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Abstract. Let G be a finite group, and p a prime number; a character of
G is called p-constant if it takes a constant value on all the elements of G
whose order is divisible by p. This is a generalization of the very important
concept of characters of p-defect zero. In this paper, we characterize the finite
p-solvable groups having a faithful irreducible character that is p-constant and
not of p-defect zero, and we will show that a non-p-solvable group with this
property is an almost-simple group.

1. Introduction

Given a finite group G and a prime number p, an irreducible character of G is
said to be of p-defect zero if its degree is a multiple of the full p-part of the order of
G; it is well known that these characters play an important role in both ordinary
and local representation theory of finite groups, being key ingredients for several
fundamental problems in this research area.

According to the Brauer-Nesbitt Theorem (see [5, Theorem 4.6]), irreducible
characters of p-defect zero take the value 0 on every p-singular element of the
group (i.e., on every element whose order is divisible by p); thus, they are constant
on p-singular elements.

Taking this into account, M.A. Pellegrini and A. Zalesski recently introduced
and studied in [10] the more general class of p-constant characters, defined as the
characters taking a constant value on the p-singular elements of the group (the
relevant constant value is actually an integer; see [10, Lemma 2.1], or Lemma 3.1).
This concept is naturally linked to modular representation theory, as a character χ
of a finite group G is p-constant if and only if there exist a complex number c and
integers aϕ such that

χ− c1G =
∑

ϕ∈IBrp(G)

aϕΦϕ,

where the Φϕ are the projective indecomposable characters, and 1G is the principal
character of G. In [10], the authors focus essentially on finite nonabelian simple
groups, describing the pairs (G, τ ) where G is an alternating group, or a sporadic
simple group, or a simple group of Lie type in characteristic p, and τ is an irreducible
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p-constant character. Their analysis shows, among other things, that the constant
value associated with an irreducible p-constant character of a nonabelian simple
group lies in the set {−2,−1, 0, 1}, unless the group is of Lie type in characteristic
different from p and it has a non-cyclic Sylow p-subgroup (note that, for instance,
PSL2(7) has an irreducible 3-constant character with constant value 2). In the
same spirit, M.A. Pellegrini studies other classes of finite groups, such as reflection
groups or nilpotent groups (see [9]), and he conjectures that for every irreducible
p-constant character of a finite perfect group, the relevant constant value lies in
{0,±1,±2} ([9, Conjecture 4.4]).

We note that the nonabelian simple groups in the GAP library have an abun-
dance of irreducible p-constant characters which are not of p-defect zero, in par-
ticular for primes that are larger than 3. Also, a faithful irreducible character can
be p-constant and not of p-defect zero for different primes: for instance, any of the
irreducible characters of degree 56 of the first Janko group is both 11-constant and
19-constant (note that the same characters are also of 2-defect zero and 7-defect
zero). However, as will follow from our main results, this cannot happen if the
group is solvable.

The present paper is a contribution to this research field. Our main results can
be summarized by saying that a finite group having a faithful irreducible character
which is p-constant and not of p-defect zero is either p-solvable or almost-simple;
moreover, in the p-solvable context, a complete characterization is provided. In the
following statement, as customary, Op(G) denotes the largest normal subgroup of
G having p-power order.

Theorem A. Let p be a prime number and let G be a finite group. Then the
following properties are equivalent.

(a) Op(G) is nontrivial, and G has an irreducible character χ that is faithful
and p-constant.

(b) G has a unique minimal normal subgroup M , which is a Sylow p-subgroup
of G, and a p-complement H of G transitively permutes (acting by conju-
gation) the non-identity elements of M .

In this case, χ = (1H)G − 1G is unique, and the constant value of χ on p-singular
elements is −1.

The result above should be compared with Theorem B of [7], where the authors
derive similar conclusions for finite groups G having a faithful, irreducible, non-
linear character whose values on the p-singular elements of G are all roots of unity,
under the assumption that Op(G) is nontrivial.

Theorem A can be viewed as a characterization of finite p-solvable groups having
a faithful irreducible character that is p-constant and not of p-defect zero, because,
as explained in Remark 4.2, these conditions are equivalent to those in (a) of the
above statement. On the other hand, again in Remark 4.2 we will see that the
existence of a faithful irreducible character of p-defect zero doesn’t constrain the
structure of a p-solvable group significantly.

Finally, we note that the groups as in Theorem A, being 2-transitive permutation
groups whose socle is a Sylow p-subgroup, are well understood. In particular, the
p-complement H of such a group is either a group of semilinear maps (hence, it is
metacyclic), or H belongs to a finite list of exceptions; among the exceptional cases
(that are all of even order), we find solvable groups with derived length at most 4,
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ON GROUPS HAVING A p-CONSTANT CHARACTER 109

or extensions of SL2(5). We refer the reader to Theorem 4.5 for a more detailed
statement.

Assume next that, for a given prime p, the finite non-p-solvable group G has
a faithful irreducible character that is p-constant, and not of p-defect zero. By
Theorem A, in this situation we have necessarily Op(G) = 1 and, as we see with
the following result, the investigation in this research area reduces to the class of
almost-simple groups.

Theorem B. Let p be a prime number, and let G be a finite group having an
irreducible character that is faithful, p-constant, and not of p-defect zero. Assume
also that Op(G) = 1. Then G is an almost-simple group.

The requirement of faithfulness in the statements of Theorem A and Theorem B
is necessary in order to prevent the kernel of the relevant p-constant character from
containing all p-singular elements, so avoiding trivial situations. At any rate, since
a p-constant character χ of G is also a p-constant character of G/ker(χ), Theorem A
and Theorem B can be applied to G/ker(χ).

Finally, a general observation concerning the degree of irreducible p-constant
characters with nonzero constant value.

Theorem C. Let p be a prime number and let G be a finite group. If χ ∈ Irr(G)
is p-constant and not of p-defect zero, then χ(1) is not divisible by p.

This, of course, shows a very different behaviour of these characters with respect
to irreducible characters of p-defect zero. As remarked in Section 3, Theorem C
holds under the weaker assumption that χ takes a nonzero constant value on the
nontrivial p-elements of G.

Throughout the following discussion, every group is assumed to be a finite group.

2. Preliminary results and notation

We start by defining the central concept of this paper, which was already pre-
sented in the introduction.

Definition 2.1. Let G be a group, and let p be a prime number. We say that a
character χ of G is p-constant if χ takes a constant value, which we will denote by
cχ, on all the elements of G whose order is a multiple of p.

As we have seen, irreducible characters of p-defect zero are particular p-constant
characters; nonetheless, they behave differently from p-constant characters with
nonzero constant value, and we will see a first instance of this fact in Lemma 2.2.

Given a group G, let G0 denote the set of p-regular elements (i.e., elements
whose order is not divisible by p) of G; in the proof of Lemma 2.2, we will use the
following characterization of p-blocks for ordinary characters. Consider the graph
whose vertex set is Irr(G), and where two vertices φ, ψ are adjacent if and only if∑

x∈G0 φ(x)ψ(x) �= 0: it can be shown that the irreducible characters φ and ψ lie
in the same p-block of G if and only if they lie in the same connected component
of this graph (see Theorem (3.9) of [6]).

Lemma 2.2. Let G be a group, and let p be a prime number. If χ ∈ Irr(G) is
a p-constant character which is not of p-defect zero, then χ lies in the principal
p-block of G.
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Proof. By our assumptions, we have χ(x) = cχ �= 0 for every element x in G−G0;
note that G �= G0, as χ is not of p-defect zero. We will obtain the desired conclusion
by showing that χ is adjacent to the principal character 1G in the graph defined
above. In fact, as we can clearly assume χ �= 1G, we have

0 = [χ, 1G] =
1

|G|
∑
x∈G

χ(x)1G(x) =
1

|G|(|G−G0|cχ +
∑
x∈G0

χ(x)1G(x)) .

Hence
∑

x∈G0 χ(x)1G(x) = −|G−G0|cχ �= 0, as claimed. �

Remark 2.3. Let G be a group and let p be a prime number; we observe that if
G has a nontrivial normal p-subgroup M , then G does not have any irreducible
character of p-defect zero. In fact, let χ be in Irr(G) and let θ be an irreducible
constituent of χM . Clifford theory yields that χ(1)/θ(1) is a divisor of |G/M |, and
it is therefore easy to see that the p-part of χ(1) is strictly smaller than that of |G|.

Now, assume (as above) that Op(G) > 1, and that G has an irreducible character
χ that is faithful and p-constant. Then Lemma 2.2 and the observation in the
paragraph above yield that χ lies in the principal p-block of G, whence its kernel
contains Op′(G); but, χ being faithful, this means that Op′(G) = 1 (and Op(G) =
F(G)).

We also remark that if, for a character χ, one considers the weaker condition that
χ takes a constant value on the non-trivial p-elements rather than on the whole
set of p-singular elements, then the conclusions of Lemma 2.2 and of the above
paragraph are no longer true in general; we refer the reader to Section 3 for some
more comments.

In the following proposition we recall some well-known facts concerning the the-
ory of permutation groups (conclusions (a), (b) and (c)), also adding an observation
which is relevant in the present context (conclusion (d)). We recall that, given a
group G acting on a finite set Ω and setting, for g ∈ G, π(g) to be the number of
fixed points of g in Ω, the class function χ = π − 1G is a character of G, called
the deleted permutation character, and that χ is irreducible if and only if G acts
2-transitively on Ω ([3, Corollary (5.17)]).

Proposition 2.4. Let H be a group acting faithfully (by automorphisms) on a
nontrivial group M , and let G = MH be the corresponding semidirect product.
Also, let Ω denote the set {Hm | m ∈ M} of the right cosets of H in G. If H acts
transitively on the set of non-identity elements of M , then the following conclusions
hold.

(a) The order of M is a p-power for a suitable prime p, and M is the unique
minimal normal subgroup of G.

(b) H transitively permutes (acting by right multiplication) the set Ω− {H} of
nontrivial cosets.

(c) G is a 2-transitive permutation group on Ω (via right multiplication), having
M as a regular normal subgroup.

(d) If |H| is coprime to p, then the deleted permutation character χ ∈ Irr(G)
associated to the action described in (c) is p-constant, with constant value
cχ = −1.

Proof. Since, for every pair of nontrivial elements in M there exists an automor-
phism of M (induced by an element of H) mapping one element to the other, we
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ON GROUPS HAVING A p-CONSTANT CHARACTER 111

have that the nontrivial elements of M all have the same order, which is then
necessarily a prime number p. Also, by the same reason, it is clear that M does
not have any H-invariant proper nontrivial subgroup, which makes M a minimal
normal subgroup of G. To conclude the proof of (a), observe now that every nor-
mal subgroup of G whose order is divisible by p contains M , whereas every normal
p′-subgroup of G should lie in CH(M), which is trivial by our assumptions.

Part (b) immediately follows from the fact that, as can be easily checked, the
action of H by right multiplication on the set Ω− {H} is equivalent to the action
of H on the nontrivial elements of M .

As regards (c), observe that the core of H in G (i.e., CH(M)) is trivial, thus G
is actually a permutation group on the set Ω. As the stabilizer H of a point (the
trivial coset) transitively permutes the remaining elements of Ω, the relevant action
of G on Ω is 2-transitive. The last claim, concerning the fact that M acts regularly
on Ω, can be easily verified.

Finally, if χ is the deleted permutation character associated to the action of
(c), then we have (1H)G = 1G + χ. Under our coprimality assumption, H is a
p-complement of G, and therefore every p-singular element x of G does not lie in
any conjugate of H; now, as (1H)G takes the value 0 on every element of this kind,
we immediately get χ(x) = −1, which finishes the proof of (d). �

To close this preliminary section, we discuss the structure of the p-solvable 2-
transitive groups having a nontrivial normal p-subgroup. In the following, we denote
by Γ(pn), where p is a prime and n a positive integer, the group of the semilinear
transformations of GF(pn) over GF(p), i.e., the maps of GF(pn) onto itself of the
form x �→ axσ, where a ∈ GF(pn), a �= 0 and σ ∈ Gal(GF(pn)|GF(p)). Moreover,
we denote by Γ0(p

n) the cyclic subgroup of Γ(pn) consisting of the maps x �→ ax,
with a ∈ GF(pn), a �= 0.

Theorem 2.5 ([8, Theorem I]). Let G be a 2-transitive permutation group of degree
d, let H be a point stabilizer of G and p, a prime. If G is p-solvable and Op(G) �= 1,
then d = pn, for some positive integer n, and we have one of the following:

(i) H is (permutation) isomorphic to a subgroup of the semilinear group Γ(pn);
(ii) H is solvable and pn ∈ {32, 52, 72, 112, 232, 34};
(iii) H is nonsolvable and pn ∈ {112, 192, 292, 592}.

3. On the degree of p-constant characters

Recall that, given a prime number p, an irreducible character of p-defect zero of
the group G has (by definition) a degree that is divisible by the full p-part of the
order of G. Our aim in this section is to observe that, on the other hand, irreducible
p-constant characters with nonzero constant value have a degree that is coprime to
p. This is clearly another feature that separate characters of p-defect zero from the
other p-constant characters (unless of course the order of G is coprime to p).

Another interesting difference is that, as shown by Theorem 3.2, if an irreducible
character of a group G takes the value 0 on the nontrivial p-elements of G, then it
takes this value on the whole set of p-singular elements. On the other hand, easy
examples show that this fails for a nonzero constant value. However, the results of
this section (as well as part of those in the following one) hold under the weaker
assumption that the relevant irreducible character takes a constant value on the
nontrivial p-elements. Thus we will state them in full generality.
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The following result is essentially Lemma 2.1 of [10].

Lemma 3.1. Let p be a prime number, let G be a group whose order is divisible
by p, and let P be a Sylow p-subgroup of G. If χ ∈ Irr(G) takes a constant value
cχ on the elements of P −{1}, then cχ is an integer congruent to χ(1) modulo |P |.
Proof. Let α be a linear character in Irr(P )− {1P }. Then

[χP , α] =
1

|P |
∑
x∈P

χ(x)α(x) =
1

|P |
(
χ(1)α(1) +

∑
x∈P−{1}

cχ α(x)
)
=

1

|P | (χ(1)α(1)− cχ α(1)) + cχ [1P , α] =
1

|P | (χ(1)− cχ).

Hence cχ = χ(1)− |P | · [χP , α], and the claim follows. �
Next, we recall the aforementioned fundamental result about irreducible charac-

ters of p-defect zero.

Theorem 3.2 ([5, Corollary 4.7]). Let p be a prime number, and let χ be an
irreducible character of a group G. Then the following conditions are equivalent.

(a) χ is of p-defect zero.
(b) χ(g) = 0 for every p-singular element g ∈ G.
(c) χ(g) = 0 for every nontrivial p-element g ∈ G.

Actually, condition (c) in the above statement can be replaced by χ taking the
value 0 on the elements of G having order p. This follows by a theorem due to R.
Knörr, which we state in a slightly modified form.

Theorem 3.3. Let p be a prime number and let G be a group. If χ ∈ Irr(G) is
such that

∑
o(x)=p χ(x) is congruent to 0 modulo p, then χ is of p-defect zero.

Proof. The original hypothesis of this theorem, which can be found as Theorem 4.8
in [5], is that

∑
o(x)=p χ(x) is actually 0. Nevertheless, the proof as given in [5]

(due to J. Murray) goes through identically with the weaker assumption considered
here. �

We are now in a position to obtain the desired information (i.e., Theorem C)
about the degree of a p-constant character that is not of p-defect zero.

Theorem 3.4. Let p be a prime number and let G be a group. If χ ∈ Irr(G) takes
a constant value cχ �= 0 on the nontrivial p-elements of G, then χ(1) is not divisible
by p.

Proof. We can clearly assume that the order of G is divisible by p. If our conclusion
is false, then Lemma 3.1 yields that cχ is congruent to 0 modulo p, and so is clearly∑

o(x)=p χ(x). Theorem 3.3 implies now that χ is of p-defect zero, contradicting

(via Brauer-Nesbitt’s Theorem) the fact that cχ is not 0. �

4. When Op(G) is nontrivial

In this section we prove Theorem A, which provides a characterization of groups
having a nontrivial normal p-subgroup and a faithful irreducible character that is
p-constant. We state it again here for the convenience of the reader.

Theorem 4.1. Let p be a prime number and let G be a group. Then the following
properties are equivalent.
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ON GROUPS HAVING A p-CONSTANT CHARACTER 113

(a) Op(G) is nontrivial, and G has an irreducible character that is faithful and
p-constant.

(b) G has a unique minimal normal subgroup M , which is a Sylow p-subgroup
of G, and a p-complement H of G transitively permutes (acting by conju-
gation) the nonidentity elements of M .

In this case, χ = (1H)G − 1G is unique and the constant value of χ on p-singular
elements is −1.

This result is an immediate consequence of Proposition 2.4, together with Propo-
sitions 4.3 and Proposition 4.4 that will be proved after the following remark.

Remark 4.2. Note that if the group G is p-solvable, and it has a faithful irreducible
character χ that is p-constant but not of p-defect zero (i.e., cχ �= 0), then G is
as in (a) of the above statement. In fact, χ lies in the principal p-block of G by
Lemma 2.2, so its kernel contains Op′(G), which is then trivial because χ is faithful.
As clearly condition (b) implies the p-solvability of G, we conclude that Theorem 4.1
yields a characterization of the p-solvable groups having a faithful irreducible char-
acter which is p-constant but not of p-defect zero; see also Theorem 4.5.

On the other hand, the assumption of having a faithful irreducible character of
p-defect zero does not seem to constrain the structure of a p-solvable group. To
justify the above claim, consider a prime p and any p-solvable group H: for any
choice of a prime q not dividing the order of H, it is easily seen that there exists
an elementary abelian q-group Q, on which H acts faithfully by automorphism,
inducing a regular orbit (i.e., there exists x ∈ Q such that CH(x) = 1). Denoting
by G the corresponding (p-solvable) semidirect product QH, by coprimality there
exists λ ∈ Irr(Q) such that IG(λ) = Q, hence χ = λG is an irreducible character
of G having p-defect zero, whose kernel lies in Q. So, for instance, the p-length of
G/ker(χ) can be arbitrarily large.

We move now to the proof of the two propositions that yield Theorem 4.1.

Proposition 4.3. Let p be a prime number, and let G be a group having a faithful
irreducible character χ that takes a constant value on the nontrivial p-elements of
G; assume also that M = Op(G) is nontrivial. Then M is a Sylow p-subgroup of
G. Furthermore, denoting by H a p-complement of G, we have CH(M) = 1, and
H transitively permutes (acting by conjugation) the nonidentity elements of M .

Proof. Let cχ be the constant value of χ on the nontrivial p-elements of G (recall
that, by Theorem 3.2 and Remark 2.3, we have cχ �= 0). Observe that χM − cχ1M
is a class function of M which vanishes on all the nontrivial elements of M but
not on the identity, as otherwise the kernel of χM would contain M , against the
fact that χ is faithful; therefore, as is well-known, χM − cχ1M is a multiple of the
regular character of M by the scalar bM = (χ(1)− cχ)/|M |. Now we get

χM = (bM + cχ)1M + bM
∑

θ∈Irr(M)−{1M}
θ.

Since, by Clifford Theory, the irreducible constituents of χM are pairwise conjugate
(and since 1M does not appear among these constituents), we deduce that bM =
−cχ, and that all the nonprincipal irreducible characters of M lie in the same orbit
under the action of G.

Next, let P be a Sylow p-subgroup of G. As above, the class function χP − cχ1P
being identically zero on the nontrivial elements of P , we have that χP − cχ1P
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is a multiple of the regular character of P by the scalar bP = (|M |/|P |)bM =
−(|M |/|P |)cχ, and so we get

χP = (bP + cχ)1P +Δ,

where Δ is a linear combination of (all the) nonprincipal irreducible characters of
P . But again, since χM = (χP )M does not have the principal character 1M among
its irreducible constituents, the coefficient bP + cχ = −cχ(|M |/|P | − 1) is forced to
be 0. As a consequence we get |M |/|P | = 1, whence |M | = |P | (i.e., M is a Sylow
p-subgroup of G).

Finally, taking H to be a p-complement of G, we have CH(M) = 1 because, by
Remark 2.3, Op′(G) is trivial. Moreover, H transitively permutes the nonprincipal
irreducible characters of M , because so does G = MH and clearly M stabilizes all
the elements in Irr(M); since, by coprimality, the action of H on Irr(M) − {1M}
is equivalent to the conjugation action of H on the set M − {1}, we conclude that
also the latter action is transitive. �

The substantial part of the following proposition is the “uniqueness part”; here
the full strength of Definition 2.1 (i.e., the requirement for a p-constant character
to be constant on all the p-singular elements of the group) will be crucial.

Proposition 4.4. Let H be a group acting faithfully and coprimely (by automor-
phisms) on a nontrivial group M , and let G = MH be the corresponding semidirect
product. If H acts transitively on the set of nonidentity elements of M , then M is
an elementary abelian p-group for a suitable prime p, and G has a unique irreducible
character χ which is faithful and p-constant. Moreover, we have χ(1) = |M | − 1
and cχ = −1.

Proof. Observe that we are under the hypotheses of Proposition 2.4 and, in view
of that, we already know that M is an elementary abelian p-group for a suitable
prime p, say of order pn; also, G is a 2-transitive permutation group on Ω =
{Hm | m ∈ M} via right multiplication (recall that the latter action is equivalent
to the action of G on M where M acts regularly by right multiplication, and H
acts by conjugation), and G does have a faithful p-constant irreducible character,
namely, the deleted permutation character. Therefore we will work to establish the
uniqueness part of the conclusion.

Since G is p-solvable and M = Op(G) �= 1, by Theorem 2.5 we have one of the
following three cases:

(a): H is a subgroup of the semilinear group Γ(pn); or
(b): n = 2 and p ∈ {3, 5, 7, 11, 19, 23, 29, 59}; or
(c): pn = 34.

Let us consider a nonidentity element x of M and let A = CH(x) be its cen-
tralizer (i.e., stabilizer, if we use the language of permutation actions) in H. We
claim that A is a cyclic group. In fact, in case (a) A intersects trivially the group
Γ0(p

n) of multiplication maps, so A is isomorphic to a subgroup of the cyclic group
Γ(pn)/Γ0(p

n); in case (b),H can be seen as a subgroup of GL2(p) and A∩SL2(p) = 1
(as all elements of SL2(p) = 1 having eigenvalue 1 are p-elements); in case (c), we
refer to the structure of H as given in [2], Example XII.7.4: H = NCA where
N = F(H) is a central product of D8 and Q8, C is cyclic of order 5 (acting irre-
ducibly on N/N ′) and A is any of the nontrivial subgroups of a cyclic group B of
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ON GROUPS HAVING A p-CONSTANT CHARACTER 115

order 8 (for completeness, we mention that B∩N is a noncentral subgroup of order
2 of N).

Let χ be a faithful character in Irr(G) (which exists, as G has a unique minimal
normal subgroup), and let φ be an irreducible constituent of χM . Clearly, φ is
not the principal character 1M . By Clifford Theory, all the H-conjugates of φ are
constituents of χM and, since H transitively permutes the elements of Irr(M) −
{1M}, we see that every nonprincipal irreducible character of M is a constituent of
χM . Also, by Brauer Permutation Lemma, φ can be chosen so that IG(φ) = MA,
where IG(φ) is the inertia subgroup of φ in G.

The linear character φ extends to its inertia subgroup MA because A is cyclic (or
also because MA splits over M), and Clifford Correspondence yields that χ = θG

where θ ∈ Irr(MA) is an extension of φ; in particular, we get χ(1) = |G : MA| =
|H : A| = pn − 1.

Our aim will be to evaluate χ on the p-singular elements of G, so let g = gpgp′

be such an element, decomposed as a product of its p-part gp and its p′-part gp′

(gp and gp′ are the uniquely defined powers of g such that gp is a p-element and
gp′ has order coprime to p; clearly, gp �= 1 as g is p-singular). Up to conjugation in
H, again in view of the transitivity of H on M −{1}, we can assume that gp is the
element x considered above; but, up to conjugation by a suitable element of M , we
can also assume that y = gp′ lies in H, hence in A = CH(x). In other words, if
we want to control the values that χ takes on p-singular elements of G, it will be
enough to compute χ(xy) where y runs in A.

Let Y = 〈y〉 and MY = CM (Y ). We claim that NH(Y ) acts transitively on the
set MY −{1}. In fact, observe that x ∈ MY and that, for any x1 ∈ MY there exists
an element h ∈ H such that x1 = xh. So Y ≤ CH(x1) = (CH(x))h = Ah and

hence both Y and Y h−1

are subgroups (of the same order) of the cyclic group A;

as a consequence we get Y = Y h−1

, thus h ∈ NH(Y ).
Let T be a right transversal of A in H; so T is also a transversal of MA in G. Let

TY = T ∩NH(Y ). The map f : TY → MY −{1} such that, for t ∈ TY , f(t) = xt−1

,
is a bijection. In fact, f is surjective by the previous paragraph and it is injective

as xt−1

= xt′−1

, for t, t′ ∈ T , implies t = t′ (as t−1t′ ∈ CH(x) = A).
Let θ◦ be the class function of G such that θ◦(g) = θ(g) if g ∈ MA and θ◦(g) = 0

if g �∈ MA. For t ∈ T , we claim that txyt−1 lies inMA if and only if t lies inNH(Y ),
i.e., if and only if t ∈ TY . In fact, txyt−1 = (txt−1)(tyt−1) lies in MA if and only if

tyt−1 ∈ A, which is equivalent to Y t−1 ≤ A; but A is cyclic, so this happens if and

only if Y t−1

= Y , i.e., if and only if t ∈ NH(Y ).
Finally, let us consider the linear character α = θA ∈ Irr(A). In the cases (a)

and (b) above, A intersects trivially a normal subgroup with abelian (cyclic) factor
group, so A ∩H ′ = 1 and this implies that NH(Y ) = CH(Y ); hence, tyt−1 = y for
every t ∈ TY . For the case (c), one can easily check (using the matrix presentation
in [2]) that if H = NCA where A is a subgroup of a cyclic of order 8, then for Y ≤ A
we have NH(Y ) = CH(Y ) if |Y | ∈ {1, 2, 8} and [NH(Y ) : CH(Y )] = 2 if |Y | = 4.

This implies that α(tyt−1) = α(y) if o(y) �= 4, and that α(tyt−1) ∈ {α(y), α(y)} if
o(y) = 4.
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So, assuming o(y) �= 4 in case (c), we have

χ(xy) =
∑
t∈T

θ◦(txyt−1) =
∑
t∈TY

α(tyt−1)θ(txt−1)

= α(y)
∑
t∈TY

φ(txt−1) .

We work next to show that
∑

t∈TY
φ(txt−1) = −1. We recall that the map

f : TY → MY − {1} such that, for t ∈ TY , f(t) = xt−1

, is a bijection. We also
observe that MY is not contained in the kernel of the linear character φ: in fact,
as Y stabilizes φ, it follows that [M,Y ] ≤ ker(φ), M = [M,Y ]×MY , and φ �= 1M .
Thus, [φMY

, 1MY
] = 0 and so we have

∑
t∈TY

φ(txt−1) =
∑

z∈MY −{1}
φ(z) = |MY |[φMY

, 1MY
]− φ(1) = −φ(1) = −1.

Our conclusion so far is that χ(xy) = −α(y) for every y ∈ A (in particular, when
y = 1), with the only exception of case (c) and o(y) = 4.

In view of this fact, if χ is p-constant, then −α(y) = χ(xy) = cχ for all y ∈ A
(so α(y) = α(1) = 1) in all cases, except in case (c) when o(y) = 4; but in this case

y2 ∈ ker(α), so α(y) = α(y) and with the same argument we still get α(y) = 1.
Conversely, if α(y) = 1 for every y ∈ A, then χ is p-constant.

We are now in a position to finish the proof. Rephrasing the paragraph above,
we have that the faithful irreducible character χ of G, whose degree we already
know to be pn−1, is p-constant if and only if it is induced by an extension θ of φ to
MA such that ker(θ) contains A, and in this case the constant value cχ is −1. Now,
there exists a unique extension with this property: it is the canonical extension of
φ to MA (see Lemma 13.3 of [3]). This concludes the proof. �

The solvable 2-transitive groups were first determined by B. Huppert in [1] (see
also [4, Theorem 6.8]). We use this knowledge and Passman’s Theorem 2.5 in order
to give a detailed description of the p-solvable groups that have a faithful irreducible
p-constant character, not of p-defect zero, for a prime number p.

Theorem 4.5. Let G be a p-solvable group, P a Sylow p-subgroup of G, and H a
p-complement of G. Assume that G has a faithful irreducible character χ which is
p-constant and not of p-defect zero. Then P is the unique minimal normal subgroup
of G and, setting pn = |P |, we have the following properties:

(a): if H is nonsolvable, then n = 2, p ∈ {11, 19, 29, 59}, and H = KZ is a central
product of K ∼= SL2(5) and Z cyclic of order dividing p− 1;

(b): either H ≤ Γ(pn), so H is metacyclic, or
(b1): n = 2, p ∈ {5, 7, 11, 23}, F(H) is a central product of a quaternion

group of order 8 and a cyclic group of order dividing p−1 and H/F(H)
is isomorphic to either the cyclic group C3 or the symmetric group
Sym(3);

(b2): pn = 34 and H is an extension of an extraspecial group of order 25

by a subgroup, of order multiple of 5, of the Frobenius group of order
20.

Proof. By Proposition 2.4, Remark 4.2, and Proposition 4.3, G is a 2-transitive
permutation group, P is its unique minimal normal subgroup, and H is a point
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stabilizer. We can hence apply Theorem 2.5. If H is nonsolvable, then |P | =
p2, p ∈ {11, 19, 29, 59}; so, in particular, we can identify H with a subgroup of
GL2(p). Recalling the subgroup structure of SL2(p) (see for instance Theorem 6.17
in Chapter 3 of [11]), we see that K = H∩SL2(p) is isomorphic to SL2(5). One can
check that the normalizer in GL2(p) of K is the product KZ, with Z = Z(GL2(p))
and hence, by Dedekind’s Law, we have (a).

If, on the other hand, H is solvable and not a subgroup of the semilinear group
Γ(pn), then by Theorem 2.5 either pn = 34 or n = 2 and p ∈ {3, 5, 7, 11, 23}. By
Theorem 6.8 of [4], we have that H has the structure described in (b1) and (b2);
note that p �= 3, as otherwise H would be isomorphic to either SL2(3) or GL2(3),
against (p, |H|) = 1. �

5. When Op(G) is trivial: A proof of Theorem B

In this section, we consider a situation that is complementary to the previous one:
we assume that a group G for which Op(G) is trivial has an irreducible character
that is faithful, p-constant, and not of p-defect zero. As already observed, the
faithfulness of the relevant character forces Op′(G) to be trivial as well, thus our
group has a trivial Fitting subgroup.

We will first show in Lemma 5.1 that, under our assumptions, G has a unique
minimal normal subgroup. Then in Theorem 5.2, which is Theorem B, this minimal
normal subgroup is proven to be simple.

Lemma 5.1. Let p be a prime number, and let G be a group having an irreducible
character that is faithful, p-constant, and not of p-defect zero. Assume also that
Op(G) = 1. Then G has a unique minimal normal subgroup.

Proof. For a proof by contradiction, assume that G has two distinct minimal normal
subgroups M1, M2; denoting by χ the character as in our hypotheses, set M =
M1 × M2, and let θ1 × θ2 be an irreducible constituent of χM (where θ1 and θ2
are suitable irreducible characters of M1 and M2, respectively). If T is a right
transversal for the inertia subgroup of θ1 × θ2 in G, setting e = [θ1 × θ2, χM ], by
Clifford Theory we get

cχ = χ(xy) = e
∑
t∈T

(θ1 × θ2)
t(xy) = e

∑
t∈T

θt1(x)θ
t
2(y),

whenever x in M1 or y in M2 is p-singular. Note that, as Op′(G) = 1, the order of
M1 is certainly divisible by p; therefore we can choose x0 to be an element of M1,
whose order is divisible by p, and the hypothesis of χ being p-constant yields that
the function ∑

t∈T

θt1(x0)θ
t
2 −

(∑
t∈T

θt1(x0)θ2(1)

)
1M2

takes the value 0 on every y in M2.
Observe that the above function is expressed as a linear combination of the

irreducible characters of M2, in which the principal character 1M2
appears with the

coefficient
∑

t∈T θt1(x0)θ2(1) (this follows taking into account that, as χ is faithful,
θ2 and all its G-conjugates are nonprincipal). But now, the linear independence of
the elements in Irr(M2) forces

∑
t∈T θt1(x0)θ2(1) = 0, i.e., χ(x0) = 0. Therefore, as

χ is p-constant, we get cχ = 0 against the fact that χ is not a character of p-defect
zero. This contradiction completes the proof. �
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Theorem 5.2. Let p be a prime number, and let G be a group having an irreducible
character that is faithful, p-constant, and not of p-defect zero. Assume also that
Op(G) = 1. Then G is an almost-simple group.

Proof. By the previous lemma, we know that G has a unique minimal normal
subgroup M , and our aim is to show that M is a simple group. Let S be a simple
subnormal subgroup ofG with S ≤ M , and let {x1, x2, . . . , xt} be a right transversal
of NG(S) in G, with x1 = 1. Then M = Sx1 ×Sx2 ×· · ·×Sxt . We assume, working
by contradiction, that t ≥ 2, i.e., NG(S) �= G.

For x ∈ G we have
Sxix

−1

= Sxσx(i)

for a permutation σx, depending on x, of the set Ω = {1, 2, . . . , t}. We observe
that this defines a transitive action of G on Ω and that x ∈ NG(S) if and only if
σx(1) = 1.

Let θi ∈ Irr(S), for i ∈ Ω, and let x ∈ G. Then it can be checked that

(θx1
1 × · · · × θxt

t )
x
=

(
θσx(1)

)xσx(1)x × · · · ×
(
θσx(t)

)xσx(t)x .

Now, let χ ∈ Irr(G) be as in our hypotheses, and let ψ = θx1
1 × · · · × θxt

t be an
irreducible constituent of χM , where θi ∈ Irr(S). Replacing ψ by a suitable G-
conjugate, we may assume that θ1 �= 1S , since ψ �= 1M and the action of G on Ω is
transitive. By Clifford’s Theorem we have

χM = v
∑
x∈T

ψx,

for some v > 0 and a subset T of G (this T is a right transversal of the inertia
subgroup IG(ψ) of ψ in G). Let U = Sx2 × · · · × Sxt . We fix a p-singular element
x0 ∈ S (recall that |M | is divisible by p because Op′(G) = 1) and we define χ0(u) =
χ(x0u) for u ∈ U . Then χ0 = k1U , for some constant k �= 0 (by Theorem 3.2).
However, for u ∈ U we have

k=χ0(u)=χ(x0u)=
∑
x∈T

v(θσx(1))
xσx(1)x(x0)[(θσx(2))

xσx(2)x×· · ·×(θσx(t))
xσx(t)x](u) .

Thus

(1) k1U =
∑
x∈T

cxϕx ,

where cx = v(θσx(1))
xσx(1)x(x0) and

(2) ϕx = (θσx(2))
xσx(2)x × · · · × (θσx(t))

xσx(t)x ∈ Irr(U)

for x ∈ T . Then

k1U =
∑
x∈T

cxϕx =
∑
x∈T

ϕx �=1U

cxϕx +
∑
x∈T

ϕx=1U

cx1U .

Hence ∑
x∈T

ϕx �=1U

cxϕx = 0 ,

by the linear independence of characters.
Let x ∈ T such that ϕx = 1U (observe that such an element exists by (1), as

k �= 0). Then
(θσx(i))

xσx(i)x = 1Sxi
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for i ≥ 2. Therefore θσx(i) = 1S for all i ≥ 2. So,

ψ = θx1
1 × 1Sx2 × · · · × 1Sxt .

Since θ1 �= 1S , we have that IG(ψ) ≤ NG(S). Moreover, if x ∈ T and ϕx = 1U ,
then σx(i) ≥ 2 for all i ≥ 2, so σx(1) = 1 and x ∈ NG(S). Let T0 = T ∩NG(S) and
observe that T0 �= T because G �= NG(S). Observing that if x ∈ T0, then ϕx = 1U
by (2), we conclude that for x ∈ T we have ϕx = 1U if and only if x ∈ T0. Finally,
if x ∈ T − T0, then σx(1) > 1, θσx(1) = 1S , and cx = v. We conclude that

0 =
∑

x∈T−T0

cxϕx = v

( ∑
x∈T−T0

ϕx

)
.

Evaluating in 1, we get a contradiction. �
As the final remark, assume that G is an almost-simple group with socle M and

that, for a given prime number p, the character χ ∈ Irr(G) is p-constant and not of
p-defect zero. It might be worth observing that the irreducible constituents of the
restriction χM can all be non-p-constant. This happens considering G = Sym(5)
and its irreducible character of degree 6, which is 5-constant but, when restricted
to Alt(5), has two irreducible constituents that are both non-5-constant.

Acknowledgments

The authors are grateful to Gabriel Navarro for bringing our attention to the
problem studied in this paper. The authors are also grateful to the referee for
valuable comments, and for improving the presentation of the proof of Theorem 5.2.
The third author thanks the Department DIMAI of the Università degli Studi di
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