

FLORE

Repository istituzionale dell'Università degli Studi

 di Firenze
Lipschitz estimates for systems with ellipticity conditions at infinity

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

Original Citation:
Lipschitz estimates for systems with ellipticity conditions at infinity / Eleuteri Michela; Marcellini Paolo; Mascolo Elvira. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. -
195:(2016), pp. 1575-1603. [10.1007/s10231-015-0529-4]

Availability:
This version is available at: 2158/1012527 since: 2021-03-17T09:44:36Z

Published version:
DOI: 10.1007/s10231-015-0529-4

Terms of use:
Open Access
La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Publisher copyright claim:

LIPSCHITZ ESTIMATES FOR SYSTEMS WITH ELLIPTICITY CONDITIONS AT INFINITY

MICHELA ELEUTERI - PAOLO MARCELLINI - ELVIRA MASCOLO

Abstract

In the general vector-valued case $N \geq 1$ we prove the Lipschitz-continuity of local minimizers to some integrals of the Calculus of Variations of the form $\int_{\Omega} g(x,|D u|) d x$, with some p, q growth conditions only for $|D u| \rightarrow+\infty$ and without further structure conditions on the integrand $g=g(x,|D u|)$. We apply the regularity results to weak solutions to nonlinear elliptic systems of the form $\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} a_{i}^{\alpha}(x, D u)=0, \alpha=1,2, \ldots, N$.

1. Assumptions and statement of the main result

Let Ω be an open bounded subset of \mathbb{R}^{n}, for $n \geq 2$. Let $u: \Omega \rightarrow \mathbb{R}^{N}(N \geq 1), u \in$ $W_{\text {loc }}^{1,1}\left(\Omega ; \mathbb{R}^{N}\right)$ and consider the following functional of the Calculus of Variations

$$
\begin{equation*}
F(u)=\int_{\Omega} f(x, D u) d x \text {. } \tag{1.1}
\end{equation*}
$$

We say that u is a local minimizer of F in (1.1) if $f(x, D u) \in L^{1}(\Omega)$ and

$$
\begin{equation*}
\int_{\operatorname{supp} w} f(x, D u) d x \leq \int_{\operatorname{supp} w} f(x, D u+D w) d x \tag{1.2}
\end{equation*}
$$

for $w \in W^{1,1}\left(\Omega ; \mathbb{R}^{N}\right)$ with supp $w \subset \subset \Omega$. We assume that $f: \Omega \times \mathbb{R}^{N n} \rightarrow[0,+\infty)$ and its derivatives $f_{\xi \xi}, f_{\xi x}$ are Carathéodory functions and f is represented in the form $f(x, \xi)=$ $g(x,|\xi|)$ for a given function $g: \Omega \times[0,+\infty) \rightarrow[0,+\infty)$. Moreover, there exist positive constants t_{0}, λ, Λ such that, for all $\mu, \xi \in \mathbb{R}^{N n}, \mu=\mu_{i}^{\alpha}, \xi=\xi_{i}^{\alpha}, i=1,2, \ldots, n, \alpha=1,2, \ldots N$, for $|\xi| \geq t_{0}$ and for a.e. $x \in \Omega$

$$
\begin{align*}
& \lambda|\xi|^{p-2}|\mu|^{2} \leq \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(x, \xi) \mu_{i}^{\alpha} \mu_{j}^{\beta}, \tag{1.3}\\
& \left|f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(x, \xi)\right| \leq \Lambda|\xi|^{q-2}, \tag{1.4}\\
& \left|f_{\xi x}(x, \xi)\right| \leq h(x)|\xi|^{q-1}, \tag{1.5}
\end{align*}
$$

for some exponents $1<p \leq q$ and $h \in L^{r}(\Omega)$ for some $r>n$. We observe that $g_{t}(x, 0)=0$ since $f(x, \xi)=g(x,|\xi|)$ is a smooth function. We also assume $g(x, 0)=0$. Throughout

[^0]the paper we will denote by B_{ρ} and B_{R} balls of radii, respectively, ρ and R (with $\rho<R$) compactly contained in Ω and with the same center, let us say, $x_{0} \in \Omega$.

Theorem 1.1. Let $u \in W_{\operatorname{loc}}^{1,1}\left(\Omega ; \mathbb{R}^{N}\right)$ be a local minimizer of the integral functional (1.1), whose integrand f satisfies (1.3), (1.4), (1.5) with exponents p, q fulfilling

$$
\begin{equation*}
\frac{q}{p}<1+\frac{\alpha}{n} \quad \text { with } \quad \frac{\alpha}{n}=\frac{1}{n}-\frac{1}{r} \tag{1.6}
\end{equation*}
$$

Then u is locally Lipschitz continuous and for all $0<\rho<R$ the following estimate holds

$$
\begin{equation*}
\|D u\|_{L^{\infty}\left(B_{p} ; \mathbb{R}^{N n}\right)} \leq C\left(\left(1+\|h\|_{L^{r}(\Omega)}^{2}\right)^{\frac{n}{2 \alpha}} \int_{B_{R}}\{1+f(x, D u)\} d x\right)^{\beta} \tag{1.7}
\end{equation*}
$$

with $C \equiv C(n, r, p, q, \lambda, \Lambda, R, \rho)$ and $\beta \equiv \beta(n, p, q, \lambda, \Lambda, R, \rho)$.
As consequence of Theorem 1.1, under the stated assumptions the Lavrentiev phenomenon for the integral functional (1.1) cannot occur.

A further relevant consequence is the following regularity result for weak solutions to elliptic systems. In order to state it, we consider a nonlinear elliptic system of PDE's of the form

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} a_{i}^{\alpha}(x, D u)=0, \quad \alpha=1,2, \ldots, N \tag{1.8}
\end{equation*}
$$

where $a_{i}^{\alpha}(x, \xi)=f_{\xi_{i}^{\alpha}}(x, \xi)$ and $f(x, \xi)=g(x,|\xi|)$. Under the assumptions (1.3), (1.4), (1.5), a solution in the sense of distributions to the elliptic system (1.8) is a map $u \in W_{\operatorname{loc}}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$ such that

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{n} a_{i}^{\alpha}(x, D u) \frac{\partial \varphi^{\alpha}}{\partial x_{i}}=0, \quad \alpha=1,2, \ldots, N \tag{1.9}
\end{equation*}
$$

for every $\varphi=\left(\varphi^{\alpha}\right)_{\alpha=1,2, \ldots, N} \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$. Note that, in general, for differential problems under $p, q-$ growth conditions (if p, q are not close enough, precisely, if (1.6) is not satisfied) the notion of solution to the elliptic system (1.8) in the sense of distributions may differ from the notion of weak solution, the difference being in the class of the allowed test functions φ, which in this second case is $W_{\text {loc }}^{1, q}\left(\Omega ; \mathbb{R}^{N}\right)$ (as necessary to treat variations). I.e., a weak solution to the elliptic (1.8) is a map $u \in W_{\text {loc }}^{1, q}\left(\Omega ; \mathbb{R}^{N}\right)$ which satisfies the integral condition (1.9) for every test function $\varphi=\left(\varphi^{\alpha}\right)_{\alpha=1,2, \ldots, N} \in W_{\text {loc }}^{1, q}\left(\Omega ; \mathbb{R}^{N}\right)$. By Theorem 1.1 we have

Corollary 1.2. Every weak solution to system (1.8) is locally Lipschitz continuous in Ω.
In general the elliptic system (1.8) may even lack a weak solution. Nevertheless, under the assumptions (1.3), (1.4), (1.5) the associated Dirichlet problem can be solved and the two notions of weak solution and solution in the sense of distributions turn out to be equivalent. We have in fact the following regularity results for systems. We consider below a Dirichlet problem, but a similar result could be stated for Neumann conditions, or for more general variational boundary value problems.

Corollary 1.3. Let $u_{0} \in W^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$ be a map such that $\int_{\Omega} f\left(x, D u_{0}\right) d x<+\infty$, with f satisfying the assumptions of Theorem 1.1. Then the Dirichlet problem

$$
\begin{cases}\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} a_{i}^{\alpha}(x, D u)=0 & \alpha=1,2, \ldots, N, \tag{1.10}\\ u=u_{0} & \text { in } \Omega, \\ \text { on } \partial \Omega,\end{cases}
$$

has a weak solution $u \in W^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$. Moreover $u \in W_{\text {loc }}^{1, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$, that is u is locally Lipschitz continuous in Ω.

Corollary 1.4. Let $f \in C^{2}\left(\Omega \times \mathbb{R}^{N n}\right)$ with $f(x, \xi)=g(x,|\xi|)$ satisfying the assumptions of Theorem 1.1. Assume that there exist two positive constants m, M such that, for $0<t \leq 1$, for a.e. $x \in \Omega$

$$
\begin{align*}
& m\left(\mu^{2}+t^{2}\right)^{\frac{p-2}{2}} \leq \frac{g_{t}(x, t)}{t} \leq M\left(\mu^{2}+t^{2}\right)^{\frac{p-2}{2}} \tag{1.11}\\
& m\left(\mu^{2}+t^{2}\right)^{\frac{p-2}{2}} \leq g_{t t}(x, t) \leq M\left(\mu^{2}+t^{2}\right)^{\frac{p-2}{2}} \tag{1.12}\\
& \left|g_{t x}(x, t)\right| \leq M\left(\mu^{2}+t^{2}\right)^{\frac{p-1}{2}} \tag{1.13}
\end{align*}
$$

for some $\mu \in[0,1]$. Then every weak solution $u \in W^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$ to (1.8) is of class $C_{\mathrm{loc}}^{1, \beta}\left(\Omega, \mathbb{R}^{N n}\right)$, for some $0<\beta<1$.

Further regularity of solutions to linear elliptic systems with continuous coefficients applies when we know that the gradient $D u$ is locally in $C^{0, \beta}$ for some $0<\beta<1$. Indeed we state the following result.

Corollary 1.5. Assume that $f \in C^{k-1, \beta}\left(\Omega ; \mathbb{R}^{N}\right)$ with $f(x, \xi)=g(x,|\xi|)$ for some $k \geq 2$ and $g_{t t}(x, t) \geq m>0$ for a.e. $x \in \Omega$, for all $t>0$. Then every weak solution to elliptic system (1.8) is of class $C_{\mathrm{loc}}^{k, \beta}\left(\Omega ; \mathbb{R}^{N}\right)$.

Finally we would like to focus on the fact that our assumptions allow us to consider a class of integrals of the Calculus of Variations with variable exponent, which can be typified by the model integral

$$
\begin{equation*}
I(u)=\int_{\Omega} a(x)|D u|^{p(x)} d x . \tag{1.14}
\end{equation*}
$$

Theorem 1.6. Let $u \in W_{\mathrm{loc}}^{1,1}\left(\Omega ; \mathbb{R}^{N}\right)$ be a local minimizer of the integral functional (1.14) with $a(x), p(x)$ satisfying

$$
\begin{equation*}
a(x) \geq a>0, \quad p(x) \geq p>1, \quad a, p \in W^{1, r}(\Omega), \text { with } r>n . \tag{1.15}
\end{equation*}
$$

Then u is locally Lipschitz continuous in Ω.
The model integral in (1.14) has been already studied by Coscia and Mingione in [8], where the Hölder continuity of the exponent $p(x)$ is assumed. However we emphasis that the integral in (1.14), in our context, is just a model example and our techniques permit to consider more general integrands as in (??).

The Lipschitz regularity for the case $f(x, D u)=a(x) h(|D u|)^{p(x)}$ is considered by the authors in [13].

2. A priori estimates

Let u be a local minimizer of functional (1.1) under the assumptions (1.3), (1.4), (1.5) for a given $t_{0}>0$. We can transform $f(x, \xi)$ into $f\left(x, t_{0} \xi\right)$, which satisfies the same assumptions (1.3), (1.4), (1.5) for $|\xi| \geq 1$ (with different constants depending on t_{0}). Then it is sufficient to obtain the a priori bound and the regularity results for $v=\frac{1}{t_{0}} u$. Therefore, for clarity of exposition and without loss of generality, we can assume $t_{0}=1$.

-CORREZIONI ELVIRA-

In this section we make some supplementary assumption on f.
Assumption 2.1. Assume that $f \in C^{(} \Omega . R^{n N}$ and there exist two positive constant K and H such that, for $\xi \in R^{n N}$ and a.e. $x \in \Omega$

$$
\begin{align*}
& k\left(1+|\xi|^{2}\right)^{\frac{p-2}{2}}|\mu|^{2} \leq \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(x, \xi) \mu_{i}^{\alpha} \mu_{j}^{\beta} \tag{2.1}\\
& \left|f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(x, \xi)\right| \leq K(1+|\xi|)^{\frac{p-2}{2}} \tag{2.2}\\
& \left|f_{\xi x}(x, \xi)\right| \leq \bar{K}(1+|\xi|)^{\frac{p-2}{2}} \tag{2.3}
\end{align*}
$$

The previous assumption permit to consider regular minimizer u Indeed, in the next theorem we obtain an a priori estimate for the L^{∞}-norm of the gradient of u, which are indipendent of K and H.

Proposition 2.2. Let u be a local minimizer of the integral functional (1.1), whose integrand f satisfies Assumption (2.1) and (1.3), (1.4), (1.5), with exponents p, q fulfilling (1.6).

Then there exist constants $C \equiv C(n, r, p, q, \lambda, \Lambda)$ and $\beta \equiv \beta(n, r, p, q, \lambda, \Lambda)$ such that

$$
\begin{equation*}
\|D u\|_{L^{\infty}\left(B_{\rho} ; \mathbb{R}^{N n}\right)} \leq C\left(\left[\frac{\left(1+\|h\|_{L^{r}(\Omega)}^{2}\right)^{\frac{1}{2}}}{(R-\rho)}\right]^{\frac{n}{\alpha}} \int_{B_{R}}\{1+f(x, D u)\} d x\right)^{\beta} \tag{2.4}
\end{equation*}
$$

Proof. Let $u \in W^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$ be a local minimizer of (1.1). We observe that $D f$ has $p-1$ growth, then u satisfies the Euler's first variation

$$
\int_{\Omega} \sum_{i, \alpha} f_{\xi_{i}^{\alpha}}(x, D u) \varphi_{x_{i}}^{\alpha}(x) d x=0 \quad \forall \varphi=\left(\varphi^{\alpha}\right)_{\alpha=1, \ldots, N} \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)
$$

Since by Assumption (2.1) $D^{2} f$ has $p-2$ growth, standard difference quotient technique(see [19], Cap.8, sect.2) we have that

$$
\begin{equation*}
u \in W_{\mathrm{loc}}^{2, \min (2, p)}\left(\Omega ; \mathbb{R}^{N}\right) \text { and }\left(1+|D u|^{2}\right)^{\frac{p-2}{2}}\left|D^{2} u\right| \in L_{\mathrm{loc}}^{1}(\Omega) . \tag{2.5}
\end{equation*}
$$

and moreover the second variation system (see also [19], [22], see also [9, Proposition 3.1])[14])

$$
\begin{align*}
& \int_{\Omega}\left\{\sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \beta}(x, D u) \varphi_{x_{i}}^{\alpha} u_{x_{s} x_{j}}^{\beta}+\sum_{i, \alpha} f_{\xi_{i}^{\alpha} x_{s}}(x, D u) \varphi_{x_{i}}^{\alpha}\right\} d x=0 \tag{2.6}\\
& \forall s=1, \ldots, n, \quad \forall \varphi=\left(\varphi^{\alpha}\right)_{\alpha=1, \ldots, N} \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right) .
\end{align*}
$$

ATTENZIONE DOBBIAMO TOGLIERE IL TEOREMA DI REGOLARITA (TEOREMA 4.4)

FINE-CORREZIONI-ELVIRA

Let $\eta \in C_{0}^{1}(\Omega)$. For any fixed $s \in\{1, \ldots, n\}$, we choose

$$
\varphi^{\alpha}=\eta^{2} u_{x_{s}}^{\alpha} \Phi\left((|D u|-1)_{+}\right)
$$

for $\Phi:[0,+\infty) \rightarrow[0,+\infty)$ locally Lipschitz continuous function, with Φ and Φ^{\prime} increasing and bounded on $[0,+\infty)$, such that $\Phi(0)=0$ and

$$
\begin{equation*}
\Phi^{\prime}(s) s \leq c_{\Phi} \Phi(s) \tag{2.7}
\end{equation*}
$$

for a suitable constant $c_{\Phi}>0$. Here $(a)_{+}$denotes the positive part of $a \in \mathbb{R}$; in the following we denote $\Phi\left((|D u|-1)_{+}\right)=\Phi(|D u|-1)_{+}$. We compute then

$$
\varphi_{x_{i}}^{\alpha}=2 \eta \eta_{x_{i}} u_{x_{s}}^{\alpha} \Phi(|D u|-1)_{+}+\eta^{2} u_{x_{s} x_{i}}^{\alpha} \Phi(|D u|-1)_{+}+\eta^{2} u_{x_{s}}^{\alpha} \Phi^{\prime}(|D u|-1)_{+}\left[(|D u|-1)_{+}\right]_{x_{i}} .
$$

Plugging this expression in (2.6) we obtain:

$$
\begin{align*}
0= & \int_{\Omega} 2 \eta \Phi(|D u|-1)_{+} \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(x, D u) \eta_{x_{i}} u_{x_{s}}^{\alpha} u_{x_{s} x_{j}}^{\beta} d x \\
& +\int_{\Omega} \eta^{2} \Phi(|D u|-1)_{+} \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(x, D u) u_{x_{s} x_{i}}^{\alpha} u_{x_{s} x_{j}}^{\beta} d x \\
& +\int_{\Omega} \eta^{2} \Phi^{\prime}(|D u|-1)_{+} \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(x, D u) u_{x_{s}}^{\alpha} u_{x_{s} x_{j}}^{\beta}\left[(|D u|-1)_{+}\right]_{x_{i}} d x \\
& +\int_{\Omega} 2 \eta \Phi(|D u|-1)_{+} \sum_{i, \alpha} f_{\xi_{i}^{\alpha} x_{s}}(x, D u) \eta_{x_{i}} u_{x_{s}}^{\alpha} d x \\
& +\int_{\Omega} \eta^{2} \Phi(|D u|-1)_{+} \sum_{i, \alpha} f_{\xi_{i}^{\alpha} x_{s}}(x, D u) u_{x_{s} x_{i}}^{\alpha} d x \\
& +\int_{\Omega} \eta^{2} \Phi^{\prime}(|D u|-1)_{+} \sum_{i, \alpha} f_{\xi_{i}^{\alpha} x_{s}}(x,|D u|) u_{x_{s}}^{\alpha}\left[(|D u|-1)_{+}\right]_{x_{i}} d x \\
= & I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6} . \tag{2.8}
\end{align*}
$$

In the following, constants will be denoted by C, regardless of their actual value.
We now sum the previous equation with respect to s from 1 to n and we denote by $\tilde{I}_{1}-\tilde{I}_{6}$ the corresponding integrals.

Let us start with the estimate of the integral \tilde{I}_{1}. By the Cauchy-Schwartz inequality, the Young inequality and (1.4), we have

$$
\begin{align*}
\left|\tilde{I}_{1}\right| & =\left|\int_{\Omega} 2 \eta \Phi(|D u|-1)_{+} \sum_{i, j, s, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(x, D u) \eta_{x_{i}} u_{x_{s}}^{\alpha} u_{x_{s} x_{j}}^{\beta} d x\right| \tag{2.9}\\
& \leq \int_{\Omega} 2 \eta \Phi(|D u|-1)_{+}\left\{\sum_{i, j, s, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(x, D u) \eta_{x_{i}} u_{x_{s}}^{\alpha} \eta_{x_{j}} u_{x_{s}}^{\beta}\right\}^{\frac{1}{2}}
\end{align*}
$$

$$
\begin{aligned}
& \times\left\{\sum_{i, j, s, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(x, D u) u_{x_{s} x_{i}}^{\alpha} u_{x_{s} x_{j}}^{\beta}\right\}^{\frac{1}{2}} d x \\
\leq & C \int_{\Omega}|D \eta|^{2} \Phi(|D u|-1)_{+}|D u|^{q} d x \\
& +\frac{1}{2} \int_{\Omega} \eta^{2} \Phi(|D u|-1)_{+} \sum_{i, j, s, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(x, D u) u_{x_{s} x_{i}}^{\alpha} u_{x_{s} x_{j}}^{\beta} d x .
\end{aligned}
$$

Let us consider \tilde{I}_{3}. First of all we have that

$$
f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(x, \xi)=\left(\frac{g_{t t}(x,|\xi|)}{|\xi|^{2}}-\frac{g_{t}(x,|\xi|)}{|\xi|^{3}}\right) \xi_{i}^{\alpha} \xi_{j}^{\beta}+\frac{g_{t}(x,|\xi|)}{|\xi|} \delta_{\xi_{i}^{\alpha} \xi_{j}^{\beta}} .
$$

At this point

$$
\begin{align*}
& \sum_{i, j, s, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(x, D u) u_{x_{s}}^{\alpha} u_{x_{s} x_{j}}^{\beta}\left[(|D u|-1)_{+}\right]_{x_{i}} \\
= & \left(\frac{g_{t t}(x,|D u|)}{|D u|^{2}}-\frac{g_{t}(x,|D u|)}{|D u|^{3}}\right) \sum_{i, j, s, \alpha, \beta} u_{x_{s}}^{\alpha} u_{x_{s} x_{j}}^{\beta} u_{x_{j}}^{\beta} u_{x_{i}}^{\alpha}\left[(|D u|-1)_{+}\right]_{x_{i}} \\
& +\frac{g_{t}(x,|D u|)}{|D u|} \sum_{s, i, \alpha} u_{x_{s}}^{\alpha} u_{x_{s} x_{i}}^{\alpha}\left[(|D u|-1)_{+}\right]_{x_{i}} \tag{2.10}\\
= & \left(\frac{g_{t t}(x,|D u|)}{|D u|}-\frac{g_{t}(x,|D u|)}{|D u|^{2}}\right) \sum_{\alpha}\left[\sum_{i} u_{x_{i}}^{\alpha}(|D u|)_{x_{i}}\right]^{2}+g_{t}(x,|D u|)\left|D(|D u|-1)_{+}\right|^{2},
\end{align*}
$$

where we used the fact that

$$
\left[(|D u|-1)_{+}\right]_{x_{i}}=(|D u|)_{x_{i}}=\frac{1}{|D u|} \sum_{\alpha, s} u_{x_{i} x_{s}}^{\alpha} u_{x_{s}}^{\alpha} \quad|D u| \geq 1
$$

Thus, coming back to the estimate of \tilde{I}_{3} from (2.10) we deduce

$$
\begin{aligned}
\tilde{I}_{3}= & \int_{\Omega} \eta^{2} \Phi^{\prime}(|D u|-1)_{+}\left\{\left(\frac{g_{t t}(x,|D u|)}{|D u|}-\frac{g_{t}(x,|D u|)}{|D u|^{2}}\right) \sum_{\alpha}\left[\sum_{i} u_{x_{i}}^{\alpha}(|D u|)_{x_{i}}\right]^{2}\right. \\
& \left.+g_{t}(x,|D u|)\left|D(|D u|-1)_{+}\right|^{2}\right\} d x .
\end{aligned}
$$

Now we argue as in the proof of Lemma 4.1 of [29]. Using the inequality

$$
\begin{equation*}
\left|D(|D u|-1)_{+}\right|^{2} \leq\left|D^{2} u\right|^{2}, \quad|D u| \geq 1 \tag{2.11}
\end{equation*}
$$

we conclude that

$$
\tilde{I}_{3} \geq \int_{\Omega} \eta^{2} \Phi^{\prime}(|D u|-1)_{+} \frac{g_{t t}(x,|D u|)}{|D u|} \sum_{\alpha}\left(\sum_{i} u_{x_{i}}^{\alpha}\left[(|D u|-1)_{+}\right]_{x_{i}}\right)^{2} d x \geq 0
$$

where we used the fact that $g_{t t}(x,|D u|) \geq 0$ and $\Phi^{\prime}(|D u|-1)_{+} \geq 0$. By (1.3), we have that

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega} \eta^{2} \Phi(|D u|-1)_{+}|D u|^{p-2}\left|D^{2} u\right|^{2} d x \leq \frac{1}{2} \tilde{I}_{2}+\tilde{I}_{3} \\
\leq & \left|\tilde{I}_{4}\right|+\left|\tilde{I}_{5}\right|+\left|\tilde{I}_{6}\right|+C \int_{\Omega}|D \eta|^{2} \Phi(|D u|-1)_{+}|D u|^{q} d x .
\end{aligned}
$$

We now deal with $\left|\tilde{I}_{4}\right|$. We have

$$
\begin{aligned}
\left|\tilde{I}_{4}\right| & =\left|\int_{\Omega} 2 \eta \Phi(|D u|-1)_{+} \sum_{i, s, \alpha} f_{\xi_{i}^{\alpha} x_{s}}(x, D u) \eta_{x_{i}} u_{x_{s}}^{\alpha} d x\right| \\
& \stackrel{(1.5)}{\leq} \int_{\Omega} 2 \eta \Phi(|D u|-1)_{+} h(x)|D u|^{q-1} \sum_{i, s, \alpha}\left|\eta_{x_{i}} u_{x_{s}}^{\alpha}\right| d x \\
& \leq \int_{\Omega}\left(\eta^{2}+|D \eta|^{2}\right) h(x) \Phi(|D u|-1)_{+}|D u|^{q} d x .
\end{aligned}
$$

Consider $\left|\tilde{I}_{5}\right|$, we have

$$
\begin{aligned}
\left|\tilde{I}_{5}\right| & =\left|\int_{\Omega} \eta^{2} \Phi(|D u|-1)_{+} \sum_{i, s, \alpha} f_{\xi_{i}^{\alpha} x_{s}}(x, D u) u_{x_{s} x_{j}}^{\alpha} d x\right| \\
& \stackrel{(1.5)}{\leq} \int_{\Omega} \eta^{2} \Phi(|D u|-1)_{+} h(x)|D u|^{q-1}\left|D^{2} u\right| d x \\
& \leq \int_{\Omega}\left[\eta^{2} \Phi(|D u|-1)_{+}|D u|^{p-2}\left|D^{2} u\right|^{2}\right]^{1 / 2}\left[\eta^{2} \Phi(|D u|-1)_{+}|h(x)|^{2}|D u|^{2 q-p}\right]^{1 / 2} d x \\
& \leq \varepsilon \int_{\Omega} \eta^{2} \Phi(|D u|-1)_{+}|D u|^{p-2}\left|D^{2} u\right|^{2} d x+C_{\varepsilon} \int_{\Omega} \eta^{2} \Phi(|D u|-1)_{+}|h(x)|^{2}|D u|^{2 q-p} d x,
\end{aligned}
$$

where in the last line we used the Young inequality. Finally, for any $0<\delta<1$

$$
\begin{aligned}
&\left|\tilde{I}_{6}\right|=\left|\int_{\Omega} \eta^{2} \sum_{i, s, \alpha} f_{\xi_{i}^{\alpha} x_{s}}(x, D u) u_{x_{s}}^{\alpha} \Phi^{\prime}(|D u|-1)_{+}\left[(|D u|-1)_{+}\right]_{x_{i}} d x\right| \\
& \stackrel{(1.5)}{\leq} \int_{\Omega} \eta^{2} \Phi^{\prime}(|D u|-1)_{+} h(x)|D u|^{q-1}|D u|\left|D(|D u|-1)_{+}\right| d x \\
& \stackrel{(2.11)}{\leq} \int_{\Omega} \eta^{2} \Phi^{\prime}(|D u|-1)_{+} h(x)|D u|^{q}\left|D^{2} u\right| d x \\
&=\int_{\Omega} \eta^{2} \Phi^{\prime}(|D u|-1)_{+} h(x)\left[(|D u|-1)_{+}+\delta\right]\left[(|D u|-1)_{+}+\delta\right]^{-1}|D u|^{q}\left|D^{2} u\right| d x \\
& \leq \int_{\Omega} \eta^{2}\left\{\frac{1}{c_{\Phi}} \Phi^{\prime}(|D u|-1)_{+}\left[(|D u|-1)_{+}+\delta\right]|D u|^{p-2}\left|D^{2} u\right|^{2}\right\}^{1 / 2} \\
& \times\left\{c_{\Phi} \Phi^{\prime}(|D u|-1)_{+}|h(x)|^{2}|D u|^{2 q-p+2}\left[(|D u|-1)_{+}+\delta\right]^{-1}\right\}^{1 / 2} d x \\
& \frac{\varepsilon}{c_{\Phi}} \int_{\Omega} \eta^{2} \Phi^{\prime}(|D u|-1)_{+}\left[(|D u|-1)_{+}+\delta\right]|D u|^{p-2}\left|D^{2} u\right|^{2} d x
\end{aligned}
$$

$$
+C_{\varepsilon} c_{\Phi} \int_{\Omega} \eta^{2} \Phi^{\prime}(|D u|-1)_{+}|h(x)|^{2}|D u|^{2 q-p+2}\left[(|D u|-1)_{+}+\delta\right]^{-1} d x
$$

We concentrate our attention on the first term in the last inequality. We split the set Ω as $\Omega=\{x:|D u(x)| \geq 2\} \cup\{x:|D u(x)| \leq 2\}$ and we observe that in the set $\{x:|D u(x)| \geq 2\}$ we also have $(|D u|-1)_{+} \geq 1$ which in turn implies

$$
\begin{equation*}
(|D u|-1)_{+}+\delta \leq 2(|D u|-1)_{+} \tag{2.12}
\end{equation*}
$$

as long as we have chosen $\delta<1$.

-CORREZIONI-Elvira-_

Therefore we have, using (2.7) and the fact that Φ^{\prime} is increasing

$$
\begin{aligned}
& \int_{\Omega} \eta^{2} \Phi^{\prime}(|D u|-1)_{+}\left[(|D u|-1)_{+}+\delta\right]|D u|^{p-2}\left|D^{2} u\right|^{2} d x \\
\leq & \int_{|D u| \geq 2} \eta^{2} \Phi^{\prime}(|D u|-1)_{+}\left[(|D u|-1)_{+}+\delta\right]|D u|^{p-2}\left|D^{2} u\right|^{2} d x \\
& +\int_{1<|D u| \leq 2} \eta^{2} \Phi^{\prime}(|D u|-1)_{+}\left[(|D u|-1)_{+}+\delta\right]|D u|^{p-2}\left|D^{2} u\right|^{2} d x \\
\stackrel{(2.12)}{\leq} & 2 \int_{|D u| \geq 2} \eta^{2} \Phi^{\prime}(|D u|-1)_{+}(|D u|-1)_{+}|D u|^{p-2}\left|D^{2} u\right|^{2} d x \\
& +\int_{1<|D u| \leq 2} \eta^{2} \Phi^{\prime}(|D u|-1)_{+}(|D u|-1)_{+}|D u|^{p-2}\left|D^{2} u\right|^{2} d x \\
& +\delta \int_{1<|D u| \leq 2} \eta^{2} \Phi^{\prime}(|D u|-1)_{+}|D u|^{p-2}\left|D^{2} u\right|^{2} d x \\
\stackrel{(2.7)}{\leq} & 2 c_{\Phi} \int_{\Omega} \eta^{2} \Phi(|D u|-1)_{+}|D u|^{p-2}\left|D^{2} u\right|^{2} d x+\delta \int_{1<|D u| \leq 2} \eta^{2} \Phi^{\prime}(|D u|-1)_{+}|D u|^{p-2}\left|D^{2} u\right|^{2} d x .
\end{aligned}
$$

Now, choosing ε sufficiently small and putting together all the estimates obtained for $\left|\tilde{I}_{4}\right|,\left|\tilde{I}_{5}\right|,\left|\tilde{I}_{6}\right|$, we deduce

$$
\begin{align*}
& \int_{\Omega} \eta^{2} \Phi(|D u|-1)_{+}|D u|^{p-2}\left|D^{2} u\right|^{2} d x \tag{2.13}\\
\leq & C c_{\Phi} \int_{\Omega}\left(\eta^{2}+|D \eta|^{2}\right)\left(1+h^{2}(x)\right)|D u|^{2 q-p} \\
& \times\left[\Phi(|D u|-1)_{+}|D u|^{2 q-p}+\Phi^{\prime}(|D u|-1)_{+}|D u|^{2}\left[(|D u|-1)_{+}+\delta\right]^{-1}\right] d x \\
& +\delta \int_{1<|D u| \leq 2} \eta^{2} \Phi^{\prime}(|D u|-1)_{+}|D u|^{p-2}\left|D^{2} u\right|^{2} d x .
\end{align*}
$$

with a constant C depending on n, r, p, q.
Now we define

$$
\begin{equation*}
\Phi(s):=(1+s)^{\gamma-2} s^{2} \quad \gamma \geq 0 ; \tag{2.14}
\end{equation*}
$$

we have

$$
\begin{equation*}
\Phi^{\prime}(s)=(\gamma s+2) s(1+s)^{\gamma-3} . \tag{2.15}
\end{equation*}
$$

This function satisfies (2.7) with $c_{\Phi}=2(1+\gamma)$.
We now approximate this function Φ by a sequence of functions Φ_{h}, each of them being equal to Φ in the interval $[0, h]$, and then extended to $[h,+\infty)$ with the constant value $\Phi(h)$.Moreover Φ_{h} and Φ_{h}^{\prime} converge monotonically to Φ and Φ^{\prime} respectively. The expression of Φ_{h}) can be inserted in (2.13) and then it is possible to pass to the limit as $h \rightarrow+\infty$ by the monotone convergence theorem. Therefore we obtain for every $0<\delta<1$

$$
\begin{aligned}
& \int_{\Omega} \eta^{2}\left(1+(|D u|-1)_{+}\right)^{\gamma-2}(|D u|-1)_{+}^{2}|D u|^{p-2}\left|D^{2} u\right|^{2} d x \\
\leq & C(1+\gamma)^{2} \int_{\Omega}\left(\eta^{2}+|D \eta|^{2}\right)\left(1+h(x)^{2}\right)\left(1+(|D u|-1)_{+}\right)^{\gamma+2 q-p} d x \\
& +\delta C(\gamma) \int_{1<|D u|<2} \eta^{2}|D u|^{p-2}\left|D^{2} u\right|^{2} d x,
\end{aligned}
$$

where we used the fact that

$$
\frac{(|D u|-1)_{+}}{(|D u|-1)_{+}+\delta} \leq 1 \quad \forall \delta>0 .
$$

and $\Phi^{\prime}(t-1)_{+} \leq C(\gamma)$ when $1<t<2$. Moreover, by the following Lemma 2.3, (2.5) implies

$$
\int_{1<|D u|<2} \eta^{2}|D u|^{p-2}\left|D^{2} u\right|^{2} d x \leq C \int_{1<|D u|<2} \eta^{2}\left(1+|D u|^{2}\right)^{\frac{p-2}{2}}\left|D^{2} u\right| d x<+\infty
$$

so we can pass to the limit for $\delta \rightarrow 0$ and the last term in the previous inequality vanishes.

——FINE-CORREZIONI-ELVIRA-_

Since $h \in L^{r}(\Omega)$, by the Hölder inequality and by denoting

$$
\begin{equation*}
m:=\left(\frac{r}{2}\right)^{\prime}=\frac{r}{r-2}, \tag{2.16}
\end{equation*}
$$

we have, using (2.11)

$$
\begin{align*}
& \int_{\Omega} \eta^{2}\left(1+(|D u|-1)_{+}\right)^{\gamma-2}(|D u|-1)_{+}^{2}|D u|^{p-2}\left|D\left((|D u|-1)_{+}\right)\right|^{2} d x \\
\leq & C(1+\gamma)^{2} H\left[\int_{\Omega}\left(\eta^{2}+|D \eta|^{2}\right)^{m}\left(1+(|D u|-1)_{+}\right)^{(\gamma+2 q-p) m} d x\right]^{\frac{1}{m}} \tag{2.17}
\end{align*}
$$

by denoting, from now on

$$
\begin{equation*}
H:=\left(1+\|h\|_{L^{r}(\Omega)}^{2}\right) \tag{2.18}
\end{equation*}
$$

and where C now depends also on r and $|\Omega|$ (and so on n).
Let us introduce

$$
\begin{equation*}
G(t)=1+\int_{0}^{t} \sqrt{\Phi(s)}(1+s)^{\frac{p-2}{2}} d s=1+\int_{0}^{t}(1+s)^{\frac{\gamma}{2}+\frac{p}{2}-2} s d s \tag{2.19}
\end{equation*}
$$

and we obtain the following upper bound for $[G(t)]^{2}$

$$
\begin{equation*}
[G(t)]^{2} \leq 4(1+t)^{\gamma+p} \leq 4(1+t)^{\gamma+2 q-p}, \tag{2.20}
\end{equation*}
$$

where we used the fact that $p \leq q \leq 2 q-p$. On the other hand

$$
\begin{equation*}
G_{t}(t)=\sqrt{\Phi(t)}(1+t)^{\left.\left.\frac{p-2}{2} \stackrel{(2.14)}{=}(1+t)^{\frac{\gamma}{2}+\frac{p}{2}-2} t\right) . t()^{2}\right)} \tag{2.21}
\end{equation*}
$$

which in turn allows us to give the following estimate for the gradient of the function $w=$ $\eta G\left((|D u|-1)_{+}\right)$

$$
\begin{align*}
& \int_{\Omega}\left|D\left(\eta G\left((|D u|-1)_{+}\right)\right)\right|^{2} d x \tag{2.22}\\
\leq \quad & 2 \int_{\Omega}|D \eta|^{2}\left|G\left((|D u|-1)_{+}\right)\right|^{2} d x \\
& +2 \int_{\Omega} \eta^{2}\left[G_{t}\left((|D u|-1)_{+}\right)\right]^{2}\left[D\left((|D u|-1)_{+}\right)\right]^{2} d x \\
\leq(2.17),(2.20),(2.21) & C(1+\gamma)^{2} H\left[\int_{\Omega}\left(\eta^{2}+|D \eta|^{2}\right)^{m}\left[1+(|D u|-1)_{+}^{(\gamma+2 q-p) m}\right] d x\right]^{\frac{1}{m}} .
\end{align*}
$$

Now, let $2^{*}=\frac{2 n}{n-2}$ for $n>2$, while 2^{*} equal to any fixed real number greater than 2 , if $n=2$. By Sobolev's inequality there exists a constant C such that

$$
\begin{equation*}
\left\{\int_{\Omega}\left[\eta G\left((|D u|-1)_{+}\right)\right]^{2^{*}} d x\right\}^{\frac{2}{2^{*}}} \leq C \int_{\Omega}\left|D\left(\eta G\left((|D u|-1)_{+}\right)\right)\right|^{2} d x \tag{2.23}
\end{equation*}
$$

Moreover, since $r>n$, we have

$$
\begin{equation*}
1 \leq m \stackrel{(2.16)}{=} \frac{r}{r-2}<\frac{n}{n-2}=\frac{2^{*}}{2} . \tag{2.24}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
(2 q-p) m=2(q-p) m+p m \tag{2.25}
\end{equation*}
$$

moreover, in view of the strict inequality in (1.6), we infer the existence of $0<\epsilon<1$ such that

$$
\begin{equation*}
(q-p)+\epsilon\left(\frac{1}{n}-\frac{1}{r}\right) \leq p\left(\frac{1}{n}-\frac{1}{r}\right) . \tag{2.26}
\end{equation*}
$$

We also set

$$
\begin{equation*}
\tilde{M}:=2(q-p) m+p(m-1)+\epsilon \quad \tilde{N}:=p-\epsilon . \tag{2.27}
\end{equation*}
$$

We remark that $\tilde{M}>0$ because $q \geq p, m \geq 1, \epsilon>0$ and $\tilde{N}>0$ since $\epsilon<1<p$; moreover we observe that

$$
\begin{equation*}
\tilde{M}+\tilde{N}=(2 q-p) m \tag{2.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{M}>(2 q-p) m-p . \tag{2.29}
\end{equation*}
$$

Now we prove that

$$
\begin{equation*}
\frac{1}{(\gamma+p)^{2}}\left[\int_{\Omega} \eta^{2^{*}}\left[1+(|D u|-1)_{+}\right]^{\left(\gamma+\frac{\tilde{u}}{m}\right) \frac{2^{*}}{2}+\tilde{N}} d x\right]^{\frac{2}{2^{*}}} \leq 4\left(\int_{\Omega}\left[\eta G\left((|D u|-1)_{+}\right)\right]^{2^{*}}\right)^{\frac{2}{2^{*}}} . \tag{2.30}
\end{equation*}
$$

In view of (2.19), by setting $t:=(|D u|-1)_{+},(2.30)$ is proved if

$$
\begin{equation*}
\frac{1}{\gamma+p}(1+t)^{\left(\frac{\gamma}{2}+\frac{\bar{M}}{2 m}+\frac{\bar{N}}{2^{*}}\right)} \leq 2\left(1+\int_{0}^{t}(1+s)^{\frac{\gamma}{2}+\frac{p}{2}-2} s d s\right) . \tag{2.31}
\end{equation*}
$$

Now, if $t \leq 1$, then easily

$$
\frac{1}{\gamma+p}(1+t)^{\left(\frac{\gamma}{2}+\frac{\bar{U}}{2 m}+\frac{\tilde{N}}{2^{*}}\right)} \leq \frac{2}{\gamma+p} \leq 2 \leq 2\left(1+\int_{0}^{t}(1+s)^{\frac{\gamma}{2}+\frac{p}{2}-2} s d s\right)
$$

so that (2.31) is achieved. Let now $t \geq 1$, then (2.31) becomes, after differentiation

$$
\begin{equation*}
\frac{\frac{\gamma}{2}+\frac{\tilde{M}}{2 m}+\frac{\tilde{N}}{2^{*}}}{\gamma+p}(1+t)^{\frac{\gamma}{2}+\frac{\tilde{M}}{2 m}+\frac{\tilde{N}}{2^{*}-1}} \leq 2(1+t)^{\frac{\gamma}{2}+\frac{p}{2}-2} t \tag{2.32}
\end{equation*}
$$

If we are able to show that

$$
\begin{equation*}
\frac{\tilde{M}}{2 m}+\frac{\tilde{N}}{2^{*}} \leq \frac{p}{2} \tag{2.33}
\end{equation*}
$$

then we would have

$$
\frac{\frac{\gamma}{2}+\frac{\tilde{M}}{2 m}+\frac{\tilde{N}}{2^{*}}}{\gamma+p}(1+t)^{\frac{\tilde{M}}{2 m}+\frac{\tilde{N}}{2^{*}}} \leq \frac{1}{2}(1+t)^{\frac{p}{2}}=\frac{1}{2}(1+t)^{\frac{p-2}{2}}(1+t)^{t \geq 1}(1+t)^{\frac{p-2}{2}} t
$$

and so also (2.32) is satisfied.
Thus all is reduced to prove (2.33), which is equivalent to

$$
(q-p)+\frac{p}{2}-\frac{p}{2 m}+\frac{\epsilon}{2 m}+\frac{p}{2^{*}}-\frac{\epsilon}{2^{*}} \leq \frac{p}{2} .
$$

Since

$$
\frac{1}{2 m}-\frac{1}{2^{*}}=\frac{r-2}{2 r}-\frac{n-2}{2 n}=\frac{n(r-2)-r(n-2)}{2 n r}=\frac{r-n}{n r}=\frac{1}{n}-\frac{1}{r}=\frac{\alpha}{n},
$$

then, by (2.26), the claim (2.30) is satisfied.
By collecting (2.22), (2.23) and (2.30), we obtain

$$
\begin{align*}
& {\left[\int_{\Omega} \eta^{2^{*}}\left[1+(|D u|-1)_{+}\right]^{\left(\gamma+\frac{\tilde{N}}{m}\right) \frac{2^{*}}{2}}\left[1+(|D u|-1)_{+}\right]^{\tilde{N}} d x\right]^{\frac{2}{2^{*}}} } \\
\leq & C H(\gamma+2 q-p)^{4}\left[\int_{\Omega}\left(\eta^{2}+|D \eta|^{2}\right)^{m}\left[1+(|D u|-1)_{+}\right]^{(\gamma+2 q-p) m} d x\right]^{\frac{1}{m}}, \tag{2.34}
\end{align*}
$$

where the constant C only depends on $n, r, p, q, \lambda, \Lambda$ but is independent of γ.
Now, let η to be equal to 1 in B_{ρ}, with $\operatorname{supp} \eta \subset B_{R}$ and such that $|D \eta| \leq \frac{1}{(R-\rho)}$. Let us denote by

$$
\kappa:=\gamma m+\tilde{M} \stackrel{(2.28)}{=}(\gamma+2 q-p) m-\tilde{N} .
$$

We notice that $\kappa \geq \tilde{M}$ since $\gamma \geq 0$; moreover $\frac{2^{*}}{2 m}>1$ due to (2.24). Therefore, from (2.34) we now have

$$
\begin{equation*}
\left\{\int_{B_{\rho}}\left[1+(|D u|-1)_{+}\right]^{\frac{2}{}^{\frac{\alpha^{*}}{2 m}}}\left[1+(|D u|-1)_{+}\right]^{\tilde{N}} d x\right\}^{\frac{2 m}{2^{*}}} \tag{2.35}
\end{equation*}
$$

$$
\leq C H^{m}\left(\frac{(\kappa+\tilde{N})^{2}}{R-\rho}\right)^{2 m} \int_{B_{R}}\left[1+(|D u|-1)_{+}\right]^{\kappa}\left[1+(|D u|-1)_{+}\right]^{\tilde{N}} d x
$$

where the constant C only depends on $n, r, p, q, \lambda, \Lambda$.
Fixed \bar{R} and $\bar{\rho}$, with $\bar{R}>\bar{\rho}$, we define the decreasing sequence of radii $\left\{\rho_{i}\right\}_{i \geq 0}$

$$
\rho_{i}=\bar{\rho}+\frac{\bar{R}-\bar{\rho}}{2^{i}} \quad \forall i \geq 0 .
$$

We observe that $\rho_{0}=\bar{R}>\rho_{i}>\rho_{i+1}>\bar{\rho}$. We also define the increasing sequence of exponents $\left\{\kappa_{i}\right\}_{i \geq 0}$ such that

$$
\kappa_{0}:=\tilde{M} \quad \kappa_{i+1}=\kappa_{i} \frac{2^{*}}{2 m} \quad i \geq 0
$$

We notice that $\kappa_{0}>0$ because $\tilde{M}>0$. We rewrite (2.35) with $R=\rho_{i}, \rho=\rho_{i+1}, \kappa=\kappa_{i}$; then, after observing that

$$
R-\rho:=\rho_{i}-\rho_{i+1}=\frac{\bar{R}-\bar{\rho}}{2^{i+1}}
$$

we obtain for every $i \geq 0$

$$
\begin{aligned}
& \left\{\int_{B_{\rho_{i+1}}}\left[1+(|D u|-1)_{+}\right]^{\kappa_{i+1}}\left[1+(|D u|-1)_{+}\right]^{\tilde{N}} d x\right\}^{\frac{1}{\kappa_{i+1}}} \\
\leq & {\left[C H^{m}\left(\frac{\left(\kappa_{i}+\tilde{N}\right)^{\frac{3}{2}} 2^{i+1}}{\bar{R}-\bar{\rho}}\right)^{2 m}\right]^{\frac{1}{\kappa_{i}}}\left(\int_{B_{\rho_{i}}}\left[1+(|D u|-1)_{+}\right]^{\kappa_{i}}\left[1+(|D u|-1)_{+}\right]^{\tilde{N}} d x\right)^{\frac{1}{\kappa_{i}}} . }
\end{aligned}
$$

The last inequality can be rewritten as

$$
\begin{equation*}
A_{i+1} \leq C_{i} A_{i} \tag{2.36}
\end{equation*}
$$

having set

$$
\begin{aligned}
& A_{i}:=\left(\int_{B_{\rho_{i}}}\left[1+(|D u|-1)_{+}\right]^{\kappa_{i}}\left[1+(|D u|-1)_{+}\right]^{\tilde{N}} d x\right)^{\frac{1}{\kappa_{i}}} \\
& C_{i}:=\left[C H^{m}\left(\frac{\left(\kappa_{i}+\tilde{N}\right)^{\frac{3}{2}} 2^{i+1}}{\bar{R}-\bar{\rho}}\right)^{2 m}\right]^{\frac{1}{\kappa_{i}}} .
\end{aligned}
$$

By iteration of (2.36), we deduce

$$
\begin{align*}
& \left\{\int_{B_{\overline{\mathcal{P}}}}\left[1+(|D u|-1)_{+}\right]^{\kappa_{0}\left(\frac{2^{*}}{2 m}\right)^{i+1}}\left[1+(|D u|-1)_{+}\right]^{\tilde{N}} d x\right\}^{\left(\frac{2 m}{2^{*}}\right)^{i+1}} \\
\leq & \tilde{C} \int_{B_{\bar{R}}}\left[1+(|D u|-1)_{+}\right]^{(2 q-p) m} d x \tag{2.37}
\end{align*}
$$

where, by taking into account that $m>1$, we have

$$
\begin{aligned}
\tilde{C} & \leq \prod_{k=0}^{\infty}\left[C H^{m}\left(\frac{\left(\kappa_{k}+\tilde{N}\right)^{\frac{3}{2}} 2^{k+1}}{\bar{R}-\bar{\rho}}\right)^{2 m}\right]^{\left(\frac{2 m}{2^{*}}\right)^{k}} \\
& \left.=\prod_{k=0}^{\infty}\left[C H^{m}\left(\frac{\left[\tilde{M}\left(\frac{2^{*}}{2 m}\right)^{k}+\tilde{N}\right]^{\frac{3}{2}} 2^{k+1}}{\bar{R}-\bar{\rho}}\right)^{2 m}\right]^{\left(\frac{2 m}{2^{*}}\right)^{k}}\right] \\
& \leq \prod_{k=0}^{\infty}\left[\frac{2 C H^{m}[(2 q-p) m]^{3 m}}{(\bar{R}-\bar{\rho})^{2 m}}\right]^{\left(\frac{2 m}{2^{*}}\right)^{k}} \\
& \leq \frac{C H^{\frac{1}{2\left(\frac{1}{n}-\frac{1}{r}\right)}}}{(\bar{R}-\bar{\rho})^{\frac{22^{*} m}{2^{*}-2 m}}}
\end{aligned}
$$

with a constant $C=C(n, r, p, q)$. Let us denote

$$
\begin{equation*}
\tau:=\frac{22^{*} m}{2^{*}-2 m}=\frac{1}{\frac{1}{n}-\frac{1}{r}} ; \tag{2.38}
\end{equation*}
$$

thus (2.37) implies

$$
\begin{equation*}
\left\{\int_{B_{\bar{\rho}}}\left[1+(|D u|-1)_{+}\right]^{\kappa_{0}\left(\frac{2^{*}}{2 m}\right)^{i+1}} d x\right\}^{\left(\frac{2 m}{2^{*}}\right)^{i+1}} \leq C\left[\frac{\sqrt{H}}{(\bar{R}-\bar{\rho})}\right]^{\tau} \int_{B_{\bar{R}}}\left[1+(|D u|-1)_{+}\right]^{(2 q-p) m} d x \tag{2.39}
\end{equation*}
$$

At this point we pass to the limit as $i \rightarrow+\infty$, obtaining

$$
\begin{align*}
& \sup \left\{\left[1+(|D u|-1)_{+}\right]^{\tilde{M}}: x \in B_{\bar{\rho}}\right\}=\lim _{i \rightarrow+\infty}\left\{\int_{B_{\bar{\rho}}}\left[1+(|D u|-1)_{+}\right]^{\tilde{M}\left(\frac{2^{*}}{2 m}\right)^{i+1}}\right\}^{\left(\frac{2 m}{2^{*}}\right)^{i+1}} \\
\leq & C\left[\frac{\sqrt{H}}{(\bar{R}-\bar{\rho})}\right]^{\tau} \int_{B_{\bar{R}}}\left[1+(|D u|-1)_{+}\right]^{(2 q-p) m} d x . \tag{2.40}
\end{align*}
$$

Let us now set

$$
\begin{equation*}
V(x):=1+(|D u|(x)-1)_{+} \quad \text { and } \quad s:=(2 q-p) m \tag{2.41}
\end{equation*}
$$

then estimate (2.40) becomes

$$
\begin{equation*}
\sup _{x \in B_{\rho}}|V(x)| \leq C\left(\left[\frac{\sqrt{H}}{(\bar{R}-\bar{\rho})}\right]^{\frac{\tau}{s}}\|V\|_{L^{s}\left(B_{R}\right)}\right)^{\frac{s}{M}} \tag{2.42}
\end{equation*}
$$

for every ρ, R such that $0<\rho<R \leq \rho+1$ and where $C=C(n, r, p, q)$.
We now use the classical interpolation inequality

$$
\begin{equation*}
\|V\|_{L^{s}\left(B_{\rho}\right)} \leq\|V\|_{L^{p}\left(B_{\rho}\right)}^{\frac{p}{s}}\|V\|_{L^{\infty}\left(B_{\rho}\right)}^{1-\frac{p}{s}}, \tag{2.43}
\end{equation*}
$$

which permits to estimate the essential supremum of $|D u|$ in terms of its L^{p}-norm. In fact (2.42) and (2.43) give

$$
\begin{equation*}
\|V\|_{L^{s}\left(B_{\rho}\right)} \leq C^{1-\frac{p}{s}}\|V\|_{L^{p}\left(B_{\rho}\right)}^{\frac{p}{s}}\left(\left[\frac{\sqrt{H}}{(\bar{R}-\bar{\rho})}\right]^{\frac{\tau}{s}}\|V\|_{L^{s}\left(B_{R}\right)}\right)^{\theta} \tag{2.44}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta:=\frac{s}{\tilde{M}}\left(1-\frac{p}{s}\right)=\frac{1}{\tilde{M}}(s-p) \stackrel{(2.41)}{=} \frac{1}{\tilde{M}}[(2 q-p) m-p] \stackrel{(2.29)}{<} 1 . \tag{2.45}
\end{equation*}
$$

For $0<\bar{\rho}<\bar{R}$ and for every $k \geq 0$, let us define

$$
\rho_{k}:=\bar{R}-(\bar{R}-\bar{\rho}) 2^{-k} \quad B_{k}:=\|V\|_{L^{s}\left(B_{\rho_{k}}\right)} .
$$

By inserting in (2.44) $\rho=\rho_{k}$ and $R=\rho_{k+1}$ (so that $R-\rho=(\bar{R}-\bar{\rho}) 2^{-(k+1)}$) we have for every $k \geq 0$

$$
\begin{equation*}
B_{k} \leq C^{1-\frac{p}{s}}\|V\|_{L^{p}\left(B_{\bar{R}}\right)}^{\frac{p}{s}}\left(2^{\frac{\tau}{s}(k+1)}\left[\frac{\sqrt{H}}{(\bar{R}-\bar{\rho})}\right]^{\frac{\tau}{s}} B_{k+1}\right)^{\theta} \tag{2.46}
\end{equation*}
$$

By iteration of (2.46), we deduce for $k \geq 0$

$$
\begin{equation*}
B_{0} \leq\left(C^{1-\frac{p}{s}}\left[\frac{\sqrt{H}}{(\bar{R}-\bar{\rho})}\right]^{\frac{\tau}{s} \theta}\|V\|_{L^{p}\left(B_{\bar{R}}\right)}^{\frac{p}{s}}\right)^{\sum_{i=0}^{k} \theta^{i}} 2^{\frac{\tau}{s} \sum_{i=0}^{k+1} i \theta^{i}}\left(B_{k+1}\right)^{\theta^{k+1}} \tag{2.47}
\end{equation*}
$$

By (2.45), the series appearing in (2.47) are convergent.
Since B_{k} is bounded independently of k, i.e.

$$
B_{k+1} \leq\|V\|_{L^{s}\left(B_{\bar{R}}\right)}
$$

we can pass to the limit as $k \rightarrow+\infty$ and we obtain for every $0<\rho<R$ with a constant $C=C(n, r, p, q)$ independent of k

$$
\begin{equation*}
\|V\|_{L^{s}\left(B_{\rho}\right)} \leq C\left(\left[\frac{\sqrt{H}}{(R-\rho)}\right]^{\frac{\tau}{s} \theta}\|V\|_{L^{p}\left(B_{R}\right)}^{\frac{p}{s}}\right)^{\frac{1}{1-\theta}} \tag{2.48}
\end{equation*}
$$

Combining (2.42) and (2.48), by setting $\rho^{\prime}=\frac{(R+\rho)}{2}$ we have

$$
\begin{aligned}
\|V\|_{L^{\infty}\left(B_{\rho}\right)} & \leq C\left(\left[\frac{\sqrt{H}}{\left(\rho^{\prime}-\rho\right)}\right]^{\frac{\tau}{s}}\|V\|_{L^{s}\left(B_{\rho^{\prime}}\right)}\right)^{\frac{s}{M}} \\
& \leq C\left(\left[\frac{\sqrt{H}}{\left(\rho^{\prime}-\rho\right)}\right]^{\frac{\tau}{s}(1-\theta)}\left[\frac{\sqrt{H}}{\left(R-\rho^{\prime}\right)}\right]^{\frac{\tau}{s} \theta}\|V\|_{L^{p}\left(B_{R}\right)}^{\frac{p}{s}}\right)^{\frac{s}{M} \frac{1}{1-\theta}}
\end{aligned}
$$

now, since

$$
\left(\rho^{\prime}-\rho\right)=\left(R-\rho^{\prime}\right)=\frac{R-\rho}{2}
$$

this implies

$$
\|D u\|_{L^{\infty}\left(B_{\rho}\right)} \leq C\left[\frac{\sqrt{H}}{(R-\rho)}\right]^{\tilde{\beta}}\left(\int_{B_{R}}\left(1+|D u|^{p}\right) d x\right)^{\beta}
$$

with

$$
\begin{align*}
& \beta:=\frac{1}{\tilde{M}(1-\theta)} \stackrel{(2.45)}{=} \frac{1}{\tilde{M}\left(1-\frac{s}{\tilde{M}}+\frac{p}{M}\right)}=\frac{1}{\tilde{M}-s+p} \stackrel{(2.25),(2.27)}{=} \frac{1}{\epsilon}>1 \tag{2.49}\\
& \tilde{\beta}:=\frac{\tau}{s} \frac{s}{\tilde{M}} \frac{1}{1-\theta} \stackrel{(2.38),(2.49)}{=} \frac{1}{\frac{1}{n}-\frac{1}{r}} \frac{1}{\epsilon}=\frac{n}{\alpha} \frac{1}{\epsilon} \tag{2.50}
\end{align*}
$$

Since $f(x, \xi) \geq C|\xi|^{p}$ for every $|\xi| \geq 1$, (2.4) follows.
We need in the proof above the following elementary result:
In the following we need of the elementary lemma:
Lemma 2.3. For every $t \in R$, with $t \geq t_{0}>0$ for some $t_{0}>0$ then for all $p \geq 1$ we have:

$$
\begin{equation*}
\min \left\{\left(\frac{t_{0}^{2}}{t_{0}^{2}+1}\right)^{\frac{p-2}{2}}, 1\right\}\left(1+t^{2}\right)^{\frac{p-2}{2}} \leq t^{p-2} \leq \max \left\{\left(\frac{t_{0}^{2}}{t_{0}^{2}+1}\right)^{\frac{p-2}{2}}, 1\right\}\left(1+t^{2}\right)^{\frac{p-2}{2}} \tag{2.51}
\end{equation*}
$$

with $C>0$ depending on t_{0}.
Per la dimostrazione, vedi lo scanner che ti ho inviato

References

[1] E. Acerbi, G. Mingione: Regularity results for a class of functionals with nonstandard growth, Arch. Rat. Mech. Anal. 156 (2001) 121-140.
[2] P. Baroni, M. Colombo, G. Mingione: Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Mathematical Journal, Special issue for Nina Uraltseva, to appear.
[3] M. Bildhauer, M. Fuchs: C^{1}-solutions to non-autonomous anisotropic variational problems, Calc. Var. PDE. 24 (2005) 309-340.
[4] M. Chipot, L.C. Evans: Linearisation at infinity and Lipschitz estimates for certain problems in the calculus of variations, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986) 291-303.
[5] A. Cianchi, V.G. Maz'ya: Global boundedness of the gradient for a class of nonlinear elliptic systems, Arch. Rat. Mech. Anal. 202 (2014) 129-177.
[6] M. Colombo, G. Mingione: Regularity for double phase variational problems, Arch. Rat. Mech. Anal. 215 (2015) 443-496.
[7] M. Colombo, G. Mingione: Bounded minimisers of double phase variational integrals Arch. Rat. Mech. Anal. 218 (2015) 219-273.
[8] A. Coscia, G. Mingione: Hölder continuity of the gradient of $p(x)$-harmonic mappings C.R. Acad. Sci. Paris 328 (1999) 363-368.
[9] G. Cupini, M. Guidorzi, E. Mascolo: Regularity of minimizers of vectorial integrand with $p-q$ growth, Non Linear Analysis TMA 4 (2003) 591-616.
[10] G. Cupini, P. Marcellini, E. Mascolo: Existence and regularity for elliptic equations under p, q-growth, Adv. Differential Equations 19 (2014) 693-724.
[11] E. De Giorgi: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital. 1 (1968) 135-137.
[12] L. Diening, B. Stroffolini, A. Verde: Lipschitz regularity for some asymptotically convex problems, ESAIM Control Optim. Calc. Var. 17 (2011) 178-189.
[13] M. Eleuteri, P. Marcellini, E. Mascolo: Lipschitz continuity for energy integrals with variable exponent, Rendiconti dei Lincei - Matematica e applicazioni (2015) to appear.
[14] L. Esposito, F. Leonetti, G. Mingione: Regularity results for minimizers of irregular integrals with (p, q) growth , Forum Mathematicum 14, 2 (2002)245-272.
[15] L. Esposito, F. Leonetti, G. Mingione: Sharp regularity for functionals with (p, q) growth, J. Differential Equations 204 (2004) 5-55.
[16] I. Fonseca, N. Fusco, P. Marcellini: An existence result for a nonconvex variational problem via regularity, ESAIM: Control, Optimisation and Calculus of Variations 7 (2002) 69-95.
[17] I. Fonseca, J. Maly, G. Mingione: Scalar minimizers with fractal singular sets, Arch. Rat. Mech. Anal. 172 (2004) 295-312.
[18] M. Foss, A. Passarelli di Napoli, A. Verde: Global Lipschitz regularity for almost minimizers of asymptotically convex variational problems, Ann. Mat. Pura Appl. 189 (2010) 127-162.
[19] M. Giaquinta: Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, 105. Princeton University Press. (1983).
[20] M. Giaquinta: Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987) 245-248.
[21] E. Giusti, M. Miranda: Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni, Boll. Un. Mat. Ital. 1 (1968) 219-226.
[22] E. Giusti: Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ (2003).
[23] P. Marcellini: Un example de solution discontinue d'un problème variationnel dans le cas scalaire, Preprint 11, Istituto Matematico "U.Dini", Università di Firenze, 1987.
[24] P. Marcellini: Regularity of minimizers of integrals in the calculus of variations with non standard growth conditions, Arch. Rational Mech. Anal. 105 (1989) 267-284.
[25] P. Marcellini: Regularity and existence of solutions of elliptic equations with $p-q$-growth conditions, J. Differential Equations 90 (1991) 1-30.
[26] P. Marcellini: Regularity for elliptic equations with general growth conditions, J. Differential Equations 105 (1993) 296-333.
[27] P. Marcellini: Regularity for some scalar variational problems under general growth conditions, J. Optim. Theory Appl. 90 (1996) 161-181.
[28] P. Marcellini: Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23 (1996) 1-25.
[29] P. Marcellini, G. Papi: Nonlinear elliptic systems with general growth, J. Differential Equations 221 (2006) 412-443.
[30] E. Mascolo, A.P. Migliorini: Everywhere regularity for vectorial functionals under general growth, ESAIM: Control Optim. Calc. Var. 9 (2003) 399-418.
[31] G. Mingione: Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math. 51 (2006) 355-426.
[32] C. Scheven, T. Schmidt: Asymptotically regular problems I: Higher integrability, J. Diff. Equ. 248 (2010) 745-791.
[33] V. Šverák, X.Yan: A singular minimizer of a smooth strongly convex functional in three dimensions, Calc. Var. Partial Differential Equations 10 (2000) 213-221.
[34] M. RŮŽIČKa Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris 329 (1999) 393-398.
[35] K.R. Rajagopal, M. RůŽIČKa On the modeling of electrorheological materials, Mech. Res. Commun. 23 (1996) 401-407.
[36] A. Passarelli di Napoli Higher differentiability of minimizers of variational integrals with Sobolev coefficients, Advances in Calculus of Variations 7, no. 1 (2014) 59-89.
[37] P. Tolksdorf: Everywhere-regularity for some quasilinear systems with a lack of ellipticity Ann. Mat. Pura Appl. 134 (1983) 241-266.
[38] K. Uhlenbeck: Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977) 219-240.
[39] V.V. Zhikov: Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 675-710.
[40] V.V. Zhikov, S. M. Kozlov S. M., O. A. Oleinik: Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin (1994).
E-mail address: eleuteri@math.unifi.it
E-mail address: marcellini@math.unifi.it
E-mail address: mascolo@math.unifi.it
Dipartimento di Matematica e Informatica "U. Dini", Università di Firenze, Viale Morgagni 67/A, 50134 - Firenze, Italy

[^0]: 2000 Mathematics Subject Classification. Primary: 35J60, 35B65, 49N60; Secondary: 35J70, 35B45.
 Key words and phrases. Elliptic systems, local minimizers, local Lipschitz continuity, $p, q-$ growth.
 The authors are supported by GNAMPA (Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica); in particular the first and the third author are supported by the research project GNAMPA-INdAM 2014 "Materiali speciali e regolarità nel Calcolo delle Variazioni" (coord. M. Eleuteri).

