
Università degli Studi di Firenze
European laboratory for non-linear spectroscopy (LENS)

Corso di Dottorato in Atomic and Molecular Photonics

An experimental setup for

quantum optomechanics

Candidate

Paolo Vezio

Supervisor

Prof. Francesco Marin

PhD Coordinator

Prof. Francesco S. Cataliotti

ciclo XXXIII, 2017-2020
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”If you think you understand quantum mechanics, you don’t understand

quantum mechanics.”
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Abstract

In the last few years cavity optomechanics experiments have achieved the

significant progress of the preparation and observation of macroscopic me-

chanical oscillators in non-classical states. An indicator of the oscillator

non-classical proprieties is important also for applications to quantum tech-

nologies. In this work, we compare two procedures minimizing the necessity

of system calibrations. As first result we compare the homodyne spectra

with the measurement of the motional sideband asymmetry in heterodyne

spectra. Moreover, we describe and discuss a method to control the probe

detuning, that is a crucial parameter for the accuracy of the latter, intrin-

sically superior procedure. From it we can use the sidebands asymmetry as

indicator of the quantumness of the mechanical oscillator, which is originated

by the non-commutativity between the oscillator ladder operators. Starting

from it the sidebands assume a peculiar shape when a parametric modula-

tion is applied on a oscillator embedded in an optical cavity. A parametric

effect is originated by a suitable combination of optical fields. The asymme-

try shape is related to the modified system dynamics, while the asymmetric

features reveal and quantify the quantum component of the squeezed oscilla-

tor motion. The results show that it is possible to use the spectral shape of

motional sidebands as a signature of a quantum mechanical squeezed state,

without the necessity of absolute calibrations, in particular in the regime

where residual fluctuations in the squeezed quadrature are reduced below

the zero-point level.
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Introduction

The field of optomechanics research studies the interaction of the electromag-

netic radiation (photons) with mechanical systems via radiation pressure.

The purpose of many optomechanical experiments is to realize a system able

to prepare and control a macroscopic oscillator into the quantum state of

motion. These massive objects can be used to test fundamental proprieties

of the quantum mechanics. That quantum object can be implemented in

several applications as well as in quantum sensing and quantum informa-

tion processing. In the last decade several experiments have been realized to

investigate the threshold between classical and quantum visions.

In 1901 a first experiment demonstrated the radiation pressure forces on

a mechanical system [51]. Afterwards, in 1909 Einstein studied the statistics

of radiation pressure forces onto a movable mirror [27]. In the era of modern

physics, in the 1970s, Braginsky studied the mechanical interaction between

light and a moving mirror mediated by radiation pressure, particularly for

the end-mirror of a cavity. This study was stimulated by the investigation on

the fundamental sensitivity limits of the interferometric gravitational wave

detectors. Braginsky also showed that radiation pressure can induce damping

or anti-damping of the mechanical resonator. He used a microwave cavity to

show such effects [14]. During the 1990s further theoretical works increased

the interest of the optomechanical field. These works investigate further

quantum phenomena, for example: ponderomotive squeezing of light was

studied by Fabre at al. [29] and Mancini at al. [48], the possibility to generate

entanglement between mechanical and optical degrees of freedom by Bose at

al. [12] and Mancini at al. [47].

The experimental investigation of these phenomena using macroscopic

objects was limited by technological issues. This problem pushed the com-

munity to develop optomechanical systems with higher performances that

xi
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would allow to enter in the quantum regime. This research generated a large

variety of systems. Among these, membrane oscillators [76], photonic crys-

tals [26], micropillars [44] and other nano- and micro-systems. In the last

few years some quantum phenomena have finally been observed. New devices

started the possibility to investigate their non classical proprieties. An exam-

ple is the asymmetry in the motional sidebands as footprint of the quantum

motion of the oscillator [54, 60, 63, 66, 73, 77]. That asymmetry is visible if

spurious experimental features are avoided [39, 62, 68]. The explanation of

the asymmetry as quantum feature is originated by the noncommutativity

between the ladder operators of the mechanical oscillator [8, 41, 80]. The

cooling of the mechanical oscillator to its quantum ground state by Teufel

at al. [75] and Chan at al. [19], demonstrated the possibility to prepare a

mesoscopic system into a state very close to the quantum state.

The generation of ponderomotive squeezing of light has been demon-

strated by Brooks at al. [15], Safavi at al. [69] and Purdy at al. [61]. In

these works the squeezing within the interferometric device below the shot

noise limit of displacement sensing. The application of these results gives an

improvement of gravitational wave detectors [1]. Furthermore, the squeezing

of mechanical motion has been demonstrated by Wollman et al. [82], Clark

et al. [22] and Palomaki et al. [52].

Recently, the quantum non-demolition (QND) detection of the light in-

tensity is described by Pinard at al. [55]. Also the strong cooperativity

regime of a microscopic oscillator has been shown by Gröblacher et al. in [37].

Feedback control enables the stability of a mechanical system in a desired

quantum state. Rossi et al. [65] reached the quantum ground state by using

a feedback cooling.

All these experiments show the last and remarkable results reached in

optomechanics. The purpose of this work is to investigate the quantum

proprieties of a macroscopic oscillator, a SiN membrane. In details, the

quantumness of the oscillator is identified by observing the asymmetry be-

tween the Stokes and anti-Stokes processes. The asymmetry between these

two process is peculiar of a quantum system. It allows to study the quantum

proprieties of a macroscopic oscillator without necessity of the absolute cal-

ibration. To delete all the possible perturbation in the asymmetry measure-

ment, the two sidebands amplitude are corrected by the eventual detuning

of the probe beam. Once reached the quantum regime we can drive the me-

chanical oscillator by parametric modulation, at two times the mechanical
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frequency (2Ωm), obtaining simultaneously a compression and amplification

of the mechanical motion quadratures.

Thesis outline

This thesis is structured as follows. In the first Ch. 1 I will give the quantum

and classical description of a mechanical oscillator (Sec. 1.1) and the Fabry-

Pèrot cavity field (Sec. 1.2). I will also describe the optomechanical coupling

between light and mechanical oscillators in the Sec. 1.3. In the same section

I obtain the optomechanical equations of motion. I also explain how the

difference between the straight motional sidebands induced in the field by

the optomechanical interactions, measured in a heterodyne detection, have a

particularly behavior in the quantum regime, that it can be used to deduce

the oscillator temperature.

In Ch. 2 I will describe the experimental setup in all details. I start

with a general description of the apparatus, later I describe in Sec. 2.1 the

optomechanical cavity parameters and characteristics. In the same section I

describe the theoretical formalism of a circular membrane and the concept

of the effective mass. Also, I will describe the cavity finesse concept in a

optomechanical cavity. In Sec. 2.2 I will describe the quality factor concept

and the procedure to measure it in our optomechanical cavity. In Sec. 2.6 I

will describe in general the locking procedure used in our work, as example

the Pound-Drever-Hall strategy. Further in Sec. 2.3.1, I will describe the

laser source and the possible classical and quantum laser noise. Due to the

laser noise we introduce in our setup a filter cavity. The noise structure and

the filter cavity implementation is described in Sec. 2.4. In the following

section I will describe the detection scheme.

The first experimental Ch. 3 will describe the comparison between the

homodyne and heterodyne detection for the measurement of the number

occupancy. I will use a method to correct the asymmetry from probe detun-

ing. In this chapter I demonstrate how our optomechanical system is able

to confine the oscillator in the quantum regime, with occupation close to 4

phonons.

In the last Ch. 4, I will describe the results obtained by modulating our

oscillator at 2Ωm to generate parametric squeezing on the mechanical motion.

The novelty of this work is to observe how the vibrational sidebands are

deformed as a consequence of the squeezed and anti-squeezed quadratures.
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In details, in the first Sec. 4.1 I will introduce the theoretical concepts.

Furthermore I will describe the setup specifications (Sec. 4.2) and in the

end, in the last Sec. 4.3, I will describe the most important results obtained

in this work.



Chapter 1

Cavity Optomechanics

The purpose of this first chapter is to describe the dynamical behavior of a

mechanical oscillator coupled by radiation pressure to an optical cavity. I will

first introduce in Sec. 1.1 the classical and quantum dynamics of mechanical

oscillator and, in Sec. 1.2, of a Fabry-Pérot optical cavity. Then, in the last

(Sec. 1.3) will provide a description of the full optomechanical system.

1.1 Mechanical Oscillator

Classical Oscillator

Figure 1.1: Mechanical oscillator described as a block with mass m and

spring coefficient k.

1



2 Cavity Optomechanics

The dynamics of the membrane can be described, in first approximation,

like an ideal harmonic oscillator. Without loss of generality we can schema-

tize the oscillator like a rigid body with a mass m bound to an ideal constrain

trough a massless spring of stiffness k. The position at a certain time t is

described by a variable x(t), satisfying the equation of motion:

ẍ(t)m = −kx(t). (1.1)

Its general solution is written as x(t) = x0 cos(Ωmt+φ) where Ωm =
√
k/m

is the oscillation frequency. The arbitrary constants, x0 and φ, are deter-

mined by the initial conditions x(0) and ẋ(0), and represent respectively the

amplitude and phase of the oscillator around its equilibrium position, x = 0.

The total energy of the system is:

E =
p2

2 m
+
k x2

2
. (1.2)

It is positive and vanish for x = 0 and ẋ = 0.

A more realistic model includes the effects of losses and the action of the

external forces Fext(t) that drives the system. There exist several dissipa-

tion mechanisms: clamping losses, thermoelastic damping, material-induced

losses, viscose damping. The first one describes the absorption of the oscilla-

tor elastic energy due to clamping [83]. The thermoelastic damping describe

the dissipation of elastic energy into heat [84]. It is less relevant at cryogenic

temperature. The second last losses are due to to intrinsic defects in the bulk

or the surface of the material [45]. The later is due to the collisions between

the residual gas particle and the oscillator and it depends strongly on the

geometry and shape of the specific normal mode [21]. All these dissipation

mechanisms add a contribution at the total quality factor:

Qtot =

(∑
i

1

Qi

)−1

(1.3)

where i is an index identifying the individual loss mechanisms. The oscillator

mass is replaced by the effective mass. It depends on the considered mode

and how the displacement is measured, as we will see in Sec. 2.1.1. Without

loss of generality we can write the motion equation considering only one

modal mode:

ẍ(t) + Γmẋ(t) + Ωmx(t) =
Fext(t)

meff
, (1.4)
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where Γm = Ωm/Q is the damping rate. Considering the mechanical os-

cillator in thermal equilibrium with the reservoir at temperature T, due to

that the main contribution at external force is described by thermal noise.

The thermal force can be described as a Langevin force, Fext. It is a sta-

tionary Gaussian noise and satisfies following relations as described by the

Fluctuation-Dissipation Theorem (FDT) [17,43]:

〈Fext(t)〉 = 0 〈Fext(t)Fext(t′)〉 = 2kBTmeffΓmδ(t− t′). (1.5)

Eq. 1.4 can be solved in Fourier space. At this purpose we can define the

truncated Fourier transform as

xT (ω) =
1√
τ

∫ τ/2

−τ/2
x(t)eitωdt (1.6)

and obtain the spectral density as limτ→∞〈|xT (ω)|2〉, where 〈....〉 indicates

Figure 1.2: Mechanical transfer function, for the mechanical mode at the

frequency ∼ 500 kHz. The effective mass is of the magnitude of 6.4× 10−10

Kg, with a quality factor close to 107.

the average on different realizations. The Wiener-Khinchin theorem connects

〈|xT (ω)|2〉 to the Fourier transform of the auto-correlation function, Sxx(ω)

called also Power Spectral Density (PSD):

Sxx(ω) =

∫ ∞
−∞
〈x(t)x(0)〉eiωtdt, (1.7)
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where we assume that Fext is a stationary random process and exploiting the

ergodic assumption. Now, we use the standard input-output theory for linear

time-invariant systems to evaluate the mechanical susceptibility. Writing Eq.

1.4 in the Fourier space

x̃(ω)[(Ω2
m − ω2)− iωΓm] =

F̃ext(ω)

meff
, (1.8)

the susceptibility of the damped mechanical oscillator is

χ(ω) =
x̃(ω)

F̃ext(ω)
=

1

meff ((Ω2
m − ω2)− iωΓm)

. (1.9)

That equation gives how the mechanical frequency change under the influ-

ence of an external force. The absolute value is:

|χ(ω)| = 1

m
√

(Ω2
m − ω2)2 + (Γω)2

. (1.10)

It describes the actual displacement, its argument specifies the phase lag

between the applied force and the oscillator response:

arg(χ(ω)) = arctan

(
Ω2
m − ω2

Γω

)
. (1.11)

A typical behavior of the transfer function is depicted in the Fig. 1.2. At

the resonance the function has a sharp peak, with a half with half maximum

(HWHM) is Γm, and at higher frequency the response behavior going as

1/mω2. The FDT links the dissipation (losses) channel with the generated

fluctuation (noise) and applies to any linear system in thermal equilibrium

with the bath. The thermal force and position noise are thus related via

FDT as:

Sxx(ω) = |χ(ω)|2
∫ ∞
−∞
〈Fth(t)Fth(0)〉eiωtdt = |χ(ω)|2Sff,th (1.12)

where Sff,th = 2kBTmeffΓm coming from Eq. 1.5. From Eq. 1.12 it is

possible to identify the area under the spectral peak at Ωm. It gives the

variance of the displacement noise:

〈x2〉 =
1

2π

∫ ∞
−∞

Sxx(ω)dω. (1.13)

Considering a system at low losses, the equipartition theorem gives the dis-

placement variance as 〈x2〉 = kBT/meffΩ2
m.
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Quantum oscillator

In the quantum regime the position x and the momentum p, are replaced with

the observable X̂ and P̂ , where their commutation relation is [X̂, P̂ ] = i~.

The Hamiltonian is obtained from the total energy substituting the classical

momentum and position variable with the corresponding operators.

Ĥm =
P̂ 2

2 m
+
mΩmX̂

2

2
. (1.14)

It is convenient to introduce the dimensionless operators x̂ and p̂, obtained

with the normalizations

x̂ =

√
~

mΩm
X̂, p̂ =

√
1

~mΩm
P̂ , (1.15)

satisfying the relation [x̂, p̂] = i. Now, it is useful introduce two dimensionless

operators b̂ and b̂†

X̂ = xZPF (b̂+ b̂†), P̂ = −ixZPFmΩm (b̂− b̂†). (1.16)

where xZPF =
√
~/2mΩm denotes the zero-point fluctuation (ZPF) and we

have defined the creation b̂† and annihilation b̂ operators. The commutation

relation between the two new operators is [b̂, b̂†] = 1. The Hamiltonian of

the oscillator can be written as

Ĥm = ~Ωm

(
b̂†b̂+

1

2

)
. (1.17)

The phonon number operator is n̂ = b̂†b̂. From that operator is possible

identify its eigenvalue n, phonon number, of the eigestate |n〉:

n̂|n〉 = n|n〉 (1.18)

where n is a natural number. The vacuum state |0〉 shows the state at zero-

phonon, where the energy is 1
2Ωm~. The general Hamiltonian eigenvalues

form a discrete ensemble and are given by

En = ~Ωm

(
n+

1

2

)
(1.19)

where n = 0, 1, 2, 3, ... . The corresponding eigenstate are:

ψn(x) =
1√

2nn!

(
mΩm
π~

)1/4

e−
x2

2 Hn(x) (1.20)
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Figure 1.3: First three eigenfunctions for the harmonic oscillator.

where the Hn(x) are the Hermite polynomials. In Fig. 1.3 is shown few

different eigenfunctions for the harmonic oscillator. The probability density

to find the oscillator between x and x + dx is given by Pn(x) = |ψn(x)|2.

The mean position 〈X̂〉n =
∫
xPn(x)dx and the mean momentum 〈P̂ 〉n =

−i~
∫
ψndψn vanish, for any given state n. The variance of the position ∆X̂n

and of the momentum ∆P̂n operators are

∆X̂n =

√
〈X̂2〉n − 〈X̂〉2n = xZPF

√
n+

1

2
, (1.21)

∆P̂n =

√
〈P̂ 2〉n − 〈P̂ 〉2n =

~
xZPF

√
n+

1

2
. (1.22)

As a consequence of the commutation relations and the above relations, we

obtain the Heisenberg inequality for the two operators

∆X̂n∆P̂n ≥
~
2
. (1.23)

The model described until now is a very ideal case. To describe a more real-

istic model we introduce in the system the mechanical losses. As a first step

we remove the hypothesis that consider the system perfectly isolated, and

we consider the system coupled with a thermal bath. The total Hamiltonian
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has three terms: Hm + Henv + Hc, where Hm is the mechanical Hamilto-

nian described before, Henv describes the external environment energy and

the last therm Hc describes the coupling between the two systems. More in

detail

Henv =
∑
i

~Ωi

(
d̂†i d̂i +

1

2

)
(1.24)

and

Hc =
∑
i

~kid̂ib̂† + h.c. . (1.25)

This means that a state of the harmonic oscillator is not an eigenstate of

the global system. Furthermore, there are never enough informations on

the environment to allow an analytical description of the system and its

dynamics. The only possible approach is statistical. We consider the system

in the thermal equilibrium. In the statistical ensemble the global state is

characterized by the density operator

ρ̂ =
1

Z
e−Ĥm/kBT (1.26)

where Z is the partition function

Z =

∞∑
n=0

e−(n+1/2)~Ωm/kBT =
e−~Ωm/2kBT

1− e−~Ωm/kBT
. (1.27)

The oscillator mean energy at the temperature T is given by the equation

〈Ĥm〉T = Tr

(
Ĥmρ̂

)
= ~Ωm(nT + 1/2) (1.28)

while nT is the oscillator mean phonon number

nT =
1

e~Ωm/kBT − 1
. (1.29)

This result gives the phonon occupation for a quantum oscillator, and it is

different from the classical description where the mean energy, due to the

equipartition theorem is 〈Hm〉 = kBT . The two descriptions converge when

kB T � ~ Ωm.

The effect on the oscillator dynamics due to the reservoir, are well de-

scribed by in the Quantum Lengevin Equations (QLEs) [30]. The QLEs

generalize Eqs. 1.4 and 1.5 to the quantum regime. From here, we will dis-

cuss some results of the QLE derivation, following the reference [23], without
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entering in the details of their derivation. The equations have the familiar

form of the classical ones, where we consider a viscous damping force, and

a stochastic force, proportional to the velocity. The equations are obtained

from the reference [34]

˙̂x = Ωmp̂, (1.30)

˙̂p = −Ωmx̂− Γmp̂+ F̂ , (1.31)

〈F̂ (t)〉 = 0, (1.32)

〈F̂ (t)F̂ (t′)〉 =
Γm
Ωm

∫
dω

2π
e−iω(t−t′)ω

[
coth

(
~ω

2kbT

)
+ 1

]
. (1.33)

In these equations Γm is the damping rate, and F̂ is a Gaussian quantum

stochastic process.

The main conceptual difference between classical and quantum mechanics

is non-commutation between the position and momentum operators [23].

The Correlation function of the position can be written as

Rxx(t) = 〈x̂(0)x̂(0)〉 cos(Ωmt) + 〈p̂(0)x̂(0)〉 sin(Ωmt). (1.34)

In the classical description the operators are replaced with the observable.

The momentum and position observable are not correlated, for that the

second term vanishes. In quantum mechanics, the second term due to the

commutation relation, 〈p̂(0)x̂(0)〉 = −i/2, is not only different from zero but

also complex. The correlation is

Rxx(t) =
1

2
[nT e

iΩmt + (nT + 1)e−iΩmt]. (1.35)

The spectral density, with the physical units, is

Sxx(t) = 2πx2
ZPF [nT δ(ω + Ωm) + (nT + 1)δ(ω − Ωm)]. (1.36)

That expression is not symmetric in frequency, while in the classical de-

scription the auto-correlation is real and the spectral density is a symmetric

function. The physical explanation of the asymmetry is connected to the

occupation number. The positive frequencies of the spectrum are related

to the ability of the oscillator to absorb phonons from the bath, where at

negative frequencies the oscillator emits phonons toward the bath. In the

high temperature limit nT ≈ nT + 1 the classical and quantum prediction

are coincident.
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1.2 Fabry-Pérot Cavity

In this section, I will discuss the classical and quantum description of a Fabry-

Pérot resonator. The multiple reflection of the light between two mirrors,

produces a stationary wave, if the input light has some particular resonance

frequencies. The standing wave patterns produced are called modes. Each

stationary solution (field mode) has a stationary wave pattern associated.

Different resonator types are distinguished by the focal lengths of two mirrors

and by the distance between them. Usual optical cavities are designed to

have a high quality factor, and thus low losses and long lifetime of the electric

field in the cavity (i.e. small cavity linewidth).

Classical Description of the Optical cavity

Figure 1.4: Sketch of a Fabry-Pérot cavity with a length L. The input and

output mirrors have different reflection r1,2 and transmission t1,2 coefficients.

We will consider a cavity composed by two partially reflective mirrors.

The distance between them is L. The refraction index inside and outside the

cavity is n = 1. We define t1,2 (T1,2) and r1,2 (R1,2) as the amplitude (power)

transmission and reflection coefficient of the mirrors and with Σ1,2 their losses

due to the absorption and diffusion. The conservation of the energy implies

that R1,2 + T1,2 + Σ1,2 = 1. The reflected (Er) and transmitted (Et) fields
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are [9]:

Er = Ein

[
−r1 +

t21r2e
i2φ

1− r1r2ei2φ

]
, Et = Ein +

t21t2e
iφ

1− r1r2ei2φ
(1.37)

where Ein is the amplitude of the input field and φ = Lω/c is the phase

difference between the wavefront on the mirrors. From Eqs. 1.37 we obtain

the transmission T and reflection R cavity coefficients

T =
|Et|2

|Ein|2
=

t21t
2
2

(1− r1r2)2

1

1 +B sin2 φ
, (1.38)

R =
|Er|2

|Ein|2
=

(ζ/r2)2 +B(1− Σ1)sin2φ

1 +B sin2 φ
, (1.39)

where we define B and the coupling coefficient ζ:

B =
4r1r2

(1− r1r2)2
, ζ = r2

r1 − r2(r2
1 + r2

2)

1− r1r2
. (1.40)

From the Eq. 1.38, we see that resonances are found for φ = nπ. The

linewidth κφ, is defined by the equation: 4r1r2 sin2(κφ/2) = (1 − r1r2)2.

The Free Spectral Range (FSR) is the distance in frequency between two

subsequent resonances, FSR = c/2Ln (c is the velocity of light in vacuum,

n = 1 in this specific case). We can rewrite the cavity linewidth in the

frequency domain as κν = κ/2π = κφ
FSR
2π , and define the cavity finesse is

F = FSR/κν . We now pay specific attention to the high finesse cavity. In

this case we can assume that κν � FSR and the transmission and the losses

are much smaller then unity. In this limit, we obtain

F w
2π

T1 + T2 + Σ1 + Σ2
, ζ w

T2 − T1 + Σ1 + Σ2

T2 + T1 + Σ1 + Σ2
(1.41)

and the cavity decay rate becomes κ w c(T1 + T2 + Σ1 + Σ2)/4L. The

transmission and reflection coefficient can be written as a function of the

detuning between the frequency of an input field ωl and the cavity resonance

ωcav, ∆ = (ωl − ωcav). We obtain after some simplification:

T w
4T1T2

(T2 + T1 + Σ1 + Σ2)2

1

1 + 4∆2/κ2
, R w

ζ2 + 4∆2/κ2

1 + 4∆2/κ2
. (1.42)

In the high finesse limit, the field reflection coefficient is

Hr(∆) =
Er
Ein

w
ζ − i2∆/κ

1− i2∆/κ
. (1.43)
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The power in the cavity is described by the equation:

Pc = mmPinT1

(
F
π

)2
(κ/2)2

∆2 + (κ/2)2
, (1.44)

where we consider a detuned input beam with a power Pin and a cavity

mode matching mm. The transmitted power is Pout = PcT2, where T2 is

the transmission coefficient of the cavity output mirror. From the second

equation of 1.41, we can identify two regions: from 0 < ζ ≤ 1 the cavity

is undercoupled, for −1 ≤ ζ < 0 is overcoupled and for ζ = 0 we have the

optimal coupling cavity. The finesse and FSR are related to the concept

of the cavity mean photon lifetime. The cavity intensity decrease for each

round-trip due to the mirrors transmission and losses:

dI

dtrt
= −I T1 + T2 + Σ1 + Σ2

2L/c
. (1.45)

In the limit of very short round-trip, the solution of the above equation

is I(t) = I(0)e−t/τ . The coefficient τ = 1
2πκ , describes the time at which

the intensity decay by a factor of e, it can be interpreted as a lifetime of

the photon in the cavity. The finesse is proportional to the number of the

round-trip before the photon loss.

Classical dynamical equation

A dynamical equation for the intracavity field can be derived easily, if the

input field varies slowly in a scale time of the round-trip, τ := 2L/c, so that

E(t+τ) w E(t)+τĖ(t). If we consider a high finesse cavity, where the losses

are negligible, we can write the intracavity field after a round trip, on the

frame rotating at ωl, as

E(t+ τ) = r1r2e
iωlτE(t) + t1Ein(t+ τ). (1.46)

Using the above approximation, Eq. 1.46 becomes:

Ė(t)τ = (−r1r2 + iψ)E(t) + t1Ein(t) (1.47)

where ψ is the phase detuning from the cavity resonance, given by ωlτ =

n2π + ψ. This parameter can be due either to a mismatch of the cavity

length or a mismatch of the light frequency with respect to the resonance

condition: ψ = 2π( ∆ν
FSR + ∆L

λ/2 ). We can rewrite Eq. 1.47 as:

Ė(t)τ =

(
− κ

2
+ i∆

)
E(t) +

√
κ

τ
Ein(t) (1.48)
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where κ is the cavity loss rate. It consists of the sum of three terms κ =

κ1 +κ2 +κΣ, where κ1,2 = cT1,2/2L are the transmission rates of the mirrors,

and κΣ = cΣ/2L with Σ = Σ1 + Σ2 is the total loss rate. The general input

field goes through the input mirror. The reflected and transmitted fields are

respectively:

Erout(t) = −Ein(t) +
√
κ1E(t), Etout =

√
κ2E(t). (1.49)

Cavity modes

Figure 1.5: In the left part, the Laguerre-Gaussian modes, and in the middle

the Hermite-Gaussian modes. On the right, the definition of R(z) and w(z).

Now, we consider the geometrical proprieties of an electromagnetic field

inside the cavity, in the paraxial approximation [42,74]. We consider an elec-

tric field E(x, y, z) that satisfies the scalar wave equation: O2E + k2
0E = 0,

where z is the propagation direction. We write the field as E = γ(x, y, z)e−ik0z,

where the complex slowly-varying amplitude γ evolves accordingly to

∂2γ

∂x2
+
∂2γ

∂y2
− i2k0

∂γ

∂z
= 0 (1.50)

where we considered
∂2γ

∂z2
� 2ik0

∂γ

∂z
. (1.51)

The solution of 1.50 can be written as

γ = ψ(x, y) · exp
[
−i
(
p(z) +

k0

2q(z)
r2

)]
(1.52)

where r2 = x2 + y2, p(z) and q(z) are complex functions. p(z) describes the

variation of the phase along z and the beam divergence. q(z) parameter de-

scribes the variation in beam intensity with the distance r and the curvature
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of the phase front. We introduce two real parameters R(z) and w(z) related

to q(z) by:

1

q(z)
=

1

R(z)
− i λ

πw(z)2
, (1.53)

where R(z) is the radius of curvature of the wavefront and w(z) is the decay

length of the amplitude with the distance from the axis. w(z) is called beam

spot size. These functions are obtained substituting in 1.50 the solution γ

with constant ψ(x, y)

w2(z) = w2
0

[
1 +

(
λz

πw2
0

)2
]
, R(z) = z

[
1 +

(
πw2

0

λz

)2
]

(1.54)

where w0 is the minimum of w and is called beam waist. From the above

solution we obtain p(z) function:

ip(z) = ln
w(z)

w0
− iφ(z) (1.55)

where φ(z) = arctg
(
πw2

0

λz

)
is the phase contribution. The total field is:

E = E0
w0

w(z)
e
− r2

w2(z) e
−i
(
kz+ r2k

2R(z)
−φ(z)

)
(1.56)

where E0 is the amplitude of the field, and k is the wave vector. We can

consider now the higher order solutions of Eq. 1.50. If we consider the

Cartesian symmetries (x, y, z), the solution is:

ψ(x, y) = Hm(
√

2x/w)Hn(
√

2y/w) (1.57)

where Hm is the m − th order Hermite polynomial while m and n are the

(transverse) mode numbers. The intensity profiles for this solution are shown

in the left panel of the Fig. 1.5. On the other hand in cylindrical coordinates

(r, φ, z) we get

ψ(r, φ) = (
√

2r/w)lLlp(2(r/w)2)elφ (1.58)

where Llp is the Laguerre polynomial while p and l are the radial and angular

mode number. The modes intensity are shown in the center panel of the Fig.

1.5.
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Quantum description

We start from the quantum Hamiltonian of a single cavity mode (see for

example [79]):

Ĥ = ~ωcav
(
â†â+

1

2

)
(1.59)

where â† and â are creation and annihilation operators, that satisfy the

Boson commutation relation: [â, â] = [â†, â†] = 0 and [â, â†] = 1. Similarly

to the quantum harmonic oscillator is possible to define a photon number

occupation n̂p = â†â. The mean number of photon in the cavity is given by

the average of the photon number operator: n̄p = 〈n̂p〉. The Hamiltonian

eigenvalues are

Enp = ~ωcav
(
np +

1

2

)
(1.60)

where np is a natural number. The corresponding eigenstates are the Fock

state |n̂p〉. They form a complete set of orthogonal states

〈np|n′p〉 = δnp,n′p , (1.61)

∞∑
np=0

|n̂p〉〈n̂p| = 1, (1.62)

where δnp,n′p is the Kronecker delta. The Fock states can be used to construct

all the other types of the field state, such as the coherent one.

Coherent state

The cavity light field used in this work is described by a coherent state. To

have a clear description of it, we start from the eigenvalue equation of the

annihilation operator

â|α〉 = α|α〉 (1.63)

where the eigenvalue α is a complex number and complex eigestate |α〉. The

coherent state eigenstate is a linear combination of Fock states

|α〉 =

∞∑
n=0

cn|n〉 (1.64)
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where cn are complex coefficients. From the expansion 1.64 and considering

unit norm |〈α|α〉|2 = 1, we can obtain the representation of a coherent state

in the Fock basis

|α〉 = e−|α|
2
∞∑
n=0

αn√
n!
|n〉. (1.65)

The expectation value of the photon number operator, on the coherent state

|α〉, gives the average number of photons

n̄p = 〈α|n̂p|α〉 = |α|2. (1.66)

We can observe how the complex amplitude of the field α relates to the

mean photon number. The fluctuations of the photon number are calculated

following the equation of the standard deviation on np (∆np =
√
V ar(np)):

∆np =
√
〈n̂2
p − 〈n̂p〉2〉 =

√
n̄p. (1.67)

The probability to detect n photons in a coherent state |α〉 is given by the

following Possonion distribution equation:

P (n) = |〈n|α〉|2 = e−n̄p
n̄np
n!

(1.68)

where we used Eqs. 1.65 and 1.66. It governs the quantum fluctuations of

the laser light (shot noise). The relative quantum fluctuations are decreasing

with n̄p.

∆np
n̄p

=
1
√
n̄p
. (1.69)

The variance of the coherent state become smaller with a higher photon

number, i.e. approaching the classical limit.

In the optomechanical experiment, the quantum shot noise has two fold

effect of generating noise in the detection and inducing stochastic fluctua-

tions in the oscillator motion through its coupling with the cavity field. For

these two reason, it shows the experiment limits in the detection and in the

optomechanical cooling. The quantum noise is visible only if the classical

noise source are almost canceled, otherwise the classical noise define an upper

limit in the apparatus.



16 Cavity Optomechanics

Langevin equations

In this subsection I will describe the quantum dynamical equation for the

intracavity field in a Fabry-Pérot cavity. The Hamiltonian 1.59 in the Heisen-

berg representation gives the equation of motion for a ideal case. To have

a realistic description of the system dynamics it is necessary to include in

the model fluctuation-dissipation processes, for example quantum fluctua-

tion coupled to the cavity mode through the input mirror âin or vacuum

input noise describing all other decay channels f̂in. In order to find the dy-

namical equations, where the cavity amplitude decay rate is κ = κ1 + κi,

which κ1 = T1FSR and κi = ΣFSR, they are the power transmission co-

efficient into losses, where Σ = Σ1 + Σ2 + T2. We consider that the in-

put field is the coherent state in the frame rotating with the frequency ωl,

âold = eiωltânew, more details are described in the App. A. The linearized

equation (â = α+ δâ) for the intracavity field is [6]

δ ˙̂a = −
(
κ

2
− i∆

)
δâ+

√
κ1ᾱin +

√
κ1δâin +

√
κif̂in (1.70)

where the expectation values are:

〈δâin(t)δâin(t′)〉 = 〈δâ†in(t)δâ†in(t′)〉 = 〈δâ†in(t)δâin(t′)〉 = 0, (1.71)

〈δâin(t)δâ†in(t′)〉 = δ(t− t′). (1.72)

The ᾱin =
√
Pin/~ωl denotes the mean value of the input field where Pin

is the injected power. With δâin we indicate the quantum fluctuations

coupled to the cavity mode through the input mirror and f̂in is the vac-

uum input noise that considers all decay channels. It should be noticed

that the intracavity and input fields have different normalization, coeffi-

cients: 〈â†inâin〉 = Pin/~ωl and 〈â†â〉 = ncav, where ncav is number of pho-

tons in the cavity. From these results, the intracavity power is given by

Pcav = ~ωlncav/τ . Eq. 1.70 can be written in Fourier space as,

δâ(ω) = χopt(ω)

[
√
κ1ᾱin +

√
κ1δâin(ω) +

√
κif̂in(ω)

]
(1.73)

where the cavity susceptibility is:

χopt(ω) =
1

κ/2− i(ω + ∆)
. (1.74)

The square form of this equation will be used to correct any asymmetry due

to the cavity filtering in the Ch. 3.
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1.3 Optomechanical coupling

Figure 1.6: Left side: sketch of the optomechanical cavity. Right side: the

blue area shows the cavity field and the red one shows the injected field

detuned by ∆.

In this new section, I provide a quantum mechanical description of the

optomechanical interaction. I consider at this propose a Fabry-Pérot cavity,

where one of the two mirrors can oscillate as in Fig. 1.6. Under the action

of the radiation pressure force the length of the cavity changes from L to

L + x. This leads to a different resonance condition of the cavity, and thus

to a variation in the intracavity power. The detuning depends on the length

variations, ∆c = ∆0 + ωl
L x. We assume that the mechanical oscillator motion

is slow, compared to the round trip time of the photon in the cavity. Thanks

to this approximation, we consider only one optical mode. The Hamiltonian

operator is [4–6,28]:

Ĥ = ~ωcav(x)

(
â†â+

1

2

)
+ ~Ωm

(
b̂†b̂+

1

2

)
. (1.75)

Where b̂ is phonon annihilation operator and b̂† is phonon creation operator.

Since we assumed a small displacement compared to the cavity length, we

expand the cavity resonance frequency:

ωcav(x) ≈ ωcav + x̂
∂ωcav(x̂)

∂x
+ . . . (1.76)

In the general case, we consider only the linear term. For a cavity as in Fig.

1.6 the derivative of the resonance frequency is −ωcav/L, due to the fact

that we are defining x > 0 for an increment of the cavity length that leads

to a decrease in ωcav. In this approximation the Hamiltonian is rewritten as
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Ĥ = ~ωcav
(
â†â+

1

2

)
+ ~Ωm

(
b̂†b̂+

1

2

)
− ~g0â

†â(b̂+ b̂†) (1.77)

where g0 = GxZPF is the vacuum optomechanical coupling strength, ex-

pressed in frequency. Units G = ∂ωcav(x)
∂x is derivative of the resonance

frequency, xZPF =
√

~
2meffΩm

is the zero-point fluctuation amplitude of the

mechanical oscillator, meff is the effective mass of the modes, and the dis-

placement operator x̂ = xZPF (b̂+ b̂†). In the new Hamiltonian the last term

describes the interaction between the optical cavity field and the mechanical

oscillator. The radiation pressure force is given by F̂ = −dĤint/dx̂, where

the interaction Hamiltonian is

Ĥint = −~g0â
†â(b̂+ b̂†). (1.78)

Now, it is convenient to move in a rotating system at the laser frequency ωl,

using the unitary transformation operator Û = exp(iωlâ
†ât) (see App. A).

The new Hamiltonian is

Ĥ = −~∆â†â+ ~Ωmb̂
†b̂− ~g0â

†â(b̂+ b̂†) (1.79)

where ∆ = ωl − ωcav. In this description we have not yet considered other

terms, as the: drive, fluctuation terms, decay factor. As a further step, we

introduce the ”linearized” description of cavity optomechanics. We split the

cavity field into an average coherent amplitude 〈â〉 = α and a fluctuation

term: â = α+ δâ. The interaction part of the Hamiltonian is:

Ĥint = −~g0(α+ δâ)†(α+ δâ)(b̂+ b̂†). (1.80)

It can be split into three terms. The first one is −~g0|α|2(b̂+ b̂†) and contains

the average of the radiation pressure F̄ = ~G|α|2. It shifts the origin by δx̄ =

F̄ /meffωm. This shift can be accounted for by using a modified detuning

∆mod = ∆+Gx̄. The second term is linear in |α|: −~g0(α∗δâ+αδâ†)(b̂+ b̂†).

The third term −~g0δâ
†δâ(b̂ + b̂†) is of higher-order in δâ. From the mean

cavity photons ncav, we can define g = g0
√
ncav called ”the optomechanical

coupling strength”. The linearized Hamiltonian is:

Ĥlin = −~∆δâ†δâ+ ~Ωmb̂
†b̂− ~g(δâ+ δâ†)(b̂+ b̂†). (1.81)

Considering the system in resolved-sidebands regime (κ � Ωm), there are

three peculiar choices for the detuning of the laser drive with respect to the
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Figure 1.7: Left panel: cavity drive blue detuned at ∆ = Ωm. Center panel:

cavity drive red detuned at ∆ = −Ωm. Right panel: cavity drive in resonance

at ∆ = 0. The light green areas show the cavity transfer function, dark yellow

peaks show the cavity drive beam, red and blue peaks, respectively Stokes

and anti-Stokes sidebands.

cavity resonance, each configuration corresponding to different regime.

Two−mode squeezing: blue-detuned at ∆ = Ωm
The first considered case is the blue-detuning by a mechanical frequency

∆ = Ωm, see left panel in Fig. 1.7. The effective Hamiltonian is reduced

from Eq. 1.81 as

ĤTMS = −~g(δâ†b̂† + δâb̂). (1.82)

This configurations is called two-mode squeezing (TMS). Here the two res-

onant interactions being the simultaneous creation of a photon and phonon

pair. It can create highly correlated and entangled photon-phonon pairs,

analog to the down-conversion. In this configuration the phonons creation

increase the effective temperature of the oscillator and can yield to instabil-

ities in the system.

beam− splitter: red-detuned at ∆ = −Ωm
An other possible configuration is at red-detuning by a mechanical frequency

∆ = −Ωm, see central panel in Fig. 1.7. The effective Hamiltonian in this

configuration can be written as

ĤBS = −~g(δâ b̂† + δâ† b̂). (1.83)
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This configuration is called beam-splitter (BS) interaction and can be used

to exchange the energy between the optical bath to the mechanics. The two

interaction terms are non-resonant. The BS configuration describes the cre-

ation of a resonant photon at the cost of a mechanical phonon. In our work

a red-detuned drive is used to cool down the mechanical oscillator, in the

quantum regime, by sideband cooling [50,71].

Resonant Drive

The last possible configuration is a resonant drive ∆ = 0, see right panel

in Fig. 1.7. In this configuration both interactions contribute equally as

in Eq. 1.81, and the oscillator position (b̂† + b̂ ∝ x̂) can induce a phase

shift on the light field. This phase shift in combination with a phase mea-

surement is used to detect the oscillator position with high sensitivity, as

in gravitational wave detectors. Furthermore, this condition can be used to

generate ponderomotive squeezing [56] or perform quantum non-demolition

measurements (QND).

1.3.1 Quantum Langevin Equations

Now we write the optomechanical equation of motion to have a clear de-

scription of the system dynamics. The mechanical motion induces a shift in

the optical frequency [6]. This changes the light intensity, and the radiation

pressure force acting on the motion. The cavity decay rate κ introduces a

delay between the motion and resulting changes of the force. The analytical

treatment of the phenomena is given by the input-output formalism. Equa-

tions have the form of quantum linearized Langevin equations, driven by

thermal noise, in the frame rotating at the frequency ωl:

δ ˙̂a =

(
i∆− κ

2

)
δâ+ ig0αδâ+

√
κδâin, (1.84)

˙̂
b =

(
−iΩ0

m −
Γm
2

)
b̂+ ig0(α∗δâ+ αδâ†) +

√
Γmb̂th, (1.85)

where Ω0
m is the mechanical resonance frequency, and Ωm is the mechanical

frequency modified by the optomechanical effects, as I will later describe.

The noise correlation associated to the input fluctuations are given by:

〈âin(t)â†in(t)〉 = δ(t− t′), (1.86)
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〈â†in(t)âin(t)〉 = 0, (1.87)

〈b̂th(t)b̂†th(t)〉 = (n̄th + 1)δ(t− t′), (1.88)

〈b̂†th(t)b̂th(t)〉 = n̄thδ(t− t′). (1.89)

The linearized evolution equations for the intracavity field operator δâ and

the mechanical bosonic operator b̂ in the Fourier space are

δã(ω)

(
− iω − i∆ +

κ

2

)
= ig0α

(
b̃(ω) + b̃†(ω)

)
+
√
κ δãin(ω), (1.90)

δã†(ω)

(
− iω + i∆ +

κ

2

)
= −ig0α

∗
(
b̃(ω) + b̃†(ω)

)
+
√
κ δã†in(ω), (1.91)

b̃(ω)

(
− iω+ iΩ0

m+
Γm
2

)
= ig0

(
αδã†(ω)+α∗δã(ω)

)
+
√

Γm b̃th(ω), (1.92)

b̃†(ω)

(
− iω − iΩ0

m +
Γm
2

)
= −ig0

(
αδã†(ω) + α∗δã(ω)

)
+
√

Γm b̃†th(ω),

(1.93)

where the Fourier transform for a generic operator, f̂(t), and the respective

hermitian conjugate is defined as

F [f̂(t)] =

∫ ∞
−∞

f̂(t)eiωtdt = f̃(ω) (1.94)

and

F [f̂†(t)] =

∫ ∞
−∞

f̂†(t)eiωtdt = f̃†(ω) = (f̃(−ω))†. (1.95)

In order to have a clear description of the bosonic creation and annihilation

operator, Eq. 1.90 and 1.91 are substituted in Eq. 1.92 and 1.93. The result

for the annihilation operator is

b̃(ω)

(
− iω + iΩ0

m +
Γm
2

)
=

= g2
0 |α|2

[
1

−iω − i∆ + κ
2

− 1

−iω + i∆ + κ
2

](
b̃(ω) + b̃†(ω)

)
+ b̃in(ω)

(1.96)
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Figure 1.8: a) Γopt trends for different mechanical modes as a function of

the detuning ∆. b) frequency shift, ∆Ωm = Ωm − Ω0
m, for different me-

chanical modes as a function of the detuning ∆. The solid lines show the

optomechanical effects for many membrane modes: Blue solid line, mechan-

ical mode (0, 1) at 230 kHz. Yellow solid line, mechanical mode (1, 1) at 370

kHz. Green solid line, mechanical mode (0, 2) at 530 kHz. Red solid line,

mechanical mode (0, 3) at 830 kHz.

where the last term contains the information of the input contributions, and

it is given by:

b̃in(ω) = ig0

√
κ

[
αδã†in(ω)

−iω + i∆ + κ
2

+
α∗δãin(ω)

−iω − i∆ + κ
2

]
+
√

Γm b̃th. (1.97)

From this equation is possible to identify how the optomechanical interaction

modify the mechanical resonance frequency and the damping. The interac-

tion adds to the oscillator an additional spring (optical spring), shifting the

mechanical frequency resonance as:

Ωm = Ω0
m + g2

0 |α|2 Im

[
1

−iω − i∆ + κ/2
− 1

−iω + i∆ + κ/2

]
(1.98)

and providing the optical damping

Γopt = g2
0 |α|2 Re

[
1

−iω − i∆ + κ/2
− 1

−iω + i∆ + κ/2

]
. (1.99)

We can define effective mechanical damping as Γeff = Γopt + Γm, and the

mechanical effective susceptibility

χeff (ω) =
Ω0
m

Ω2
m − ω2 − iωΓeff

. (1.100)
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The optomechanical modification of the frequency and the damping, as a

function of the detuning, are shown in the Figs. 1.8, in the right and left

panel, respectively. For a fixed detuning, the ratio between frequency shift

and optical damping rate depends on the ratio Ωm/κ: in the resolved side-

band regime (Ωm � κ) the back-action effect is more evident on the optical

damping rate with negligible frequency shift, and vice versa in the bad cavity

regime (Ωm � κ). The oscillator effective temperature of the overall bath

(thermal bath and optical one) is

Teff = T
Γm

Γeff
. (1.101)

From these equations and in close to resonance ω ≈ Ωm, the Langeven

equations of the creation and annihilation mechanical bosonic operator can

be written in the following way:

b̃†(ω)

(
− iω − iΩm +

Γeff
2

)
= b̃†in(ω), (1.102)

b̃(ω)

(
− iω + iΩm +

Γeff
2

)
= b̃in(ω). (1.103)

In the equation for the bosonic annihilation operator, the contribution of the

bosonic creation operator is neglected because it is far from the its resonance,

i.e. b̃† is resonant at −Ωm. This concept is true also for the equation of the

creation operator, where the b̃ is centered in −Ωm, but resonant at Ωm, and

therefore negligible.

To get a clearer description of the model, we move to a rotating frame

around the mechanical frequency Ωm (see App. A), the bosonic creation and

annihilation operator are given by:

b̂R(t) := b̂(t)eiΩmt, b̂†R(t) := b̂†(t)e−iΩmt. (1.104)

We define a shifted frequency ω − Ωm = Ω. The Fourier Transform of

annihilation and creation operator in the rotating frame are thus:

b̃R(ω) = b̃(ω + Ωm), b̃†R(ω) = b̃†(ω − Ωm). (1.105)

Eq. 1.103 and its Hermitian conjugate can be written in the form of the

system of coupled linear equations(
−iΩ +

Γeff
2 0

0 −iΩ +
Γeff

2

)(
b̃R
b̃†R

)
=

(
b̃in
b̃†in

)
(1.106)
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The two bosonic operators are:

b̃R(Ω) = 1
−iΩ+Γeff/2

[
ig0
√
κ

(
δãin(Ωm)α∗

−iΩm−i∆+κ/2 +
δã†in(Ωm)α

−iΩm+i∆+κ/2

)
+
√

Γm b̃th(Ωm)

]
(1.107)

and

b̃†R(Ω) = 1
−iΩ+Γeff/2

[
− ig0

√
κ

(
δãin(−Ωm)α∗

iΩm+i∆+κ/2 +
δã†in(−Ωm)α

iΩm−i∆+κ/2

)
+
√

Γm b̃†th(−Ωm)

]
(1.108)

where the input noise operators are calculated in quasi resonance approx-

imation Ω ≈ Ωm. The spectrum of the bosonic annihilation operator is:

Sb̃Rb̃R =
1

2π

〈
b̃†R(−Ω)̃bR(Ω)

〉
. (1.109)

The spectrum of the bosonic creation operator is:

Sb̃†Rb̃
†
R

=
1

2π

〈
b̃R(−Ω)̃b†R(Ω)

〉
. (1.110)

We use the obtained equations of b̃R(Ω) and b̃†R(Ω) (respectively Eq. 1.107

Figure 1.9: Left panel: the optomechanical cavity transmitted beam (res-

onate with the cavity ωcav = ωl) with the two sidebands modulation. Right

panel: scattering picture, showing the Stokes (ωl − Ωm) and anti-Stokes

(ωl + Ωm) process in the optomechanical cavity.

and 1.108) and the commutation relations written before (Eqs. 1.86 -1.89) to

obtain a clear description of the spectra. The contribution of the annihilation

operator gives

Sb̃Rb̃R(Ω) =
Γmn̄th + Γoptn̄BA

Ω2 + Γ2
eff/4

=
Γeff

Ω2 + Γ2
eff/4

n̄, (1.111)
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while the creation operator spectrum is

Sb̃†Rb̃
†
R

(Ω) =
Γm(n̄th + 1) + Γopt(n̄BA + 1)

Ω2 + Γ2
eff/4

=
Γeff

Ω2 + Γ2
eff/4

(n̄+ 1). (1.112)

Where the occupation number due to the back-action is:

n̄BA :=
A+

A− −A+
, (1.113)

1 + n̄BA =
A−

A− −A+
, (1.114)

where A+ is the rate of the upward transition (Stokes process) and A− is

the rate of the downward transition (anti-Stokes process). They are defined

in the follow way:

A+ :=
κ g2

0 |α|2

(∆− Ωm)2 + κ2/4
, (1.115)

A− :=
κ g2

0 |α|2

(∆ + Ωm)2 + κ2/4
. (1.116)

The oscillator effective phonon number is the linear sum of the optical and

thermal occupation, it is expressed in the following equation:

n̄ =
Γm n̄th + Γopt n̄BA

Γeff
. (1.117)

In our work we describe an optomechanical system in weakly coupling regime

Γeff � Ωm, and them the observable variable exhibit Lorentzian spec-

tra with linewidth Γeff . Their variance can be evaluated by integrating

over the respective spectral peaks. The spectral variance is define as σf =∫∞
−∞ Sff (Ω)dΩ

2π . It is used to identify the occupancy of the two sidebands,

the anti-Stokes Sb̃Rb̃R(Ω) and the Stokes Sb̃†Rb̃
†
R

(Ω):

σb̃R =
Γm

Γeff
n̄th +

Γopt
Γeff

n̄BA = n̄, (1.118)

σb̃†R
=

Γm
Γeff

(n̄th + 1) +
Γopt
Γeff

(n̄BA + 1) = n̄+ 1, (1.119)

where it is used: ∫ ∞
−∞

1

(Ω2 + Γ2
eff/4)

dΩ

2π
=

1

Γeff
. (1.120)
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Using these equations we can connect the Stokes and the anti-Stokes areas

with the phonon occupancy. We will use this concept to measure the phonon

occupation for the mechanical modes by the asymmetry between the two

sidebands. In the next chapters I will describe the experimental apparatus,

and the experimental results.



Chapter 2

Experimental Setup
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Figure 2.1: General experimental setup.

In this chapter I will describe the apparatus used in the experiment.

In Fig. 2.1 I sketch the apparatus used in order to prepare the laser beams

and show how they are used in the experiment. The light source is the

Mephisto cw Nd:YAG laser operating at λ = 1064 nm manufactured by

InnoLight GmbH (now Coherent Inc. [38]), with a maximum output power

of 500 mW.

After a 40 dB optical isolator, we set a polarizing beam splitter (PBS-1)

and a half wave plate. With it, we can decide to deviate the beam into

a filter cavity or keep it unfiltered. In the first case, the light transmitted

from the filter cavity returns into the beam path through a third PBS-3.

27
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Before that the beam is sent through a second PBS-2 in an Acusto-Optic

Modulator (AOM), identified with the letter ”A”. The AOM-A is used in

the lock scheme of the Optomechanical Cavity (OMC), to correct the fast

fluctuations of the cavity error signal. The AOM-A gain is 5.8 MHz/V. The

total lock gain is 2× 5.8 MHz/V because the AOM is used in a double pass

configuration. More details about the filter cavity will be presented later.

With two PBS, number 4 and 5, and two half wave plates, the beam is

divided into three different beams called: Pump, Probe and Local oscillator

(LO). The Probe is mainly used to lock the laser frequency to the OMC, and

it is also used in the detection as a probe resonant with the cavity. On its

path, a resonant electro-optic modulator (EOM) provides phase modulation

at 13.3 MHz, with a depth of about 1 rad used for the Pound-Drever-Hall

(PDH) detection scheme. The Probe beam radiation is frequency shifted

by a AOM-C. The LO is taken from the reflection of the PBS-5 and used

as reference in the detection. With an AOM-D, placed on this path, we

can control the frequency shift of the LO beam from the cavity resonance,

∆LO. The homodyne detection is performed when the LO beam is resonant,

∆LO = 0. Vice versa heterodyne detection is performed when ∆LO 6= 0.

That AOM is used to perform a phase lock in the homodyne and heterodyne

at low detection frequency. The Pump beam is used to inject a relatively

high power into the OMC. The main purpose of this beam is to cold down

the mechanical oscillator. The Pump beam passes trough an AOM-B, it

is used to control the frequency shift between the Probe and Pump beam

∆cool, to obtain the best cooling effect on the mechanical oscillator. All the

AOMs used in this work are phase locked.

The three beams (Pump, Local oscillator and Probe) are sent to a second

optical bench with single-mode, polarization maintaining fibers. The output

of the Pump beam fiber is sent on a PBS-9 after a λ/2, used to select the

optical power. The reflected beam is sent to the optomechanical cavity, and

the transmitted Pump beam is detected with a photodiode to monitoring

the power fluctuation and measure the intensity of the modulation tones

on the Pump beam (parametric squeezing scheme). We typically use a fast

photodiode with a bandwidth of 200 MHz.

The Probe beam after an optic isolator, is overlapped on a PBS-7 to

the Pump beam, with orthogonal polarization. The overlapped beams are

mode matched to the OMC. The reflected Probe beam (deviated by the input

polarizer on the optical isolator) is detected by the photodiode used to obtain
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the PDH signal. We will describe it in the Sec. 2.6. The frequency shift

generated by the AOMs eliminates any spurious interference and reduces

the cross-talk between Pump and Probe. Before the photodiode used for

the OMC lock, a half wave plate and a PBS-6 are able to take most of the

reflected Probe power and direct it as signal in the heterodyne/homodyne

detection. This fraction af the Probe is overlapped with the local oscillator

(properly detuned), on the PBS-8. After the PBS-8, the electric fields are

rotated by 45° by a half wave plate and then the overlapped beams are

divided in two equal component by PBS-10. The two beams are sent on two

identical photodiodes to have a Balanced Detection.

Before the OMC, a Dicroic mirror high pass (the wavelength of 1064 nm

is transmitted and the laser at 980 nm is reflected) is used to inject in the

cavity a second laser with a wavelength close to 980 nm. This beam is used

to perform the Q-factor measurement. More details about its experimental

apparatus are given in Sec. 2.2.

A computer scope is used to acquire the signal from the PDH and the

homodyne and heterodyne detection. The signals are digitalised and the

scope calculates the signal spectra and takes the average over the several

acquisitions. To have a better signal to noise ratio, we acquired different

time traces for each apparatus configuration. In the following sections I

will describe in details the different components in our apparatus. In the

first sub-section the optomechanical system will be described, afterwards I

will illustrate the quality factor apparatus and measurement protocol, then

I will illustrate the locking scheme and I will describe the reasons why we

implemented a filter cavity and its characteristics, in the last section I will

describe the homodyne and heterodyne detection scheme.

2.1 Optomechanical cavity

The optomechanical cavity is composed by a membrane placed in the middle

of a high finesse Fabry-Pérot cavity. The sketch of the optomechanical cavity

is shown in the Fig. 2.2. The cavity is composed by two mirrors. The

input mirror has a curvature radius R = 50 mm, and the output mirror

is flat. The input mirror is glued to a high voltage piezoelectric translator

PZT through an invar spacer. The invar is a particular metal alloy having

a similar low thermal expansion coefficient, 1.7 × 10−6 K−1, of silica and

silicon ∼ 0.57 × 10−6 K−1. Indeed, by using this metal alloy in the cavity
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Figure 2.2: Sketch of the optomechanical cavity

components (Fig. 2.2), it is possible to decrease any thermal stress from the

mounts on the mirrors and the oscillator. The PZT is used to sweep the

cavity length and is used as a slow control in the cavity lock. Between the

mirrors, the cavity has a silicon spacer and the silicon plate containing the

membrane, both of them ∼ 1 mm thick. The length of the cavity is 4.377

mm and the free spectral range (FSR) is 34.25 GHz. The input mirror

transmission is T1 = 315 ppm while the back mirror has high reflectivity,

T2 = 10 ppm, both at λ = 1064 nm. In the beginning of experiment,

however, the cavity finesse was 16500 maybe due to a not perfect mirror

cleaning. The nominal finesse at zero losses of the empty cavity (without

the oscillator), as described in Eq. 1.41 is F = 19333. The cavity finesse

with the mechanical oscillator in the middle is a different object, as we will

discuss more in details in a following section. In this cavity configuration,

the membrane is situated close to the cavity center. The cavity is designed

in order to obtain one rigid block, since at cryogenic temperature the cavity



2.1 Optomechanical cavity 31

does not have the tilt or move. The optomechanical cavity is mounted in a

cryostat, evacuated to a pressure below 10−5 mbar. Via a helium flux we

can reach a bath temperature close to 7 K.

The optomechanical cavity has an alignment system. It is composed by

two off-axis cylinders, both used to align the cavity with circular movements,

given an overall translation of the optical axis. This allows placing the cav-

ity axis in the membrane center. The assembled cavity is fixed on a support

and then to a cooled copper plate in the cryostat, thermally connected to the

cold finger by means of soft copper foils. The copper plate is mechanically

fixed, using thermally isolated legs (fabricated from torlon), to a huge inox

mass, connected to the cryostat bottom flange using C-shaped springs. This

suspension system reduces the vibrations propagated from the cryostat to

the optical cavity. Inside the cryostat, we have three thermal sensors used

to monitor the temperature of the cold-finger, the sample and the thermal

shield.

During the work of this thesis we changed the cavity PZT from one at high

voltage to one at low voltage, with the purpose to decrease the noise intro-

duced by the high voltage amplifier. For this reason in the work described

in Ch. 4 the cavity length is different, due to the different PZT length. The

length is 3.919 mm and the FSR is 38.25 GHz. All the other cavity pa-

rameters are identical to the previous configuration. The low voltage PZT

parameters are described in the follow table.

model PI/P-080.341

operating voltage −20÷ 100 V

displacement range 100± 20% nm

capacity 17 µF

This second configuration will be used in the parametric squeezing work de-

scribed in Ch. 4, while the first cavity configuration is used in the calibration

work described in Ch. 3.

Mode matching

When the OMC is put in the cryotat, it is aligned with the optical path. The

cavity mode matching identifies the light power in each cavity mode. We

align the cavity on the TEM00 mode, for which the mode matching coefficient
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is described by the follow equation:

MM0,0 =

∞∑
m=0

∞∑
n=0

V0,0

Vm,n
(2.1)

where Vm,n are the measured voltage on the PDH detector for each cavity

mode (m,n). Experimentally, we just consider the visible modes. For this

measurement we tune the cavity length by the PZT glued on the input

mirror. The PZT allows to observe a cavity free spectra range, indeed we

can measure all the residual cavity modes (m,n). A typically value of MM0,0

is > 95%. The mode matching is important for two reasons. Any light not

coupled into the fundamental mode of the cavity does not interact with

the membrane. The non-resonant modes are reflected back to the PDH

detector, causing a decrease in the signal to noise ratio of the locking detector

and therefore also effecting the feedback, the stability of the optomechanical

system and decreasing the signal in the homodyne and heterodyne detection.

All the procedures of mode matching optimization are repeated after the

cooling down and before the measurements.

Cavity length and Free spectral range

The cavities length used in this work is around 4 mm, in both the considered

configurations. In order to know the cavity finesse and losses, it is very im-

portant to have a good estimation of the cavity length and the free spectral

range (FSR). Due to the short cavity length, all the possible deformation

due to the contraction during the cooling, or the fabrication uncertainty give

an important contribution on evaluation of the FSR. The FSR is measured

using a laser with a tuning range large enough, without mode jumps. That

laser setup is shown in the Sec. 2.2. We tune the laser between two different

cavity resonances, in each point we measure the laser frequencies, and from

the difference we detect the cavity FSR. The results of this measure tech-

nique, implemented for the two configurations, are shown in the introduction

of this section.

2.1.1 Circular membrane

In this optomechanical work, we use a circular drum as mechanical oscillator,

placed in the center of a Fabry Pérot cavity. We consider a tensioned circular

membrane [24]. The vibration modes of the membrane, are given by the
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solutions of the two-dimensional wave equation, with Dirichlet boundary

conditions which represent the constraint of the frame. It can be shows

that any arbitrary vibration of the membrane can be decomposes into an

infinite series of the membrane’s normal modes. We now describe the analytic

solution of this problem. We consider an open disk Θ of radius a. Wa call

u(x, y, t) the vertical displacement of the membrane, where (x, y) ∈ Θ. We

denote with δΘ the variation of the shape Θ. In cylindrical coordinates

(r, θ, z) the wave equation is:

∂2u

∂t2
= c2

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

)
0 ≤ r < a; 0 ≤ θ ≤ 2π (2.2)

where u = 0 for r = a. c is a positive constant, giving the speed at which

Figure 2.3: Modes of the membrane vibration, labeled with the number m

and n.
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transverse vibration waves propagate in the membrane:

c =

√
Nrr
ρh

(2.3)

where Nrr is the radial membrane stress at the membrane boundary (r = a),

h is the membrane thickness, and ρ is the density of the membrane. In the

general case, we assume a solution in separated variables

u(r, θ, t) = R(r)Θ(θ)T (t). (2.4)

We replace this into the wave equation, the result is:

T ′′(t)

c2T (t)
=
R′′(r)

R(r)
+
R′(r)

rR(r)
+

Θ′′(θ)

r2Θ(θ)
= K (2.5)

where K is a constant. The equation for T (t) has different solutions, for

K > 0 an exponential grow or decay solution, for K = 0 the solutions are

linear, and they are periodic for K < 0. In order to find the solution of the

vibrating membrane we consider K < 0, then K = −λ2 with λ > 0. The

solution for T is the combination of sine and cosine functions,

T (t) = Acos(cλt) +Bsin(cλt). (2.6)

From the other equation:

R′′(r)

R(r)
+
R′(r)

rR(r)
+

Θ′′(θ)

r2Θ(θ)
= −λ2. (2.7)

Separating the variables and after multiplying both sides by r2:

λ2r2 +
r2R′′(r)

R(r)
+
R′(r)r

R(r)
= L (2.8)

and

−Θ′′(θ)

Θ(θ)
= L (2.9)

where L is the same constant. Since Θ(θ) is periodic, with period 2π, the

solutions is:

Θ(θ) = Ccos(mθ) +Dsin(mθ), (2.10)

where m = 0, 1, ... and C and D are constants. This also implies L = m2.

The solution for R(r) equation is a linear combination of Bessel functions

Jm and Ym.

R(r) = c1Jm(rλ) + c2Ym(rλ). (2.11)
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The Bessel function Ym is unbounded for r → 0, resulting in an unphysical

solution for the vibrating membrane, so the constant c2 must be null. We

assume that c1 = 1. From the boundary condition u = 0 with r = a, we

obtain

R(a) = Jm(aλ) = 0. (2.12)

The Bessel function Jm has an infinite number of positive roots, 0 < αm1 <

αm2 < ... . Therefore we get that λa = αm,n, for n = 1, 2, ..., so the solution

can be written as Jm(αm,n
r
a ). The total solutions for the vibration of the

membrane are:

umn(r, θ, t) = (A cos(cλt)+B sin(cλt))Jm

(
αm,n

r

a

)
(C cos(mθ)+D sin(mθ)),

(2.13)

for m = 0, 1, ... and n = 1, ... .

Effective Mass

This section has the purpose to describe the concept of mechanical mode

effective mass. In the general case, we consider a system with a density

ρ(~x). The displacement of the infinitesimal volume d~x on the position ~x in

vibrational mode is:

~u(~x, t) = ~u(~x)ei(ωt+φ(~x)) (2.14)

The physical mass of the system is equal to:

M =

∫
V

ρ(~x)d~x (2.15)

where V is the total volume. We can define the measurement of affective

position as:

D :=

∫
V

g(~u)~ud~x (2.16)

where g(~x) an arbitrary detection function. The energy of an element, d~x,

of the system is equal to:

1

2
ρ d~xω2 ~u2(~x, t) +

1

2
~̇u(~x, t)2 ρd~x = ρ d~xω2 ~u(~x)2 (2.17)

where ~̇u = ω~ueiωt and ρd~x is the mass of the volume element of the system.

We require that the description of the vibration system as a simple harmonic
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oscillator with the displacement ~x, conserve the total energy. Therefore we

can write:

ω2

∫
V

ρ(~x)~u2(~x)d~x = MeffD
2ω2. (2.18)

Where Meff is the effective mass. We obtain the effective mass in the general

case as:

Meff =

∫
V
ρ(~x)u2(~x)d~x[∫

V
~u(~x)g(~x)d~x

]2 . (2.19)

As it can be seen from this equation, the exact matching between the probing

beam and the mechanical mode shape will lead to D = 1, yielding the

minimum effective mass of the (m,n) mode. Any mode mismatch will lead to

D < 1 and therefore the respective mode will appear to be heavier (Meff >

M). In the extreme case of zero overlap D → 0, the respective mode effective

mass diverges. This actually means that the optomechanical coupling is

weak, as the light is not sensitive to the motion of the oscillator.

In this general description we will restrict to the case of the circular

membrane. We consider a scalar displacement in the orthogonal direction

to the membrane plane. In this case we describe the position with polar

coordinates (~r, z, θ). From the previous description of the mechanical modes

of the membrane, as see that they are described with Bessel functions. We

indicate the modal frequencies as νm,n = ν0αm,n, where ν0 = 1
2π

√
Nrr
ρ

1
a .

In our case ρ is 3200 kg/m3, T is equal to ∼ 0.8 GPa and a = 0.82 mm is

the radius of the membrane. With these values, we calculate ν0 = 96.6 kHz.

The Bessel polynomials, describe the movements of the membrane from the

unperturbed position:

u(r, θ) = Jm

(
αm,n

r

a

)
(cos(mθ) + sin(mθ)). (2.20)

The effective mass in cylindrical coordinates is:

Meff =
hρ
∫∫

u2dθdr[∫∫
u ·G(r, θ)dθdr

]2 (2.21)

where G is a Gaussian function normalized to one describing the reading

function.

G(r, θ) =
2

πw
e−2

|~r−~δ|2

w2 , (2.22)

where we indicate with w the waist of the beam, ~δ is the distance from

the center of the membrane to the center of the beam, h is the constant
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Figure 2.4: Mechanical mode shape functions (blue) and optical read-out

(red) to display the concept of overlap functions and effective mass of a

mechanical mode. We look at cuts along the y-Axis of the membrane. The

waist radius of the TEM00 (optical read-out function) is ∼ 70 µm, centered

on the membrane ~δ = 0. In each subplot is shown a different modal mode,

labeled by (m,n), for a circular SiN membrane with a diameter of 1.6 mm.

All the waves are normalized with respect to their respective maximum.

thickness of the membrane. It is possible to identify the total mass of the

system M = πa2hρ. The ratio between the effective mass and the physical

one is:

Meff

M =
1
πa2

∫ 2π
0

∫ a
0
rJ2
m(αm,n

r
a ) cos2(mθ)dθdr[

2
πw2

∫ 2π
0

∫ a
0
rJm(αm,n

r
a ) cos(mθ)e

− 2
w2 (r2+δ2−2rδ cos(θ))

dθdr

]2 .

(2.23)

Now we normalize the r, ∆ and w at the radius of the membrane a. We can

use an integral result of the Bessel function:∫ 1

0

xJ2
m(αm,nx)dx =

1

2
J2
m−1(αm,n) (2.24)

where x = r/a. From now we consider r, δ and w as normalized to the
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membrane radius a. We now calculate the mass for two different situations,

m = 0 and m 6= 0. In the first case we just have the rotational symmetrical

modes. In this case the effective mass for the modes is:

Meff

M
=

J2
1 (α0,n)[

4
πw2

∫ 1

0
I0( 4xδ

w2 )J0(α0,nx)e−
2(x2+δ2)

w2 xdx

]2 (2.25)

where I0 is due to the integration over the variable θ. For m 6= 0, the nu-

(m,n) δ Meff/M g0 (Hz)

(0, 1) 0.34 0.39 34

(0, 2) 0.34 1.4 11

(1, 1) 0.34 0.60 20

(0, 1) 0.1 0.28 37

(0, 2) 0.1 0.14 35

(1, 1) 0.1 3.95 7

Table 2.1: In this table are shown the theoretical values of the effective mass

normalized at the physical mass of the mechanical oscillator and the relative

vacuum optomechanical coupling g0 for three mechanical modes taken in

consideration in this work. The two parameters are calculated for the two

configuration of the cavity spot, δ = 0.34 and δ = 0.1.

merator of the Eq. 2.23 is 1
2J

2
m−1(αm,n). In the denominator the integration

on the variable θ is not obvious. At the purpose of simplify the solution, we

introduce the approximation, δ
m � w. It means that the mode shape varies

slowly over the beam waist. In this case we can move out of the integral the

cos function:

Meff

M
'

1
2J

2
m−1(αm,n)[

4
πw2

∫ 1

0
xI0( 4xδ

w2 )J0(αm,nx)e−
2(x2+δ2)

w2 dx

]2 . (2.26)

It is clear that the effective mass depends of the measurement position.

The Eq. 2.16 gives a zero overlap and therefore infinite effective mass

for the mechanical mode of m > 0, ∀n and for a ~δ = 0 see Fig. 2.4. In the

experiment, however, the alignment of the optical beam with respect to the

membrane is not perfect, such that there is a residual overlap even for m > 0

mode. The vacuum optomechanical coupling g0 = GxZPF , where in xZPF
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Figure 2.5: Trend of g0 as a function of the position shift δ for different

mechanical modes, the black line the mode (0, 1), the dark grey line the

mode (0, 2) and gray line the mode (1, 1), where with the vertical lines, red

and dark red, are shown the two different positions of the cavity beam.

appears the dependence from the effective mass, depends on the overlap

between the cavity mode and the membrane ones. Due to that, g0 is rightly

dependent of the cavity beam position. For this reason, in the Tab. 2.1, we

show some value of the effective mass Meff and the optomechanical vacuum

coupling g0 obtained for the two different cavity configurations and for three

considered modal mode: (0, 1), (1, 1) and (0, 2). Indeed, in the Fig. 2.5 is

shown a full description of the g0, for the three some modes, as a function

of the normalized beam position ~δ. We evidence, by two vertical lines (dark

red and red), the two positions for the cavity beam on the membrane.

As we said, we studied the system for two different positions of the cavity

spot on the membrane. In the first configuration we focus the work on one

of the quasi degenerate mechanical mechanical mode (1, 1) at 370 kHz, and

considering only the one more coupled with the cavity beam. This configu-

ration will be used in the work described in the Ch. 3. The overlap function

D, described in the Eq. 2.16, has a value close to 54% for one of the quasi

degenera mode and almost zero for the other. That value is calculated con-
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sidering a shift close to 0.28 mm (we will discuss later that measurement

method) that corresponds to δ = 0.34. The value of effective mass, normal-

ized to the physical mass, and the g0 for the interested mechanical modes

are shown in the Tab. 2.1. Before the parametric squeezing work, the spot

on the membrane was realigned, obtained a better centering (shift from the

center less of 0.1 of the membrane radius). Here, one of the best coupled

mode is the (0, 2) at 530 kHz, the overlap is close of 90%. For that position

the theoretical value of the vacuum optomechanical coupling and normalized

effective mass are shown in the Tab. 2.1. In the next subsections we will

report the membrane physical parameters and how the oscillator influences

the cavity proprieties.

Membrane specs

Figure 2.6: Left panel: a) Optical microscope picture of the circular mem-

brane, with diameter 1.64 mm and thickness 100 nm. b) and c) first

modal shapes involving the membrane, resonating at about 230 and 366

kHz, respectively, similar to the constrained membrane’s normal mode

(m,n) = (0, 1) and (m,n) = (1, 1). d) CAD image of the device. e) and

f) modal shapes of the lowest frequency resonances of the device, respec-

tively, at 32 and 47 kHz, where the planar displacement of the membrane

frame can be seen. The pictures are taken from [10]. Right panel: A typi-

cal displacement spectrum of the membrane at room temperature. All the

mechanical modes are marked in red.

The optomechanical cavity is based on a silicon nitride (SiNx), circular

membrane oscillator, supported by a silicon (Si) frame. It is made by a col-
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Diameter, lx = ly (mm) 1.64

thickness, lz (nm) 97.27± 0.01

mass, M (kg) 6.57× 10−10

Index of refraction, n 2.0210± 0.0005 at 1064 nm

Absorption coefficient, ni (2.00± 0.08)× 10−6 at 1064 nm

Young’s modulus, E (GPa) 200− 400

Poisson ratio 0.27

Tensile stress (GPa) 0.8

Density, ρ(kg/m3) 3200

Thermal expansion coefficient, α (10−6 m/K) 2.3

Heat capacity per unit volume, Cv (J/m3K) 710

Coeff. of thermal diffusion, DT (10−3 Wm2/J) 9.29

Table 2.2: Material properties of SiN. Values extracted from [10,11,72]

laboration between the University of Trento and the Technology University

of Delf. The optomechanical membranes fabrication is based on Deep Reac-

tive Ion Etching (DRIE). This technique enables the fabrication of a complex

structure around the membrane, used to isolate the membrane from its sup-

port. This allows to maintain a high mechanical Q-factor (107) for all the

membrane mechanical modes. The details of its fabrication are described in

the work [72].

The membrane used in this experiment has a mass of 6.57 × 10−10 kg,

and a diameter of 1.64 mm. The thickness is ∼ 100 nm and the Q-factor

is 107. The membrane stress is ∼ 0.8 GPa. The resonance frequency of

the membrane fundamental mechanical mode is 240 kHz. The membrane is

incorporated in a 1 mm thick silicon plate. All the membrane parameters

are shown in the Tab. 2.2. In the right panel of Fig. 2.6 is shown a typical

displacement spectrum at room temperature, where the mechanical modes

are marked in red. The displacement spectrum is acquired by the homodyne

balanced detection at room temperature (RT) without any optical cooling

effect. The spectrum is calibrated in terms of m2/Hz.

Membrane Reflectivity and Transmissivity

In the optomechanical cavity in configuration “membrane-in-the-middle” the

cavity finesse is linked to the position of the membrane. To get a more general
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Figure 2.7: a): The SiN membrane reflectivity as a function of the λ, cal-

culated for a membrane thickness of 100 nm (Green line). Dark red line at

980 nm and red line at 1064 nm indicates the interestingly wavelengths. b):

The power reflectivity as a function of the membrane thickness, field at 980

nm (dark red line) and field at 1064 nm (red line). Green line, membrane

thickness of 100 nm.

description, we can start by describing the membrane reflection and trans-

mission coefficients. At this propose we use the transfer matrix approach

for a 2D thin film (lx, ly � λ, lz � λ). With this method we can link the

transmitted electromagnetic field amplitudes E(lz) and H(lz), to the fields

at the boundary of the membrane E(0) and H(0) with the the wavelength

dependent refractive index n(λ):(
E(lz)

H(lz)

)
=

(
cosβ sinβ/k

−k sinβ cosβ

)(
E(0)

H(0)

)
(2.27)

where β = klz it defines the phase shift generated by the SiN film, k = 2πn/λ

is the laser light wave vector. The reflective index of our membrane is shown

in the Tab. 2.2. The transfer matrix approach can be used to calculate

the field amplitude reflected off and transmitted through the membrane.
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The transmission and reflection coefficients are, respectively, t = Et/Ei and

r = Er/Ei [72]:

r =
(1− n2) sinβ

2in cosβ + (n2 + 1) sinβ
, (2.28)

t =
2n

2in cosβ + (n2 + 1) sinβ
. (2.29)

If we consider a system in absence of absorption, the coefficients for the power

reflection and transmission are, respectively, R = |r|2 and T = |t|2, where

R+T = 1. The membrane used has a thickens of 100 nm, the reflected power,

for the 1064 nm wavelength, is ∼ 33%. In Fig. 2.7 we display the membrane

reflectivity as a function of the wavelength λ, and the membrane thickness

lz. We show the trends for the two laser used in our work at 1064 nm and

∼ 980 nm, where the difference in reflectivity are negligible. Due to the low

reflectivity the membrane can not be used as end cavity mirror, therefore the

membrane is placed in a high finesse Fabry-Pérot cavity, without spoiling the

finesse thanks to the low absorption rates. In the real case the membrane

absorbs part of the light field, its refractive index is n = nr + ini [72]. It

has an imaginary part that keeps into account the amount of attenuation

while travelling through the medium. The SiN membrane absorption is very

small, ∼ 2× 10−6 at 1064 nm.

The membrane-in-the-middle cavity

As a further step, we will describe the optomechanical system, membrane-in-

the-middle. We consider a Fabry-Pérot cavity with an input coupler having

|r1|2 + |t1|2 = 1 and σ1 = 0, and an output coupler with |r2|2 + |t2|2 = 1,

σ2 = 0, where the σ1,2 are the mirror losses. The two couplers are separated

by a distance L. Considering the membrane placed approximately in the

cavity center. The classical fields, inside and outside the cavity, is described

by using the transfer matrix method, for that the linear system that describes

the optomechanical cavity is:

(
at
0

)
= Mtot

(
ain
ar

)
(2.30)
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Figure 2.8: Scheme of the membrane-in-the-middle cavity. With red lines are

shown all the coupled fields and with the blue one is shown the membrane,

placed approximately in the middle of the cavity. In our setup, due to the

high reflectivity of the back mirror, at ≈ 0.

where the total matrix is obtained by considering five elements:

Mtot =

(
r2
2

t2
+ t2 − r2t2
− r2t2

1
t2

)(
e2πi(l2−xm) 0

0 e−2πi(l2−xm)

)
(
r2

t + t − rt
− rt

1
t

)(
e2πi(l1+xm) 0

0 e−2πi(l1+xm)

)( r2
1

t1
+ t1 − r1t1
− r1t1

1
t1

) (2.31)

The first and last transfer matrices show the contribution of the cavity mir-

rors. The second and fourth matrices describe how field pass trough an

empty medium with different lengths, normalized by λ, respectively l2 − xm
and l1 + xm. l1 is the left sub-cavity length and l2 = l − l1 is the right sub-

cavity length, where l is the cavity length normalize at the laser wavelength

l = L/λ (in the usual configuration we have l2 = l1 = l/2). The relative

accumulated phases are i2πl1 and i2πl2. The center matrix shows the mem-

brane placed at l1 + xm from the input cavity mirror. The membrane have

the reflection and transmission coefficients respectively r and t. ar and at are

respectively the reflected and transmitted field, the total cavity coefficients

can be obtained by the equations:

rtot = −M21

M22
, ttot = M11 −

M21

M22
M12. (2.32)
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Considering now a cavity in asymmetric configuration, where the transmis-

sion of output mirror is much smaller than the input one (|t1|2 = 315 ppm

, |t2|2 = 10 ppm), we will discuss only the results applied to our setup. We

do not consider a possible membrane angle with respect to the cavity axis.

The resonance frequency is given by the laser wavelength, λ, the membrane

Figure 2.9: a): Cavity finesse as a function of the membrane position nor-

malized to λ. Red dashed line shows the theoretical finesse of the empty

cavity. b): Simulation of the vacuum optomechanical coupling in our config-

uration. It is maximum for the cavity node and anti-node, where the finesse

is maximum and minimum respectively. For the membrane in the middle

setup the vacuum optomechanical coupling can be reach the g0 = ωcav/L,

red solid line.

position xm and its reflectivity, r. The phase of r gives an offset to the reso-

nance. On the other hand, the cavity finesse can change with the membrane

position. Here, we can define the finesse as the total one of the cavity. To

have a description of the finesse and optomechanical coupling as a function

of the membrane position, we performed a numerical estimation of the fre-

quency and linewidth of the transmission resonance. The model results are

shown in the Fig. 2.9a) and 2.9b). Fig. 2.9a) shows the finesse trend as a

function of the membrane position normalized to the laser wavelength. The

maximum cavity finesse is when the membrane is close to the cavity node,

i.e. λ/2. In an asymmetric configuration, the finesse of the optomechanical

cavity can be higher than the empty one. Considering a symmetric system

where a cavity Fabry-Pérot is composed by two identical mirrors, the fi-

nesse can reach at the maximum a value of the empty cavity one. This is the

biggest difference compared with an asymmetric cavity, an example is shown

in the work [40]. The finesse dependence on the position of membrane is the
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explanation of the change in finesse when cooling the system to cryogenic

regime. In our experiment, the finesse at room temperature is close to 16500

but at cryogenic temperature the finesse reaches 20000 or more.

The results of the numerical solution for the optomechanical gain is shown

in the Fig. 2.9b), (normalized to g0 = ωcav/L i.e. to the equivalent end-

mirror coupling strength) where the maximum couplings are in the cavity

node and anti-node, respectively, where the finesse has a maximum and the

minimum.

In conclusion, even if the oscillator has a moderate reflectivity, the op-

tomechanical coupling strength of the membrane, placed in the center of a

cavity, can reach values similar to the standard end mirror configuration or

better.

Finesse measurement

Figure 2.10: a) Example of the finesse measurement, where the red solid

line shows the fit function at five Lorentzian shapes, the blue dots are the

experimental data. Horizontal upside label shows the converted scale in

frequency. b) Example of the finesse measurement for different position of

the laser tuning range. It is make on all the possible range from −10 V to

10 V where its gain is −3 GHz/V. The dashed red line shows the measured

finesse value at room temperature. The black dash line shows the maximum

value of the finesse for our empty cavity.

As previously explained, an important cavity parameter is the finesse.

For its measurement we use the modulation at 13.3 MHz on the probe beam,

used to generate the PDH error signal. We use one photodiode of the bal-
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ance detection, to observe the reflected cavity beam with the two modulation

sidebands. The known frequency distance between the carrier and two side-

bands is used to calibrate the time axis into a frequency. An example of it

is shown in the Fig. 2.10a). From the fit (red line in the figure) we measure

the linewidth of the carrier peak κt and the distance in time between the

carrier and the sidebands δt. The ratio between distance in frequency and

time gives the conversion coefficient 13.3 MHz /δt. This conversion coeffi-

cient is used to calibrate the linewidth in frequency (κ = κt×13.3 MHz /δt),

and from an independent measurement of the cavity FSR, that is previously

described, we derive the cavity finesse F = FSR
κ . At cryogenic temperature,

before any other measurement, the system is characterized by measuring the

finesse as a function of the laser frequencies at the purpose to find the best

coupling point. An example of the full frequency range is shown in the Fig.

2.10b). For the measurement we choose the best finesse point where also the

optomechanical coupling is maximum. As it is possible to observe in that

figure, at cryogenic temperature the finesse grows up compared with the best

finesse value reached at room temperature. It is probably generated by small

tilt of the membrane thermal stress. Due to the thermal stress the positions

of the cavity node and anti-node change, giving a better coupling between

the cavity mode and the mechanical one. We work on the laser frequency

where the finesse is maximum that correspond to the higher optomechanical

coupling.

2.1.2 Cavity spot position on the membrane

In this subsection we describe the possible cavity deformations during the

cooling cycle. During the temperature decrease, we have kept the alignment

between the injected laser and the cavity. The most important thermal

contractions effects occur above 70 K since, below this temperature the ex-

pansion coefficient drops to low values. The cavity movements are due to

the displacement of the cryostat itself. They can be easily followed by using

the alignment mirrors. It is important to verify that the cavity itself does

not deformed too much since such deformation can be hardly compensated.

In particular it is crucial to verify that the position of the cavity axis with

respect to the membrane does not change. In order to see if the beam spot

on the membrane moves or not, we have acquired several photos at different

values of temperature. We have used an editing program to compare such

images. In particular in Fig. 2.11 we show the comparison between two
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Figure 2.11: Photo of the membrane inside optical cavity taken at 20 K.

The blue lines identify the waist center in the photo at 20 K. The red ellipse

and the red lines give the position of the waist center, in the photo taken at

room temperature. The green lines and the green border identify the center

of the membrane. This picture is taken with the horizontal and vertical axis

flipped.

images at room temperature and at 20 K. At the purpose to identify the po-

sition of the spots, we have chosen as reference, the center of the membrane

in both images, and we have measured the spot positions. All positions are

taken in number of pixels and converted into real displacement using the

known membrane diameter of 1.64 mm. The diameter in number of pixels

is 125. We derive that one pixel on the image corresponds to 13.1 µm. The

shift between the spots at two temperatures is just 2 pixels i.e. 26 µm. The

waist of the cavity is 70 µm, this means that we do not observe a significant

shift. This is an important result, showing that the cavity with this mem-

brane remains well aligned. We can state that our optomechanical cavity

works properly at cryogenic temperature. Thanks to this measurement pro-

cedure, we obtain the distance between center of the membrane and cavity

spot. In the first used configuration, the displacement of cavity spot from

the membrane center is 0.28 mm, in the vertical axis. We will use this dis-
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tance to calculate the effective mass of the mechanical modes, whose values

are reported on Tab. 2.1. Using the some procedure we measured the spot

position for the second configuration, where we identify a displacement from

the center close to δ = 0.1 a long the vertical membrane axis. In this config-

uration the symmetric modes are much more coupled than the other ones,

indeed for this configuration the best coupled mode is the (0, 2) (excluding

the fundamental one (0, 1)) no more the (1, 1).

2.2 Quality factor

The quality factor Q is a very useful parameter to characterize and compare

losses of resonators. Today exist many way to define that parameter, all

become very similar in the limit of higher Q. For example in the frequency

domain, the quality factor can be defined by

Q =
Ωm
Γm

=
|χ(Ωm)|
|χ(0)|

(2.33)

where Ωm being the resonance frequency, Γm is the full width at half max-

imum of the resonance and χ is the transfer function, Eq. 1.9. The ratio

shows how much energy the oscillator can stored in the resonance. In our

oscillator, SiN membrane, the quality factor is very high, implying a sub Hz

Γm. In the time domain the quality factor can be defined as [70]

Q = 2π
E

∆E
. (2.34)

Here, E is the energy stored in the oscillator, ∆E is the energy loss per cycle.

The loss mechanisms contributions, in reality, have different sources. The

overall Q is the inverse sum of Q factors attributed to each loss channel, why

the loss channels are inversely proportional to the quality factor, as the loss

added in Eq. 1.4.

1

Q
=

1

Qvis
+

1

Qstr
+

1

Qclamping
(2.35)

where the losses due to the viscous mechanism gives Qvis = Ωm/Γgas, and

the structural damping gives Qstr = 1/φ. The last considered damping is

generated by the clamping. In it, other losses due to the the membrane as-

sembly into the optomechanical cavity are considered. Before describing how
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the quality factors of mechanical modes were measured, we describe in de-

tail some contributions to the quality factor, such as thermal and structural

contributions.

2.2.1 Q-factor damping

Recoil damping

As describe in the work [10], the strongest contribution to the dissipation

is what is called recoil damping (structural damping, Q−1
str). It is due to

the combination between vibrations of the membrane and that of the sup-

port. The effective quality factor, in this framework, of a resonant membrane

supported by a wafer is

1

Q
=

1

Qm
+

1

Qw

Mm

Mw

Ω2
wΩ2

m

(Ω2
w − Ω2

m)2
(2.36)

where Qm, Mm, Ωm are the intrinsic quality factor, mass and resonant angu-

lar frequency of the membrane, Qw, Mw, Ωw are the identical parameters for

the support wafer. The strongest reduction of the quality factor, according

to the equation, is when the wafer frequency is equal to the mechanical one,

Ωm = Ωw.

For this reason the membrane used in this work is designed to reduced

the contribution of the recoil damping, and obtain an higher level of homo-

geneity of the Q-factor. The design and realization processes are described in

the works [10, 72]. The oscillator is designed with specific on-chip structure

working as a loss shield for the membrane. The lowest resonance frequency

has the highest quality factor and reaches the limit set by the intrinsic dis-

sipation. A cylinder of diameter 2.4 mm and thickness 1 mm supports the

membrane. It is supported in four points by a structure made of alternating

flexural from torsional springs with a thickness of 280 µm (see Fig. 2.6).

The purpose is to isolate the internal resonator of the cylinder and the rest

of the structure. To decrease the coupling of the membrane with the wafer,

the cylinder structure is repeated two more times. The fabrication of this

membrane is showed in the work [72]. The Q-factor reaches a value of ∼ 107

for many mechanical mode. In the following section, we will describe the

technique implemented to measure the membrane quality factor after it is

mounted into the optomechanical cavity.

Low temperature effects
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Gas Damping

An important result is the increase of the quality factor at cryogenic tem-

perature, where several effects take place at the same time, involving gas

damping and internal friction of the membrane. The low temperature of 7

K gives an additional isolation. One dissipation channel is the gas damping

at a given pressure of the vacuum chamber. It is due to the momentum

transfer to air molecules. This process add a loss channel as a function of

Figure 2.12: Quality factor due to gas damping as a function of the pressure

for two temperature RT and CT, shown respectively with dark blue and blue

lines. The Qair is shown for two mechanical modes (0, 2) at ∼ 530 kHz (solid

lines) and (1, 1) at ∼ 370 kHz (dashed lines).

the pressure. The quality factor due to the air molecules is described by the

equation [7, 32]:

Qair = (π/2)3/2

√
R0T/Mm

p
lzρfm (2.37)

where R0 = 8.31 J/molK is the gas constant, ρ = 3200 kg/m3 and lz = 100

nm are the membrane density and thickness, Mm = 29 g/mol is the molar
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mass of the surrounding air, T and p are, respectively, the temperature and

pressure of the environment. The behavior described by Eq. 2.37, is shown

in Fig. 2.12, where Qair is plotted for two different temperatures, room

temperature (RT) and cryogenic temperature (CT), 7 K, shown respectively

with dark blue and blue lines. The pressure of the vacuum chamber is close

to 10−5 mbar, kept by pumping with an ionic pump. At the cryogenic

temperature the pressure arrives at 10−7 mbar due to additional cryogenic

pumping. The cryogenic pumping has a fundamental role in the increasing

quality factor at the maximum value.

Thermoelastic

Another important contribution at low temperature is due to the thermoe-

lastic losses. In this channel the losses are considered to stretching or com-

pression of the resonators material. This effect increases or decreases the

local temperature of the material. The temperature gradient is linked to en-

ergy dissipation when the oscillator is heating and vice versa [35]. Using the

fluctuation-dissipation theorem [16,17], we can link the thermal fluctuations

to the a displacement noise. The equation for the loss angle is [18,36]

φthelastic =
Eα2T

Cv

Ωmτd
1 + Ω2

mτ
2
d

(2.38)

where E is the Young’s modulus, α the thermal expansion coefficient, Cv
is the heat capacity per unit volume. τd is the geometry and material time

constant. For the membrane the equation for τd is τd = l2z/π
2iDT , where

DT is the thermal diffusivity, and lz is the membrane thickness. For our SiN

membrane the geometric and material parameters are shown in the Tab. 2.2,

considering the mechanical mode Ωm/2π = 530 kHz. At room temperature

(300 K), we have a value of φthelastic ≈ 2.4× 10−7, implying Q ≈ 4.2× 106.

This value is only a guide value, indeed several parameters can change or

are not exactly known. At 7 K, the quality factor due to the thermoelastic

channel is ∼ 2 × 108, therefore this effect gives another explanation of the

quality factor increasing at cryogenic temperature.

Considering all these contributions we can explain how the Q-factor increases

at cryogenic temperature, but the membrane quality factor has an upper

limit due to the recoil damping, 107.
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2.2.2 Q-factor measurement protocol

Figure 2.13: Set-up used for the Q-factor measurement.

The experimental apparatus used for the quality factor measurement is

shown in Fig. 2.13. To implement this measurement are used a laser at 980

nm. The input and output OMC mirrors are design to obtain a high cavity

finesse for the Nd:YAG laser at 1064 nm, where the minimum transmissions

are respectively 315 ppm and 10 ppm. The mirrors transmission for the laser

at 980 nm is much higher, but otherwise the cavity remains in configuration

well coupled, since the mirror losses remain identical for the two lasers. The

finesse in the 980 nm configurations is < 200, while it is ∼ 20000 with

the 1064 nm laser at zero losses. The purpose of working at low finesse

is to decrease the optomechanical effects and to study the free mechanical

behavior of our oscillator. The concerned laser is a diode laser, where the

single mode is selected by a gratting, and a PZT glued on it allows to control

the laser cavity length. It is used in the servo loop implemented in the

cavity lock. The 980 nm laser is sent on the optical path by a dichroic

mirror (high pass, 1064 nm is transmitted and 980 nm is reflected at 45°).
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Before the dichroic mirror a PBS and a λ/2 allow to split the beam in

two, the reflected one is sent on a photodiode to generate a ”Reference”

in the lock scheme (∼ 2 mW), the transmitted one is sent trough a λ/4

and after of a dichroic mirror to the cavity. The reflected beam from the

cavity comes back on the second photodiode used like ”Signal” in the lock

scheme. The two photodiode signals are subtracted and sent into a servo

loop circuit to lock the cavity. The cavity lock reference level is selected by

the power of the Reference beam. In this configuration the cavity lock occurs

in two frequency positions, obtained by switching the two input signals in

the difference box. This is done to verify the presence of the optomechanical

effects on the quality factor measurement. The lock correction signal is

sent into the grating PZT, to keep the cavity locked in resonance. The

Signal beam is sent also to a Lock-in amplifier for the decay detection. The

oscillator excitation at the natural mechanical frequency fm is realized by

a PZT glued on the cavity basement. The excitation signal is generates

directly from a Zurich lock-in amplifier, used as a function generator. The

signal is demodulated at a frequency fdem close to the resonance one, δf =

fm−fdem. The optomechanical residual effects are given by the difference of

δf between the two lock configurations, fdem is kept fix. The difference in fm
can be explained by small difference in detuning between the two cavity locks,

therefore the oscillator spring is modified by the optomechanical effects, Eq.

1.99. All the residual optomechanical effects can compromise the goodness

of the quality factor measurements.

The measurement protocol consists in applying an external force to excite

the oscillator. For this reason we drive the external PZT with a sinusoidal

wave-function at the natural mechanical frequency fm. To measure the decay

we quickly move the external force out of resonance (it is shifted by 10 kHz),

the resonator whole motion is described by the following equation:

x(t) = x0 cos(2π δf t) e−t/τ (2.39)

where x0 is the amplitude of the mechanical mode just before the modulation

is switched off. The decay time, τ is linked to the quality factor: Q = πfmτ .

An example is showed in Fig. 2.14. At the propose to characterize the mem-

brane modes, we measured the quality factor for each cavity configuration,

where we used the same membrane. The quality factor was also studied

at room temperature (RT) and at cryogenic temperature (CT) close to 7 K.

The measurement in the two cavity configurations are displayed in Fig. 2.15.

In panel a) are report the quality factor relatively to the first studied system
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Figure 2.14: Example of a decay trace of the mechanical mode at 530 kHz.

The fit gives a decay time of 3.8 s and a quality factor close to 6.4 × 106.

Panels a) and b) show respectively the first and last 40 ms of the time

trace. In panel c) is shown the full decay. The blue and the red lines show

respectively the measured data and the fit using the function 2.39.

where the cavity spot was membrane off-centered by ∼ 0.28 mm. In panel

b) the data show the results in the second configuration where the cavity

beam is more centered. In both cases the blue dots, with the relative error

bars, show the Q-factor at 7 K, the red dots show the measurement at RT.

The error bars give the standard deviation calculated on eight measurements

for each mechanical mode. More in detail, for each cavity lock setup we ac-

quired four decays, in total eight measurements for each mechanical mode.

The final quality factor is obtained by averaging the inverse of two quality

factors measured for the two cavity lock configurations:

1

Q̄
= 2

(
1

Q̄1
+

1

Q̄2

)
(2.40)



56 Experimental Setup

Figure 2.15: Quality factor measured in the two cavity configuration. In the

left panel the cavity waist is 0.28 mm far from the membrane center, and in

the right panel, second configuration, it is well centered. In the two figures

blue data are relative to the measurement at 7 K, while the red ones show

the measurement at RT. In both cases the error bars show the standard

deviation calculated on 8 measurement. In panel a) the work is focused on

the mechanical mode at 370 kHz with a quality factor ∼ 8.5×106. For panel

b) we consider for the squeezing work the mechanical mode at 530 kHz where

the Q-factor is 6.4× 106.

and the error is obtained by error propagation. A good explanation of the

Q-factor difference is given by the different pressure, gas damping and ther-

moelastic effects in the two temperature configurations.

Residual optomechanical effects

We can follow the described procedure only if we do not have any optome-

chanical effect on the measurement. At the propose of verifying it we observe

the fluctuation of the mechanical width ∆Γm and the shift of the mechan-

ical frequencies ∆Ωm due to the optomechanical effect. In each lock, we

measure the mechanical widths, Γm = 1/τ , and we compare their values

with the mean width on all the data, Γ̄m obtaining two values for each lock:

∆Γ1,2 = Γ1,2
m − Γ̄m. These values are normalized to the mechanical fre-

quency. The results are shown in Fig. 2.16a). In Fig. 2.16b) we show the

measurement of the frequency shifts between the two different cavity locks

∆Ωm = Ω1,2
m −Ω̄m. In both configurations the values are compatible widthin

the error bars, therefore the optomechanical effects are considered negligible

in the Q-factor measurements.
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Figure 2.16: In the figures the purple dots and relative bars show the data ac-

quired in the direct lock configuration, and the cyan ones there in the inverse

lock scheme. The error bars reflect the standard deviation on four imple-

ment measurements. The figures show a typical trend of the two parameters

during the quality factor measurement.

For each studied cavity setup we choose a different mechanical mode. To

choose the mechanical mode, we consider many parameters as effective mass/-

vacuum optomechanical coupling (Tab. 2.1), the quality factor, and the elec-

trical/mechanical noise around the membrane modes in the spectra. Due to

the latter effect, we exclude for all our study the fundamental mechanical

mode (0, 1) at 230 kHz, because at cryogenic temperature several peaks ap-

pear around it. In the first configuration, δ = 0.34, we consider one of the

quasi-degenerate modes (1, 1), having a good quality factor, ∼ 8.5 × 106,

and low effective mass, 0.6 ×M . However, when the δ = 0.1 the consider

mode is the (0, 2) at 530 kHz, whose quality factor and effective mass are

respectively, Q = 6.4× 106 and Meff = 0.14×M .

2.3 Laser Source

The main laser source is a single-frequency continuous-wave (CW) solid-state

laser from Coherent Inc. [38]. The specific model (Mephisto, data-sheet at

[38]) is a Nd:YAG laser with a pump diode that emits roughly 0.5 W at 1064

nm. The laser is in semi-monolithic configuration/non-planar. The control is

effectuated though a piezo electric transducer (PZT) (named ” fast control”)

that operates directly on the crystal of the laser. This operation generates
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Figure 2.17: Scheme of the frequency control of the Mephisto laser, the figure

is taken from [38].

a change on the emission frequency. The response of the modulation is 1.1

MHz/V and it has a response quite flat until 30 kHz (bandwidth of the piezo

actuator is about 100 kHz). After that, the piezoelectric resonances of the

crystal begin. The maximum tuning range is ±65 MHz, which is sufficient for

our purpose. Furthermore the laser has a control of the temperature of the

laser cavity. It is a slow control of the frequency (called ”slow control”) with

a time constant few second of a response of −3 GHz/°C. The temperature

can be varied by an external voltage, at the rate of 1 °C/V. As it is showed

in Fig. 2.18, the slow control has linear zone, spaced out by mode hops,

with an overall tuning possibility of 40 GHz. In Fig. 2.18 are shown the

measured laser mode hops. In the vertical axis we report the measured

frequency, and in the horizontal axis the effective laser crystal temperature,

measured directly from the laser controller. The spectral linewidth is around

≈ 1 kHz integrated over 100 ms and the output mode is a single TEM00

mode. We remark that, the laser monolithic design makes the laser highly

frequency stable, for that the relative fluctuations of the resonators length

are very small (∆l/l). It is converted in relatively frequency fluctuation ∆f

at the frequency f as ∆f = f ×∆l/l. The Relatively intensity noise (RIN)

is specified as < −140 dB/Hz at f > 10 kHz. The laser has a broader
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Figure 2.18: Laser Tuning range, by mean of the temperature control.

peak around 800 kHz, due to the laser relaxation oscillations. This peak is

completely damped by an active intensity noise stabilization, the so called

noise eater.

2.3.1 Laser noise

Quantum Noise

Due to the quantum nature of light, even an ideal laser system is subject to

laser noise, i.e., the quantum fluctuations of the photon number, Eq. 1.69.

The resulting quantum noise power spectral density for a laser beam with

power P = ~ωl n and a measured on a bandwidth of 1 Hz, is Sqq = hcP
λ . It

is the called photon shot noise.

As we describe in the Sec. 1.2, there are two main manifestations of

the quantum shot noise that we will consider in a typical optomechanical

experiment. The first is the so called quantum back-action noise, due to

the fluctuating number of photons reflected off and therefore coupled to the

mechanical oscillator. This causes a random motion of the oscillator. The
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second is the read-out noise, it is generated from the fluctuating number of

photons at the detection apparatus. The effect of the photon fluctuation

will yield fluctuations of the generated photocurrent of the detector. The

shot noise has two important properties, first it is frequency independent,

second that fluctuations of the power are proportional to the square root of

the power, while the fluctuations of classical noise are proportional to the

power. The ratio between the quantum and classical noise is proportional to

1/
√
P . It increases at low laser power. The real challenge lies in being shot

noise limited at large powers that are needed to boost the optomechanical

coupling strength g = g0
√
ncav. Quantum noise, however, is only observed

once the laser beam is sufficiently cleaned from classical noise sources.

Classical Noise

Figure 2.19: Correlated sideband pictures at ωmod of the amplitude and

phase modulation, picture is derived from [78].

All the lasers, in reality, are imperfect and perturbation due to fluctua-

tions of pump power, vibrations of the laser resonator, PZT crystal resonance

or thermal effects, might induce additional noise onto the laser field. The

classical noise will be distinguish in amplitude (intensity) and phase (fre-

quency) noise.

The amplitude and phase noise can be modeled by a modulation at a fixed

frequency ωmod with an amplitude (am) and phase (pm), modulation depths
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nam, npm � 1 [78]. The equations for the laser field would be written then:

aame
iωlt = a0 [1 + namcos(ωmodt)]e

iωlt, (2.41)

apme
iωlt = a0 e

i(ωlt+npmcos(ωmodt)). (2.42)

The equations can be extended using the Bessel functions and the limit of

small modulation depths become:

aame
iωlt = a0

(
eiωlt +

nam
2
ei(ωl+ωmod)t +

nam
2
ei(ωl−ωmod)t

)
, (2.43)

apme
iωlt ≈ a0

(
eiωlt +

i nam
2

ei(ωl+ωmod)t +
i nam

2
ei(ωl−ωmod)t

)
. (2.44)

From that the laser amplitude noise is modeled as two correlated sidebands

rotating in phase with the carrier light at ±ωmod modulation. The laser

phase noise is described as the amplitude noise, but the noise sidebands are in

quadrature with the carrier, at ±ωmod. In Fig. 2.19a) the sidebands rotate in

opposite direction, all contributions along the imaginary axis (phase) cancel

out, while along the real axis the two contributions are added to the carrier

amplitude. This produces, what is called amplitude modulation. Meanwhile,

in Fig. 2.19b) the vectorial addition cancels out all the contribution along the

real axis (amplitude), effectively yielding a phase modulation of the carrier

along the imaginary axis, phase modulation.

At the end of this section we discuss how the noise sources influence the

experimental efforts. The phase noise can be seen as frequency noise, since

the frequency is the difference of phase over time, f(t) = (2π)−1 dφ/dt.

When the laser is locked to the resonance of the cavity, frequency noise

should ideally not drive the mechanics. However, we are not exactly on

cavity resonance (lock point drift, or detuned beam used for the cooling), the

frequency noise will be converted to amplitude noise and affect the oscillator

motion. This conversion is illustrated in Fig. 2.20 [6]. To solve this problem

we implement in our setup a filter cavity to decrease the frequency noise

produced by the laser itself.
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Figure 2.20: Sketch of how the frequency noise in the cavity is converted in

amplitude noise in a resonator. This phenomenon may give rise to heating

of mechanical modes.

2.4 Filter Cavity

For the experiment we need to decrease the classical noise between 200 kHz

to ∼ 1 MHz, where we have the frequency of the interested membrane me-

chanical modes. The classical noise introduced in the optomechanical cavity

by the laser gives an upper limit in the oscillator cooling. At this purpose,

we have designed a filter cavity (FC) with a bandwidth below 100 kHz. The

FC can be used as a spatial and temporal mode filter. In our work the

transmitted beam consists of a single Gaussian mode TEM00. The cavity

linewidth, κFC , acts almost like an optical low pass for frequencies below

it. Indeed the noise frequency at frequencies higher than κFC is reduced

according to the transfer cavity function, that is given by

χFC(ω) =

(
1

1 + i ω
κFC

)
. (2.45)

The cavity linewidth κFC defines the corner frequency of the filter cavity,

where the value of the transfer function is |χFC(κFC)|2 = 1/2 = −3 dB.

The cavity was designed keeping into account the transfer function plots

show in the Fig. 2.21. We design it to obtain a strong suppression of the

classical noise, requiring the smaller possible cavity linewidth. The cavity

linewidth is ≈ 30 kHz, and the noise reduction is better than −10 dB above

500 kHz.
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Figure 2.21: Filter cavity transfer functions, calculated as a single low pass

filter. Blue dashed line shown a configuration with cavity linewidth equal to

∼ 30 kHz (higher finesse). Light blue dashed line show the transfer function

for a linewidth of 300 kHz (low finesse). The our setup the higher finesse

configuration will be used. The gray line show the corner frequency for the

two different cavity configurations. At the interested frequency the cavity

reduction is close to 10−1 i.e. −10 dB.

Frequency Noise Source

Before the filter cavity implementation, we studied the source of the fre-

quency noise in our apparatus. We will start by describing the different

methods used to investigate that noise. The spectrum field reflected from

the cavity, when the sensitivity is sufficient, is dominated by fluctuations in

detuning between the cavity and the incident laser radiation (cavity phase

noise). These fluctuations can be determined by fluctuations of the cavity

length or fluctuations of the laser frequency or both. Such noise is visible

in the homodyne detection, a typical spectrum is shown in Fig. 2.22. To

try to understand which of the two contributions is dominating, we have

realized a different, longer cavity having roughly the same linewidth of the

optomechanical cavity to maintain more or less equal the lock gain.

The new cavity has length equal to 54 mm and has two mirrors with

radius 50 mm. The input mirror has a transmission of about 1% and the back

mirror is highly reflective, the corresponding finesse is about 600, the free
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Figure 2.22: Panel a): Comparison between homodyne spectra of the op-

tomechanical cavity (green line) and the of test cavity (red line). Panel b):

Comparison between the cavity phase spectrum and the response function

of fast control of the laser.

spectral range is 3 GHz. The cavity linewidth is ∼ 5 MHz. The calculated

waist is w = 0.92 mm and the Rayleigh distance is zR = 24.9 mm. Using

these parameters and the measured position and size of the waist beam

exiting from the fiber (0.237 mm), we have derived the position and the

focal length of the lenses necessary for the mode matching. After aligning

the cavity and optimizing mode matching, we have locked the laser to the

cavity (with the laser fast frequency shift) with the usual PDH detection.

We have then acquired the spectra using the homodyne detection. The

obtained cavity phase noise spectrum, can be compared with that of the

optomechanical cavity by calibration of both spectra, either in terms of cavity

displacement or in terms of laser frequency noise. In the former case the

two spectra become different by several orders of magnitude, on the other

hand, in terms of frequency noise, as shown in Fig. 2.22a), they are nearly

coincident. The shape of the structure in the spectra are indeed very close,

and also quantitatively we arrive to the same level. This is a clear indication

that the phase noise in both cavities is dominated by the laser frequency

noise.

The further test can also give an indication on the source of the frequency

noise. It is performed by sending a modulation signal when the laser is locked

to the optomechanical cavity, and detecting the resulting modulations in

the detuning using a phase sensitive detection of the PDH signal, with a

lock-in amplifier. In this way we actually measure the response function
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Figure 2.23: Example of spectrum, calibrated in m2/Hz, acquired at 13 K

around the mechanical mode (0, 2). In the figure is shown the Fano profile

due to the interaction of the mode shape and the background generated by

the frequency noise. The Dark Green and the Purple line shows, respectively,

the thermal and frequency noise contribution. The Red line shows the total

fit and the Blue dots show the experimental data.

of the fast laser control. It is shown in Fig. 2.22b). The square of such

response function has structures that closely resemble that of the cavity

phase noise. This is an indication that the cavity phase noise is generated

by multiple PZT resonances of the laser cavity. As shown in Fig. 2.22a) the

frequency noise limits our sensitivity to the cavity length displacement (due

to mechanical mechanical modes of the membrane), at the level between

10−33 and 10−35 m2/Hz, while to observe quantum mechanical effects we

require better sensitivity. Also, the laser frequency noise gives a limit in the

laser cooling, in fact the frequency noise converted into amplitude noise in

the cavity heats the oscillator, giving a limit in the optical cooling.

A typical spectrum with the unfiltered light at CT is shown in the Fig.

2.23. The mode (0, 2) has an occupancy close to 4000, where in the some

configuration of temperature (13 K) and optical cooling (Γeff = 1.6 kHz),

but with the filtered light, the occupancy is close to ∼ 20 phonons, according
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to the model. The data are fitted with a Fano and Lorentzian resonance. As

it is clear in the figure, the Fano profile is dominant on the Lorentzian one.

It is therefore clear that frequency noise defines a lower limit on occupancy.

For all these reasons, we decided to build a filter cavity to decrease the laser

frequency noise.

Realization of the Filter cavity

Figure 2.24: Panel a) and b): Section of the support used for the input-mirror

and output-mirror respectively. Figure c): Photo of the filter cavity.

In this, and following, subsection I will describe all the filter cavity design,

parameters and how it is implemented in our setup. The filter cavity has two

identical mirrors with radius of 200 mm. The transmission coefficient of the
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mirrors is 130 ppm. The length of the cavity is 229 mm, given a free spectra

range of 655 MHz, the linewidth of 30 kHz with a finesse equal to 21000.

The cavity waist is w = 0.184 mm. The cavity spacer is a 11 cm diameter

marble cylinder that allows good mechanical and thermal proprieties (ther-

mal expansion coefficient ∼ 9.8 × 10−6 m/°C). Both mirrors are connected

to the marble spacer with appropriate mechanic supports, Fig. 2.24a) and

2.24b). The supports are designed to place, in contact with the mirror, a

PZT used to tune and lock the cavity. The input mirror is in contact with

a stack PZT allowing to tune by a complete FSR using low voltage diver,

and the output mirror is glued on a PZT plate, allowing a fast response on

small range. The stack PZT allows to tune the cavity to the laser frequency

and it acts on the low frequency range of the servo loop. The fast PZT is

used to increase the lock bandwidth, if it is necessary in the lock. The me-

chanical mirror supports are used to align the cavity optical axis, since the

parallelism between the surfaces of the marble cylinder is not good enough.

We designed for both PZTs specific supports giving the possibility to tilt the

mirrors, Fig. 2.24a) and 2.24b). With the screws of mechanical support, we

can regulate the correct position and angle of the mirrors by compressing or

relaxing o-rings placed between the marble spacer and mirror support. This

alignment procedure has been realized in laminar flow hood. Successively

we have placed the cavity on a vacuum chamber to keep the mirrors clean

and to isolate the cavity from external effects. We, also, use a suspensions

system, inside the chamber, to reduce the acoustic noise coming from the

optic table. The chamber has a diameter of 40 cm and the height of the

optical axis is 30.7 cm. A turbo pump keeps the system in vacuum at a

pressured 10−5 mbar. In Fig. 2.24a) and 2.24b), are shown the sketches of

the support system used for the input and output mirrors, respectively. The

parameters of the stack PZT, used for the input mirror, are the following:

model PI/P-080.311

operating voltage −20÷ 100 V

displacement range 5.5± 20% µm

capacity 820 nF

In our setup the filter lock is made by the fast laser control and the cavity

slow PZT.
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Figure 2.25: Experimental setup including the filter cavity and the servo

loop scheme used for the cavity lock.

Setup

Here we describe the optical setup used to exploit the filter cavity and the

servo loop system used for the cavity lock. To introduce the filter cavity

inside the apparatus, we have modified the original setup. In order to divert

the beam toward the new path, we have used a polarizing beam splitter

(PBS-1) situated after the optical isolator. We can regulate, with a half

wave plate, the power transmitted and reflected by PBS-1, has shown in

Fig. 2.25, allowing us to work with or without the filter light. The light

reflected by the filter cavity is deviated by the input polarizer of the optical

isolator and detected by the photodiode (PD FC). The transmitted light, is

sent to PBS-2, where the beam, s-polarized, is reflected and sent to an AOM

(used for in the double pass configuration for the lock scheme of the OMC).

Finally the filter beam is converged on the optical path with a third PBS-3.

The laser fast actuator is modulated at 2 MHz at the purpose to generate a

phase modulation necessary for the PDH technique. The signal of the PD

FC is mixed with a reference signal at 2 MHz with a proper phase to obtain

the usual PDH shape. The reference and modulation signal are locked in

phase. The demodulated signal is sent to a PID control used for the filter

cavity lock. The PID output is sent to the cavity PZT for the slow lock

corrections, and to the fast laser actuator for the fast corrections, where the

cross over is accurately considered to watch the two actuators. The usual
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Figure 2.26: Filter cavity resonance peak shape dark blue. The blue signal

shows the cavity lock at resonance and the heavenly is the photodiode dark

signal. The red shape shows the PDH signal and the dark red the correction

signal sent to the cavity actuators.

power injected in the filter cavity is close to 120 mW, the transmitted light

is close to ∼ 70% (∼ 80 mW), with a cavity matching > 95%, (see Eq. 1.44),

enough for our experiment. The usual PDH signal used has a peak-to-peak

close to 400 mVpp, an example is shown in Fig. 2.26. The PDH peak-to-

peak, can be controlled (at fixed optical power) by the signal modulation

depth mixed with the photodiode voltage output.

Filtered Light

In Fig. 2.27 we report the spectra of the field reflected by the optomechanical

cavity using both filtered and un-filtered light, taking care to send the same

laser power to the homodyne detection. The spectrum of the filtered light

(green spectrum) does not show any more the structure, due to the frequency

noise. From the comparison of the spectra, we can conclude that the filter

cavity is efficient in reducing the frequency noise. At low frequency due to the

filter behavior, the filtered light spectrum is higher than the un-filtered one,
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Figure 2.27: Spectra of the light reflected by the OM cavity taken using the

PDH detection. Spectra are calibrated in terms of frequency displacement

(Hz2/Hz). Blue: direct light, green: filtered light. The structures due to the

frequency noise are cutted by the filter cavity.

but this spectral area is out than the interested one. Between 200 kHz to 1

MHz, the spectrum level is below 10−1 Hz2/Hz. It is possible to identify the

minimum occupation with this frequency noise contribution. The equation

is [6, 64]:

n̄min =

√
n̄thΓm
g2

0

Sωω(Ωm). (2.46)

The experimental parameters that will be used in this work are: temperature

close to 7 K, vacuum optomechanical coupling g0/2π = 30 Hz and Γm/2π =

0.08 Hz for the mechanical mode at 530 kHz with a quality factor close to

6.4× 106. With these parameters the minimum occupation number is close

to 2 phonons. In our experiment the residual frequency noise is not the

main limit to bring the mechanical oscillator in the quantum regime. All the

future optomechanical experiment will perform using the filter light.
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AOM phase noise characterization

Figure 2.28: Apparatus used in the AOM’s noise measurement, the two

AOMs are driven by two different PLL and function generators.

Another possible noise source in our apparatus are the AOMs placed

on the optical path, for the frequency control. The real noise source is the

function generator used to drive the AOMs, therefore we examine all possible

configurations, one pair at a time. To investigate that noise we observe the

difference between two beams at the some optical power. The beams are

driven with two identical AOM but two different function generators (FGs),

locked in phase, and two different frequency multiplier (by a factor 40). The

setup sketch is shown in Fig. 2.28.

This noise measurement is performed considering two fields described as

E1,2 = E0e
iφ1,2(t), where E0 describes the field amplitude and φ1,2(t) is the

field phase. The detected signal goes as

∼ 2Re{E∗1E2} = 2|E0|2 cos (φ1(t)− φ2(t)). (2.47)

Now, we can write the phases as a slow and fast contribution φ1,2 = φ0
1,2 +

δφ1,2(t). The signal become

2|E0|2 cos (∆φ0 + δφ(t)) (2.48)

where ∆φ0 = φ0
1− φ0

2 and δφ(t) = δφ1(t)− δφ2(t). Considering that ∆φ0 �
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δφ(t), we can extend the previous equation

∼ 2|E0|2 sin (∆φ0)δφ(t). (2.49)

The detect output signal goes as V = A sin (∆φ0)δφ(t), where A is the overall

detection transfer function. The relative spectrum is

SV =
A2

2
Sδφ (2.50)

where Sδφ = Sδφ1
+Sδφ2

, if the two signals are not correlated. The frequency

noise is Sν = ( 2πν)2Sδφ. From the measurement of signal amplitude, A, we

can calibrate the spectrum in terms of phase and frequency noise.

Figure 2.29: Left panel: Comparison of the spectra acquired with different

FG, but identical PLL, driving the AOMs. Blue: AOMs driven by two

Agilent (model 33210A) FG. Green: AOMs dived by two channels of the

Zurich Lock-in Amplifier model FHF2LI. Red: like as the Blue spectrum with

addition modulation at 4 kHz open (used for the Homodyne/Heterodyne

phase look). Yellow: AOM1 driven by the Zurich and the AOM2 driven by

Siglent FG (model SDG2122X) without passing by the PLL. Right panel:

Comparison of the spectra acquired with all the possible AOM’s PLL used in

our apparatus. In all the configurations the PLL are driven by two Agilent

FG (model 32210A). Each spectrum is acquired as is described in the text.

Operatively, we tested many different configuration of function generator,

we used as FG two Agilent model 33210A, Zurich Amplifier model HF2LI

Lock-in Amplifier and a Siglent model SDG2122X. Simultaneously we used

four different PLL made by the Lens electronic workshop, they have different

VCO models placed in their circuits. In that characterization the only FG

that adds noise in the apparatus is the Siglent (yellow spectrum in Fig. 2.29,
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left panel), while the other two FGs add very low noise (blue and red spectra

show in Fig. 2.29, left panel). The worst PLL gives the two spectra with

higher level of frequency noise, red and blue in Fig. 2.29 right panel, we used

two identical and phase-locked FG Agilent for both the PLLs used to drive

the two AOMs. In our worst configuration the noise level is one order of

magnitude below than 0.1 Hz2/Hz around the interesting frequencies from

200 kHz to 1 MHz. The noise introduced by the used function generators

and PLLs is completely overwhelmed by the residual laser frequency noise

of ∼ 0.1 Hz2/Hz.

2.5 Balanced detection

Figure 2.30: Heterodyne visibility, limited to ∼ 80% for visualization pur-

poses. Light red line shows the interference signal, due to the difference

frequency of the LO and signal beams, observed in one of the balanced het-

ero detection. The dark red points show the dark level of the detector, from

where are measured Vmax and Vmin, for the visibility measurement.

In our setup the mode matching of the signal and local oscillator can

surpass 95%. The visibility is measured observing the DC signal in each
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heterodyne detector, where the two beam are injected on it with an identical

power. Usually, the frequency shift between the LO and the probe beam is

fixed at ∼ 20 kHz. The visibility is measured using the equation:

Vmax − Vmin
Vmax + Vmin

(2.51)

where Vmin is the minimum voltage above the dark reference level, and Vmax
is the maximum voltage value from the some level. An example of it is show

in Fig. 2.30.

In the balanced detection the classical amplitude noise is strongly sup-

pressed by the subtraction of the individual diode photocurrents. This is

due to the noise correlation of the two outputs of the beam splitter. The

rejection of the balanced heterodyne detection is measured using the laser

relaxation peak at a frequency close to 800 kHz. At this purpose we exclude

the laser noise eater, and we compare the sum (full classical laser noise)

and difference (shot noise limited detection) of the two diode photocurrents.

The suppression of the relaxation peak gives the rejection, a general value

reached in our work is close to 44 dB, Fig. 2.31.

Figure 2.31: The cyan plot shows the sum photocurrent of the two detectors

used in the heterodyne detection, while the dark green shows the photocur-

rent difference. The rejection is close to 44 dB. This is what we have in our

detection apparatus.
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2.5.1 Heterodyne detection

In this section we will discuss the heterodyne detection scheme following the

reference [8]. The configuration used in our setup for the heterodyne and

homodyne is shown in Fig. 2.32. The beam splitter has reflectivity and

transmission coefficients equal to |r|2 = |t|2 = 1/2, (r = it). The signal

beam âS (signal coming from the OMC) and the local oscillator âLO are

mixed in the beam splitter. We measure the current difference produced by

the two fields â1 and â2 on the detectors, Fig. 2.32. We can suppose that

the photocurrent produced in each detector is proportional to the incident

flux f̂in = â†â:

î(t) = Cf̂in = Câ†â (2.52)

where C is a constant. The subtraction of the two detectors current is:

î− = C(f̂1 − f̂2) = iC

[
â†LO(t)âS(t)− â†S(t)âLO(t)

]
. (2.53)

The field fluctuations are related to the motion of the oscillator, in the power

spectrum we can follow the oscillator evolution. In detail, we can write each

Figure 2.32: Heterodyne/Homodyne detection, the local oscillator âLO bean

is mixed with the signal beam âS in a beam splitter. The Balance hetero-

dyne/homodyne detection (BHD) is generated when on the diodes arrive an

identical power on each one.
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operator field in the rotating system respect to its central frequency:

âRLO(t) = âLO(t)eiωLOt = αLO + δâLO(t), (2.54)

âRS (t) = âS(t)eiωSt = αS + δâS(t). (2.55)

Where αLO = |αLO|eiθLOt and αS = |αS |eiθSt are respectively the mean

value of the expectation value of the fields. The fluctuations around the

rotating systems are δâS(t) and δâLO(t). From it the subtraction of the

incident fluxes become:

〈f̂1 − f̂2〉 = 2C|α∗LOαS | cos

(
θ +

π

2
+ ∆LOt

)
(2.56)

which θ = θS−θLO and ∆LO = ωLO−ωS . In the power spectrum the beating

between the two signals is shown in the spectrum as a peak at the frequency

∆LO. We consider the local oscillator much more intense compared with

the signal (|αLO| � |αS |). The equation of the current can be redefined by

considering only the field first order fluctuations:

î− = Cδ(f̂1 − f̂2) = C|αLO|[δâSeiφ + δâ†Se
−iφ] (2.57)

where φ = −θ + π
2 + ∆LOt. The Power Spectrum Density (PSD) of the

photocurrent is [13]:

Shet
î− î−

(ω) = lim
τ→∞

∫∫ τ/2

−τ/2
dtdt′eiω(t−t′)〈̂i†−(t)̂i−(t′)〉. (2.58)

Using the Eq. 2.57, where the current is a function of the detected fields, in

the time domain the expectation value become:

〈̂i†−(t)̂i−(t′)〉 = |αLO|2
[
〈δaS(t)†δaS(t′)〉e−i∆LO(t−t′) + 〈δaS(t)δaS(t′)†〉ei∆LO(t−t′)

]
(2.59)

where we neglected the fast terms by using the rotating wave approximation.

After the integration the Eq. 2.58 can be written in the follow way

Shet
î− î−

(ω) = |αLO|2
[
SδaSδaS (∆LO + ω) + Sδa†Sδa

†
S
(∆LO − ω)

]
. (2.60)

The beating between the signal and the local oscillator fields allows to ob-

serve the frequency components ∆LO ± ω into the power spectral density of
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the phonon number. Due to the non commutation between the annihilation

and creation operators the power spectrum of the two operators are not sym-

metric Shet
î− î−

(ω) 6= Shet
î− î−

(−ω). In the classical regime, on the contrary, the

power spectrum for the operators become symmetric Shet
î− î−

(ω) = Shet
î− î−

(−ω).

The identical description can be used to describe the homodyne detection,

we have just consider to resonant beams, ∆LO = 0. Like in the heterodyne

detection, the information of the mechanical motion are in the phase fluc-

tuations. In this detection the relative phase between the signal and the

local oscillator field is fixed by using a phase lock scheme, at the propose to

decrease all the additional fluctuations due to the apparatus.

2.6 Locking scheme

Figure 2.33: Basic scheme of the feedback control systems.

A crucial point of this thesis work is the stabilization of the laser fre-

quency to an optical cavity resonance. On the cavity stability act many

sources of noise such as thermal drifts, vibration of the ground floor, acous-

tic and more. For this reason is not trivial to have stable references. The that

I will report description follow the books by Saulson [70] and Abramovici [2].
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Here, I will describe a way to stabilize the system around its set point. We

implemented this technique for all the cavities, filter and optomechanics. A

general loop scheme is shown in Fig. 2.33. We used the some notations used

in [2]. The first element is called plant P (s). It is the system whose output

parameter we want to control. With the loop open, the output is the sum

of its free-running output and any disturbance (fluctuations, drifts). The

second element is the sensor B(s). This block is used to detect the plant’s

output (it gives some voltage signal). Usually, the signal produced by the

sensor is linear with the plant output. The sensor signal is inverted and

summed with a reference signal. This process produces, what is called error

signal. The error signal is used to detect and correct the drifts from the ref-

erence. The next step in the loop is the controller G(s), used to manipulate

the error signal. For that are used proper filtering and amplification of the

error signal. The last block is the actuator A(s). It can effectively influence

the plant output. When the sensor’s signal is very close to the reference, the

corrections of the error signal are very small, and the plant’s signal is very

close to the desired reference. However, if the output of the plant is far from

the reference signal, due to the disturbance, an error signal proportional and

inverted to the disturbance is produced to bring the output of plant close to

the reference. Here, for simplicity we do not consider the additional noise

sources and we do not consider the different unit of each component. The

feedback control system is usually described by the Laplace transformations

of the transfer functions of each loop component. Here we give only the

final results of this description, following [2]. The transfer functions of each

feedback component are P (s), B(s), G(s), A(s), where the complex Laplace

coordinate s = σ + iω, while ω = 2πf is the angular frequency. The trans-

fer functions provide an output signal, proportional to the input. For each

frequency the open loop transfer function is:

L(s) = B(s)G(s)A(s)P (s). (2.61)

This full response function amplifies the error signal within some bandwidth

and low pass filter it to cut off the high frequency contribution, that can

generate instability, by exciting the actuator resonances. The ratio between

the sensor output voltage and the reference voltage gives what is called loop

transfer function:
Vsensor(s)

Vreference(s)
=

L(s)

1 + L(s)
. (2.62)

If the open loop gain is L(s)� 1, the closed loop transfer function becomes
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unity. Indeed, when the controlled output of the plant follows the given

reference, it is locked to a stable reference signal. Usually, in the optical

experiments we are interested in controlling the length of a resonator or in-

terferometer to match its frequency with respect to the input laser frequency,

or vice versa. Following the lock scheme described before, the resonator or

the interferometer are our plants. As sensor block we use a photodiode, that

reads and converts the plant’s signal into a voltage signal. The error signal

is sent to a PID with proper gain and bandwidth, whose output signal is

sent to the actuators. Usually we consider two different actuators: a slow

actuator as the laser crystals temperature or cavity PZT (controlling the

cavity length), to control the slow but large drift due to the temperature

change in the laboratory, BW < 5 Hz. The fast actuator as the laser PZT

(modifying the laser cavity length ,with a bandwidth close to 10 kHz) or

a double pass AOM with a measured response function of 5.8 MHz/V. A

very important element of the loop is the error signal. If we consider the

cavity plant, the error signal is linear with the detuning between the laser

and cavity resonance frequencies. It should have a characteristic sign flip

to discriminate between lower or higher frequencies, while the dip signal of

the cavity resonance does not give any information about the positive and

negative detuning. The phase signal of the reflected beam from the cavity
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Figure 2.34: Phase response shape as a detuning ∆ function, that signal

is calculated follow the Eq. 2.63 where we using the OMC parameters.

Where κex is calculated from the input mirror transitivity T1 = 315 ppm

and κ/2π ≈ 2 MHz.

respects all these requests. It is given by the optical transfer function χopt,
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Eq. 1.74:

φ(∆) = arctan

(
Re(χopt)

Im(χopt)

)
. (2.63)

The phase signal is linear in the detuning ∆ and, can it define a sign flip

around the resonance ∆ = 0. Therefore, the measurement of the phase

signal needs a stable reference and simultaneously, it is insensitive of the far

modes, because at larger positive and negative detuning the phase signal is

flat, approaching an arc-tangent.

In this work, the technique used for the filter and optomechanical cavity

lock is the Pound-Drever-Hall (PDH). In the following section we will give

the PDH theoretical description and, furthermore, its implementation in our

setup. We used other locking techniques, such as the locking scheme for the

laser at 980 nm used for the Q-factor measurement, or the phase locking

scheme in the homodyne and heterodyne at low detection frequency.

Pound-Drever-Hall Signal

Figure 2.35: General optical e electronic Pound-Drever-Hall scheme

The Pound-Drever-Hall (PDH) technique [25,59] is a standard method to

lock a laser frequency to the resonance of a Fabry-Pérot cavity, or vice versa.

In order to control the difference between the laser wavelength and cavity

resonance, a discriminating signal is required that changes as a function of

the detuning, and that allows a linearly approximating dependency around

the resonance. We can not use the intensity because it is an even function
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of the detuning. On the contrary the PDH techniques provides the design

signal.

Now we consider a modulation on the electric field. We start from the

incident field, E0e
iωlt. The phase of the this field is modulated at the fre-

quency Ωs much smaller than the cavity FSR. In the frame rotating at

angular frequency ωl the input field is:

Ein = E0e
iωlte(iβ sin(Ωst)) = E0e

iωlt
∑
n

Jn(β)einΩst (2.64)

where β is the modulation depth and we use the Jacobi-Anger expansion.

Figure 2.36: In the upper panel we show the calculated shape of |Hr|2 with

a modulation at 13.3 MHz, and in the lower panel we show the demodulated

signal for β � 1.

The total field can be seen as composed of a carrier at angular frequency

ωl, the series of sidebands at angular frequencies ωl ± nΩs. The power in

the carrier is Pc = J2
0 (β)P0, where P0 is the total power. At the same time,

the power in the sidebands is Ps = J2
n(β)P0. When the modulation depth

is small (β � 1), most of the power is in the carrier and in the first order
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sidebands: Pc + P1 + P−1 ∼ P0. The reflected field can be written as:

Eref = E0

∑
n

HnJn(β)ei(ωl+nΩs)t (2.65)

where we have defined as Hn := Hr(∆ + nΩs) the cavity field reflection

function and ∆ = ωl − ωcav. The intensity impinging on the photodiode is

given by the square modulus of the field, thus

Iref ∝
∞∑

n,m=−∞
HnH

∗
mJn(β)Jm(β)ei(n−m)Ωst. (2.66)

This means that, in a detection at Ωs, we interested only in the terms for

which n = m ± 1. The signal at the low pass filter output depends on the

phase difference between the photodiode response and the reference. If we

write it as

V ∝
∑
n

HnJn(β)[H∗n+1Jn+1(β)e−iΩst +H∗n−1Jn−1(β)eiΩst], (2.67)

we can define

A =
∑
n

HnJn(β)H∗n−1Jn−1(β). (2.68)

The voltage output becomes:

V ∝ 2Re[A] cos(Ωst) + 2Im[A] sin(Ωst). (2.69)

The photodiode signal enters the signal port in a mixer where a sinusoidal

signal Ωs is used as oscillator reference, with an appropriate phase. After

the mixer, a low pass filter selects the component proportional to sin(Ωst).

The imaginary part of the voltage is called error function ε. It is shown in

Fig. 2.36, in the approximation β � 1. We now can rewrite the function A:

A =

∞∑
n=0

Jn(β)Jn+1(β)(H∗nHn+1 −H∗−(n+1)H−n). (2.70)

We can now introduce the approximation Ωs � κ. In this case, the sidebands

are totally reflected, Hr(∆+nΩs) ≈ −1. The Eq. 2.70 in this limits reduces

to

A ≈ J0J1(−2iIm[H0(∆)] +H0(∆− Ωs)−H∗0 (∆ + Ωs)). (2.71)
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From this equation we can observe different regions. The first one is when

n = 0 close to the resonance. The second one is at ∆ = −Ωs and the

third one at ∆ = Ωs. In our setup the modulation frequency is at 13.3

MHz, much larger than the cavity linewidth κ ∼ 2 MHz. The modulation

frequency is generated on the probe beam with a resonant EOM, Fig. 2.1.

The modulation is also used to measure the cavity linewidth, the procedure

is explained in Sec. 2.1.1.

The error function is the dispersive component of the cavity response. It

has all the characteristics we were looking for: it is an odd function of the

detuning and it also has a linear trend in the proximity by the resonance.

This signal is used as an error signal for the cavity lock. Since the signal is

quite linear, it is also used beyond the locking band, above the maximum

correction frequency, in order to acquire the laser detuning fluctuations. The

detuning is due to laser frequency fluctuation and to length variations of the

cavity. We need, therefore, to consider the region close to the resonance,

where the laser is locked. For ∆� 1, we can write the reflection coefficient

in terms of the small deviations is δL the cavity length from resonance:

Hr(δL) ≈ i4F
λ
δL (2.72)

where F is the cavity finesse. The error function is:

ε = −16
√
PcPs

F
λ
δL. (2.73)

We can write the error function as:

ε ' −V PDHpp

∆

κ/2
(2.74)

where V PDHpp is the maximum peak-to-peak voltage measured while scanning

the cavity length. In the setup we use this technique to lock the filter and

the optomechanical cavity. The filter cavity lock uses the fast laser actuator,

as the fast correction and a PZT on the input mirror for the slow correction

of the thermal drift (Fig. 2.24a)). The lock to the OMC, exploits as fast ac-

tuator an AOM in double pass configuration with total gain 2×5.8 MHz/V.

When we work with unfiltered light, during the laser noise characterization

(see Sec. 2.4), the fast lock actuator is the laser fast control, the slow fluc-

tuation are correct by a PZT glued on the OMC input mirror, as shown in

Fig. 2.2.
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Thanks to the correction signal, we can calibrate the spectra in Hz2/Hz or in

m2/Hz. As a reference we use a sinusoidal modulation at fixed frequency fcal
sent to the fast control, placed inside the lock band. We typically acquire

simultaneously the homodyne or heterodyne with the simultaneous error sig-

nal. From the ratio between the peaks at the calibration frequency in the

two spectra, and from the laser response to fast control signal, we obtain the

conversion factor from the voltage to the frequency, or length, displacement.

From the frequency of the laser and the cavity length, we can finally obtain

the spectral density of cavity. The calibrated power spectral density (PSD)

of the cavity length is therefore:

Sxx(f) =
SerrV V (fcal)

SV V (fcal)

[
Gfast

2πLcav
ωl

]2

SV V (f) (2.75)

where fcal is the calibration frequency, Gfast is the response to fast control,

Lcav is the length of the cavity, ωl is the frequency of the laser, SV V (f) is

the PSD of the PDH signal and SerrV V (f) is the PSD of the error signal, both

in V2/Hz, while Sxx(f) is the PSD expressed in m2/Hz.

Homodyne/Heterodyne phase look
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Figure 2.37: Homodyne stabilization example. Dark blue features the direct

subtraction of the individual detectors and the light blue shows the phase

homodyne stabilization, around the zero.
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During the acquisitions a crucial point of the homodyne (heterodyne)

detection is the phase stabilization. The used detectors split the slow DC

output and the fast AC channel. The fringes due to the interference between

probe and local oscillator beam are observed in the DC outputs of the two

photodiodes (Fig. 2.37). In the homodyne detection the local oscillator is

resonant with the probe beam. Meanwhile in the heterodyne detection the

local oscillator is shifted by ∆LO � Ωm from the cavity resonance. The

lock scheme uses the AOM located on the local oscillator path (Fig. 2.1).

At this propose we exploit the modulation function of the AOM’s generator.

As error signal we used the detectors DC difference signal, blue shape in Fig.

2.37, (for the heterodyne the DC signal is demodulated at ∆LO/2π). To lock

in phase the homodyne and heterodyne detection, we select a proper depth

of modulation in the generator. The lock bandwidth is given by the product

between depth of modulation and the DC difference signal. The light blue

shape in Fig. 2.37 shows an example of the error signal when the detection

is locked.
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Chapter 3

Investigation of the

sidebands asymmetry

In this chapter we investigate the sideband asymmetry as an indicator of

quantum behavior and how to control systematic effects, such as those due

to a residual probe detuning. The optomechanical iteration generate spectral

peaks at distances equal to the mechanical oscillator frequency Ωm around

the carrier frequency of the probe field. In the quantum theory, the sidebands

amplitudes are different, as is explained in the Sec. 1.3. While such asymme-

try can be explained in different ways [8,41,80], all interpretations recognize

as a non-classical signature of oscillator motion [8]. A particularly clear ex-

planation considered that the anti-Stokes (blue) sideband implies an energy

transfer from the oscillator to the field (frequency up-conversion of photons),

and vice versa for the Stokes (red) sideband. Since the quantum oscillator

cannot yield energy when it is in the ground state, the anti-Stokes process

is less favored (see also Sec. 1.3). The blue and red sideband strengths are

proportional respectively to n̄ and n̄+1 [81], where n̄ is the mean occupation

number of the oscillator. Measurements of the asymmetry of sidebands in

optical experiments have bean realized by alternatively placing the probe

field at a detuning of ±Ωm around the cavity resonance [67] or in a single

measurement from the spectral sidebands in the probe field [60,73,77]. The

former technique is particularly useful in the regime of resolved sidebands

(Ωm � κ, where κ is the cavity linewidth), since for each position of the

probe, the measured sideband is at the cavity resonance frequency and it is

87



88 Investigation of the sidebands asymmetry

thus amplified. On the other hand the control of systematic effects can be an

issue: the probe intensity and the detection efficiency must be equal for the

two values of detuning, and the probe detuning itself must be very accurate,

i.e. the system should remain stable between two separate measurement ses-

sions. The latter technique, while extensively used in cavity optomechanics,

requires an accurate control of the probe detuning, above all in the case of a

narrow cavity resonance. The detuning is very important because the cavity

works indeed as frequency filter for the output field, with an effect that dif-

fers between the two sidebands and can thus spoil the measurement of their

ratio.

In the first Sec. 3.1, I will briefly recap some theoretical concept, following

in Sec. 3.2, I will describe the specific apparatus parameters used in this

work. Later (Sec. 3.3), I will describe the sidebands correction method, and

in the last 3.4, I will describe the experimental results.

3.1 Theoretical background

The displacement spectrum of a mechanical oscillator is characterized by

resonance peaks corresponding to the different normal modes. The area

underlying each peak provides a measurement of the variance of the dis-

placement to that mode and can be written as Ax = 2x2
ZPF (n̄+ 1/2), where

xZPF =
√

~/2meffΩm is the zero-point fluctuation (ZPF) amplitude and

meff is the mechanical mode effective mass. The mechanical oscillator is

in equilibrium with a thermal bath at temperature Tbath; the mean thermal

occupation number is n̄th w kBTbath/~Ωm, where kB is the Boltzmann con-

stant. This expression is valid in the high temperature limit n̄th � 1. The

mechanical peak linewidth is Γm = Ωm/Q, where Q is the intrinsic mechani-

cal quality factor. When placed in an optical cavity, the oscillator is thermal-

ized toward the photon bath at negligible occupation number (“back-action

cooling” [4,33]) by the optomechanical interaction, that changes the effective

linewidth of the spectral peak by a factor Γopt proportional to the intracavity

optical power (optical spring). The effective linewidth is Γeff = Γopt + Γm,

and the oscillator occupation number is thus reduced by a factor of Γeff/Γm.

The back-action due to the optomechanical coupling introduce an additional

fluctuating force, that can be seen as the effect of the quantum noise in

the radiation pressure. Since such of quantum fluctuations are proportional

to the laser power, and thus to Γopt, the originated displacement noise of
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the optically damped oscillator has negligible dependence on the cooling

power, in the limit Γopt � Γm. In general, the quantum radiation pres-

sure noise produced by an intracavity field at detuning ∆ is proportional to

n̄maxcav L(∆)[L(∆ + Ωm) + L(∆− Ωm)] where n̄maxcav is the average number of

intracavity photons in case of resonant field, that is proportional to the in-

put power. The readout of the oscillator motion is realized by an additional

beam, called probe, resonant with the cavity. The reason for that is related

to the strong shift from the cavity resonance of the cooling beam, to realize

a efficient cooling (∆cool). The drawback is its additional back-action, that

increases the oscillator noise. The probe back-action force does not depend

on the cooling power, and it has the same effect of an increased background

temperature. The contribution of the back-action to the displacement spec-

tra can be written in therms of an additional occupation number n̄BA(∆)

given by the sum of two contributions due to the cooling and probe beams

n̄BA = n̄coolBA + n̄probeBA . The total effective occupation number is:

n̄ = n̄th
Γm

Γeff
+ n̄coolBA + n̄probeBA . (3.1)

A way to estimate the occupation number is the area×width product AΓeff
of the spectral peak. In the classical limit, when the variance of the motion

is still dominated by thermal noise, such product should remain constant as

the cooling power is increased, given the value

Ax × Γeff ≈ 2x2
ZPF n̄thΓm = kBTbath/meffΩmQ. (3.2)

The quantum noise is instead at the origin of a linear increase of AΓeff
versus Γeff . The peak area×width product in the frequency spectrum is:

AΓeff = 2g2
0Γm

[
n̄th +

(
n̄probeBA + n̄coolBA +

1

2

)
Γeff
Γm

]
(3.3)

where the vacuum optomechanical coupling strength is g0 = GxZPF . The

therm into square brackets, is the ratio between the slope and the intercept

in the AΓeff versus Γeff line. It is linked to the properties of the oscillator

quantum state. It is useful to verify the absence of unmodeled extra noise,

evaluate n̄th, and the oscillator temperature Tbath. The heterodyne spectra of

the field reflected by the cavity is a more accurate method to measure of the

oscillator occupation number. It is possible to distinguish the two sidebands

produced by the Stokes and anti-Stokes processes in the optomechanical
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interaction. If a resonant beam is used to readout, the sidebands peaks

have areas proportional respectively to n̄ (anti-Stokes) and n̄ + 1 (Stokes),

therefore n̄ is directly calculated from the Stokes to anti-Stokes sideband

areas ratio R as n̄ = 1/(R− 1). This method does not require a calibration

of the measured spectra in terms of oscillator displacement or frequency

fluctuations, and also it is barely sensitive to spurious extra-noise. However,

the residual probe detuning respect to the cavity resonance (in the studied

system, the Ωm < κ, it is between the two regimes, resolved sidebands and

bad cavity) is a potential problem. The two motional sidebands are indeed

filtered by the cavity, L(∆probe ± Ωm), and such filter effect modifies R as

soon as ∆probe 6= 0, thus spoiling the validity of the measurement. In the

following we describe a method to control the residual probe detuning and

to correct the measured R.

3.2 Experimental Setup

The experimental setup is similar the one in Ch. 2. A circular SiN membrane

with a thickness of 100 nm is placed in a Fabry-Perot cavity of length 4.38

mm at 2 mm from the cavity flat end mirror in a ”membrane-in-the-middle”

setup. The cavity finesse and linewidth are respectively 24500 and κ/2π =

1.4 MHz, measured at cryogenic temperatures (∼ 7 K). The physical reason

of the finesse value, higher than the empty cavity finesse, is explained in the

Sec. 2.1.1. As described in Sec. 2.1.1, the membrane has many resonance

frequency, fmn = f0 αmn. The cavity optical axis is displaced from the center

of the membrane by ∼ 0.28 mm, with an angle θ ' 0. As a consequence, the

optomechanical coupling and readout are much more efficient for one of the

modes in each quasi-degenerate couple (with the shape ∝ cos(mθ)), that we

identify as “light twin”, with respect to the other one (“heavy twin”). The

mechanical mode (1, 1) at 370 kHz, having a quality factor of 8.5 × 106 at

cryogenic temperature, which leads to an intrinsic width Γm/2π = 40 mHz.

The optomechanical cavity is cooled down to 7 K in a helium flux cryostat.

The optical path is composed of three beams, the frequencies of which are

controlled by means of AOMs, (see Ch. 2). The Probe beam is kept resonant

with the optomechanical cavity, its power is 20 µW. The cooling beam (Pump

beam in the Ch. 2), orthogonally polarized with respect to the Probe, is also

sent to the cavity and red detuned by roughly half linewidth (∆cool/2π =

−700 kHz). The detuning ∆cool is fixed by the frequency difference of the
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AOMs placed in the Probe and Pump paths. The cooling beam power is

increased by steps up to 45 µW. The LO beam can be frequency shifted

respect to the probe beam by ∆LO/2π ∼ 9 kHz, allowing a low-frequency

heterodyne detection or phase-locked to the probe for a homodyne detection

of its phase quadrature. The power on each photodiode of the balanced

detection is around 2 mW. The first scheme (heterodyne) is useful to separate

the motional sidebands generated around the optical frequency of the Probe

field, at frequency shifts corresponding to the mechanical modes frequencies.

More in detail, the two motional sidebands appear around the mechanical

frequencies shifted by the ∆LO: the Stokes at Ωm + ∆LO and the anti-

Stokes at Ωm − ∆LO, respectively, with Ωm � ∆LO, (see App. C). The

spectra acquired with the homodyne scheme are calibrated in terms of cavity

frequency fluctuations using a calibration tone in the Probe field, and they

are used to measure the variance of the motion of the different membrane

normal modes.

3.3 Calibration Method

As mentioned before the two motional sidebands are indeed filtered by the

cavity according to
κ2/4

κ2/4 + (Ω + ∆probe)2
(3.4)

where the Ω is the frequency, κ is the cavity linewidth and ∆probe = ωl−ωcav.
For a correct evaluation of n̄ one must consider the filtering effect of the

cavity, and in particular evaluate the residual probe detuning. This filter-

ing effect indeed modifies the ratio between the two vibrational sidebands,

R = (n̄ + 1)/n̄, as soon as ∆probe 6= 0. In order to evaluate this effect we

exploit the motional sidebands of the “heavy twin” modes that, being weakly

coupled to the optical field, maintain a high occupation number so that their

asymmetry can be completely attributed to the cavity filtering. Operatively,

from the heterodyne measurement, we simultaneously measure the sideband

ratio Rlight for both the ”light twin” mode, and the ”heavy twin” mode,

Rheavy (see App. B for details on the analysis). The ”light twin” mode is

the (1, 1) around 370 kHz. The measured asymmetry on the ”heavy twin”

modes is fitted with the equation:

Rhight =
κ2/4 + (Ωm + ∆probe)

2

κ2/4 + (Ωm −∆probe)2
. (3.5)
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Figure 3.1: Cavity field distribution around the resonance (aquamarine). It

shows how the field in the cavity is attenuated far from the cavity resonance.

Where the gray Lorentzian shape shows the probe beam in the cavity detuned

by ∆probe. The red and blue shapes show respectively, the Stokes and anti-

Stokes sidebands in the cavity, around the probe beam at ±Ωm.

From which we extract identify the probe detuning ∆probe in each measure-

ment. The cavity linewidth κ and ”heavy twin” mode frequency Ωm are

fixed. We then study how the asymmetry changes as a function of the opti-

cal power of the cooling beam. For each power 10 consecutive, 10 s long time

intervals are acquired. From each interval the probe detuning is measured:

its trend during the acquisition is showed in the inset of Fig. 3.2. The evolu-

tion the detuning (orange close circles in the inset) is fitted by a polynomial

function to correct the asymmetry of the ”light twin” mode. The sidebands

ratio become: R0 = Rlight/Rheavy, from which the mean occupation number

n̄ is estimated. This procedure also allows us to monitor the stability of the

detuning during the measurement, as shown in the inset of Fig. 3.2. Typical

detuning values are |∆probe|/2π < 30 kHz (corresponding to 0.02κ) and the

variations during a complete measurement are three times smaller. The con-
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sequent corrections to Rlight arrive to nearly 10%. A preliminary evaluation

of the sideband ratio for the weakly coupled modes is indeed a good method

to adjust the probe detuning at the beginning of the measurement. The cor-

rections to Rlight obtained with this procedure are in good agreement with

the method using directly the “heavy twin” mode. This correction method

is used on all the data shown in this work.

Figure 3.2: Method for correcting the sideband asymmetry due to the resid-

ual probe detuning. The measured sideband ratio for several weakly coupled

modes is plotted as a function of the respective resonance frequencies Ωm
(blue dots), and fitted with the Eq. 3.5 to infer the probe detuning ∆probe

(solid line). This procedure is repeated for several consecutive, 10 s long

time intervals. The evolution of the inferred values of the detuning (shown

with orange close circles in the inset) is fitted with a first or second order

polynomial function (solid line in the inset).
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3.4 Homodyne and Heterodyne detection

Figure 3.3: In the figure a), calibrated homodyne spectra around the fre-

quency of the (1, 1) mechanical modes as the cooling power is increased up

to ∼ 45 µW, maintaining a detuning of ∆cool ' κ/2. A spurious electronic

peak is shown with light gray symbols. The figure b) shows the measured

peak width Γeff/2π as a function of the cooling power, together with a linear

fit.

In this section we will compare the results of the two different detection

methods (heterodyne and homodyne). We focus on the membrane mode

(1, 1) at 370 kHz. It is a quasi degenerate mode. The difference between the

nearly degenerative ”light twin” and the ”heavy twin” adds lies in the posi-

tion of the cavity waist compared to the membrane center more detail about

it in the Sec. 2.1.1. The measurement are taken at different optical power

of the cooling beam, keeping constant the probe power. The cooling effect

is shown in the Fig. 3.3a). Due to so-called optical spring effect the mode

is characterized by an increasing of Γeff and a simultaneous red-shift of the

mechanical resonance frequency with the power of the cooling beam. On the

other hand, the “heavy twin” mode is weakly coupled to the radiation, since

the optical spot is close to its nodal axis. Therefore the associated spectral

peak at 370 kHz shows negligible optomechanical effects. An indicator of
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Figure 3.4: Increment of the measured area and width product for the

strongly coupled (1, 1) mode, as a function of its width Γeff/2π. The red

straight line reports the prediction of Eq. 3.3, where just an overall scaling

factor is fitted to the data. A solid green line shows the mean occupation

number n̄ calculated according to Eq. 3.1.

the reduction of the phonon occupancy n̄ in the ”light twin” mode is the

decreasing peak area. An independent measurement of the single photon

optomechanical coupling g0 could be done from a quantitative evaluation

of n̄ obtained from the area peak. On the other hand, the cooling factor

Γeff/Γm can be accurately measured. It provides a good estimate of the os-

cillator effective temperature and its occupation number n̄ ≈ n̄th Γm/Γeff .

It is valid in the classical limit, when the back-action contribution is negli-

gible, and in absence of extra noise. The information of the area and the

effective linewidth can be usefully put together in the area and width prod-

uct (AΓeff ). The product is shown in the Fig. 3.4, as a function of Γeff .

The reported value of AΓeff and Γeff are obtained form fits of the spectral

peaks with a Lorentzian function:

H(ω) = A Γeff/2

(Γeff/2)2 + (ω − Ωm)2
(3.6)
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where A is the peak area. From the theoretical prediction the AΓeff vs Γeff
should be linear where the slope-to-offset ratio is determined by the different

contributions to n̄. The three contributions are calculated from indepen-

dent measurements, as follows. n̄th is calculated from the bath temperature

measured by a silicon diode sensor fixed on the cavity, and the oscillator

frequency. The back-action occupancy, originating from the contributions of

the Probe and Pump beam, can be written as

n̄BA =
A+

A− −A+
(3.7)

where [6]:

A+ = g2
0ntot

(
nprobe
ntot
L(∆probe)L(∆probe − Ωm) + ncool

ntot
L(∆cool)L(∆cool − Ωm)

)
,

(3.8)

A− = g2
0ntot

(
nprobe
ntot
L(∆probe)L(∆probe + Ωm) + ncool

ntot
L(∆cool)L(∆cool + Ωm)

)
.

(3.9)

A+ is the upward transitions in the mechanical oscillator (Stokes process),

and A− is the downward transitions in the mechanical oscillator (anti-Stokes

process), where nprobe,cool = Pprobe,cool/~ωl shows the photon number in-

jected in the cavity for, respectively, probe and cool beam, while the total

photon number is ntot = Ptot/~ωl, where Ptot = Pprobe + Pcool, and the

Lorentzian function is L(ω) = 1/[(κ/2)2 + (ω)2]. The general back-action

occupancy for a single beam is calculated from the Eq. 3.7 [6, 49]:

n̄coolBA =

[
L(∆ + Ωm)

L(∆− Ωm)
− 1

]−1

. (3.10)

The back-action of the probe beam (n̄probeBA ) is calculated assuming a ∆probe '
0. This assumption is confirmed by the linear dependence between P cool

and Γeff (see Fig. 3.3b)). Γm is estimated from ring-down measurements as

shown in Sec. 2.2. The experimental measurements well follow the predicted

slope (solid line in Fig. 3.4), where just an overall vertical scaling factor is

fitted to the data. The error bars refers to the standard deviation of mea-

surements performed on 10 consecutive acquisitions. The scattering of data

shows that long-therm fluctuations in the system parameter dominate over

the statistical uncertainties, that are therefore not considered as meaningful
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in the following analysis. The solid green line in Fig. 3.4 shows the behavior

of n̄ calculated from Eq. 3.1. The agreement between the prediction of Eq.

3.3 and the experimental data suggest that the system is well modeled and

in absence of additional noise. We achieve a minimum occupancy is n̄ = 3.9

at the maximum power of the cooling beam. According with the Eq. 3.3

the fit gives a value of the vacuum optomechanical coupling strength equal

to g0/2π = 31± 1 Hz.

The qualitative agreement is not yet a safe guarantee of an accurate mea-

surement. The membrane oscillator can be heated due to laser absorption

yielding a linear increase of the Tbath with Pcool, and thus a larger slope of

AΓeff vs Γeff . In the fit of AΓeff vs Γeff the slope and offset are free pa-

rameters. We observe for the ratio between the slope and offset the value of

(8.0±2.5)×10−5 Hz−1. To be compared with the theoretical value calculated

from Eq. 3.3 of 4.9×10−5 Hz−1. This suggests that the sample temperature

could have increased by 1.8 ± 1.5 K at our maximum cooling power. Fur-

thermore, additional amplitude or frequency noise in the laser field would

instead provide a quadratic term in AΓeff vs Γeff . Indeed we added such

term to the fit of the data, finding a maximum contribution of 13 ± 10 %

to the measured A. In both fitting procedures the uncertainty is due to the

scattering of the experimental data, and the results are compatible with null

effects of heating and extra laser noise. The analysis of the homodyne spec-

tra gives a reliable estimate of n̄ at increasing cooling power. However, the

measurement accuracy is reduced due to an uncertainties in additional noise.

Therefore a better procedure to estimate the phonon occupancy is the

motional sidebands ratio in the heterodyne spectra. Indeed, it gives di-

rectly access to the real average phonon occupation number for each value

of cooling power, including implicitly extra heating and noise, without the

necessity of further independent measurements of system parameters. Our

apparatus can easily switch from homodyne to heterodyne detection, adding

a frequency offset ∆LO in the phase locking of the local oscillator. Two ex-

amples of the heterodyne detection are shown in the Fig. 3.5 at two different

optical power of the cooling beam. Here ∆LO � Ωm and the two sidebands

are close to the mechanical resonance of the mode (1, 1). In the Fig. 3.5b),

at low power of the cooling beam, the sidebands are almost equal. When

the cooling beam power is higher (Fig.3.5a)), the asymmetry between the

two sidebands is clear, with the left sideband (anti-Stokes), is much lower
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Figure 3.5: Observation of the Stokes (right) and anti-Stokes (left) spectral

peaks of the (1, 1) membrane mode for two different values of the cooling

power: a) at larger cooling power, the mean phonon occupancy is 3.87±0.21.

b) at low cooling power, the mean phonon occupancy is 17.1± 3.4. Symbols

show the experimental data, including the narrow peaks of the “heavy twin”

mode and spurious electronic peaks shown in light gray. Solid lines are the

fitting functions Eq. 3.11, the background is subtracted from the displayed

data for the sake of clarity. The fitted mean resonance frequency is taken as

origin of the displayed horizontal axis.

than the right one (Stokes). As described before, for a correct evaluation

of n̄ is crucial to estimation well the filtering effect of the cavity due to

residual probe detuning. The data are analyzed with the following fitting

function composed of two Lorentzian peaks of equal width and shifted by

2∆LO/2π = 18 kHz:

S(ω) = 2
π

[
AAS Γeff

Γ2
eff+4(ω−Ωm−∆LO)2 +

AS Γeff
Γ2
eff+4(ω−Ωm+∆LO)2

]
(3.11)

where AAS and AS are respectively the area of the anti-Stokes and Stokes

sidebands. The ratio between the ”light twin” modes are calculated as

Rlight = AS/AAS . The corrected ratio value, R0 = Rlight/Rheavy, gives

the correct value of n̄. At low cooling power the spectral width Γeff is still

relatively small and the sideband asymmetry is just R0 ' 1.048, yielding an

inferred mean phonon occupancy of 17.1 ± 3.4, Fig. 3.5b). At larger cool-

ing power, producing broader peaks, the asymmetry is more evident, with a
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measured value of R0 ' 1.24 and a mean phonon occupancy of 3.87 ± 0.21

(Fig. 3.5a)). The error bars refer to the standard deviation relative to 10

consecutive 10 s-long acquisitions. Fig. 3.6 shows the occupation number

Figure 3.6: Close symbols report the occupation number n̄ calculated from

the corrected values R of the sideband ratio for the “light twin” mode, ac-

cording to n̄ = 1/(R − 1). The red solid curve represents the occupation

number n̄ calculated according to Eq. 3.1 using independently measured pa-

rameters. Red, green and blue areas represent respectively the contributions

of the thermal noise, the probe beam back-action, and the cooling beam

back-action.

n̄ from the corrected sideband ratio as a function of Γeff , obtained at in-

creasing values of cooling power. The filled curves reflect the expected n̄ and

its different contributions. They are calculated from Eqs. 3.7 and 3.1. The

cooling back-action contribution is constant with the power, and equal to

n̄coolBA ∼ 0.58 for the (1, 1) modes. It follows from Eq. 3.10, where we used

its detuning ∆cool. The probe back-action occupancy is calculated from Eq.

3.7, where the contribution of cooling beam is not considered. We are here
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in weakly resolved sidebands regime and back-action cooling can in principle

bring these modes to an occupation number below unity, close to n̄BA in

the weak coupling regime. Here the theoretical curves have no free fitting

parameters: all the contributions to n̄ are calculated on the basis of indepen-

dent measurements. The agreement between the theoretical description and

the experimental data is excellent, considering the experimental statistical

uncertainty, suggesting the absence of non-modeled extra noise. The data

can be used to extract the bath temperature Tbath. Leaving n̄th as a free pa-

rameter of the fit in Eq. 3.1. The extracted value is 6.7± 0.6 K, compatible

with the 7.2 K measured by the sensor.



Chapter 4

Quantum Signature of a

Squeezed Mechanical

Oscillator

In this chapter we will discus experimental results concerning the propose

of motional sidebands in the presence of parametric squeezing. We will see

that the sidebands, measured in the heterodyne spectra, assume a peculiar

shape, related to the modified system dynamics, with asymmetric features

revealing and quantifying the quantum component of the squeezed oscillator

motion.

The chapter is divided into three sections. In the first one (Sec. 4.1), I

will introduce the theoretical model describing the system in the presence

of parametric modulation drive. I will them briefly discuss the experimental

setup for these measurements, Sec. 4.2 (more details can be found in Ch.

2). Finally (Sec. 4.3), the experimental results are discussed and compared

with the theoretical model.

4.1 Theoretical Background

The physical system is composed by a Fabry-Perot cavity with κ = κin+κex,

where κin is the input coupling rate, and κex includes the other losses, and

a mechanical oscillator placed in its center. The input field is composed by

101
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Figure 4.1: Conceptual scheme of the cavity of the field frequencies. Blue

area shows the cavity spectral peak with a frequency equal to ωcav, and a

linewidth κ. Left red area, around the red dash line at ∆, shows the shape of

the tone with the intensity α−, and in the right side the tone with intensity

α+.

two tones, shifted by ±Ωm around the laser frequency ωl, where Ωm is the

effective mechanical resonance frequency, modified by the optomechanical

interaction. The mean value of the input filed has the form:

αin = αin− e
−i(ωl−Ωm)t + αin+ e

−i(ωl+Ωm)t (4.1)

and the intracavity mean field can be written in the rotating frame as

α = α−e
iΩmt + α+e

−iΩmt (4.2)

where

α± = αin±

√
κin

−i(∆± Ωm) + κ/2
(4.3)

and ∆ = ωl − ωcav is the detuning between the cavity resonance and the

laser frequency. In this new configuration, the phonon annihilation and cre-

ation operator changes due to the optomechanical interactions. The general

equations for b̃ and b̃† are:

b̃(ω)

(
− iω+ iΩ0

m +
Γm
2

)
= ig0

(
αδã†(ω) +α∗δã(ω)

)
+
√

Γm b̃th(ω), (4.4)

b̃†(ω)

(
−iω−iΩ0

m+
Γm
2

)
= −ig0

(
αδã†(ω)+α∗δã(ω)

)
+
√

Γm b̃†th(ω). (4.5)
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see Sec. 1.3 for more details. The Fourier transform of α∗δa and αδa†

become:

F [α∗δa] = F [(α∗−e
−iΩmt + α∗+e

iΩmt)δa] =

= α∗−δã(ω − Ωm) + α∗+δã(ω + Ωm) (4.6)

and

F [αδa†] = F [(α−e
iΩmt + α+e

−iΩmt)δa†] =

= α−δã
†(ω + Ωm) + α+δã

†(ω − Ωm). (4.7)

The photon creation and annihilation operators can be written in terms of

the field α that interact with the mechanical oscillator. In the Fourier space

the α(b† + b) can be written as:

F [α(b† + b)] = F [(α−e
iΩmt + α+e

−iΩmt)(b† + b)] =

= α−X(ω + Ωm) + α+X(ω − Ωm), (4.8)

F [α∗(b† + b)] = F [(α∗−e
−iΩmt + α∗+e

iΩmt)(b† + b)] =

= α∗−X(ω − Ωm) + α∗+X(ω + Ωm), (4.9)

where X(ω) = b(ω) + b†(ω). Using the equations of δã(ω) and δã(ω)†,

obtained in the Sec. 1.3, respectively Eq. 1.90 and 1.91, the fluctuations of

the intractivity field in the Fourier space are

δã(ω) =
1

−iω − i∆ + κ/2

{
ig0

[
α+X(ω−Ωm)+α−X(ω+Ωm)

]
+
√
κ δãin(ω)

}
(4.10)

and

δã†(ω) =
1

−iω + i∆ + κ/2

{
−ig0

[
α∗+X(ω+Ωm)+α∗−X(ω−Ωm)

]
+
√
κ δã†in(ω)

}
.

(4.11)

Eqs. 4.6 and 4.7 thus become:

F [α∗δa] = ig0

{
1

−i(ω − Ωm)− i∆ + κ/2

[
|α−|2X(ω)+α∗−α+X(ω−2Ωm)

]
+

1

−i(ω + Ωm)− i∆ + κ/2

[
|α+|2X(ω) + α∗+α−X(ω + 2Ωm)

]}
+

√
κ

[
α∗−

δãin(ω − Ωm)

−i(ω − Ωm)− i∆ + κ/2
+ α∗+

δãin(ω + Ωm)

−i(ω + Ωm)− i∆ + κ/2

]
(4.12)
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and

F [αδa†] = −ig0

{
1

−i(ω + Ωm) + i∆ + κ/2

[
|α−|2X(ω)+α∗+α−X(ω+2Ωm)

]
+

1

−i(ω − Ωm) + i∆ + κ/2

[
|α+|2X(ω) + α∗−α+X(ω − 2Ωm)

]}
+

√
κ

[
α−

δã†in(ω + Ωm)

−i(ω + Ωm) + i∆ + κ/2
+ α+

δã†in(ω − Ωm)

−i(ω − Ωm) + i∆ + κ/2

]
. (4.13)

When Eq. 4.10 and its Hermitian conjugate are replaced into Eq. 4.4 in

the Fourier space, the mean-field factors α and α∗ in the optomechanical

coupling shift the δã and δã† operators by ±Ωm, giving terms proportional

to b̃(ω), b̃(ω± 2Ωm), b̃†(ω) and b̃†(ω± 2Ωm). Eq. 4.4 can thus be written as

(
− iω+ iΩ0

m+
Γm
2

)
b̃(ω) = −g2

0 [C1b̃(ω)+C2b̃(ω−2Ωm)+C3b̃(ω+2Ωm)+

+ C4b̃
†(ω) + C5b̃

†(ω − 2Ωm) + C6b̃
†(ω + 2Ωm)] + b̃in(ω) (4.14)

where Ci are c-numbers and the source term is

b̃in(ω) =
√

Γm b̃thin(ω)+

+ ig0

√
κ

[
α∗−

δãin(ω − Ωm)

−iω + iΩm − i∆ + κ/2
+ α∗+

δãin(ω + Ωm)

−iω − iΩm − i∆ + κ/2
+

+ α−
δã†in(ω + Ωm)

−iω − iΩm + i∆ + κ/2
+ α+

δã†in(ω − Ωm)

−iω + i∆ + iΩm + κ/2

]
. (4.15)

The total input noise source described by Eq. 4.15 includes thermal noise and

back-action noise, the latter given by the terms into square brackets. The

phonon creation and annihilation operators are centered in Ωm and −Ωm,

respectively. Therefore, the relevant terms in the optomechanical coupling,

on the right-hand side of Eq. 4.14, are those proportional to b̃†(ω − 2Ωm)
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and b̃(ω). Writing the explicit form of the C coefficients, Eq. 4.14 becomes

(
− iω + iΩ0

m + Γm/2
)
b̃(ω) ' b̃in(ω)+

− g2
0

[
|α−|2 b̃(ω)

(
1

−iω − i∆ + iΩm + κ/2
− 1

−iω + i∆− iΩm + κ/2

)
+

|α+|2 b̃(ω)

(
1

−iω − i∆− iΩm + κ/2
− 1

−iω + i∆ + iΩm + κ/2

)
+

α∗−α+ b̃†(ω−2Ωm)

(
1

−iω − i∆ + iΩm + κ/2
− 1

−iω + iΩm + i∆ + κ/2

)]
.

(4.16)

In the right hand side of Eq. 4.16, we notice the usual optomechanical effects

of the two laser tones (first two terms inside square brackets), plus their

coherent common interaction, proportional to the fields product α∗−α+, that

originates the parametric squeezing. It can be directly calculated that this

parametric effect is null for ∆ = 0, i.e. when the two tones are equally shifted

with respect to the cavity resonance. The total input noise source described

by Eq. 4.15 includes thermal noise and back-action noise, the latter given

by the terms into square brackets. The standard optomechanical interaction

is parameterized by the optical damping rate

Γopt = 2g2
0 Re

[
|α−|2

(
1

−iω − i∆ + iΩm + κ/2
− 1

−iω + i∆− iΩm + κ/2

)
+

|α+|2
(

1

−iω − i∆− iΩm + κ/2
− 1

−iω + i∆ + iΩm + κ/2

)]
(4.17)

and by a frequency shift that determines the effective resonance frequency

Ωm according to the equation

Ωm = Ω0
m+g2

0 Im

[
|α−|2

(
1

−iω − i∆ + iΩm + κ/2
− 1

−iω + i∆− iΩm + κ/2

)
+

|α+|2
(

1

−iω − i∆− iΩm + κ/2
− 1

−iω + i∆ + iΩm + κ/2

)]
. (4.18)

For an easier comparison with the experimental data, it is useful to define

the total optomechanical coupling strength g2 = g2
0 (|α+|2 + |α−|2) and

the ratio between intracavity powers εc = |α−|2/(|α−|2 + |α+|2). Using the

quasiresonant frequency condition ω ≈ Ωm the total damping rate Γeff =
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Γm + Γopt can be written as

Γeff = Γm + g2κ

[
εc

∆2 + (κ/2)2
− εc

(∆− 2Ωm)2 + (κ/2)2
+

1− εc
(∆ + 2Ωm)2 + (κ/2)2

− 1− εc
∆2 + (κ/2)2

+

]
. (4.19)

With the same condition, Eq. 4.16 simplifies to

(
− iω + iΩm + Γeff/2

)
b̃(ω) = −Γpar

2
eiφ b̃†(ω − 2Ωm) + b̃in(ω) (4.20)

where

Γpar =
4g2

0 |α+||α−|∆
∆2 + κ2/4

=
4g2
√
εc(1− εc)∆

∆2 + κ2/4
(4.21)

and φ = π/2+arg[α∗−α+]. Moving to the frame rotating at Ωm, and defining

the frequency with respect to the mechanical resonance Ω = ω − Ωm, Eq.

4.20 and its Hermitian conjugate can be written in the form of the system

of coupled linear equations

(
−iΩ +

Γeff
2

Γpar
2 eiφ

Γpar
2 e−iφ −iΩ +

Γeff
2

)(
b̃R
b̃†R

)
=

(
b̃in
b̃†in

)
. (4.22)

The matrix determinant is:

D =

(
− iΩ +

Γ+

2

)(
− iΩ +

Γ−
2

)
(4.23)

where

Γ± = Γeff ± Γpar. (4.24)

The creation and annihilation operator in the rotating frame are:

b̃R =
1

D

[(
− iΩ +

Γeff
2

)
b̃in −

Γpar
2

eiφ b̃†in

]
, (4.25)

b̃†R =
1

D

[(
− iΩ +

Γeff
2

)
b̃†in −

Γpar
2

e−iφ b̃in

]
. (4.26)
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Figure 4.2: Parametric drive gain s for different mechanical modes as a

function of the detuning ∆. Blue solid line, mechanical mode (0, 1) at 230

kHz. Yellow solid line, mechanical mode (1, 1) at 370 kHz. Green solid line,

mechanical mode (0, 2) at 530 kHz. Red solid line, mechanical mode (0, 3)

at 830 kHz.

The spectra of the Stokes and anti-Stokes sidebands Sb̃Rb̃R and Sb̃†Rb̃
†
R

are

2πSb̃Rb̃R =
〈
b̃R(−Ω)̃b†R(Ω)

〉
=

=
1

D2

[(
Ω2+

Γ2
eff

4

)〈
b̃in(−Ω)̃b†in(Ω)

〉
−Γpar

2
e−iφ

(
iΩ+

Γeff
2

)〈
b̃in(−Ω)̃bin(Ω)

〉
+

− Γpar
2

eiφ
(
− iΩ +

Γeff
2

)〈
b̃†in(−Ω)̃b†in(Ω)

〉
+

Γ2
par

4

〈
b̃†in(−Ω)̃bin(Ω)

〉]
(4.27)

and

2πSb̃†Rb̃
†
R

=
〈
b̃†R(−Ω)̃bR(Ω)

〉
=

=
1

D2

[(
Ω2+

Γ2
eff

4

)〈
b̃†in(−Ω)̃bin(Ω)

〉
−Γpar

2
e−iφ

(
−iΩ+

Γeff
2

)〈
b̃in(−Ω)̃bin(Ω)

〉
+

− Γpar
2

eiφ
(
iΩ +

Γeff
2

)〈
b̃†in(−Ω)̃b†in(Ω)

〉
+

Γ2
par

4

〈
b̃in(−Ω)̃b†in(Ω)

〉]
.

(4.28)
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The correlation functions for the input noise source of Eq. 4.15 are obtained

from Eqs. 1.86 -1.89 by considering that 〈Ô(t)Ô†(t′)〉 = cδ(t − t) implies

〈Ô(Ω)Ô†(Ω′)〉 = cδ(Ω−Ω′). In the following subsections we will discuss the

thermal and optical contributions.

Thermal contribution

The thermal contributions to the sideband spectra are calculated from the

correlation functions:

1

2π

〈
b̃in(−Ω)̃b†in(Ω)

〉
th

=
1

2π

〈
b̃th(−Ω)̃b†th(Ω)

〉
= Γm(n̄th + 1), (4.29)

1

2π

〈
b̃†in(−Ω)̃bin(Ω)

〉
th

=
1

2π

〈
b̃†th(−Ω)̃bth(Ω)

〉
= Γm n̄th. (4.30)

The spectra are given by

Sb̃†Rb̃
†
R

∣∣∣∣
th

=
Γm
2

[
nth + 1 + s/2

Ω2 + (Γ+/2)2
+
nth + 1− s/2
Ω2 + (Γ−/2)2

]
, (4.31)

Sb̃Rb̃R

∣∣∣∣
th

=
Γm
2

[
nth + s/2

Ω2 + (Γ+/2)2
+

nth − s/2
Ω2 + (Γ−/2)2

]
, (4.32)

where we have introduced the squeezing parameter s = Γpar/Γeff . For a

thermal state where nth � 1 and s, the two spectra become equal:

Sb̃Rb̃R ≈ Sb̃†Rb̃†R ≈
nthΓm

2

[
1

Ω2 + (Γ+/2)2
+

1

Ω2 + (Γ−/2)2

]
. (4.33)

and therefore the asymmetry cannot be apprecieted at high occupation num-

bers (n̄th ≈ n̄th + 1).

Optical Term

For the optical side, the contributions on the spectra consist of different

terms given by the four possible combinations of the operators δâin and δâ†in
in the expectation value:

1

2π

〈
b̃in(−Ω)̃bin(Ω)

〉
opt

= −g2
0κ

α∗−α+

∆2 + κ2/4
, (4.34)
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1
2π

〈
b̃†in(−Ω)̃b†in(Ω)

〉
opt

= −g2
0κ

α−α
∗
+

∆2+κ2/4 =

(
1

2π

〈
b̂in(−Ω)̂bin(Ω)

〉
opt

)∗
,

(4.35)

1
2π

〈
b̃†in(−Ω)̃bin(Ω)

〉
opt

= g2
0κ

[
|α−|2

(∆−2Ωm)2+κ2/4 + |α+|2
∆2+κ2/4

]
= A+,

(4.36)

1
2π

〈
b̃in(−Ω)̃b†in(Ω)

〉
opt

= g2
0κ

[
|α−|2

∆2+κ2/4 + |α+|2
(∆+2Ωm)2+κ2/4

]
= A−,

(4.37)

where A+ and A− are respectively the Stokes and anti-Stokes rates [6]. From

such rate we can define the optical spring as Γopt = A−−A+, and the optical

contributions become:

Sb̃†Rb̃
†
R

∣∣∣∣
opt

= 1
2π

〈
b̃R(−Ω)̃b†R(Ω)

〉
opt

= 1
2

[
A−− s2 Γopt

Ω2+
(

Γ−
2

)2 +
A−+ s

2 Γopt

Ω2+
(

Γ+
2

)2

]
(4.38)

and

Sb̃Rb̃R

∣∣∣∣
opt

= 1
2π

〈
b̃†R(−Ω)̃bR(Ω)

〉
opt

= 1
2

[
A++ s

2 Γopt

Ω2+
(

Γ−
2

)2 +
A+− s2 Γopt

Ω2+
(

Γ+
2

)2

]
.

(4.39)

For the Stokes and anti-Stokes rates, it is possible to define the back-action

occupation number (it defines a minimum occupation number achievable

through the optical cooling):

nBA =
A+

A− −A+
=
A+

Γopt
, (4.40)

nBA + 1 =
A−

A− −A+
=
A−

Γopt
. (4.41)

From this two definitions, the optical contributions can be written as

Sb̃†Rb̃
†
R

∣∣∣∣
opt

=
Γopt

2

[
nBA + 1− s

2

Ω2 +
(Γ−

2

)2 +
nBA + 1 + s

2

Ω2 +
(Γ+

2

)2 ], (4.42)

Sb̃Rb̃R

∣∣∣∣
opt

=
Γopt

2

[
nBA − s

2

Ω2 +
(Γ−

2

)2 +
nBA + s

2

Ω2 +
(Γ+

2

)2 ]. (4.43)
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Total spectra

Figure 4.3: Heterodyne spectra simulation, around the mechanical frequency

Ωm, showing the Stokes (left side) and the anti-Stokes (right side) vibrational

bands. The parametric gain is around s = 0.5, the mean phonon occupancy

is 5 and the mechanical linewidth of ≈ 5 kHz. Red solid line: the Lorentzian

shape with a sharp linewidth equal to Γ−, Anti-Squeezing quadrature. Blue

solid line: the Lorentzian shape with a broad linewidth equal to Γ+, Squeez-

ing quadrature. Green solid line: shows the full contribution on the spec-

trum, Sb̃Rb̃R(Ω) + Sb̃†Rb̃
†
R

(Ω).

The total spectra for the Stokes and the anti-Stoke sidebands are thus

given by

Sb̃†Rb̃
†
R

(Ω) =
Γeff

2

[
n̄+ 1 + s

2

Ω2 +
(Γ−

2

)2 +
n̄+ 1− s

2

Ω2 +
(Γ+

2

)2 ], (4.44)

Sb̃Rb̃R(Ω) =
Γeff

2

[
n̄+ s

2

Ω2 +
(Γ−

2

)2 +
n̄− s

2

Ω2 +
(Γ+

2

)2 ], (4.45)

where n̄ is the oscillator effective phonon number in the absence of parametric

effect

n̄ =
n̄thΓm + nBAΓopt

Γeff
. (4.46)

For s > 0 the spectral shape of each sideband is composed by the sum of

two Lorentzian curves with the same center but different amplitudes and
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widths (two for the Stokes and two for the anti-Stokes sideband) Γ±, related

to the squeezing and anti-squeezing quadrature, respectively. The ratios

between the areas of the broad and narrow Lorentzian components in the

two sidebands are

R+ =
n̄+ 1 + s/2

n̄− s/2
, (4.47)

R− =
n̄+ 1− s/2
n̄+ s/2

. (4.48)

For s = 0 Eqs. 4.44 and 4.45 are Lorentzians corresponding to the Stokes

and anti-Stokes sidebands. From the ration of their areas we can extract the

occupation number

R0 =
n̄+ 1

n̄
. (4.49)

Quadratures

A generic quadrature operator can be written as Xθ = (eiθ b̂R + e−iθ b̂†R)/2.

In the Fourier space the equations become:

X̃θ =
1

2 D

[
eiθ b̃in

(
− iΩ +

Γeff
2
− Γpar

2
e−i(2θ+φ)

)
+

+ e−iθ b̃†in

(
− iΩ +

Γeff
2
− Γpar

2
ei(2θ+φ)

)]
(4.50)

where we used Eq. 4.25 and 4.26. The minimum and maximum fluctuations

characterize the quadratures defined respectively by 2θ + φ = π and 2θ +

φ = 0. These quadratures are defined in the following as Y ≡ X−φ/2 and

X ≡ X−φ/2+π/2, and given by

Y =
eiφ b̃in + e−iφ b̃†in

−iΩ + Γ+

2

, (4.51)

X = i
eiφ b̃in + e−iφ b̃†in

−iΩ + Γ−
2

. (4.52)
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and the associated spectra are

SY Y =
Γeff (2n̄+ 1)

4

(
Ω2 +

Γ2
+

4

) , (4.53)

SXX =
Γeff (2n̄+ 1)

4

(
Ω2 +

Γ2
−
4

) . (4.54)

The two quadrature spectra scale in a different way with the parametric

Figure 4.4: Quadrature spectra simulation, around the mechanical frequency

Ωm. The parametric gain is just s = 0.5 and mean phonon occupancy of 5,

mechanical linewidth of ≈ 5 kHz. Red solid line: Anti-squeezing quadrature

(SXX). Blue solid line: squeezing quadrature (SY Y ).

drive, s. For the X-quadrature the linewidth decreases as the parametric

drive increase, and vicevesa for the Y -quadrature. The integrals of the spec-

tra on Ω give the variances (σX =
∫∞
−∞ SXX

dΩ
2π ):

σ2
Y =

σ2
0

1 + s
, (4.55)

σ2
X =

σ2
0

1− s
, (4.56)
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where σ2
0 = (2n̄+ 1)/4 is the variance when the parametric gain is zero. The

quadrature variances normalize to the variance at s = 0 as a function of the

tones intensity ratio 1 − εc, are shown in the Fig. 4.5. To summarize, in a

Figure 4.5: Variances simulation normalize at the variance at parametric

modulation null, s = 0, both are plotted as a function of the ratio between

the intensity of the parametric modulation drive and the total power (1−εc).
That trend is calculated at mean phonon occupancy of 5. Red solid line:

normalized variance of anti-squeezing quadrature (σ2
X/σ

2
0). Blue solid line:

normalized variance of squeezing quadrature (σ2
Y /σ

2
0).

classical description the motion of the oscillator is described by commuting

variables, and the spectra corresponding to the two motional sidebands must

be identical. On the other hand, in a quantum-mechanical description, even

if the oscillator is dominated by thermal noise (i.e., n̄ � 1), the sideband

asymmetry is always present (R0 > 1), being originated by the noncom-

mutativity between its ladder operators. Of course, the effect is actually

measurable only for moderately low occupation numbers n̄. In the presence

of parametric modulation, when the system is in a squeezed state, the side-

band ratios R+ and R− differ not only from unity, but also from the ratio

R0 measured in a thermal state. Namely, the ratio is higher for the broad-

ened Lorentzian component, while for the narrowed component it approaches

unity as s→ 1 (i.e., close to the parametric instability threshold). Therefore,

the quantum features of the oscillator motion can be brought out even for a

state having a variance exceeding that of the ground state in any quadrature

and, besides thermal noise, even for states that are not of minimal uncer-
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tainty (i.e., with 〈X2〉〈Y 2〉 > 1/16) as those created by parametric squeezing.

In the following, we describe an experimental study of this effect and pro-

vide evidence of the realization of a nonclassical state of the macroscopic

mechanical oscillator.

4.2 Experimental Apparatus

Figure 4.6: Experimental apparatus outline and the frequencies beam sketch,

it is described in the text.

A simplified scheme of the experimental setup and of the field frequencies

used in the experiment is sketched in Fig. 4.6 (further details can be found

in Ch. 2). The laser light (Nd:YAG) is filtered by a Fabry-Perot cavity with

a linewidth of 30 kHz. The transmitted beam is split into three different

beams, the frequencies of which are controlled by three different AOM and

sent to the optomechanical cavity (OMC) by optical fibers. The probe beam

is kept resonant with the OMC using the PDH technique with a servo loop

(AOM1 corrects the fast fluctuation, PZT for the long-term drifts of the cav-

ity length). The input probe power is 40 µW, where only 20 µW are injected

in the cavity as half power is in the two sidebands at 13.3 MHz from the

carrier, used for the locking scheme. About ∼ 2 µW of the reflected probe

are used in the PDH detection and ∼ 10 µW are combined with a local oscil-

lator beam (LO) ∼ 2 mW and sent to a heterodyne balanced detection. The

losses in the reflected beam are ∼ 8 µW. The local oscillator frequency, ΩLO
is blue-shifted with respect to the probe by ∆LO/2π = 11 kHz. The detec-

tion method is a heterodyne at low frequency [58]. The heterodyne balance

signal is acquired and sent into a lock-in amplifier and demodulated at Ωm.
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The two quadrature outputs of the lock-in are simultaneously acquired and

off-line processed. The third beam (pump beam), is sent to the cavity and it

is orthogonally polarized with respect to the probe. The beam is controlled

by the AOM2, it is driving by the sum of two radiofrequency signals. The

main radiofrequency is at Ωcool, red-detuned from the cavity resonance, to

cool down the oscillator motion. A second frequency at Ωpar, blue-shifted

from the main one by Ωpar − Ωcool = 2Ωm, realizes the parametric modu-

lation. All the radiofrequency sinusoidal signals used in the experiment, for

driving the AOMs and as reference in the lock-in amplifier, are kept phase

coherent (all the frequency generator have only one clock as reference). This

is very important to realize a phase-sensitive heterodyne detection. We fo-

cus on the mechanical mode (0, 2) at frequency 530 kHz. As described in

Ch. 2, the sample is placed in a Fabry-Perot cavity, 2 mm far from the flat

end mirror. The total cavity length, L = 3.92 mm. The optomechanical

cavity is placed in a helium flux cryostat, where is cooled down to a bath

temperature of ∼ 7 K, corresponding to a thermal occupation number of

2.6 × 105 for the mechanical mode (0, 2). At cryogenic temperatures the

measured cavity finesse and linewidth are F = 20000 and κ/2π = 1.9 MHz,

respectively. The single photon coupling rate for the considered mechanical

mode is g0/2π w 30 Hz. All this parameters are measured independently.

The finesse is measured from the reflected beam, where the two sidebands at

13.3 MHz are used to calibrate the linewidth (more details are given in Sec.

2.1.1). The vacuum optomechanical coupling g0 is measured from different

heterodyne acquisition at different power of the cooling beam, without any

parametric tone. More details about the evaluation of g0 are reported in

Ch. 3. Part of the pump beam is detected with a fast photodiode (FP)

with a bandwidth of 200 MHz. A spectrum is acquired to measure the tones

intensity at their respective frequency (the two radio-frequencies are around

of 110 MHz, shifted by 2Ωm). In order to change the parametric gain s, we

act on the ration between two tones without change the cooling tone.

4.3 Experimental Results

We now analyze the oscillator motion in a mechanical squeezing state; real-

ized by parametric modulation of the oscillator spring constant. In partic-

ular, we focus on the sidebands spectra obtained in a balanced heterodyne

detection searching of quantum signatures of the squeezing motion certified
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by direct measurements on the quadratures spectra. The heterodyne and

quadratures time-traces are acquired simultaneously, while the frequency

between the two tones in the pump beam, is periodically switched from res-

onance, Ωcool−Ωpar, to out of it by ∆shift = 12 kHz every 5 s. The frequency

shift is quality larger than the mechanical width (in this work it is small than

6 kHz), but it is much smaller than the cavity linewidth (∼ 2 MHz) in this

way the coherent effect on the two tones is negligible, while maintaining

the cooling effect of the modulation tone almost constant. The heterodyne

time series are 10 seconds long. The two segments are used to calculate the

two different spectra with a frequency resolution of 0.2 Hz. They are aver-

aged over 10 consecutive time series for the subsequent analysis. The most

straightforward method to show squeezing is the direct measurement of the

variance in different quadratures that are usually chosen by tuning the local

oscillator phase in a homodyne detection. On the other hand, in a standard

heterodyne setup, the rapidly rotating phase difference between signal and

local oscillator prevents the access to selected quadratures. This drawback

can be overcome by controlling such phase difference [58]. In our setup, all

the oscillators are indeed phase locked, including the time base of a lock-in

amplifier that demodulated the heterodyne signal at Ωm. The spectrum of

the lock-in output signal is a quadrature spectrum, centered at ∆LO. The

demodulation phase is chosen in order to maximize the squeezed effect on

the quadratures. The quadratures spectra are acquired and analyzed in-

dependently from the heterodyne signals, and the analyses agrees for both

the Lorentzian widths and the squeezing factor. We can accurately compare

the spectra with and without parametric modulation even in the presence

of slow variations in the system parameters. In order to avoid the effects of

possible long-term drifts during the measurements, all the radio-frequency

signals used to drive the AOMs are phase locked. A typical example of the

heterodyne spectra and corresponding quadratures are shown in the Fig. 4.7.

In the quadratures spectra (Fig. 4.7a) and 4.7b)), the mechanical peak

is visible at the frequency Ω = ∆LO. The peak is originated by the superpo-

sition of the two motional sidebands. The two orthogonal quadrature peaks

are fitted by the sum of two equal Lorentzian shapes centered at ±∆LO:

S(ω) = σ2
0

[
Γ/2

(Γ/2)2 + (ω −∆LO)2
+

Γ/2

(Γ/2)2 + (ω + ∆LO)2

]
. (4.57)
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When the parametric modulation is out of resonance (Fig. 4.7a)), the

Lorentzian curves fitting the two orthogonal quadratures coincide within

the statistical uncertainty and their widths match Γeff extracted from the

corresponding heterodyne spectra. When the parametric modulation is on

(Fig. 4.7b)), the spectra of one quadrature becomes narrower (anti-squeezed)

and simultaneously the orthogonal one becomes broader (squeezed), we use

the same fitting function 4.57, but with different areas (σ2
X,Y ) and different

widths (ΓX,Y ) for the two quadratures. The ratio between the variances and

widths with and without the parametric modulation gives the parametric

gain s:
σ2
Y,X

σ2
0

=
1

1± s
, (4.58)

and
ΓY,X
Γeff

= 1± s. (4.59)

The heterodyne spectrum consist of two motional sidebands, separated by

2∆LO. The signal shapes are fitted by two Lorentzian curves having the

identical width, Γeff , and two different areas (AAS and AS), proportional

to n̄ (anti-Stokes) and n̄+ 1 (Stokes):

H(ω)|s=0 =

[
AAS Γeff/2

Γ2
eff/4 + (ω − Ωm −∆LO)2

+
AS Γeff/2

Γ2
eff/4 + (ω − Ωm + ∆LO)2

]
.

(4.60)

The ratio R0 between the areas of the two curves is corrected for the resid-

ual probe detuning as described in Ch. 3 and Ref. [20]. Such ratio gives the

oscillator occupation number n̄ according to Eq. 4.49. The theoretical spec-

tra of the Stokes and anti-Stokes sidebands with the parametric modulation,

are proportional, respectively, to Eq. 4.44 and 4.45 and thus define four

Lorentzian contributions with linewidths Γ± = Γeff ± Γpar = Γeff (1 ± s),
where Γ± corresponds to those obtained from the quadratures spectra, ΓY,X .

The parametric gain is s = Γpar/Γeff , where the parametric width is de-

scribed in the Eq. 4.21. An example of the heterodyne spectra in the pres-

ence of modulation is shown in Fig. 4.7d). The spectral peaks are fitted

using the function

H(ω)|s 6=0 =

[
AbS Γ+/2

(Γ+/2)2 + (ω − Ωm + ∆LO)2
+

AbAS Γ+/2

(Γ+/2)2 + (ω − Ωm −∆LO)2

]
+

+

[
AnS Γ−/2

(Γ−/2)2 + (ω − Ωm + ∆LO)2
+

AnAS Γ−/2

(Γ−/2)2 + (ω − Ωm −∆LO)2

]
(4.61)
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Figure 4.7: a), b): Spectra of the fluctuations in two quadratures, obtained

by phase-sensitive demodulation of the heterodyne signal at Ωpar/2, a) with-

out parametric drive and b) with parametric drive. In a) the two spec-

tra (dark and light green symbols) are not distinguishable, and one single

Lorentzian fit is shown (solid line). In b) the two spectra (red and blue sym-

bols) are fitted with different Lorentzian curves (red and blue solid lines). c),

d): Heterodyne spectra (without demodulation) around the (0,2) membrane

mode at Ωm/2π ≈ 530 kHz, c) without parametric drive and d) with para-

metric drive (shown in log scale). In c) the spectrum is fitted by Lorentzian

curves (solid line). In d) the fitting function (dark green line) is the super-

position of a broad and a narrow Lorentzian shape, whose contributions are

shown with blue and red lines.
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where the apex n identifies the narrow Lorentzian and b the broader one.

In 4.61 Γeff is fixed to the value derived from the corresponding spectra

at s = 0 while the parametric gain s is left as a free fitting parameter.

The heterodyne and quadrature parametric gain s will be compared. The

Lorentzian area ratios, broad and narrow, will give the asymmetry R±. The

system is studied varying different parameters: εc, Ppump and ∆pump.

Asymmetry vs Parametric gain

We now consider the behavior of sidebands asymmetry as a function of the

parametric gain s, keeping constant the total pump power injected in the

cavity. The gain is varied by controlling the intensify of the parametric

tone Ppar. We acquire data for two different pump power values, respec-

tively, 70 µW and 45 µW. For both powers the cooling detuning is fixed

at ∆cool = −1.2 MHz, where the pump detuning is ∆pump = ∆cool + Ωm.

As mentioned before for each value of Ppar we acquire 5 spectra with and

without modulation, the results distribution gives the mean value and stan-

dard deviation. The data are shown in Fig. 4.8. Green dots and solid line,

show respectively the experimental results and the theoretical prediction of

the asymmetry when the parametric modulation is out of resonance. The

asymmetry for the modulation out of resonance is a function of the inten-

sity of the parametric drive, normalized to the total intensity, 1− εc. When

the parametric tone is not resonant (i.e., the parametric effect is off), the

ratio R0 (green symbols) remains almost constant for both occupation num-

bers, although we observe a clear decreasing trend as the parametric tone is

increased. Such behavior is well reproduced by theoretical curves (see Eq.

4.19) calculated by using independently measured parameters, and it is due

to a change in the relative strength of the two pump tones, which results in a

slightly reduced cooling power. We note that the parametric tone is injected

into the cavity through the pump beam and the parametric effect is turned

off by shifting the driving frequency from 2Ωm to 2Ωm + ∆shift. Although

this procedure allows us to reduce to a minimum the changes in the cooling

efficiency (as explained before), a residual effect is still present.

Fig. 4.8 also shows the sideband asymmetry for the Lorentzian compo-

nents related to the broad quadrature R+ (blue symbols) and narrow quadra-

ture R− (red symbols), with resonant parametric effect. The parametric gain

s used to calibrate the horizontal axis in the figure is deduced from the width

of the Lorentzian curves, as above described. The corresponding theoreti-
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Figure 4.8: Green symbols: sideband asymmetry R0 with no parametric

drive (i.e., with detuned modulation tone), for increasing power in the mod-

ulation tone. Sideband ratios R+ (blue circles) and R− (red circles) with

coherent parametric drive. The values of s in the abscissa are extracted from

the fitted widths Γ+ = Γeff (1 + s) and Γ− = Γeff (1 − s). Solid lines show

the corresponding theoretical behavior, with shadowed areas given by the

uncertainty in the system parameters (in particular, 5% in the cavity width

and 0.5 K in the temperature).
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cal ratios can be calculated from the theoretical spectra Sb̃†b̃† and Sb̃b̃ (Eqs.

4.44 and 4.45) and are given by Eqs. 4.47 and 4.48. Such theoretical curves

are also plotted in Fig. 4.8 without free fitting parameters, showing a good

quantitative agreement with the experimental data. The shadowed areas,

around the solid line, given by the uncertainty in the system parameters (in

particular, 5% in the cavity width and ±0.5 K in the temperature measure-

ment).

Figure 4.9: Variance in the X (orange square) and Y (cyan square) quadra-

tures, normalized to σ2
0 , as a function of the ratio between modulation and

cooling tones, for constant total pump power. Dashed lines show the theo-

retical behavior. Red and blue circles are the correspondent expected values,

calculated respectively as 1/(1− s) and 1/(1 + s).

The gain measured in the heterodyne and quadrature detection are com-

pared for both pump powers. The parametric gain s obtained from the

fitted Lorentzian widths is in agreement with its estimate extracted from

the variances of the two quadratures. This is shown in Fig. 4.9, where the

circle points correspond to the values 1/(1− s) and 1/(1 + s) obtained from

the widths of heterodyne spectra (red and blue circles). These data agree

with the measurements of the variance in the anti-squeezed (orange circle)

and squeezed (cyan circle) quadratures and with the theoretical predictions

(dashed lines).

For a pump power of 70 µW, and without any parametric modulation, the
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sideband ration is ∼ 1.21, that corresponds to a phonon occupancy of ∼ 4.8.

The variance in each quadrature is still ∼ 10 times larger with respect to the

ground state value 〈x〉2 = x2
xzp(2n̄+ 1). The maximum displayed squeezing

occurs for a parametric gain s = 0.49±0.01, where σ2
Y is reduced to the level

of 0.67 σ2
0 . We notice that σ2

0 is steel 6 times higher than the x2
ZPF . At the

pump power of 45 µW, the mechanical occupation at s = 0 is 5.8 phonons, it

means ∼ 12 times far from the variance of the quantum ground state. In this

setup configuration, the maximum value of the parametric gain obtained is

0.53± 0.01, the maximum reduction of the squeezed quadrature is 0.65 σ2
0 .

Asymmetry vs pump power

We now analyze the sideband asymmetry as a function of the pump power

injected in the optomechanical cavity. The pump detuning is fixed at −1.2

MHz and we also fix the ratio between the two tones (cooling and parametric

drive) in order to keep the gain s constant as the power is varied. The effec-

Figure 4.10: a) blue dots: measured width as a function of the measured

pump power. Red lines: linear fit. b) phenomenologically dependence of

s on Γeff , the experimental data (blue dots) are fitted with a polynomial

function (red line). The χ2 of the fit is around 0.1.

tive mechanical width, Γeff increase linearly with the pump power injected

in the optomechanical cavity, if no extra noise is present. This linear trend

was verified during the analysis procedure (see Fig. 4.10a). The red solid

line displays the result of linear fit, and the blue dots the experimental data

correspondent to the pump power measured in front of the optomechanical

cavity. For each power the mechanical width is extracted from the spec-

tra without the parametric modulation. At zero pump power the effective
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linewidth converges to the mechanical linewidth, Γm ≈ 80 mHz. When the

probe detuning is not exactly zero, it adds a contribution on the optical

spring, that could explain the not perfect overlap between the fit and the

experimental points. The asymmetry as a function of the effective linewidth,

Γeff is displayed in Fig. 4.11, where we use the model in Fig. 4.11a) assum-

ing a constant parametric gain s, evaluated from independent measurements

as explained in the Sec. 4.2. The value used in the model is s ∼ 0.29. Cir-

Figure 4.11: Green symbols: sideband asymmetry R0 with no parametric

drive (i.e., with detuned modulation tone), for increasing power in the mod-

ulation tone. Sideband ratios R+, (blue circles) and R−, (red circles) with

coherent parametric drive. Solid lines in panel a) show the corresponding

theoretical behavior at s constant, while in panel b) they take into account

the changes of s with Γeff obtained from the fit in Fig. 4.10b). The shad-

owed areas given by the uncertainty in the system parameters. More details

in the text.

cles are the experimental data with and without the parametric modulation.

Green symbols refer to the sideband asymmetry R0 (no parametric drive),

while the blue and red symbols show the rations R+ and R− for the broad

and narrow Lorentzian contributions. The solid lines display the theoretical

prediction and shadowed areas represent uncertainties in the system param-

eters. All the error bars are as described in the previous subsections. The

data of R+ and R− depart from the theoretical predictions, in particular at

high pump power. During the measurements, the parametric gain is main-

tained roughly constant by adjusting the strength of the parametric tone

each time the pump power is varied. However, we observe a variation of s

as shown in Fig. 4.10b). We remind that the parametric gain is described

from the equation: s = Γpar/Γeff , have a consequence we do not expect in
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principle a dependence of s on the pump power. These data are fitted with

a polynomial function. We attribute such deviations to small changes of the

locking point as the pump power increases, which induce changes in ∆pump

and hence of the parametric effect. In the Fig. 4.11b) phenomenological

dependence of s on Γeff is included. The new theoretical lines for R− and

R+ show a better agreement at high pump powers.

The maximum measured asymmetry (at the maximum optical pump power

75 µW) is 1.20 ± 0.01 the corresponding occupation is ∼ 5 phonons. At

this occupation, the attenuation in the squeezed quadrature σ2
Y is ∼ 0.72

(s = 0.39± 0.01). The variance is ∼ 8 times higher then the variance at the

ground state.

Asymmetry vs pump detuning

We now study the dependence of the parametric gain as a function of the

detuning of the pump beam. For this measurement, the total power injected

in the cavity (pump 45 µW and probe 20 µW) and the intensity ratio be-

tween the two tones in the pump power are fixed. The parametric gain s

as a function of the pump detuning is shown in the Fig. 4.12a), and the

sidebands asymmetry is shown in the Fig. 4.12b). The detuning values used

in the figure take into account the cavity birefringence that is about 200

kHz. In Fig. 4.12a) the green symbols show the gain s measured from the

variance of two quadratures, through 4.58. The red symbols are the experi-

mental values obtained from the widths of the broad and narrow linewidth

of the heterodyne spectra, Eq. 4.59. The agreement between the two dif-

ferent measurement and the theoretical model (dashed black line) is very

good. The variation of the detuning has the further effect of affecting the

cooling efficiency. This is shown in Fig. 4.12b) where we plot the variation

of the sideband asymmetry without parametric modulation (green points).

The theoretical curve (green solid line) has a maximum close ∆pump = 0,

where the cooling beam is red-detuned by a mechanical frequency, i.e. very

close to the value where optimal cooling is expected. Accordingly, as the null

pump detuning is approached (∆pump = 0), the parametric gain is instead

zero (see Eq. 4.21), and therefore the asymmetry of the blue (R+) and red

(R−) Lorentzian curves converge to R0 (see Fig. 4.12b)).

In this configuration, the detuning at which the maximum asymmetry occurs
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Figure 4.12: Panel (a): parametric gain s as a function of the mean de-

tuning of the pump tones: green symbols are measured from the variance

of two quadratures, red symbols are the experimental values obtained from

the widths of the broad and narrow linewidth. Panel (b): Green symbols:

sideband asymmetry R0 with no parametric drive (i.e., with detuned modula-

tion tone), for increasing power in the modulation tone. Sideband ratios R+,

(blue circles) and R−, (red circles) with coherent parametric drive. Dashed

lines show the corresponding theoretical behavior, with shadowed areas given

by the uncertainty in the system parameters. More details in the text.
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is not the same at which the maximum squeezing gain. In the first case, the

ratio between the two sidebands is 1.17± 0.01, the mechanical occupation is

∼ 6 phonons, the parametric gain is 0.23±0.06. The variance is ∼ 12 x2
ZPF ,

with the parametric modulation on the variance is 10 times on the ZPF

variance. In the second case, s = 0.71 ± 0.09, the asymmetry here is only

1.057 ± 0.006, the phonon occupation is ∼ 20. The squeezed quadrature

variance is > 20 x2
ZPF . In both cases the variance is well above the variance

at the ground state.

Fit considerations

Figure 4.13: a) Heterodyne spectra (parametric modulation is out of res-

onance) around the (0, 2) mechanical resonance at Ωm/2π ≈ 530 showing

the two motional sidebands separated by ∆LO/2π = 11 kHz. Gray symbols

are used for data points excluded from the fitted regions. This spectrum is

fitted with one couple of Lorentzian curves (gray solid line) with equal width

Γeff and different amplitudes (Eq. 4.60). For the same data we also show

the fit obtained using two couples of Lorentzian curves (violet dashed line)

according to the Eq. 4.61. The shaded (pink and light blue) regions show

the two Lorentzian contributions. Panel b) shows the statistical distribution

of s obtained with the same procedure on 6000 artificial, numerically gener-

ated spectra. Panel c) shows in this case the statistical distribution for the

parametric gain s, on 60 independent measurements.

In this last section, we verify that the fitting procedure used on the het-

erodyne spectra, at modulation on, is not biased. We apply two couples

of Lorentzian functions to a set of 60 independent spectra acquired in the
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absence of parametric drive, out of resonance, for different values of pump

detuning, pump power and εc. In Fig. 4.13a) is shown an example of the

fitted Lorentzian components (shaded pink and blue regions). The fit pro-

cedure is the same as described before. The statistical distribution of s,

shown in Fig. 4.13c), has a mean value of 0.038 with a standard deviation of

0.046, thus compatible with s = 0, as expected. The standard deviation on

s in the presence of parametric drive is similar. As a further check, we have

generated 6000 artificial spectra with s = 0 and the same parameters and

signal-to-noise ratio of the experiment and repeated the analysis. The sta-

tistical distribution of s is shown in the Fig. 4.13b), from which we extract

a mean value of 0.014 and a standard deviation of 0.019. That results are

similar to the experimental ones. It can be noticed that both the experimen-

tal and the artificial distributions are slightly asymmetric, with comparable

skewness, respectively 1.12 and 0.7. This structure could thus be related to

the fitting procedure. Nevertheless our analysis seems to be reliable at the

level of a few hundredths on s. In addition the s values obtained from the

heterodyne spectra, in the presence of parametric modulation as compared

with to those obtained from the quadrature ones, are in good agreement

within the statistical error. The physical evidence of the parametric gain

in the quadrature gives a real good reason to use our model, using four

Lorentzian, to fit the two sidebands at the modulation on. In conclusion

that checks prove the validity of our fit procedure.

Future perspectives

As we have seen, the sidebands spectra provide a powerful quantum indicator

of a squeezed state: the narrow and broad Lorentzian components of each

motional sideband give a signature of the imbalance between the fluctuations

in the two quadratures, while the sidebands asymmetry quantifies their non-

classical nature. Similarly to thermal states, even for the squeezed state the

transition between classical and quantum behavior is smooth and some level

of quantum squeezing is present even in macroscopic oscillators dominated by

thermal noise. We remark indeed that the sideband asymmetry is in itself

a fully quantum feature. On the other hand, it is interesting to examine

the case in which the residual fluctuations in the squeezed quadrature are

reduced below the zero-point level. It occurs when (2n̄+ 1)/(1 + s) < 1, i.e.

for s > 2n̄. In this case Eq. 4.45 the broad Lorentzian of the anti-Stokes

sideband becomes negative, as although the overall spectral density remains
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Figure 4.14: Green line: theoretical spectra of the anti-Stokes and Stokes

sidebands from the Eq. 4.45 and 4.44. Calculated for n̄ = 0.12 and s = 0.4.

The blue and red lines show respectively the broad and narrow Lorentzian

components.

always positive due to the compensation of the narrow component, this is

shown in Fig. 4.14. The negativity of the broad component provides a clear

indication of a bona fide quantum squeezing without the necessity of absolute

calibrations. In order to be observable in the stable regime of parametric

modulation (s < 1), the condition s > 2n̄ would require an initial occupation

number n̄ < 0.5. This level has been reached even in optomechanical setups

based on SiN membranes [31,54].



Conclusion and Remarks

In this thesis I show how it is possible to confine and control a macroscopic

oscillator in a quantum state. I also show the manipulation of the oscillator

quantum state, and in particular the generation of a squeezing state. These

results are described in the last two chapters.

In Ch. 2, I have described in detail the used experimental apparatus. I have

described our optomechanical system, including cavity and membrane, and I

have shown the quality factor measurement realized for different mechanical

modes at room and cryogenic temperature. In addition, I have described the

laser frequency noise characterization and the filter cavity implemented in

the apparatus.

In Ch. 3, I have compared two indicators of the oscillator occupation num-

ber, namely the peak area×width product of the spectrum acquired in a

homodyne setup, and the motional sideband asymmetry, measured by het-

erodyne detection. Neither case requires additional calibrations, even if the

actual oscillator base temperature can be an issue for the homodyne method.

Both indicators are particularly sensitive at low occupation numbers (i.e., in

the transition from classical to quantum regime). In optomechanical systems

where the quantum back-action can be increase until it strongly dominates

the thermal noise, the evaluation of n̄ from homodyne spectra is facilitated

by accessing the region where n̄ ' ncoolBA [65]. In the shown case the two kinds

of estimate are in agreement, showing that a minimal occupation number of

3.9 is achieved in our experiment. However, the heterodyne indicator is su-

perior because it is less sensitive to additional technical noise, and it gives a

result with a single measurement while the former procedure requires a set

of measurements as a function of, e.g., the cooling power. To reliably exploit
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the latter indicator one should keep in mind that a crucial requirement for

an accurate measurement of the sidebands ratio is the control of the probe

detuning. I have shown a method to perform it, based on the observation

of the spectral features of weakly coupled mechanical modes. The calibra-

tion of the detuning is thus performed using phase signals generated inside

the optomechanical cavity. This method is more trustworthy than exploiting

frequency modulation of the probe field since a commonly occurring simulta-

neous phase and amplitude modulation, as well as spurious reflections along

the path of the probe beam, generates asymmetric sidebands that spoils ac-

curate measurements of the cavity detuning.

In Ch. 4, I have described a cavity optomechanics experiment where a

macroscopic mechanical oscillator is parametrically driven by a suitable com-

bination of optical fields [20]. We have shown that the generated mechanical

squeezed state exhibits a quantum dynamics that is evidenced by the shape

of the motional sidebands. In the Sec. 4.1, I have described the theoret-

ical model behind this phenomenon and presented a detailed characteriza-

tion of the experimental achievements, in good agreement with the model.

I suggest that the analysis of the motional sidebands can provide a clear

signature of the noise reduction below the zero-point fluctuations that oc-

curs in one quadrature, without requiring any absolute calibration of the

displacement spectra or even a direct measurement of the quadrature fluc-

tuations. These results widen the range of macroscopic nonclassical states

that can be explored in optomechanical experiments. For instance, interest-

ing developments can involve nonstationary squeezed states and multimode

squeezing [46,53,57].

A widespread use of reliable quantum optomechanical indicators, toward

which this work is contributing, is expected to play in important role in

the study of basic physics phenomena and in the development of quantum

technologies [3].



Appendix A

Rotating Frame

Many times along the theoretical description we changed the reference sys-

tem in a rotating one. This new description is useful to delete the free

evolution from the expectation value of the used operators. In our work

the common frequencies are Ωm or ωl. Here, we report an example of this

rotation around the laser frequency ωl. The creation and annihilation oper-

ators and the Hamiltonian operator are moved in the new system by using

a unitary operator Û(t), defined as:

Û(t) = eiωlt â
†â. (A.1)

It is possible demonstrate that the annihilation and creation operators in the

new system are respectively:

âR(t) = â(t)eiωlt, (A.2)

â†R(t) = â†(t)e−iωlt. (A.3)

The new Hamiltonian in the rotating system is obtained following the evo-

lution obtained by using a unitary transformation [6]:

Ĥ −→ ÛĤÛ† − i~Û ∂Û†
∂t

. (A.4)

The optomechanical Hamiltonian is described in the Eq. 1.77, where in the

rotating frame it become:

Ĥ −→ ĤR − ~ωlâ†RâR (A.5)
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where

ĤR = ~ωcavâ†RâR + ~Ωmb̂
†b̂− ~g0â

†
RâR(b̂† + b̂). (A.6)

From this equation we obtain the Eq. 1.79 the operator in the rotating frame

are rewritten without the notation R for simplicity. The rotating frame can

be applied also at the Langevin equations, where the system rotates around

the mechanical frequency Ωm.



Appendix B

Heavy modes area

Figure B.1: In these six panels are displayed the two sidebands for six heavy

”twin” mechanical modes used in our study. Starting from the upper left

panel we have the modes: (1, 1), (2, 3), (2, 4), (4, 1), (4, 3), (4, 2).

In this short section we describe the method used to measure the area

of the ”heavy twin” mechanical mode with a high effective mass. These

mechanical modes are studied to investigate the effective detuning of the

probe beam, to correct the asymmetry due to the cavity cut-off, in Ch. 3.

The membrane modes interested to this characterization are only those with

very low coupling to the cavity field (due to the overlap between the modes

and the cavity field). For this reason these mechanical modes are not affected

by the optomechanical effects due to the detuned cooling beam. Indeed, the

only sideband asymmetry is generated by the cavity cut-off. Some examples
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Figure B.2: Areas for the two sidebands, Stokes and anti-Stokes, for a ”heavy

twin” mode.

of heavy modes are shown in Fig. B.1, where the two bands, Stokes and

anti-Stokes, are shown with red and blue colour. The areas are measured by

using the follow procedure: first, we integrate the spectrum around the two

sidebands (Ωm±∆LO), furthermore we fit the initial and the last integrated

sectors with a linear shape. The two linear fits are performed simultaneously,

using for both a single slope and two distinct constant terms. The difference

between two constant terms gives the area under the mechanical modes.

With this technique we delete directly the contribution of the back-ground.

An example of it can be observed in the Fig. B.2, where in the left and right

panel is shown respectively the area of the anti-Stokes and Stokes bands.

From the areas ratio we can measure the asymmetry between the two bands.

These areas are used to characterize the detuning of the probe beam as is

described in Ch. 3.



Appendix C

Heterodyne

Figure C.1: Four different cases, following the previews enumerations. Blu

Lorentzian: anti-Stokes vibrational bands. Red Lorentzian: Stokes vibra-

tional bands.

In this section we will describe the heterodyne detection in a classical

view. We can consider two electromagnetic fields. The first one is called
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local oscillator (LO), it is the reference beam at the frequency ωLO. The

second beam is called signal, it is in resonance to the cavity at the frequency

ωcav. The beams are overlapped on a beam splitter, then the interference

beam is detected on a photodiode. The photocurrent is proportional to the

intensity of the field that impinges on the detector. The fields are:

ELO = E0
LO ei(ωLOt+φLO) (C.1)

ES = E0
S e

i(ωSt+φp) (C.2)

where E0
S and E0

LO are the fields amplitudes, ωS = ωcav ± Ωm is the fre-

quency of the signal beam, φLO and φS are the additional two phases of the

respective electromagnetic fields. The frequency of the signal beam has the

information about the Stokes (−Ωm) and the anti-Stokes (Ωm) bands. The

intensity of the interference between the two beams is:

|ELO + ES |2 = |ELO|2 + |ES |2+

ELOES
(
ei(ωS−ωLO)t+i(φS−φLO) + ei(ωLO−ωS)t+i(φLO−φS)

)
. (C.3)

The interference term is the last one. All the information on the two vibra-

tional bands are on it. The frequency shift between the to fields is defined as

∆LO = ωLO − ωcav, where we can consider a negligible phases shift during

the measure φLO ≈ φS . The total fields become:

|ELO + ES |2 ∝ ei(±Ωm−∆LO)t + ei(∆LO−(±Ωm))t (C.4)

we can identify four different cases:

1. ∆LO > 0 and Ωm < ∆LO:

(a) anti-Stokes (Ωm): Ωm −∆LO < 0 and ∆LO − Ωm > 0;

(b) Stokes (−Ωm): −Ωm −∆LO < 0 and ∆LO + Ωm > 0.

2. ∆LO > 0 and Ωm � ∆LO;

(a) anti-Stokes (Ωm): Ωm −∆LO > 0 and ∆LO − Ωm < 0;

(b) Stokes (−Ωm): −Ωm −∆LO < 0 and ∆LO + Ωm > 0.

3. ∆LO < 0 and Ωm < ∆LO:

(a) anti-Stokes (Ωm): Ωm −∆LO > 0 and ∆LO − Ωm < 0;
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(b) Stokes (−Ωm): −Ωm −∆LO > 0 and ∆LO + Ωm < 0.

4. ∆LO < 0 and Ωm � ∆LO:

(a) anti-Stokes (Ωm): Ωm −∆LO > 0 and ∆LO − Ωm < 0;

(b) Stokes (−Ωm): −Ωm −∆LO < 0 and ∆LO + Ωm > 0.

In the spectra we can observe only the positive frequency, indeed only the

positive terms are observable in the detection, as is shown in Fig. C.1.

In this work we use the heterodyne detection in the configuration two,

where ∆LO > 0 and Ωm � ∆LO. The usual shift between the probe and the

reference beam (∆LO) is around ∼ 10 kHz and the mechanical frequency is

higher than 300 kHz. In this configuration the Stokes sideband will be on

the right side of the spectra and the anti-Stokes will be in the left side.

In the homodyne detection the shift in frequency between the two beams

(∆LO) is zero. In it we have a single Lorentzian for each mechanical reso-

nance. It is an average between the two physics process, Stokes and Anti-

stokes. In this configuration the probe beam is phase locked with the refer-

ence one. Indeed the only phase fluctuations are due to the interaction of

the probe beam and the mechanical oscillator in the cavity.





139

O
I

LO

FC

EO
M

PR
O

BE

13
.3
MH
z

PU
M

P

A

 

O
I

N
d:

YA
G

 1
06

4 
nm

 

2M
Hz

BH
D

O
M

C
λ 

⁄ 2
 

λ 
⁄ 4

 

B

C

D

98
0 

nm

Φ

Φ

1

2

3
4

5

6

7

8

9

FR
10

11

PB
S

Io
ni
c 

pu
mp

OM
C 

PZ
T

OM
C 

PZ
T



140 Heterodyne



List of Figures

1.1 Mechanical oscillator described as a block with mass m and

spring coefficient k. . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mechanical transfer function, for the mechanical mode at the

frequency ∼ 500 kHz. The effective mass is of the magnitude

of 6.4× 10−10 Kg, with a quality factor close to 107. . . . . . 3

1.3 First three eigenfunctions for the harmonic oscillator. . . . . . 6
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are shown all the coupled fields and with the blue one is shown

the membrane, placed approximately in the middle of the cav-

ity. In our setup, due to the high reflectivity of the back mir-

ror, at ≈ 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.9 a): Cavity finesse as a function of the membrane position nor-

malized to λ. Red dashed line shows the theoretical finesse

of the empty cavity. b): Simulation of the vacuum optome-

chanical coupling in our configuration. It is maximum for

the cavity node and anti-node, where the finesse is maximum

and minimum respectively. For the membrane in the middle

setup the vacuum optomechanical coupling can be reach the

g0 = ωcav/L, red solid line. . . . . . . . . . . . . . . . . . . . 45
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2.10 a) Example of the finesse measurement, where the red solid

line shows the fit function at five Lorentzian shapes, the blue

dots are the experimental data. Horizontal upside label shows

the converted scale in frequency. b) Example of the finesse

measurement for different position of the laser tuning range.

It is make on all the possible range from −10 V to 10 V where

its gain is −3 GHz/V. The dashed red line shows the measured

finesse value at room temperature. The black dash line shows

the maximum value of the finesse for our empty cavity. . . . . 46

2.11 Photo of the membrane inside optical cavity taken at 20 K.

The blue lines identify the waist center in the photo at 20 K.

The red ellipse and the red lines give the position of the waist

center, in the photo taken at room temperature. The green

lines and the green border identify the center of the mem-

brane. This picture is taken with the horizontal and vertical

axis flipped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.12 Quality factor due to gas damping as a function of the pressure

for two temperature RT and CT, shown respectively with dark

blue and blue lines. The Qair is shown for two mechanical

modes (0, 2) at ∼ 530 kHz (solid lines) and (1, 1) at ∼ 370

kHz (dashed lines). . . . . . . . . . . . . . . . . . . . . . . . 51

2.13 Set-up used for the Q-factor measurement. . . . . . . . . . . . 53

2.14 Example of a decay trace of the mechanical mode at 530 kHz.

The fit gives a decay time of 3.8 s and a quality factor close to

6.4×106. Panels a) and b) show respectively the first and last

40 ms of the time trace. In panel c) is shown the full decay.

The blue and the red lines show respectively the measured

data and the fit using the function 2.39. . . . . . . . . . . . . 55
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2.15 Quality factor measured in the two cavity configuration. In

the left panel the cavity waist is 0.28 mm far from the mem-

brane center, and in the right panel, second configuration, it is

well centered. In the two figures blue data are relative to the

measurement at 7 K, while the red ones show the measure-

ment at RT. In both cases the error bars show the standard

deviation calculated on 8 measurement. In panel a) the work

is focused on the mechanical mode at 370 kHz with a quality

factor ∼ 8.5× 106. For panel b) we consider for the squeezing

work the mechanical mode at 530 kHz where the Q-factor is

6.4× 106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.16 In the figures the purple dots and relative bars show the data

acquired in the direct lock configuration, and the cyan ones

there in the inverse lock scheme. The error bars reflect the

standard deviation on four implement measurements. The

figures show a typical trend of the two parameters during the

quality factor measurement. . . . . . . . . . . . . . . . . . . . 57

2.17 Scheme of the frequency control of the Mephisto laser, the

figure is taken from [38]. . . . . . . . . . . . . . . . . . . . . 58

2.18 Laser Tuning range, by mean of the temperature control. . . 59

2.19 Correlated sideband pictures at ωmod of the amplitude and

phase modulation, picture is derived from [78]. . . . . . . . . 60

2.20 Sketch of how the frequency noise in the cavity is converted

in amplitude noise in a resonator. This phenomenon may give

rise to heating of mechanical modes. . . . . . . . . . . . . . . 62

2.21 Filter cavity transfer functions, calculated as a single low pass

filter. Blue dashed line shown a configuration with cavity

linewidth equal to ∼ 30 kHz (higher finesse). Light blue

dashed line show the transfer function for a linewidth of 300

kHz (low finesse). The our setup the higher finesse configu-

ration will be used. The gray line show the corner frequency

for the two different cavity configurations. At the interested

frequency the cavity reduction is close to 10−1 i.e. −10 dB. . 63

2.22 Panel a): Comparison between homodyne spectra of the op-

tomechanical cavity (green line) and the of test cavity (red

line). Panel b): Comparison between the cavity phase spec-

trum and the response function of fast control of the laser. . . 64
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2.23 Example of spectrum, calibrated in m2/Hz, acquired at 13 K

around the mechanical mode (0, 2). In the figure is shown

the Fano profile due to the interaction of the mode shape and

the background generated by the frequency noise. The Dark

Green and the Purple line shows, respectively, the thermal

and frequency noise contribution. The Red line shows the

total fit and the Blue dots show the experimental data. . . . 65

2.24 Panel a) and b): Section of the support used for the input-

mirror and output-mirror respectively. Figure c): Photo of

the filter cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.25 Experimental setup including the filter cavity and the servo

loop scheme used for the cavity lock. . . . . . . . . . . . . . . 68

2.26 Filter cavity resonance peak shape dark blue. The blue signal

shows the cavity lock at resonance and the heavenly is the

photodiode dark signal. The red shape shows the PDH sig-

nal and the dark red the correction signal sent to the cavity

actuators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.27 Spectra of the light reflected by the OM cavity taken using the

PDH detection. Spectra are calibrated in terms of frequency

displacement (Hz2/Hz). Blue: direct light, green: filtered

light. The structures due to the frequency noise are cutted by

the filter cavity. . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.28 Apparatus used in the AOM’s noise measurement, the two

AOMs are driven by two different PLL and function genera-

tors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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2.29 Left panel: Comparison of the spectra acquired with differ-

ent FG, but identical PLL, driving the AOMs. Blue: AOMs

driven by two Agilent (model 33210A) FG. Green: AOMs

dived by two channels of the Zurich Lock-in Amplifier model

FHF2LI. Red: like as the Blue spectrum with addition mod-

ulation at 4 kHz open (used for the Homodyne/Heterodyne

phase look). Yellow: AOM1 driven by the Zurich and the

AOM2 driven by Siglent FG (model SDG2122X) without pass-

ing by the PLL. Right panel: Comparison of the spectra ac-

quired with all the possible AOM’s PLL used in our apparatus.

In all the configurations the PLL are driven by two Agilent FG

(model 32210A). Each spectrum is acquired as is described in

the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.30 Heterodyne visibility, limited to ∼ 80% for visualization pur-

poses. Light red line shows the interference signal, due to the

difference frequency of the LO and signal beams, observed in

one of the balanced hetero detection. The dark red points

show the dark level of the detector, from where are measured

Vmax and Vmin, for the visibility measurement. . . . . . . . . 73

2.31 The cyan plot shows the sum photocurrent of the two detec-

tors used in the heterodyne detection, while the dark green

shows the photocurrent difference. The rejection is close to

44 dB. This is what we have in our detection apparatus. . . . 74

2.32 Heterodyne/Homodyne detection, the local oscillator âLO bean

is mixed with the signal beam âS in a beam splitter. The

Balance heterodyne/homodyne detection (BHD) is generated

when on the diodes arrive an identical power on each one. . . 75

2.33 Basic scheme of the feedback control systems. . . . . . . . . . 77

2.34 Phase response shape as a detuning ∆ function, that signal

is calculated follow the Eq. 2.63 where we using the OMC

parameters. Where κex is calculated from the input mirror

transitivity T1 = 315 ppm and κ/2π ≈ 2 MHz. . . . . . . . . 79

2.35 General optical e electronic Pound-Drever-Hall scheme . . . . 80

2.36 In the upper panel we show the calculated shape of |Hr|2 with

a modulation at 13.3 MHz, and in the lower panel we show

the demodulated signal for β � 1. . . . . . . . . . . . . . . . 81
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2.37 Homodyne stabilization example. Dark blue features the di-

rect subtraction of the individual detectors and the light blue

shows the phase homodyne stabilization, around the zero. . 84

3.1 Cavity field distribution around the resonance (aquamarine).

It shows how the field in the cavity is attenuated far from

the cavity resonance. Where the gray Lorentzian shape shows

the probe beam in the cavity detuned by ∆probe. The red

and blue shapes show respectively, the Stokes and anti-Stokes

sidebands in the cavity, around the probe beam at ±Ωm. . . 92

3.2 Method for correcting the sideband asymmetry due to the

residual probe detuning. The measured sideband ratio for

several weakly coupled modes is plotted as a function of the

respective resonance frequencies Ωm (blue dots), and fitted

with the Eq. 3.5 to infer the probe detuning ∆probe (solid

line). This procedure is repeated for several consecutive, 10

s long time intervals. The evolution of the inferred values of

the detuning (shown with orange close circles in the inset) is

fitted with a first or second order polynomial function (solid

line in the inset). . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3 In the figure a), calibrated homodyne spectra around the fre-

quency of the (1, 1) mechanical modes as the cooling power is

increased up to ∼ 45 µW, maintaining a detuning of ∆cool '
κ/2. A spurious electronic peak is shown with light gray sym-

bols. The figure b) shows the measured peak width Γeff/2π

as a function of the cooling power, together with a linear fit. . 94

3.4 Increment of the measured area and width product for the

strongly coupled (1, 1) mode, as a function of its width Γeff/2π.

The red straight line reports the prediction of Eq. 3.3, where

just an overall scaling factor is fitted to the data. A solid

green line shows the mean occupation number n̄ calculated

according to Eq. 3.1. . . . . . . . . . . . . . . . . . . . . . . . 95
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3.5 Observation of the Stokes (right) and anti-Stokes (left) spec-

tral peaks of the (1, 1) membrane mode for two different val-

ues of the cooling power: a) at larger cooling power, the mean

phonon occupancy is 3.87 ± 0.21. b) at low cooling power,

the mean phonon occupancy is 17.1± 3.4. Symbols show the

experimental data, including the narrow peaks of the “heavy

twin” mode and spurious electronic peaks shown in light gray.

Solid lines are the fitting functions Eq. 3.11, the background

is subtracted from the displayed data for the sake of clarity.

The fitted mean resonance frequency is taken as origin of the

displayed horizontal axis. . . . . . . . . . . . . . . . . . . . . 98

3.6 Close symbols report the occupation number n̄ calculated

from the corrected values R of the sideband ratio for the

“light twin” mode, according to n̄ = 1/(R − 1). The red

solid curve represents the occupation number n̄ calculated ac-

cording to Eq. 3.1 using independently measured parameters.

Red, green and blue areas represent respectively the contribu-

tions of the thermal noise, the probe beam back-action, and

the cooling beam back-action. . . . . . . . . . . . . . . . . . . 99

4.1 Conceptual scheme of the cavity of the field frequencies. Blue

area shows the cavity spectral peak with a frequency equal to

ωcav, and a linewidth κ. Left red area, around the red dash

line at ∆, shows the shape of the tone with the intensity α−,

and in the right side the tone with intensity α+. . . . . . . . 102

4.2 Parametric drive gain s for different mechanical modes as a

function of the detuning ∆. Blue solid line, mechanical mode

(0, 1) at 230 kHz. Yellow solid line, mechanical mode (1, 1) at

370 kHz. Green solid line, mechanical mode (0, 2) at 530 kHz.

Red solid line, mechanical mode (0, 3) at 830 kHz. . . . . . . 107
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4.3 Heterodyne spectra simulation, around the mechanical fre-

quency Ωm, showing the Stokes (left side) and the anti-Stokes

(right side) vibrational bands. The parametric gain is around

s = 0.5, the mean phonon occupancy is 5 and the mechanical

linewidth of ≈ 5 kHz. Red solid line: the Lorentzian shape

with a sharp linewidth equal to Γ−, Anti-Squeezing quadra-

ture. Blue solid line: the Lorentzian shape with a broad

linewidth equal to Γ+, Squeezing quadrature. Green solid

line: shows the full contribution on the spectrum, Sb̃Rb̃R(Ω) +

Sb̃†Rb̃
†
R

(Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Quadrature spectra simulation, around the mechanical fre-

quency Ωm. The parametric gain is just s = 0.5 and mean

phonon occupancy of 5, mechanical linewidth of ≈ 5 kHz. Red

solid line: Anti-squeezing quadrature (SXX). Blue solid line:

squeezing quadrature (SY Y ). . . . . . . . . . . . . . . . . . . 112

4.5 Variances simulation normalize at the variance at parametric

modulation null, s = 0, both are plotted as a function of

the ratio between the intensity of the parametric modulation

drive and the total power (1 − εc). That trend is calculated

at mean phonon occupancy of 5. Red solid line: normalized

variance of anti-squeezing quadrature (σ2
X/σ

2
0). Blue solid

line: normalized variance of squeezing quadrature (σ2
Y /σ

2
0). . 113

4.6 Experimental apparatus outline and the frequencies beam sketch,

it is described in the text. . . . . . . . . . . . . . . . . . . . . 114
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4.7 a), b): Spectra of the fluctuations in two quadratures, ob-

tained by phase-sensitive demodulation of the heterodyne sig-

nal at Ωpar/2, a) without parametric drive and b) with para-

metric drive. In a) the two spectra (dark and light green

symbols) are not distinguishable, and one single Lorentzian

fit is shown (solid line). In b) the two spectra (red and blue

symbols) are fitted with different Lorentzian curves (red and

blue solid lines). c), d): Heterodyne spectra (without demod-

ulation) around the (0,2) membrane mode at Ωm/2π ≈ 530

kHz, c) without parametric drive and d) with parametric drive

(shown in log scale). In c) the spectrum is fitted by Lorentzian

curves (solid line). In d) the fitting function (dark green line)

is the superposition of a broad and a narrow Lorentzian shape,

whose contributions are shown with blue and red lines. . . . . 118

4.8 Green symbols: sideband asymmetry R0 with no paramet-

ric drive (i.e., with detuned modulation tone), for increasing

power in the modulation tone. Sideband ratios R+ (blue cir-

cles) and R− (red circles) with coherent parametric drive. The

values of s in the abscissa are extracted from the fitted widths

Γ+ = Γeff (1 + s) and Γ− = Γeff (1 − s). Solid lines show

the corresponding theoretical behavior, with shadowed areas

given by the uncertainty in the system parameters (in partic-

ular, 5% in the cavity width and 0.5 K in the temperature).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.9 Variance in theX (orange square) and Y (cyan square) quadra-

tures, normalized to σ2
0 , as a function of the ratio between

modulation and cooling tones, for constant total pump power.

Dashed lines show the theoretical behavior. Red and blue cir-

cles are the correspondent expected values, calculated respec-

tively as 1/(1− s) and 1/(1 + s). . . . . . . . . . . . . . . . . 121

4.10 a) blue dots: measured width as a function of the measured

pump power. Red lines: linear fit. b) phenomenologically

dependence of s on Γeff , the experimental data (blue dots)

are fitted with a polynomial function (red line). The χ2 of the

fit is around 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . 122
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4.11 Green symbols: sideband asymmetry R0 with no paramet-

ric drive (i.e., with detuned modulation tone), for increasing

power in the modulation tone. Sideband ratios R+, (blue cir-

cles) and R−, (red circles) with coherent parametric drive.

Solid lines in panel a) show the corresponding theoretical be-

havior at s constant, while in panel b) they take into account

the changes of s with Γeff obtained from the fit in Fig. 4.10b).

The shadowed areas given by the uncertainty in the system

parameters. More details in the text. . . . . . . . . . . . . . . 123

4.12 Panel (a): parametric gain s as a function of the mean detun-

ing of the pump tones: green symbols are measured from the

variance of two quadratures, red symbols are the experimen-

tal values obtained from the widths of the broad and narrow

linewidth. Panel (b): Green symbols: sideband asymmetry

R0 with no parametric drive (i.e., with detuned modulation

tone), for increasing power in the modulation tone. Sideband

ratios R+, (blue circles) and R−, (red circles) with coherent

parametric drive. Dashed lines show the corresponding theo-

retical behavior, with shadowed areas given by the uncertainty

in the system parameters. More details in the text. . . . . . . 125

4.13 a) Heterodyne spectra (parametric modulation is out of res-

onance) around the (0, 2) mechanical resonance at Ωm/2π ≈
530 showing the two motional sidebands separated by ∆LO/2π =

11 kHz. Gray symbols are used for data points excluded from

the fitted regions. This spectrum is fitted with one couple

of Lorentzian curves (gray solid line) with equal width Γeff
and different amplitudes (Eq. 4.60). For the same data we

also show the fit obtained using two couples of Lorentzian

curves (violet dashed line) according to the Eq. 4.61. The

shaded (pink and light blue) regions show the two Lorentzian

contributions. Panel b) shows the statistical distribution of s

obtained with the same procedure on 6000 artificial, numeri-

cally generated spectra. Panel c) shows in this case the statis-

tical distribution for the parametric gain s, on 60 independent

measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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4.14 Green line: theoretical spectra of the anti-Stokes and Stokes

sidebands from the Eq. 4.45 and 4.44. Calculated for n̄ = 0.12

and s = 0.4. The blue and red lines show respectively the

broad and narrow Lorentzian components. . . . . . . . . . . . 128

B.1 In these six panels are displayed the two sidebands for six

heavy ”twin” mechanical modes used in our study. Starting

from the upper left panel we have the modes: (1, 1), (2, 3),

(2, 4), (4, 1), (4, 3), (4, 2). . . . . . . . . . . . . . . . . . . . . 133

B.2 Areas for the two sidebands, Stokes and anti-Stokes, for a

”heavy twin” mode. . . . . . . . . . . . . . . . . . . . . . . . 134

C.1 Four different cases, following the previews enumerations. Blu

Lorentzian: anti-Stokes vibrational bands. Red Lorentzian:

Stokes vibrational bands. . . . . . . . . . . . . . . . . . . . . 135
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