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Abstract We address the problem of preconditioning sequences of regular-
ized KKT systems, such as those arising in interior point methods for convex
quadratic programming. In this case, constraint preconditioners (CPs) are
very effective and widely used; however, when solving large-scale problems,
the computational cost for their factorization may be high, and techniques for
approximating them appear as a convenient alternative. Here, given a block
LDLT factorization of the CP associated with a KKT matrix of the sequence,
called seed matrix, we present a technique for updating the factorization and
building inexact CPs for subsequent matrices of the sequence. We have re-
cently proposed an updating procedure that performs a low-rank correction
of the Schur complement of the (1,1) block of the CP for the seed matrix.
Now we focus on KKT sequences with nonzero (2,2) blocks and make a step
further, by enriching the low-rank correction of the Schur complement by an
additional cheap update. The latter update takes into account information
not included in the former one and expressed as a diagonal modification of
the low-rank correction. Theoretical results and numerical experiments show
that the new strategy can be more effective than the procedure based on the
low-rank modification alone.

Keywords KKT systems · Constraint preconditioners · Matrix updates ·
Interior point methods
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1 Introduction

We consider the problem of preconditioning a sequence of regularized KKT
systems of the following form:[

Bk AT

A −Θk

] [
∆x
∆y

]
=

[
b1
b2

]
, k = 1, 2, . . . , (1)

where Bk ∈ Rn×n is symmetric positive definite, A ∈ Rm×n is full rank,m ≤ n,
and Θk ∈ Rm×m is diagonal positive semidefinite. We focus on problems where
Θk ̸= 0 and its sparsity pattern does not change throughout the sequence. We
further assume that the above linear systems are large and possibly sparse.
Linear systems of this form arise, e.g., in interior point (IP) methods for convex
quadratic programming problems [25,34]:

minimize
1

2
xTQx+ cTx,

subject to A1x− s = b1, A2x = b2, x+ v = u, (x, s, v) ≥ 0,
(2)

where A1 ∈ Rm1×n, A2 ∈ Rm2×n, and s and v are slack variables, used to
transform the inequality constraints A1x ≥ b1 and x ≤ u into equality con-
straints. In fact, the application of an IP method to problem (2) gives rise to
a sequence of linear systems of the form (1), where

Bk = Q+ Φk, Φk = X−1
k Wk + V −1

k Tk, Θk =

[
Y −1
k Sk 0
0 0

]
, A =

[
A1

A2

]
,

Xk, Wk, Sk, Yk, Vk and Tk are suitable diagonal matrices, and m = m1 +m2.
More precisely, letting (xk, wk), (sk, yk) and (vk, tk) be the pairs of comple-
mentary variables of problem (2) evaluated at the k-th iteration, we have that
Xk, Wk, Sk, Yk, Vk and Tk are the diagonal matrices where the diagonal is
equal to the corresponding lowercase vector, according to the usual IP nota-
tion. A nonzero block Θk arises whenever the problem has linear inequality
constraints, i.e., m1 ̸= 0, as in this case Θk admits m1 positive diagonal entries
corresponding to the slack variables for the linear inequality constraints; fur-
thermore, the number and the position of the nonzero entries of Θk does not
change throughout the IP iterations. It is well known that the nonzero entries
of Φk and Θk usually display a drastic difference of magnitude: some of them
tend to zero while others go to infinity. The nonzero matrix Θk may also arise
when regularized IP methods are applied to quadratic programming problems
with no linear inequality constraints. In this case a diagonal positive definite
(2,2) block appears and its form depends on the dual regularization adopted
(see, e.g., [23,26] and the references therein).

Typically, the solution of sequence (1) represents the major computational
burden of the IP procedure. Therefore, if the linear systems are solved iter-
atively, the effectiveness and the efficiency of the preconditioners used affect
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the overall performance of the IP method. Here we address the case where the
systems are solved by an iterative linear solver and constraint precondition-
ers (CPs) are employed (see, e.g., [10,11,15,19,20,24,28,31]).

Whenever the computational cost for building a CP for each system of
the sequence is high, a preconditioner updating strategy can offer a tradeoff
between cost and efficiency and can enhance the overall procedure for the
solution of problem (1). Given a factorization of the preconditioner for a matrix
of the sequence, such a strategy builds the preconditioners for some successive
systems of the sequence by suitably modifying the available factorization to
take into account the matrix changes. The aim is to form a preconditioner
that is computationally cheaper than the one computed from scratch, though
preserving efficiency in the solution of the linear systems.

A first proposal for an updating strategy for CP preconditioners has been
presented in [5]. It relies on a low-rank modification of the factorized Schur
complement of the (1,1) block, which has been designed by exploiting re-
sults from [1,33]. Clearly, to keep the computational cost low, only small-rank
changes are allowed. In this paper, in order to partially recover the information
discarded by the low-rank correction, we propose to perform a further update.
We note that a part of the discarded information can be seen as a diagonal
positive semidefinite modification of the matrix resulting from the low-rank
modification. Then we compute an approximate Cholesky factorization of the
diagonally modified matrix by updating the Cholesky factorization of the pre-
conditioner resulting from the low-rank correction. This step is accomplished
by using a procedure in the framework given in [4]. Theoretical and numer-
ical results show that the latter procedure can improve the preconditioner
updating strategy in [5].

The paper is organized as follows. In Section 2 we provide the basis for
describing our preconditioner updating procedure along with some theoretical
results which will be exploited to analyze it. In Section 3 we first recall the
updating procedure based on the low-rank correction of the Schur complement
and then we present the new updating step, aimed at recovering part of the
information discarded by the low-rank approach. In Section 4 we show some
numerical results illustrating the behavior of the overall updating approach.
We give some conclusions in Section 5.

Henceforth we use the following notations. We denote by ∥ · ∥ the matrix
2-norm. For any symmetric matrix M , we denote by λ(M) any eigenvalue
of M , and by λmin(M) and λmax(M) the minimum and maximum of these
eigenvalues; furthermore, we use diag(M) to indicate the diagonal matrix with
the same diagonal entries as M . Finally, for any complex number z, we denote
by R(z) and I(z) the real and imaginary parts of z.
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2 Preliminaries

The updating strategy presented in this paper builds a preconditioner for a
generic matrix of the sequence (1),

Ak =

[
Bk AT

A −Θk

]
,

exploiting information from a preconditioner built for a previous matrix of the
sequence, which is denoted by

Aseed =

[
Bseed AT

A −Θseed

]
. (3)

We assume that a CP Pseed is available for Aseed, having the following form:

Pseed =

[
Hseed AT

A −Θseed

]
, (4)

where Hseed is the following approximation to Bseed:

Hseed = diag(Bseed).

The effectiveness of this preconditioner in the context of IP methods is widely
recognized by the optimization community, see, e.g., [6,10,11,21,28].

In order to simplify the notations, henceforth we denote Hseed by H. The
application of Pseed requires its factorization. We consider the following block
LDLT factorization:

Pseed =

[
In 0

AH−1 Im

] [
H 0
0 −Sseed

] [
In H−1AT

0 Im

]
, (5)

where Ij is the identity matrix of dimension j and Sseed is the negative Schur
complement of H in Pseed, i.e.,

Sseed = AH−1AT +Θseed. (6)

We also assume that a Cholesky factorization of Sseed has been computed:

Sseed = LseedDseedL
T
seed, (7)

where Lseed is unit lower triangular.
Now we consider a generic system of the sequence and we drop the iteration

index k from Ak, Bk and Θk in order to simplify the notation. Then, as with
the previous definition of Pseed, the CP for

A =

[
B AT

A −Θ

]
, (8)

is given by

Pex =

[
G AT

A −Θ

]
=

[
In 0

AG−1 Im

] [
G 0
0 −S

] [
In G−1AT

0 Im

]
, (9)
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where
G = diag(B), S = AG−1AT +Θ.

Concerning the eigenvalue distribution of P−1
ex A, there exists an eigenvalue

at 1 with multiplicity 2m − p, with p=rank(Θ), and n −m + p real positive
eigenvalues such that the betterG approximatesB the more clustered around 1
they are [18]. On the other hand, computing a Cholesky factorization of S
may account for a large part of the computational cost for solving the KKT
system, and hence replacing S with a computationally cheaper approximation
of it, Sinex, may be convenient [5,21,29,31]. The resulting inexact CP has the
following form:

Pinex =

[
In 0

AG−1 Im

] [
G 0
0 −Sinex

] [
In G−1AT

0 Im

]
. (10)

Approximations of CPs may be also obtained by replacing the constraint ma-
trix A in (9) with a sparse approximations of it [9].

In our work we focus on Pinex. The spectral analysis of P−1
inexA has been

addressed in [7,8,32] and further refined in [5]. Here we report some results
from [5], which will be exploited to design and analyse our updating proce-
dure. We note that, although the convergence of Krylov solvers for systems
with coefficient matrix P−1

inexA is not fully characterized by the spectrum of
the matrix, in many practical cases it depends on the distribution of the eigen-
values. Therefore we are interested in providing bounds on the eigenvalues of
P−1
inexA. The bounds given in the next theorem highlight the dependence of

the spectrum of P−1
inexA on that of S−1

inexS (see [5, Theorem 2.1]).

Theorem 1 Let A and Pinex be the matrices in (8) and (10), and let λ and
[xT , yT ]T be an eigenvalue of P−1

inexA and a corresponding eigenvector. Let

X = G− 1
2BG− 1

2 (11)

and suppose that 2In −X is positive definite. Let

λ̄ = λmax(S
−1
inexS) max{2− λmin(X), 1}, (12)

λ = λmin(S
−1
inexS) min{2− λmax(X), 1}. (13)

Then, P−1
inexA has at most 2m eigenvalues with nonzero imaginary part, count-

ing conjugates. Furthermore, if λ has nonzero imaginary part, then

1

2
(λmin(X) + λ) ≤ R(λ) ≤ 1

2
(λmax(X) + λ̄); (14)

otherwise,

min{λmin(X), λ} ≤ λ ≤ max{λmax(X), λ̄}, for y ̸= 0, (15)

λmin(X) ≤ λ ≤ λmax(X), for y = 0. (16)

Finally, the imaginary part of λ satisfies

|I(λ)| ≤
√
λmax(S

−1
inexAG

−1AT )∥In −X∥. (17)
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We note that 2In − X can be made positive semidefinite by scaling X
in (11) so that its eigenvalues are not greater than 2. Furthermore, if B is
diagonal, then X = In and all the eigenvalues of P−1

inexA are real. In this
case P−1

inexA has at least n unit eigenvalues, with n associated independent
eigenvectors of the form [xT , 0T ]T , and the remaining eigenvalues lie in the
interval [λmin(S

−1
inexS), λmax(S

−1
inex S)] (see also [21]).

Finally, from the analysis carried out in [32, section 5] it follows that the
number of unit eigenvalues of P−1

inexA depends also on the number of zero
eigenvalues of S − Sinex. In particular, when S − Sinex has l zero eigenvalues,
if S−1/2AATS−1/2 has no unit eigenvalues then P−1

inexA has l unit eigenvalues
with geometric multiplicity l.

3 The preconditioner updating strategy

Our preconditioner updating strategy is based on building Sinex by a suitable
update of the seed Schur complement Sseed. In [5] we presented an updated
preconditioner of the form (10), where Sinex is a low-rank modification, Slr ,
of Sseed. Here we make a step further, improving the approximation of S pro-
vided by Slr , in the case where Θ is a nonzero matrix. Therefore, our approach
for building Sinex consists of two steps: the first computes Slr through the pro-
cedure discussed in [5]; the second employs updating techniques discussed in
[3,4] to form an approximate factorization of Slr +∆, where ∆ is a suitable di-
agonal positive semidefinite matrix containing information not included in the
previous step. The latter factorization provides the matrix Sinex, henceforth
denoted by Scu because it is the result of the combination of two updates. The
corresponding inexact preconditioner is

Pcu =

[
In 0

AG−1 Im

] [
G 0
0 −Scu

] [
In G−1AT

0 Im

]
. (18)

Next we provide a detailed description of our procedure and analyze the
quality of the resulting preconditioner. First, we describe how to perform the
low-rank update of Pseed and summarize related theoretical results given in [5].
Second, we present the subsequent updating step and provide new bounds on
the eigenvalues of the preconditioned matrix.

3.1 First step: building Slr

Let L = {i : Θii ̸= 0} and let m1 be its cardinality. We recall that the set

L does not change throughout the sequence. Furthermore, let Θ̃seed and Θ̃ be
the m1 ×m1 diagonal submatrices containing the nonzero diagonal entries of
Θseed and Θ, respectively, and let Ĩm be the rectangular matrix consisting of
the columns of Im with indices in L. Then, the Schur complements Sseed and
S, corresponding to Pseed and Pex, respectively, can be written as follows:

Sseed = ÃH̃−1ÃT , S = ÃG̃−1ÃT ,
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where

Ã =
[
A Ĩm

]
, H̃−1 =

[
H−1 0

0 Θ̃seed

]
, G̃−1 =

[
G−1 0

0 Θ̃

]
. (19)

Trivially,

S = Sseed + Ã
(
G̃−1 − H̃−1

)
ÃT . (20)

The updating procedure described in [5] consists in finding a low-rank
correction of Sseed of the form

Slr = Sseed + ÃK̃ÃT = Ã
(
H̃−1 + K̃

)
ÃT = ÃJ̃−1ÃT , (21)

where K̃, and hence J̃ , is a suitable diagonal matrix. The matrix J̃ (or, equiva-

lently, K̃) is chosen with a double goal: tightening the bounds on the eigenval-
ues provided by Theorem 1 and limiting the cost for computing the Cholesky
factorization of Slr as a modification of the Cholesky factorization (7). A key
role in achieving the first goal is played by a result in [1], reported next for
completeness.

Lemma 2 Let U ∈ Rr×s be full rank and let E, F ∈ Rs×s be symmetric
positive definite. Then

λmin(E
−1F ) ≤ λ((UEUT )−1 UFUT ) ≤ λmax(E

−1F ).

For any diagonal positive definite matrix C ∈ R(n+m1)×(n+m1), let γ(C)
be the vector of dimension n + m1 with entries γi(C) equal to the diagonal

entries of CG̃−1 sorted in nondecreasing order, i.e.,

min
1≤i≤n+m1

Cii

G̃ii

= γ1(C) ≤ γ2(C) ≤ · · · ≤ γn(C) = max
1≤i≤n+m1

Cii

G̃ii

. (22)

Lemma 2 yields the bounds

γ1(J̃) ≤ λ(S−1
lr S) ≤ γn+m1(J̃). (23)

We now give some definitions useful to specify J̃ . Let l = (l1, l2, . . . , ln+m1)
T

be the vector of indices such that

γli(H̃) =
H̃ii

G̃ii

.

Given two real constants µγ ≥ 1 and νγ ∈ (0, 1], and two nonnegative integers

q1 and q2 such that q = q1 + q2 ≤ n+m1, we define Γ̃ as

Γ̃ = Γ̃1 ∪ Γ̃2, (24)

where

Γ̃1 = {i : n+m1 − q1 + 1 ≤ li ≤ n+m1 and γli(H̃) > µγ},
Γ̃2 = {i : 1 ≤ li ≤ q2 and γli(H̃) < νγ}.

(25)
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Then we define the matrix K̃ in (21) by setting

K̃ii =

{
G̃−1

ii − H̃−1
ii if i ∈ Γ̃ ,

0 otherwise.
(26)

As a consequence, the diagonal entries of J̃ take the following form:

J̃ii =

{
G̃ii if i ∈ Γ̃ ,

H̃ii otherwise.
(27)

We also note that J̃−1 can be written as follows:

J̃−1 =

[
J−1 0

0 Θ̃lr

]
, (28)

where J ∈ IRn×n accounts for the changes from H to G, and Θ̃lr ∈ IRm1×m1

for those from Θ̃seed to Θ̃.
Suppose that the sets Γ̃1 and Γ̃2 in (25) have cardinality equal to q∗1 ≤ q1

and q∗2 ≤ q2, respectively. Then, from (21), Slr − Sseed is a correction of rank

q∗ = q∗1 + q∗2 equal to the cardinality of Γ̃ . Once Slr is defined, the low-rank
update preconditioner Plr is simply obtained by setting Sinex = Slr in (10),
i.e.,

Plr =

[
In 0

AG−1 Im

] [
G 0
0 −Slr

] [
In G−1AT

0 Im

]
. (29)

By combining Theorem 1 with (23) and (27), we get the following bounds
on the eigenvalues of P−1

lr A, (see [5, Corollary 3.3]).

Corollary 3 Let A, Plr and X be the matrices in (8), (29) and (11), and let

λ be an eigenvalue of P−1
lr A. Let γ(H̃) and γ(J̃) be defined as in (22), and

let q∗1 and q∗2 be the cardinality of the sets Γ̃1 and Γ̃2 in (25), respectively. If
2In −X is positive definite, then λ satisfies either (14) or (15)–(16) with

λ̄ ≤ γn+m1(J̃) max{2− λmin(X), 1}, (30)

λ ≥ γ1(J̃) min{2− λmax(X), 1}, (31)

where

γ1(J̃) = min{1,min
i/∈Γ̃

γli(H̃)} = min{1, γq∗2+1(H̃)},

γn+m1(J̃) = max{1,max
i/∈Γ̃

γli(H̃)} = max{1, γn+m1−q∗1
(H̃)}. (32)

Furthermore,

|I(λ)| ≤
√
γn+m1(J̃) ∥In −X∥. (33)
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It is clear that the bounds provided by the previous corollary are expected
to improve as the set Γ̃ is enlarged, i.e., q is increased. Likewise, smaller
(larger) values of µγ (νγ) may generally improve these bounds. However, the
choice of the previous values must take into account the cost for computing
the Cholesky factorization of Slr by updating the factorization available for
Sseed. From (7), (21) and (26) it follows that

Slr = LseedDseedL
T
seed + ĀK̄ĀT ,

where Ā ∈ Rm×q∗ consists of the columns of Ã with indices in Γ̃ , and K̄ ∈
Rq∗×q∗ is the diagonal matrix having on the diagonal the nonzero entries of
K̃ corresponding to those indices. Therefore, the Cholesky factorization

Slr = LlrDlrL
T
lr, (34)

is a rank-q∗ modification of the factorization (7) and can be computed, e.g.,
through the update and downdate procedures in [17]. Note that an update is

required if H̃ii > G̃ii and a downdate is required if H̃ii < G̃ii.
The computational cost for building Slr depends on the value of q, and for

practical purposes the updating strategy is more convenient than computing
the exact preconditioner as long as q is kept fairly small (see [5]). Similarly,
values of µγ and νγ not too close to 1 are used in practice; thus indices that do
not bring significant improvement in the eigenvalue bounds while increasing
the cost for the updating strategy (see again [5]) are excluded from Γ̃ . Since a

large number of entries in G̃− H̃ must be discarded, we now propose a second
step of our updating approach for recovering part of the discarded information.

3.2 Second step: updating Slr to get Scu

In order to recover information not included in Slr , we observe that part of
this information can be regarded as a positive semidefinite diagonal modifi-
cation, ∆, of Slr . Therefore, we can compute a low-cost approximate LDLT

factorization of the matrix Slr + ∆ by exploiting the procedures in [3,4,30]
to update the factorization (34) of Slr . Furthermore, by expressing Slr + ∆

as ÃJ̃−1
∆ ÃT , with J̃∆ diagonal positive definite, we can exploit Lemma 2 to

derive new eigenvalue bounds.
We consider the diagonal matrix ∆̃ ∈ Rm1×m1 defined by

∆̃ii =

{
Θ̃ii − (Θ̃seed)ii if i+ n /∈ Γ̃ and Θ̃ii − (Θ̃seed)ii > 0,
0 otherwise,

(35)

whose nonzero entries correspond to the ratios Θ̃ii/(Θ̃seed)ii that are greater
than 1 and have been discarded in the construction of Slr . Then, recalling the
definition of Ĩm in Section 3.1, we set ∆ ∈ Rm×m as follows:

∆ = Ĩm ∆̃ ĨTm, (36)
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and define the matrix
S∆ = Slr +∆. (37)

Using S∆ instead of Slr generally improves the quality of the preconditioner
Pcu, as shown next. Let

Γ̃∆ = Γ̃ ∪

{
j : j = i+ n, with 1 ≤ i ≤ m1 and γlj (H̃) =

Θ̃ii

(Θ̃seed)ii
> 1

}
,

and let Θ̃∆ ∈ IRm1×m1 the diagonal matrix defined by

(Θ̃∆)ii =

{
Θ̃ii if i+ n ∈ Γ̃∆,

(Θ̃seed)ii otherwise.

Then we have

S∆ = ÃJ̃−1
∆ ÃT , J̃−1

∆ =

[
J−1

Θ̃∆

]
ÃT ,

where Ã and J are the matrices in (19) and (28), respectively. By reasoning
as in Section 3.1, we get the following bounds on the eigenvalues of S−1

∆ S:

γ̂1 ≤ λ(S−1
∆ S) ≤ γ̂n+m1 , (38)

where

γ̂1 = γ1(J̃) = min{1, γq∗2+1(H̃)}, (39)

γ̂n+m1 = max

{
1,max

i/∈Γ̃∆

γli(H̃)

}
. (40)

Trivially, γ̂n+m1 ≤ γn+m1(J̃), with γn+m1(J̃) given in (32), and the benefit of

using S∆ depends on the size of γ̂n+m1 with respect to γn+m1(J̃).
On the other hand, using S∆ in place of Slr requires its factorization. In

order to limit the computational cost of the preconditioner, we can compute
an approximation to the Cholesky factorization of S∆,

Scu = LcuDcuL
T
cu ≃ S∆, (41)

by using the updating procedures mentioned at the beginning of this section.
The procedure considered here updates the matrices Llr and Dlr in (34) as
follows (see [4] for details). Let W be the diagonal matrix with diagonal entries
defined by

Wii =
(Dlr)ii

(Dlr)ii +∆ii
, i = 1, . . . ,m;

we define the matrices Lcu and Dcu as

Dcu = Dlr +∆,

(Lcu)jj = 1, j = 1, . . . ,m,

Lcu(j + 1 : m, j) = WjjLlr(j + 1 : m, j), j = 1, . . . ,m− 1,

(42)
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where, using the Matlab notation, Llr(j + 1 : n, j) denotes the stricly lower
triangular part of the j-th column of Llr. Note that the sparsity pattern of the
factors of Slr is preserved; furthermore, the cost of forming Scu is low, since
the cost of Dcu is negligible, and the computation of Lcu consists in scaling
only the nonzero entries of the columns of Llr corresponding to the nonzero
entries of ∆. Obviously, if ∆ is the zero matrix, the update is not performed
and Scu = Slr , i.e., Pcu = Plr . This limit case occurs if Θ̃ii ≤ (Θ̃seed)ii for

i = 1, . . . ,m1, or if all the indices i+n associated with the ratios Θ̃ii/(Θ̃seed)ii
that are greater than 1 belong to Γ̃ .

We refer to [3,4] for theoretical results and computational experiences mo-
tivating the previous updating approach. Here we report only some results
concerning the eigenvalues of S−1

cu S (see [4, Theorems 2.2 and 2.4]), which are
useful in the spectral analysis of P−1

cu A.

Theorem 4 Let S∆ and Scu be the matrices in (37) and (41). For all ε > 0
there exists η > 0 such that if ∥∆∥ < η, then

|λ(S−1
cu S∆)− 1| < ε

for all the eigenvalues of S−1
cu S∆. Furthermore, if S∆ − Scu has rank m − l,

then l eigenvalues of S−1
cu S∆ are equal to 1.

Theorem 5 Let S∆ and Scu be the matrices in (37) and (41). For all ε > 0
there exists η > 0 such that if ∆ii > η for r diagonal entries of ∆, then

|λ(S−1
cu S∆)− 1| < ε

for r eigenvalues of S−1
cu S∆.

The next theorem provides bounds on the eigenvalues of P−1
cu A in terms

of γ̂1 and γ̂n+m1 and of the minimum and maximum eigenvalues of S−1
cu S∆.

Theorem 6 Let A, Pcu, S∆, Scu and X be the matrices in (8), (18), (37),
(41) and (11), and let λ be an eigenvalue of P−1

cu A. Let γ̂1 and γ̂n+m1 be the
scalars in (39) and (40). If 2In −X is positive definite, then λ satisfies either
(14) or (15)–(16) with

λ̄ ≤ γ̂n+m1λmax(S
−1
cu S∆)max{2− λmin(X), 1}, (43)

λ ≥ γ̂1λmin(S
−1
cu S∆)min{2− λmax(X), 1}. (44)

Furthermore,

|I(λ)| ≤
√
γ̂n+m1λmax(S

−1
cu S∆) ∥In −X∥. (45)

Proof The eigenvalue problem S−1
cu Sw = λw is equivalent to

S
− 1

2

∆ S S
− 1

2

∆ w̄ = λ S
− 1

2

∆ Scu S
− 1

2

∆ w̄,
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with w̄ = S
1
2

∆ w. Hence, for any eigenvalue of S−1
cu S and any corresponding

eigenvector w we have

λ(S−1
cu S) =

w̄TS
− 1

2

∆ S S
− 1

2

∆ w̄

w̄TS
− 1

2

∆ Scu S
− 1

2

∆ w̄
.

Then, by exploiting (38) we get

λ(S−1
cu S) ≤

λmax(S
−1
∆ S)

λmin(S
−1
∆ Scu)

≤ γ̂n+m1 λmax(S
−1
cu S∆)

and

λ(S−1
cu S) ≥

λmin(S
−1
∆ S)

λmax(S
−1
∆ Scu)

≥ γ̂1λmin(S
−1
cu S∆).

Inequalities (43) and (44) follow by recalling (12) and (13).
It remains to prove (45). The eigenvalue problem S−1

cu AG−1ATw = λw is
equivalent to

S
− 1

2

∆ AG−1ATS
− 1

2

∆ w̄ = λS
− 1

2

∆ ScuS
− 1

2

∆ w̄.

Furthermore, since Θ is positive definite, for any vector v ∈ Rm

vTS
− 1

2

∆ AG−1ATS
− 1

2

∆ v ≤ vTS
− 1

2

∆ (AG−1AT +Θ)S
− 1

2

∆ v,

and by matrix similarity

λmax(S
−1
∆ AG−1AT ) ≤ λmax(S

−1
∆ S).

By reasoning as in the first part of the proof and exploiting the previous
inequality we get

λ(S−1
cu AG−1AT ) ≤

λmax(S
−1
∆ S)

λmin(S
−1
∆ Scu)

= γ̂n+m1 λmax(S
−1
cu S∆),

and (45) follows from (17). ⊓⊔

The following result is a straightforward consequence of Theorem 6.

Corollary 7 Let A, Pcu, S∆, Scu and X be the matrices in (8), (18), (37),
(41) and (11), and let λ be an eigenvalue of P−1

cu A. Let γ̂1 and γ̂n+m1 be
the scalars in (39) and (40). If 2In − X is positive definite and, for all the
eigenvalues of S−1

cu S∆,
|λ(S−1

cu S∆)− 1| ≤ ε

for some ε > 0, then λ satisfies either (14) or (15)–(16) with

λ̄ ≤ (1 + ε)γ̂n+m1 max{2− λmin(X), 1},
λ ≥ (1− ε)γ̂1 min{2− λmax(X), 1}.

Furthermore,
|I(λ)| ≤

√
(1 + ε)γ̂n+m1 ∥In −X∥.
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The previous results show that the bounds (30) and (33) can be effectively
improved if λmax(S

−1
cu S∆) is not too far from 1. Furthermore, λmin(S

−1
cu S∆)

must not be too far from 1, in order to avoid a significant deterioration of
the bound (31). By Theorems 4 and 5, this happens when the entries of ∆ are
either all sufficiently small or all sufficiently large. In general, we cannot expect
that all the eigenvalues of S−1

cu S∆ are close to 1; nevertheless, the ability of
Scu of clustering around 1 some eigenvalues of S∆ when ∆ has large entries,
provides a way to tighten the bounds on the spectrum of P−1

cu A, as confirmed
by numerical experiments.

We conclude this section by summarizing in Algorithm 1 the main steps of
the overall updating procedure.

Algorithm 1: updating the constraint preconditioner

Given µγ ≥ 1, νγ ∈ (0, 1] and the nonnegative integers q1 and q2,

1. form H̃ defined in (19) and compute γi(H̃), i = 1, . . . , n+m1, according to (22);

2. set Γ̃ as in (24), q∗ as the cardinality of Γ̃ , and J̃ as in (27);

3. compute the factorization in (34), Slr = LlrDlrL
T
lr, by a rank-q∗ correction of

Sseed in (7);

4. compute the matrix ∆ given in (36);

5. if ∆ ̸= 0

compute the approximate factorization LcuDcuLT
cu of LlrDlrL

T
lr +∆ (see (42));

else

set Lcu = Llr, Dcu = Dlr;

6. set

Pcu =

[
In 0

AG−1 Lcu

] [
G 0
0 −Dcu

] [
In G−1AT

0 LT
cu

]
.

4 Numerical results

We provide some illustrative examples of the behavior of the preconditioner
Pcu built with Algorithm 1, compared with the exact CP preconditioner Pex

in (9) and the updated preconditioner Plr in (29).
We consider five sequences of KKT systems that arise in the solution by an

IP method of convex quadratic programming problems with linear inequality
constraints. These problems have been obtained by modifying the CUTEst [27]
problems CVXQP1, CVXQP3 and MOSARQP1. The modifications have been
made because large or variable-size CUTEst convex quadratic programming
problems with inequality constraints have Schur complements that are very
inexpensive to factorize and thus are useless for our experiments. More pre-
cisely, CVXQP1 and CVXQP3, which have non-banded Schur complements,
have been modified so that their original equality constraint Ax = b became
Ax ≥ b (the modified problems have been identified by appending “-M” to the
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original names). Furthermore, in order to increase the density of their Schur
complements, four nonzero entries per row have been added to the matrix A
of CVXQP1-M, and one nonzero entry per row to the matrix A of CVXQP3-
M (the denser problems have been identified by appending “-D” and “-D2”
to their names, respectively, according to the notation used in [5]). Finally,
nonzeros in the positions (i, n), with mod(i, 10) = 1, have been added to the
matrix A of MOSARQP1, obtaining problem MOSARQP1-D (note that the
original problem has a narrow-banded Schur complement). The dimensions n
and m of the five problems and the number nnz(S) of nonzero entries of their
Schur complements are reported in the second column of Table 1.

The sequences of KKT systems have been obtained by running the For-
tran 90 PRQP code, which implements an infeasible inexact potential reduc-
tion IP method [11,13,15], and extracting the KKT matrices arising at each IP
iteration and the corresponding right-hand sides. Successively, these sequences
have been solved offline, applying Pex, Plr and Pcu. The starting point for the
IP procedure in PRQP has been built with the STP2 strategy described in [16]
and the tolerances on the relative duality gap and the relative infeasibilities
have been set to 10−6 and 10−7, respectively. Within PRQP the KKT systems
have been solved by the SQMR method coupled with the exact CP, using an
adaptive tolerance in the stopping criterion, which relates the accuracy in the
solution of the KKT system to the quality of the current IP iterate, in the
spirit of inexact IP methods [2,12]. Specifically, in PRQP the SQMR itera-
tions were stopped as soon as the norm of the unpreconditioned residual was
below a tolerance of the form τ = min{max{τ1, 10−8}, 10−2∥r0∥}, where τ1
depends on the duality gap value at the current IP iteration and r0 is the
initial unpreconditioned residual (see [12] for more details). The values of τ
corresponding to all the systems of each sequence were saved to be used in our
experiments.

The numerical experiments have been performed in the Matlab environ-
ment, exploiting C code for the construction of Plr and Pcu. More precisely,
the CHOLMOD package [14] has been called, through its MEX interface, to
compute the sparse LDLT factorization of Sseed and the low-rank updates
and downdates required to build Plr . The updates (42) needed to form Pcu

have been implemented in C as Matlab MEX-files too. The preconditioners
have been built using q1 = q2 = q/2 = 25, in order to keep low the overhead
of the updating/downdating phase; furthermore, µγ = 10 and νγ = 0.1 have

been used to select the indices to be put in Γ̃ . These choices agree with the
results of the experiments with Plr discussed in [5]. When less than q1 ratios

γli(H̃) ≥ µγ (or less than q2 ratios γli(H̃) ≤ νγ) were available, the number

of ratios γli(H̃) ≤ νγ (or γli(H̃) ≥ µγ) was increased to have a total number

of ratios in Γ̃ as close as possible to q. We note that we have not applied any
scaling to the matrix X in (11) to ensure positive definiteness of 2In − X,
although this is assumed in our theory. Nevertheless, the results generally ap-
pear to be in agreement with the theory (see also [5]). The linear systems have
been solved using a Matlab implementation of the SQMR method without
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look-ahead [22], stopping the iterations when the norm of the residual became
smaller than the associated tolerance, as in the solution of the KKT systems
within the IP code. A maximum number of 500 iterations has been considered
too.

Following [5], the preconditioners have been “refreshed” as explained next.
When, for a system of the sequence, the time for computing Plr or Pcu and
solving the preconditioned linear system exceeded 90% of the time for building
the last exact preconditioner and solving the corresponding system, the next
system of the sequence was solved using the exact CP in (9). Furthermore,
a maximum number of consecutive updates, kmax, was also considered; here
kmax = 4. This strategy aims at avoiding deterioration of the quality of the
updated preconditioner and hence excessive increase of the number of SQMR
iterations, which may make the updating strategy useless. We note that, by
using a refreshing criterion based on the execution time, both the problem
and the computing environment are taken into account to get an efficient
preconditioning strategy.

The tests have been performed on a six-core Xeon processor with clock
frequency of 2.4 GHz, 24 GB of RAM and 12 MB of cache memory, running
Ubuntu/Linux 12.04.5 (kernel version 3.2.0 83 generic). CHOLMOD and the
C code for the updates (42) have been compiled with gcc 4.6.3, and Matlab
R2015a (v. 8.5, 64-bit) has been employed. The tic and tocMatlab commands
have been used to measure the execution times.

We start the description of our numerical results comparing Plr and Pcu.
For the problems from the CVXQP family, we observe that the the number
of elements used for the second step of the update, namely nnz(∆) with ∆
defined in (35)–(36), is zero or negligible (at most twenty) in the first systems
of the sequence (first nine systems for CVXQP1-M-D, and first ten systems for
CVXQP1-M, CVXQP3-M and CVXQP3-M-D2). Since no significant benefit
can be obtained from the update strategy (42) with such a small number of
elements, we exclude these first systems from the following analysis.

The results obtained with Plr and Pcu are shown in Table 1. We report
the range IPits of IP iterations considered for each sequence and, for each pre-
conditioner, the total number nit of SQMR iterations performed, the number
nref of times the preconditioner has been refreshed, the total time Tprec for
building the preconditioner, the total time Tsolve for solving the preconditioned
system, and the sum Ttot of the two times. The times are expressed in seconds.
We see that all the runs with Pcu are faster than those with Plr . The gain, in
terms of total execution time, varies between 6% and 23%. Furthermore, for
two sequences, the savings obtained in the number of SQMR iterations reduce
the number of preconditioner refreshes with respect to the use of Plr .

Details on the solution of the sequences of KKT systems by using Plr

and Pcu are shown in Tables 2, 3 and 4 for CVXQP1-M, CVXQP3-M-D2
and MOSARQP1-D, respectively. The IP iteration number corresponding to
each system of a sequence is indicated by IP#. For each system and for both
preconditioners, we report the number nit of SQMR iterations, the time Tprec

for building the preconditioner for that system, the time Tsolve for solving the
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preconditioned system, and Tsum = Tprec + Tsolve. For Plr we also display the

size q∗ of the low-rank update performed, i.e., the cardinality of the set Γ̃ in
(24), while for Pcu we display both q∗ and the number of elements used for the
second step of the update, i.e., nnz(∆). The data corresponding to refreshes
are in bold and the times are expressed in seconds.

We observe that, in general, forming Pcu is inexpensive although nnz(∆)
is large. Using Pcu may significantly reduce the number of SQMR iterations,
especially in the last runs before a refresh. In fact, the performance of both Plr

and Pcu tends to deteriorate progressively after a refresh, but the use of the
diagonal modification in Pcu may considerably improve the effectiveness of Pcu

with respect to Plr . This behavior is clearly illustrated, e.g., by the data of the
15th, 19th and 22nd system of CVXQP1-M (Table 2); a similar behavior can
be recognized in Tables 3 and 4. Taking into account this numerical evidence
and the fact that forming Pcu is simple and inexpensive, the second phase of
the update appears worthy to be coupled with the low-rank correction in the
update of CP preconditioners for KKT systems.

To provide further insight into the behavior of Pcu, in Table 5 we report
the maximum and minimum eigenvalues of S−1

lr S and S−1
cu S from the 12th

to the 25th iteration of CVXQP1-M. Note that at the 25th iteration Slr is
the matrix which Scu is built from, and not the matrix associated with the
preconditioner Plr considered in Table 2 (with Plr and Pcu the refresh occurs
at different IP iterations). We see that the updating strategy used to build
Scu practically does not change the smallest eigenvalue, while it reduces the
largest one, according to the decrease observed in the number of iterations
(see Table 2).

We conclude this section by comparing the preconditioners Pcu and Pex.
In Table 6 we summarize the total number of SQMR iterations and execution
times for Pex; the same data for Pcu, available in Table 1, are repeated for
the sake of readability. The reduction of the total time obtained with Pcu over
Pex varies between 6% and 25% although, as expected, the number of SQMR
iterations performed is larger than with Pex. It is noteworthy that Pcu speeds
up the solution of the sequences associated with CVXQP1-M, CVXQP1-M-D
and MOSARQP1, where the use of Plr is not beneficial with respect to Pex.
We also report briefly on experiments with inexact CPs obtained by approxi-
mating the exact Schur complement S with an inexact Cholesky factorization
of it. These experiments have been performed to further assess the reliabil-
ity of our updating approach. Unmodified and modified incomplete Cholesky
factorizations of S have been computed using the Matlab function ichol and
drop tolerances ranging from 10−1 to 10−5. However, the resulting inexact
CPs seem to lack robustness on our sequences, as SQMR failed in the solution
of at least one system of each sequence.
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Table 5 CVXQP1-M: minimum and maximum eigenvalues of S−1
lr S and S−1

cu S.

CVXQP1-M

IP# λmin(S
−1
lr S) λmax(S

−1
lr S) λmin(S

−1
cu S) λmax(S

−1
cu S)

12 4.15e–1 2.34e+0 4.16e–1 1.39e+0

13 2.02e–1 6.79e+0 2.03e–1 2.07e+0

14 8.63e–2 8.83e+0 8.67e–2 2.64e+0

15 3.77e–2 2.42e+1 3.81e–2 4.27e+0

17 2.85e–1 4.75e+0 2.85e–1 2.88e+0

18 1.35e–1 9.56e+0 1.35e–1 5.52e+0

19 6.47e–2 2.33e+1 6.47e–2 9.84e+0

21 1.97e–1 8.69e+0 1.97e–1 3.59e+0

22 2.72e–2 4.70e+1 2.72e–2 7.99e+0

24 1.02e–1 9.58e+0 1.02e–1 2.96e+0

25 1.44e–2 6.23e+1 1.44e–2 1.13e+1

5 Conclusions

We have presented a procedure for updating CPs for sequences of regularized
KKT systems with the nonzero (2,2) block having a fixed sparsity pattern. This
procedure combines a recently proposed technique for updating a block LDLT

factorization of a given seed CP, relying on a low-rank correction of its Schur
complement, with a further update of the Schur complement. The latter update
is performed to introduce into the preconditioner some information that has
been discarded in the low-rank correction. It is based on a low-cost technique
for approximating the Cholesky factorization when the matrix undergoes a
diagonal positive semidefinite modification.

Theoretical results show that the procedure proposed here provides the
possibility of tightening the bounds on the eigenvalues of the preconditioned
matrix with respect to the procedure based on the low-rank correction alone,
and that its effectiveness depends on the accuracy of the approximate Cholesky
factorization computed in the second updating step. Numerical experiments
confirm this behavior and show that the new approach can enhance the low-
rank strategy.
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