (j, i) ∈ A}.

The network does not contain self-loops so that i /∈ Ni.

The DSE problem can be formulated as follows. Each
node i ∈ N must estimate at each time k ∈ Z+ =
{0, 1, . . . } the state xk of the dynamical system

xk+1 = Axk + wk (1)

given local measurements

yik = Cixk + vik , i ∈ S, (2)

and data received from all in-neighbors j ∈ Ni.

It is assumed that wk and vik, i ∈ S, are zero-mean white
noises with positive definite covariance matrices Q and
Ri, i ∈ S, respectively. Further, the process disturbance
and the measurement noises are supposed to be uncorre-
lated, i.e., E{vik w>τ } = 0, for any k, τ ∈ Z+, and i ∈ S.

In this setting, it was recently shown that there ex-
ist families of consensus-based DSE algorithms (Kamal
et al., 2013; Battistelli and Chisci, 2014; Battistelli et al.,
2015) able to guarantee stability of the estimation error
in each network node under the minimal requirements of
collective detectability and network connectivity. Gen-
erally speaking, these algorithms require that each node
i transmits its local estimate x̂ik|k and covariance matrix

P ik|k to all its out-neighbors such that i ∈ Nj at least

once for each sampling interval. However, in many con-
texts, it is desirable to reduce data transmission as much
as possible while preserving performance. The objective
of this paper is precisely that of developing a strategy for
controlling transmission in existing DSE algorithms, so
that each node i selectively transmits only the most rel-
evant data, without compromising stability properties.

To this end, let us introduce for each node i binary vari-
ables cik such that cik = 1 if node i transmits at time k or
cik = 0 otherwise. The focus is on data-driven (or event-
triggered) transmission strategies in which the variable
cik is a function of the information currently available in
node i and of the information most recently transmitted
by node i.

3 Distributed Kalman-Filtering with Event-
triggered Communication

In this paper, we focus on a DSE algorithm wherein each
node i ∈ N runs a local Kalman filter and then, in order
to improve its local estimate, fuses the local information
with the one received from its in-neighbors j ∈ Ni. Con-
cerning the local Kalman filter, it is convenient for the
presentation of the algorithm to consider the informa-
tion form of the Kalman filter recursion which, instead
of the estimate x̂ik|k and of the covariance matrix P ik|k,

propagates the information matrix Ωik|k = (P ik|k)−1 and

the information vector qik|k = Ωik|kx̂
i
k|k. Hereafter, the

steps of the proposed DSE algorithm are described in
some detail.

Correction: Let (qik|k−1,Ω
i
k|k−1) denote the predicted

information pair available in node i at time k. Then, for
any sensor node i ∈ S, the local information pair is up-
dated by means of the standard Kalman filter correction
step

qik|k = qik|k−1 + (Ci)>(Ri)−1yik , (3)

Ωik|k = Ωik|k−1 + (Ci)>(Ri)−1Ci . (4)
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In all the remaining nodes i ∈ N \ S, since no local
measurement is available, we simply set (qik|k,Ω

i
k|k) =

(qik|k−1,Ω
i
k|k−1).

Information exchange: Notice preliminarily that, af-
ter the correction step, the currently available informa-
tion is represented by the local posterior information
pair (qik|k,Ω

i
k|k). Let now nik be the number of discrete

time instants elapsed from the most recent transmission
of node i, so that the most recently transmitted data is
(qi
k−ni

k
|k−ni

k

,Ωi
k−ni

k
|k−ni

k

). Such data can be propagated

in time by repeatedly applying the Kalman filter predic-
tion step so as to obtain the information pair (q̄ik, Ω̄

i
k)

(see equations (13)-(14) in the prediction step below).
Accordingly, x̄ik = (Ω̄ik)−1 q̄ik represents a prediction of
the system state based on the data most recently trans-
mitted by node i.

Notice that
(
q̄ik, Ω̄

i
k

)
can be computed also by the out-

neighbors of node i. Then, the idea is to selectively trans-
mit only in case the discrepancy between (qik|k,Ω

i
k|k) and

(q̄ik, Ω̄
i
k) is large, which means that the data (q̄ik, Ω̄

i
k) cur-

rently computable by the out-neighbors of node i is no
longer consistent with the data locally available in node
i. More formally, the following event-triggered transmis-
sion strategy is adopted

cik =


0, if ‖x̂ik|k − x̄

i
k‖2Ωi

k|k
≤ α

and 1
1+β Ωik|k ≤ Ω̄ik ≤ (1 + δ) Ωik|k

1, otherwise

(5)

where α, β, and δ are positive scalars and, given a posi-
tive definite matrix M , ‖ ·‖M denotes the corresponding
weighted Euclidean norm.

The three scalars α, β, and δ can be seen as design pa-
rameters which can be tuned so as to achieve a desired
behavior in terms of transmission rate and performance.
In particular, the transmission test in (5) is designed so
as to ensure that, in the case of no transmission, the data
(q̄ik, Ω̄

i
k) currently computable by the out-neighbors of

node i are close to the data locally available in node i
both in terms of mean and covariance.

Remark 1 From the information-theoretic point of
view, the proposed event-triggered transmission strat-
egy can be analyzed by resorting, for instance, to the
Kullback-Leibler divergence (KLD). To see this, let us
denote by Gk|k(x) and Gk(x) the Gaussian densities

associated with the information pairs (qik|k,Ω
i
k|k) and,

respectively, (q̄ik, Ω̄
i
k). Then, it turns out that when no

transmission occurs, i.e., cik = 0 , the KLD between such
two densities can be bounded as

DKL(Gk||Gk|k) ≤ 1

2
[α+ β n+ n log(1 + δ)] (6)

where n is the dimension of the system state xk and

DKL(p||q) =
∫
p(x) log p(x)

q(x)dx . Hence, the proposed ap-

proach is related to the idea, already proposed in the lit-
erature in the context of event-based estimation (Marck
and Sijs, 2010; Li et al., 2012), of defining triggering
conditions directly expressed in terms of KLD. Test (5)
however allows to weight differently the performance ob-
jectives in terms of estimate/covariance. For a formal
proof of (6) as well as for further discussion on this is-
sue, the interested reader is referred to (Battistelli et al.,
2016).

Information fusion: When node i receives data from
all its in-neighbors j ∈ Ni, a viable way to perform fusion
amounts to computing the fused information pair as a
convex combination of the local information pairs:

qi,Fk|k = πi.i q
i
k|k +

∑
j∈Ni

πi,j q
j
k|k (7)

Ωi,Fk|k = πi,i Ωik|k +
∑
j∈Ni

πi,j Ωjk|k , (8)

where the combination weights πi,j in (7)-(8) are taken
all strictly positive and satisfy the condition

πi,i +
∑
j∈Ni

πi,j = 1,∀i ∈ N . (9)

In fact, DSE algorithms based on (7)-(8), which is
the well-known covariance intersection (Julier and
Uhlmann, 2001) fusion rule, have been shown to enjoy
interesting properties such as robustness with respect
to the unknown correlation of the estimates to be fused
as well as stability of the estimation error dynamics (see
Battistelli and Chisci, 2014).

When, however, for some neighbor j it happens that
cjk = 0, then (qjk|k,Ω

j
k|k) is not available and the fu-

sion rule has to be modified. In this case, thanks to the
adopted event-triggered transmission strategy (5), node

i is still able to compute (q̄jk, Ω̄
j
k) and to infer that such

an information pair is close to the true one (qjk|k,Ω
j
k|k).

Then, such a knowledge can be exploited by replacing,
in the information fusion step, (qjk|k,Ω

j
k|k) with

q̃jk =
1

1 + δ
q̄jk , Ω̃jk =

1

1 + δ
Ω̄jk . (10)

The introduction of the factor 1/(1 + δ) in (10) is in-
tended to reduce the weight of the contribution of node
j in the convex combination, so as to account for the
additional uncertainty due to the discrepancy between
(q̄jk, Ω̄

j
k) and (qjk|k,Ω

j
k|k). In particular, it can be readily

seen that the adopted choice enjoys the following positive
features: (i) the information matrix Ω̃jk always satisfies
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Table 1
Algorithm 1 - Distributed Kalman Filtering with Event-
Triggered Communication

At each time k = 0, 1, . . ., for each node i ∈ N :

(1) Correction:
if i ∈ S, collect the local measurement yik and update
the local information pair (qik|k−1,Ω

i
k|k−1) via equa-

tions (3)-(4) to obtain the local posterior information
pair (qik|k,Ω

i
k|k); otherwise, for any i ∈ N \ S, set

(qik|k,Ω
i
k|k) = (qik|k−1,Ω

i
k|k−1);

(2) Information exchange:
if k = 0 set cik = 1, otherwise determine cik as in (5);
if cik = 1 transmit (qik|k,Ω

i
k|k) to the out-neighbors;

receive (qjk|k,Ω
j
k|k) from all the in-neighbors j ∈ Ni for

which cjk = 1;

(3) Information fusion:

compute the fused information pair (qi,Fk|k ,Ω
i,F
k|k) by

qi,Fk|k = πi.i q
i
k|k +

∑
j∈Ni

πi,j

[
cjkq

j
k|k + (1− cjk)q̃jk

]
Ωi,F

k|k = πi,i Ωi
k|k +

∑
j∈Ni

πi,j

[
cjkΩj

k|k + (1− cjk)Ω̃j
k

]
,

where (q̃jk, Ω̃
j
k) are computed as in (10).

(4) Prediction:
compute the local prior information pair
(qik+1|k,Ω

i
k+1|k) from (qi,Fk|k ,Ω

i,F
k|k) via (11)-(12);

compute (q̄ik+1, Ω̄
i
k+1) and (q̄jk+1, Ω̄

j
k+1), j ∈ Ni, via

(13)-(14).

the inequality Ω̃jk ≤ Ωjk|k, thus ensuring that the infor-

mation matrix after fusion is never larger than the one
which would be obtained in case all the nodes transmit
(this property is important in order to ensure the con-
sistency of the distributed estimator); (ii) the estimate
used in the fusion is not modified by the introduction of
such a factor in that (Ω̃jk)−1q̃jk = (Ω̄jk)−1q̄jk = x̄jk.

Prediction: In each network node i ∈ N , the fused

information pair (qi,Fk|k ,Ω
i,F
k|k) is propagated in time by

applying the Kalman filter prediction step

qik+1|k = Ωik+1|k A
(

Ωi,Fk|k

)−1

qi,Fk|k , (11)

Ωik+1|k =

Q−1 −Q−1A
(

Ωi,Fk|k +A>Q−1A
)−1

A>Q−1 . (12)

Further, the information pairs (q̄ik+1, Ω̄
i
k+1), to be used

in the transmission tests at time k+ 1, are computed as

q̄ik+1 = Ω̄ik+1A
(

Ω̆ik

)−1

q̆ik , (13)

Ω̄ik+1 =Q−1 −Q−1A
(

Ω̆ik +A>Q−1A
)−1

A>Q−1 (14)

where q̆ik = cikq
i
k|k + (1− cik) q̄ik and Ω̆ik = cikΩik|k + (1−

cik) Ω̄ik.

Summing up, the above-described approach to DSE with
event-triggered communication gives rise to the algo-
rithm of Table 1.

The algorithm is initialized at time k = 0 with some a
priori information pairs (qi0|−1,Ω

i
0|−1). By taking the ini-

tial information matrix Ωi0|−1 positive definite in all the

network nodes we ensure, by construction, that all the
information matrices Ωik|k are positive definite for any k

and i so that the covariance matrices P ik|k = (Ωik|k)−1

are always well-defined and positive definite as well.

4 Stability analysis

In this section, the stability properties of the proposed
algorithm are analyzed. For the reader’s convenience,
all the proofs are given in the Appendix. The following
preliminary assumptions are needed.

A1. The system matrix A is invertible.
A2. The system is collectively observable, i.e., the pair

(A,C) is observable where C := col
(
Ci; i ∈ S

)
.

A3. The network is strongly connected, i.e., there exists
a directed path between any pair of nodes i, j ∈ N .

Notice that assumption A1 is automatically satisfied in
sampled-data systems wherein the matrix A is obtained
by discretization of a continuous-time system matrix.
As for assumption A2, the collective observability re-
quirement can be relaxed to collective detectability by
resorting to an observability decomposition in each net-
work node as discussed for example in Battistelli and
Chisci (2014). These are the very same assumptions un-
der which stability of the Distributed Kalman filter with
full transmission rate has been proved (Battistelli and
Chisci, 2014; Battistelli et al., 2015). Hereafter, we show
that similar stability properties are enjoyed also by the
Distributed Kalman filter with Event-Triggered Com-
munication of Table 1.

Let us denote by Π the consensus matrix, whose ele-
ments are the consensus weights πi,j , i, j ∈ N (in case
j 6= i does not belong to Ni we simply set πi,j = 0). Re-
call that a non-negative square matrixM is row stochas-
tic if all its rows sum up to 1. Further, it is primitive
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if there exists an integer ` such that all the elements of
M ` are strictly positive. By construction, the consen-
sus matrix Π is row stochastic since all the combination
weights in (7)-(8) are strictly positive and satisfy (9). It
is an easy matter to verify that, under assumption A3,
Π is also primitive. In turn, by the Perron-Frobenius
theorem, this implies the existence of a vector p having
strictly positive components pi, i ∈ N , and satisfying
the equation p>Π = p>, i.e.,

∑
j∈N pjπj,i = pi.

In order to prove the stability of the estimation
error dynamics, the quadratic function Vk(ek) =∑
i∈N pi‖eik‖2Ωi

k|k
is considered as candidate Lyapunov

function, where ek = col
(
eik, i ∈ N

)
is the collective

estimation error vector and eik = xk − x̂ik|k.

As a first step, the following lemma shows that the time-
varying function Vk(ek) is a well-defined candidate Lya-
punov function since the matrices Ωik|k are uniformly

bounded from both above and below.

Lemma 1 Let assumptions A1-A3 hold. Further, let the
matrices Ωik|k, i ∈ N , be generated according to Algo-

rithm 1 starting from some initial values Ωi0|−1, i ∈ N ,

with Ωi0|−1 > 0. Then, there exist positive reals ω and ω,

such that 0 < ωI ≤ Ωik|k ≤ ωI for any i ∈ N .

An inspection of the proof of Lemma 1 shows that the
lower bound ω on the information matrix decreases
monotonically with increasing parameters β and δ in
the triggering condition (5). Hence, as β and δ increase
(that is the transmission rate decreases) the bound 1/ω
on the covariance matrix increases.

We now derive an upper bound on each element
‖eik+1‖2Ωi

k+1|k+1

of Vk+1(ek+1) which depends on the es-

timation errors at time k, on the process disturbance
and measurement noises, and on the discrepancy be-
tween the information (qjk|k,Ω

j
k|k) currently available in

the neighboring nodes and the information predicted on
the basis of the most recently received data.

Lemma 2 Let assumptions A1-A3 hold. Further, let the
information pairs (qik|k,Ω

i
k|k), i ∈ N , be generated ac-

cording to Algorithm 1 with all the initial information
matrices Ωi0|−1, i ∈ N , positive definite. Then, for any

i ∈ N , the following bound holds

‖eik+1‖2Ωi
k+1|k+1

≤ γ2

(
πi,i‖eik + ξik‖2Ωi

k|k

+
∑
j∈Ni

πi,j‖ejk + ξik + ηjk‖
2
Ωj

k|k

)

where γ ∈ (0, 1) and

ξik = A−1
[
wk − 1S(i)(Ωik+1|k)−1(Ci)>(Ri)−1vik+1

]
(15)

ηjk = (1− cjk) · (x̂ik|k − x̄
i
k) (16)

where 1S(i) is the indicator function taking value 1 if
i ∈ S and 0 otherwise.

Notice that, in view of Lemma 1, the quantities ξik,
i ∈ N , are bounded (in mean square) since the process
disturbance and measurement noises are supposed to be
bounded (in mean square). Hence, there exists a posi-
tive real ρ2

ξ such that E
{
‖ξik‖2

}
≤ ρ2

ξ for any k ∈ Z+

and i ∈ N . Further, the quantities ηik, i ∈ N , can be
bounded in view of the fact that, when node i does not
transmit at time k, the difference x̂ik|k − x̄

i
k necessarily

satisfies the non-transmission conditions in (5) so that
‖ηik‖2Ωi

k|k
≤ α for any k ∈ Z+ and i ∈ N . Hence, by ex-

ploiting Lemmas 1 and 2, the following stability result
can be derived.

Theorem 1 Let the same assumptions of Lemma 2 hold.
Then, in each network node i ∈ N , the estimation error
eit is uniformly bounded in mean square, in that

lim sup
k→∞

E{‖eik‖2} ≤

(
γ

1− γ

∑
i∈N
√
pi (
√
ωρξ +

√
α)

√
ωmini∈N

√
pi

)2

.

5 Simulations

In this section, a single-target tracking problem is con-
sidered, with the target motion modeled by means of
an integrated Ornstein-Uhlenbeck process (Stone et al.,
2014):

dx(t) =


0 1 0 0

0 −a 0 0

0 0 0 1

0 0 0 −a

 x(t)dt+


0 0

σ 0

0 0

0 σ

 dw(t) . (17)

The unknown target state vector x = [px, ṗx, py, ṗy]>

includes the position and velocity components along the
coordinate axes; further, w(t) is a Wiener process with
zero mean and unit rate of variance. Following Stone
et al. (2014), 1/a is interpreted as the mean time between
velocity changes, while σ/

√
a as the root mean squared

speed of the limiting velocity distribution. The model in
(17) is discretized with sampling interval ∆ = 1 s.

We consider a network composed of 20 linear sensor
nodes and 80 communication nodes located in a square
region of 5000m side length (see Fig. 1). Each node can
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Fig. 1. Network composed of 20 linear sensor nodes (trian-
gles) and 80 communication nodes (squares).

send its local information to all the nodes whose dis-
tance is less than a given communication radius equal
to 839m. Measurements of the target state are provided
by each sensor node in Cartesian coordinates as

yik =

[
1 0 0 0

0 0 1 0

]
xk + vik . (18)

The standard deviation of each component of the mea-
surement noise vik is set to 10m. The Metropolis weights
are employed as defined in Xiao et al. (2005).

In all the considered scenarios, the simulation tests are
carried out by performing Monte Carlo simulations with
200 independent runs obtained by varying the measure-
ment noise realizations. The results are evaluated in
terms of both the transmission rate r, averaged over
the whole network and over all the Monte Carlo trials,
and the performance, expressed in terms of Root Mean
Square Error (RMSE).

A simple scenario is first considered involving a target
which moves with constant velocity following the trajec-
tory depicted in Fig. 2 (top). For the sake of simplicity, δ
is set equal to β. Fig. 2 (bottom) shows the evolution of
the RMSE for different values of α, while keeping β = δ
fixed to 30. The corresponding transmission rate r is also
indicated. As expected, increasing α results in decreas-
ing r and in increasing the RMSE. A similar behavior is
obtained for increasing values of β = δ while keeping α
fixed (this latter test is not reported due to space limi-
tations).

We further consider a second scenario involving a tar-
get moving along the trajectory depicted in Fig. 3 (top),
and compare the performance obtained by applying both
Algorithm 1 achieving a certain rate r, and a periodic-
based transmission strategy at the same rate r. Notice
that, in the case of periodic transmission, since there are
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Fig. 2. First scenario. (top) Trajectory employed to evaluate
the effect of the parameters α, β and δ (network of Fig. 1).
(bottom) RMSE evaluated for β = δ = 30, and for different
values of α (logarithmic scale).
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Fig. 3. Second scenario. (top) Trajectory employed to com-
pare the performance of Algorithm 1 achieving a certain
transmission rate r, and a periodic-based strategy at the
same rate r (network of Fig. 1). (middle) Comparison,
in terms of RMSE, between Algorithm 1 with α = 1.5,
β = δ = 40, achieving a transmission rate of r = 33%, and a
periodic-based strategy at the same rate r = 33%. (bottom)
Time evolution of the overall transmission rate r: compari-
son between Algorithm 1 and periodic transmission.

no guarantees regarding the distance between the cur-
rent data and the last transmitted one, in the fusion rule
each node i simply discards the neighbors which have
not transmitted their information at that time, and |Ni|
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(where | · | denotes set cardinality) is reduced accord-
ingly, while the consensus weights must be reset so that
they satisfy condition (9). Further, since this applies also
to |Nj | for all j ∈ Ni, the Metropolis weights cannot be
used in this case. Accordingly, the consensus weights are
replaced by uniform weights, i.e., πi,j = 1/(|Ni|+ 1) for
j ∈ Ni and j = i. Fig. 3 (middle) shows the comparison,
in terms of RMSE, between Algorithm 1 with α = 1.5
and β = δ = 40, achieving an overall transmission rate
r = 33%, and periodic transmission at the same rate
r = 33%. In Fig. 3 (bottom) the time evolution of r is
shown for both Algorithm 1 and periodic transmission;
it is worth underlining that, while by construction both
strategies perform the same number of transmissions in
the considered time interval [0, 150]s, the transmission
rate of the proposed algorithm is not distributed uni-
formly over time. In fact, it is higher at the beginning,
when the estimation error is large, and increases again
in correspondence of the maneuver. As it can be seen
from Fig. 3 (middle), this results in a faster convergence
rate as well as in a much prompter response to the target
maneuver.

6 Conclusions

In this paper, a novel distributed Kalman filter with
event-triggered communication over a peer-to-peer sen-
sor network has been developed. A stability analysis of
the filter has been carried out showing that it ensures
mean-square boundedness of the state estimation error
in all nodes provided that the network is strongly con-
nected and the system collectively observable. Simula-
tion tests on a tracking case-study show how the pro-
posed strategy can achieve a desired trade off between
estimation performance and energy efficiency.

Appendix

Proof of Lemma 1: Observe first that, in view of the
event-triggered transmission strategy (5), in each net-

work node the fused information matrix Ωi,Fk|k can be

bounded as follows

Ωi,Fk|k ≥ πi,iΩ
i
k|k +

1

(1 + β)(1 + δ)

∑
j∈Ni

πi,jΩ
j
k|k (19)

Ωi,Fk|k ≤ πi,iΩ
i
k|k +

∑
j∈Ni

πi,jΩ
j
k|k (20)

irrespectively of the data transmission pattern, i.e. of
the time evolution of the variables cik, i ∈ N .

Observe also that a uniform upper bound on Ωik|k can

be readily obtained in view of (4) and of the fact that
Ωik|k−1 ≤ Q−1 for any k. Hence, only the existence of

a positive definite lower bound on Ωik|k remains to be

proved. In this respect, we note that, when the initial
information matrices Ωi0|−1 are positive definite, then

the matrices Ωik|k are always positive definite for any k.

This property can be proved by induction. To this end,
observe that for a sensor node i ∈ S, we can write

(Ωik|k)−1 = (Ωik|k−1 + (Ci)>RiCi)−1

= (Ωik|k−1)−1 − (Ωik|k−1)−1(Ci)>

×
[
(Ri)−1 + Ci(Ωik|k−1)−1(Ci)>

]−1

Ci(Ωik|k−1)−1 ,

while, for any communication node i ∈ N \ S, we sim-
ply have (Ωik|k)−1 = (Ωik|k−1)−1. This implies that Ωi0|0
is invertible and, hence, positive definite. Further, when
Ωik|k is positive definite, Ωik+1|k is positive definite as

well. In fact, we have (Ωik+1|k)−1 = A(Ωi,Fk|k)−1A> + Q

where the fused information matrix Ωi,Fk|k is positive def-

inite by virtue of (19). Hence, the positive definiteness
of Ωik+1|k+1 follows at once.

Then in order to conclude the proof, it is suffi-
cient to show that, even in the limit for k going
to infinity, a positive definite lower bound on Ωik|k
can be found. In order to show this, notice first
that, by applying fact ii) in Lemma 1 of Battis-
telli and Chisci (2014), we obtain the lower bound

Ωik|k ≥ υA
−>Ωi,Fk−1|k−1A

−1 +1S(i)(Ci)>RiCi for some

positive real υ, where 1S(i) is the indicator function tak-
ing value 1 if i ∈ S and 0 otherwise. Then, application
of inequality (19) yields

Ωik|k ≥
υ

(1 + β)(1 + δ)
A−>

∑
j∈N

πi,jΩ
j
k−1|k−1

A−1

+1S(i)(Ci)>RiCi .

For sufficiently large values of k, by recursively applying
the latter inequality L times, it is possible to write

Ωik|k ≥
(

υ

(1 + β)(1 + δ)

)L
(AL)

−>

×

∑
j∈N

ΠL
[i,j] Ωjk−L|k−L

 (AL)
−1

+

k∑
τ=k−L+1

(
υ

(1 + β)(1 + δ)

)k−τ
(Ak−τ )−>

×

∑
j∈S

Πk−τ
[i,j] (Cj)>RjCj

 (Ak−τ )−1

where ΠL
[i,j] denotes the element (i, j) of the matrix ΠL.
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Since the consensus matrix Π is primitive, the elements
Πk−τ

[i,j] are all positive provided that k− τ is greater than

a certain integer, say M . Then, it is an easy matter to
see that, for sufficiently large values of k, there exists a
positive real ῡ such that

Ωik|k ≥ ῡ
k−M∑

τ=k−L+1

(Ak−τ )−>

∑
j∈S

(Cj)>RjCj

 (Ak−τ )−1

= ῡ

L−1∑
τ=M

(Aτ )−>

∑
j∈S

(Cj)>RjCj

 (Aτ )−1 . (21)

Observe now that, under collective observability (as-
sumption A2) and provided that L is chosen so that
L−M is larger that the plant order, the right-hand side
of (21) is positive definite and represents a uniform lower
bound on Ωik|k for sufficiently large values of k.

Proof of Lemma 2: Notice first that the following identity
holds

x̂ik+1|k+1 = (Ωik+1|k+1)−1
[
Ωik+1|kx̂

i
k+1|k

+ 1S(i)(Ci)>(Ri)−1yik+1

]
= (Ωik+1|k+1)−1

[
Ωik+1|kx̂

i
k+1|k

+ 1S(i)(Ci)>(Ri)−1Cixk+1

+1S(i)(Ci)>(Ri)−1vik+1

]
.

Further, recalling (4), we can write

xk+1 = (Ωik+1|k+1)−1
[
Ωik+1|kxk+1

+1S(i)(Ci)>(Ri)−1Cixk+1

]
which implies

eik+1 = xk+1 − x̂ik+1|k+1

= (Ωik+1|k+1)−1Ωik+1|k
(
xk+1 − x̂ik+1|k + v̄ik+1

)
where v̄ik+1 = −1S(i)(Ωik+1|k)−1(Ci)>(Ri)−1vik+1. In

turn, the latter identity implies

‖eik+1‖2Ωi
k+1|k+1

= ‖Ωik+1|k
(
xk+1 − x̂ik+1|k + v̄ik+1

)
‖2(Ωi

k+1|k+1
)−1

≤ ‖xk+1 − x̂ik+1|k + v̄ik+1‖2Ωi
k+1|k

(22)

in view of the fact that (Ωik+1|k+1)−1 ≤ (Ωik+1|k)−1.

Observe now that, in view of Lemma 1 and assump-
tion A3, we can apply fact iii) of Lemma 1 of Battistelli
and Chisci (2014) so as to derive the bound Ωik+1|k ≤
γ2A−>Ωi,Fk|kA

−1 for some scalar γ ∈ (0, 1). Moreover, we

have
xk+1 − x̂ik+1|k = A(xk − x̂i,Fk|k) + wk

where x̂i,Fk|k = (Ωi,Fk|k)−1qi,Fk|k . Hence, from (22) we can

obtain

‖eik+1‖2Ωi
k+1|k+1

≤ γ2‖A(xk − x̂i,Fk|k) + wk + v̄ik+1‖2A−>Ωi,F

k|kA
−1

= γ2 ‖xk − x̂i,Fk|k + ξik‖2Ωi,F

k|k
(23)

where ξik is defined as in (15).

For the sake of compactness, let us now rewrite the in-
formation fusion step of Algorithm 1 as

qi,Fk|k = πi.i q
i
k|k +

∑
j∈Ni

πi,j q̌
j
k|k

Ωi,Fk|k = πi,i Ωik|k +
∑
j∈Ni

πi,jΩ̌
j
k|k

where q̌jk|k = cjkq
j
k|k + (1 − cjk)q̃jk and Ω̌jk|k = cjkΩjk|k +

(1− cjk)Ω̃jk. By exploiting these definitions, we can write

Ωi,Fk|k

(
xk − x̂i,Fk|k + ξik

)
=
(
πi,i Ωik|k +

∑
j∈Ni

πi,jΩ̌
j
k|k
) (
xk + ξik

)
− Ωi,Fk|kx̂

i,F
k|k

Ωi,Fk|kx̂
i,F
k|k = πi,i q

i
k|k +

∑
j∈Ni

πi,j q̌
j
k|k

= πi,i Ωik|kx̂
i
k|k +

∑
j∈Ni

πi,jΩ̌
j
k|kx̌

j
k|k

where x̌jk|k = (Ω̌jk|k)−1q̌jk|k. As a consequence, inequality

(23) can be rewritten as

‖eik+1‖2Ωi
k+1|k+1

≤ γ2

∥∥∥∥πi,i Ωik|k(xk − x̂ik|k + ξik)

+
∑
j∈Ni

πi,jΩ̌
j
k|k(xk − x̌jk|k + ξik)

∥∥∥∥2

(Ωi,F

k|k)−1

.(24)

By applying Lemma 2 of Battistelli and Chisci (2014),
from (24) we can obtain

‖eik+1‖2Ωi
k+1|k+1

≤ γ2

(
πi,i‖xk − x̂ik|k + ξik‖Ωi

k|k

+
∑
j∈Ni

πi,j‖xk − x̌jk|k + ξik‖2Ω̌j

k|k

)
. (25)

Notice now that, thanks to the transmission test, we
have Ω̌jk|k ≤ Ωjk|k. Thus, (24) yields

‖eik+1‖2Ωi
k+1|k+1

≤ γ2

(
πi,i‖eik + ξik‖Ωi

k|k

+
∑
j∈Ni

πi,j‖ejk + ξik + (x̂jk|k − x̌
j
k|k)‖2

Ωj

k|k

)
.
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Then, the proof can be concluded by defining ηjk = x̂jk|k−
x̌jk|k which can be written as in (16), since x̌jk|k coincides

either with x̂jk|k when ckk = 1 or with x̄jk|k when ckk = 0.

Proof of Theorem 1: In view of Lemma 2, we can bound
the function Vk+1(ek+1) as follows

Vk+1(ek+1) ≤ γ2
∑
i∈N

(
pi πi,i‖eik + ξik‖2Ωi

k|k

+
∑
j∈N i

pj πj,i‖eik + ξjk + ηik‖2Ωi
k|k

)
(26)

where N i denotes the set of out-neighbors of node i, i.e.
N i = {j : (i, j) ∈ A}. For any i ∈ N , let us now denote

by ωik the vector in the set {ξik} ∪ {ξ
j
k + ηik, j ∈ N i} for

which the weighted norm ‖ · ‖Ωi
k|k

is maximal. Further,

let us define the vector ωik as follows

ωik =

 ωik, if eik = 0(
‖ωik‖Ωi

k|k
/‖eik‖Ωi

k|k

)
eik, otherwise .

Then, it is possible to show that

‖eik + ξik‖2Ωi
k|k
≤ ‖eik + ωik‖2Ωi

k|k
(27)

‖eik + ξjk + ηik‖2Ωi
k|k
≤ ‖eik + ωik‖2Ωi

k|k
. (28)

In fact, by construction, both (27) and (28) trivially hold
when eik = 0. Further, when eik 6= 0, we have

‖eik + ξik‖2Ωi
k|k

= ‖eik‖2Ωi
k|k

+ ‖ξik‖2Ωi
k|k

+ 2(eik)>Ωik|kξ
i
k

≤ ‖eik‖2Ωi
k|k

+ ‖ξik‖2Ωi
k|k

+ 2‖eik‖Ωi
k|k
‖ξik‖2Ωi

k|k

≤ ‖eik‖2Ωi
k|k

+ ‖ωik‖2Ωi
k|k

+ 2‖eik‖Ωi
k|k
‖ωik‖2Ωi

k|k

= ‖eik‖2Ωi
k|k

+ ‖ωik‖2Ωi
k|k

+ 2(eik)>Ωik|kω
i
k

= ‖eik + ωik‖2Ωi
k|k
,

where we have exploited the facts that: ωik and ωik have
the same weighted norm; ωik and eik are collinear vec-
tors. Inequality (28) can be proved in a similar way. By
combining inequalities (27)-(28) with (26), we obtain

Vk+1(ek+1)≤ γ2
∑
i∈N

(
pi πi,i +

∑
j∈N i

pj πj,i

)
‖eik + ωik‖2Ωi

k|k

= γ2
∑
i∈N

pi ‖eik + ωik‖2Ωi
k|k

where the latter equality follows from the fact that p
is a left eigenvector of the consensus matrix Π with

eigenvalue 1. Hence, by defining ωk = col(ωik, i ∈ N ),
we can write Vk+1(ek+1) ≤ γ2 Vk(ek + ωk) . Since the
latter inequality holds for any realization of distur-
bance/measurement noises and thanks to the linearity
of the expected value, this also implies

E{Vk+1(ek+1)} ≤ γ2 E{Vk(ek + ωk)} . (29)

Notice now that (E{Vk(·)})1/2 is a norm since all the ma-
trices Ωik|k are positive definite and all the components

of the Perron-Frobenius left eigenvector p are strictly
positive. As a consequence, we can take the square root
of both sides of (29) and apply the triangular inequality
so as to obtain√

E{Vk+1(ek+1)} ≤ γ
√

E{Vk(ek)}+ γ
√
E{Vk(ωk)}.

(30)

Observe now that the term
√

(E{Vk(ωk)}) can be uni-
formly bounded as

√
E{Vk(ωk)} ≤

∑
i∈N

√
pi

√
E{‖ωik‖2Ωi

k|k
}

≤
∑
i∈N

√
pi max

j∈N

[√
E{‖ξjk‖2Ωi

k|k
}+

√
E{‖ηik‖2Ωi

k|k
}

]
≤
∑
i∈N

√
pi(
√
ω ρξ +

√
α)

where the latter inequality follows from the available
bounds on ξik and ηik (see the discussion before the state-
ment of the theorem). Then, since the scalar γ belongs
to the interval (0, 1), inequality (30) implies that

lim sup
k→∞

√
E{Vk(ek)} ≤ γ

1− γ
∑
i∈N

√
pi(
√
ω ρξ +

√
α).

In order to conclude the proof, it is sufficient to note that

E

{∑
i∈N

pi‖eik‖2Ωi
k|k

}
≥
(
ωmin
i∈N

pi

)
E

{∑
i∈N
‖eik‖2

}
,

with ω the same constant as in Lemma 1, which implies

E{‖ek‖2} ≤ (ωmini∈N pi)
−1 E{Vk(ek)}.

References

Battistelli, G., Benavoli, A., and Chisci, L. (2012a).
Data-driven communication for state estimation with
sensor networks. Automatica, 48, 926–935.

Battistelli, G., Benavoli, A., and Chisci, L. (2012b).
State estimation with remote sensors and intermit-
tent transmissions. Systems & Control Letters, 61(1),
155–164.

9



Battistelli, G. and Chisci, L. (2014). Kullback-Leibler
average, consensus on probability densities, and dis-
tributed state estimation with guaranteed stability.
Automatica, 50(3), 707–718.

Battistelli, G. and Chisci, L. (2016). Stability of consen-
sus extended Kalman filter for distributed state esti-
mation. Automatica, 68, 169–178.

Battistelli, G., Chisci, L., Mugnai, G., Farina, A., and
Graziano, A. (2015). Consensus-based linear and non-
linear filtering. IEEE Transactions on Automatic con-
trol, 60(5), 1410–1415.

Battistelli, G., Chisci, L., and Selvi, D. (2016). Dis-
tributed Kalman filtering with data-driven communi-
cation. In Proceedings of 19th International Confer-
ence on Information Fusion, Heidelberg, Germany.

Farina, M., Ferrari-Trecate, G., and Scattolini, R.
(2010). Distributed moving horizon estimation for lin-
ear constrained systems. IEEE Transactions on Au-
tomatic Control, 55(11), 2462–2475.

Han, D., Mo, Y., Wu, J., Weerakkody, S., Sinopoli, B.,
and Shi, L. (2015). Stochastic event-triggered sensor
schedule for remote state estimation. IEEE Transac-
tions on Automatic Control, 60(10), 2661–2675.

Julier, S. and Uhlmann, J. (2001). General decentral-
ized data fusion with covariance intersection (CI). In
D. Hall and J. Llinas (eds.) Handbook of Data Fusion,
CRC Press, Boca Raton FL, USA.

Kamal, A.T., Farrell, J.A., and Roy-Chowdhury, A.K.
(2013). Information weighted consensus filters and
their application in distributed camera networks.
IEEE Transactions on Automatic Control, 58(12),
3112–3125.

Li, W., Jia, Y., and Du, J. (2016). Event-triggered
Kalman consensus filter over sensor networks. IET
Control Theory & Applications, 10(1), 103–110.

Li, W., Zhu, S., Chen, C., and Guan, X. (2012). Dis-
tributed consensus filtering based on event-driven
transmission for wireless sensor networks. In Proceed-
ings of the 31st Chinese Control Conference, Hefei,
China, 6588–6593.

Liu, Q., Wang, Z., He, X., and Zhou, D.H. (2015). Event-
based recursive distributed filtering over wireless sen-
sor networks. IEEE Transactions on Automatic Con-
trol, 60(9), 2470–2475.

Marck, J.W. and Sijs, J. (2010). Relevant sampling ap-
plied to event-based state-estimation. In Proceedings
of 4th International Conference on Sensor Technolo-
gies and Applications, Venice, Italy, 619–624.

Meng, X. and Chen, T. (2014). Optimality and stability
of event triggered consensus state estimation for wire-
less sensor networks. In Proceedings of the 2014 Amer-
ican Control Conference, Oregon, U.S.A., 3565–3570.

Noack, B., Sijs, J., Reinhardt, M., and Hanebeck, U.
(2016). Treatment of dependent information in multi-
sensor Kalman filtering and data fusion. In H. Fourati
(ed.) Multisensor Data Fusion: From Algorithms and
Architectural Design to Applications, CRC Press, Boca
Raton FL, USA, 169–192.

Olfati-Saber, R. (2009). Kalman-consensus filter: Op-

timality, stability, performance. In Joint 48th IEEE
Conf. Decision Control and 28th Chinese Control
Conf., Shanghai, China, 7036–7042.

Shi, D., Chen, T., and Shi, L. (2014). An event-triggered
approach to state estimation with multiple point- and
set-valued measurements. Automatica, 50(6), 1641–
1648.

Shi, D., Shi, L., and Chen, T. (2016). Event-Based State
Estimation: A Stochastic Perspective. Studies in Sys-
tems, Decision and Control. Springer.

Shi, L., Johansson, K.H., and Qiu, L. (2011). Time
and event-based sensor scheduling for networks with
limited communication resources. In Proceedings of
the 18th IFAC World Congress, Milan, Italy, 13263–
13268.

Sijs, J., Kester, L., and Noack, B. (2014). A study on
event triggering criteria for estimation. In Proceedings
of the 17th International Conference on Information
Fusion, Salamanca, Spain, 1–8.

Stankovic, S.S., Stankovic, M.S., and Stipanovic, D.M.
(2009). Consensus based overlapping decentralized es-
timation with missing observations and communica-
tion faults. Automatica, 45(6), 1397–1406.

Stone, L.D., Streit, R.L., Corwin, T.L., and Bell, K.L.
(2014). Bayesian Multiple Target Tracking. Artech
House.

Suh, Y., Nguyen, V., and Ro, Y. (2007). Modified
Kalman filter for networked monitoring systems em-
ploying a send-on-delta method. Automatica, 43(2),
332–338.

Trimpe, S. and D’Andrea, R. (2014). Event-based
state estimation with variance-based triggering. IEEE
Transactions on Automatic Control, 59(12), 3266–
3281.

Ugrinovskii, V. (2013). Conditions for detectability in
distributed consensus-based observer networks. IEEE
Transactions on Automatic Control, 58(10), 2659–
2664.

Wu, N., Guo, L., and Yang, C. (2015). Distributed
Kalman consensus filtering algorithm based on event-
driven. In Proceedings of the 2015 IEEE International
Conference on Information and Automation, Lijiang,
China, 211–215.

Xiao, L., Boyd, S., and Lall, S. (2005). A scheme for ro-
bust distributed sensor fusion based on average con-
sensus. In Proceedings of the 4th International Sympo-
sium on Information Processing in Sensor Networks
(IPSN), Los Angelese, CA, USA, 63–70.

Yan, L., Zhang, X., Zhang, Z., and Yang, Y. (2013).
Distributed state estimation in sensor networks with
event-triggered communication. Nonlinear Dynamics,
76(1), 169–181.

10


