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Abstract. We provide a homogenization result for the energy-functional associated with a
purely brittle composite whose microstructure is characterized by soft periodic inclusions embedded
in a stiffer matrix. We show that the two constituents as above can be suitably arranged on a
microscopic scale ε to obtain, in the limit as ε tends to zero, a homogeneous macroscopic energy-
functional explicitly depending on the opening of the crack.
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1. Introduction. Composites are materials that show heterogeneities on length
scales that are much larger than the atomic scale but which are essentially homoge-
neous at macroscopic length scales. Engineered composites are widely used to improve
structural performances; indeed with an appropriate choice of the microstructure they
may efficiently combine the attributes of their constituents. For this reason, in recent
decades there has been an ever-increasing interest in the homogenization theory of
composites (and the consequent derivation of effective models) in both the mathe-
matical and engineering communities.

The object of the present paper is the homogenization of a brittle composite
whose microstructure consists of soft (or compliant) inclusions periodically arranged
in a stiffer matrix.

In the setting of linearized elasticity and antiplane shear, according to Griffith’s
theory, the microscopic energy corresponding to a displacement u : Ω → R (where
Ω ⊂ R2 is open and bounded and represents the cross section of a cylindrical body)
is given by

Fε(u) =

∫
Ω∩εP

|∇u|2 dx+ δε

∫
Ω\εP

|∇u|2 dx+H1(Su),

where ε > 0 is the length-scale of the microstructure, εP is the ε-scaled copy of
a connected, Q-periodic, open set P ⊂ R2, with Q = (−1/2, 1/2)2, and δε → 0+

is the elastic modulus of the soft material. Thus, Ω ∩ εP and Ω \ εP represent,
respectively, the stiff and the compliant constituent of the brittle composite Ω (see
Figure 1); moreover these two constituents are characterized by the same toughness,
which here is normalized to one. The energy Fε is given by the sum of three terms:
two bulk energy contributions relative to the two constituents of Ω, and a surface
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A BRIDGING MECHANISM IN HOMOGENIZATION 1179

Fig. 1. In dark gray, the stiff matrix Ω ∩ εP .

energy contribution accounting for the energy needed to open the crack. The latter is
identified with the one-dimensional discontinuity set Su of a displacement u assumed
to belong to SBV 2(Ω), the space of special functions of bounded variation for which
the microscopic energy Fε is finite for every fixed ε.

Using the tool of Γ-convergence [9, 17], in this paper we show that the limit
behavior of the functionals Fε is not, in general, a simple superposition of the cor-
responding limit behavior of the bulk and surface energy terms. More precisely, we
exhibit an elementary microgeometry and an elastic modulus δε for which optimal
sequences of displacements may depend on the interplay between bulk and surface
energy, thus favoring the presence of high gradients or discontinuities of u inside the
soft inclusions Ω \ εP . We show on a concrete example that even though the surface
term in Fε does not depend on the opening of the crack, this dependence explicitly
appears in the limit as ε tends to zero.

Specifically, appealing to the localization method of Γ-convergence and to the
integral representation in SBV [7], we prove that (up to subsequences) the functionals
Fε Γ-converge to a homogenized functional F of the form

(1) F (u) =

∫
Ω

f0(∇u) dx+

∫
Su

g0([u], νu) dH1 for all u ∈ SBV 2(Ω),

where [u] denotes the opening of the crack and νu its orientation, while the energy
densities f0 and g0 satisfy

c1|ξ|2 ≤ f0(ξ) ≤ |ξ|2 and c2 ≤ g0(t, ν) ≤ 1

for every ξ ∈ R2, t 6= 0, and ν ∈ S1 and for some positive constants c1, c2. Moreover,
f0 depends only on P (hence in particular not on δε) and it can be shown that
t 7→ g0(t, ν) is nondecreasing and left-continuous for t > 0 and satisfies the symmetry
condition g0(−t,−ν) = g0(t, ν).

The above Γ-convergence analysis strongly relies on some recent results for free-
discontinuity problems in perforated domains [22, 14, 5]. In fact, the asymptotic anal-
ysis carried out in [22, 14, 5] allows us to bound from below the functional Γ-lim inf Fε
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1180 M. BARCHIESI, G. LAZZARONI, AND C. I. ZEPPIERI

Fig. 2. The surface energy density g0(·, ei) is bounded from above by min{3/4 +
√

2 t , 1} and
from below by min{3/4 + c3t2, 1}. In particular, g0(0+, ei) = 3/4, while g0(t, ei) = 1 for t larger
than a threshold t0.

with the Mumford–Shah functional, thus obtaining the equicoerciveness of Fε. (We
now overlook the fact that the domain of F is larger than SBV 2(Ω) and refer to
Theorem 1 for a precise statement.)

The main result of this paper is Theorem 4, in which we specialize the functionals
Fε choosing the two-dimensional microgeometry given by

P = R2 \
⋃
i∈Z2

(
1
4 Q+ i

)
and setting δε = ε. We prove that for such a choice the following estimate holds true:

(2) min
{

3
4 + c3t

2, 1
}
≤ g0(t, ei) ≤ min

{
3
4 +
√

2 t , 1
}

for t > 0 and i = 1, 2,

where g0 is as in (1). We mention here that the results which for modeling reasons
have been described so far only in dimension two can be suitably extended to the case
of n-dimensional microgeometries (and scalar displacement).

The estimate from below in (2) allows us to deduce that the surface energy den-
sity g0 depends on [u] in a nontrivial way. Moreover, the combination of the lower
and upper bounds in (2) implies that g0(·, ei) is constant for every t larger than a
positive threshold t0 (see Figure 2). For these reasons, our result also can be inter-
preted as a possible mesoscopic justification of cohesive zone energies, the latter being
characterized by a surface energy density whose dependence on the crack-opening is
nonconstant and nondecreasing for small openings and bounded for large ones. Cohe-
sive zone models have been introduced by Barenblatt in [6] and are widely employed
in fracture mechanics since they provide a more accurate description of the process
of crack growth if compared with those based on Griffith’s criterion. Indeed, ex-
plicitly depending on the crack-opening [u], they take into account that fracture is
a gradual process due to the fact that atomic bonds stretch before breaking. In a
discrete-to-continuum setting, cohesive surface energies have been derived by means
of Γ-convergence in [10] starting from one-dimensional discrete systems and in [12]
by mixing quadratic and defected springs. Moreover, cohesive-type models have been
obtained in, e.g., [15, 18] via Ambrosio–Tortorelli approximation and in [20] as limits
of coupled elastoplastic-damage models. Further, in [23] it has been proved that co-
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A BRIDGING MECHANISM IN HOMOGENIZATION 1181

hesive energies converge to the Mumford–Shah functional if the size of the body tends
to infinity.

The analysis carried out in the present paper is quite different: we show that a
nontrivial dependence of the limit surface energy on the opening of the crack may arise
from the interplay, on a mesoscopic scale, between two different brittle constituents,
even though the microgeometry is rather simple. We shall also mention that our
limit model has a positive activation threshold g0(0+, ei). From a mechanical point
of view it would be desirable to derive a cohesive model without activation threshold
(or equivalently a limit surface density with g0(0+, ν) = 0 for every ν ∈ S1) starting
from an energy of brittle type; however, this seems to be a challenging question at
the moment.

The presence of an activation threshold also can be found in a problem inves-
tigated in [4, 21], where a limit energy depending on the crack-opening is obtained
homogenizing a composite made of a brittle constituent reinforced by an unbreakable
structure, i.e., by a structure with infinite toughness. It is worth pointing out that
in [4, 21] the limit surface energy density grows linearly in the crack-opening, thus
showing an unphysical behavior. Motivated by this observation, in the last section of
this paper we briefly discuss a microscopic model similar to that analyzed in [4, 21].
We show that a cohesive model with bounded surface energy density can be obtained
if the unbreakable structure is replaced by periodically distributed brittle fibers with
toughness tending to infinity as the microscopic scale tends to zero.

Both in the presence of soft inclusions and in the presence of tough fibers, the
general idea to prove the bound from below on the limit surface energy density
is to approximate a straight crack, or in other words a limit displacement of type
ut(x) = t χ{x : x2>0}(x), with functions uε suitably combining jumps and stretchings
with high gradients in the different constituents of the composite (see Figures 5 and
10). Loosely speaking, at a microscopic level we observe (soft or tough) regions that
stretch without breaking, thus acting as “bridges” between the two opposite sides of
the macroscopic crack. This microscopic phenomenon is known in the mechanical
literature as a “bridging mechanism” and is experimentally observed, e.g., in the frac-
ture of fiber-reinforced plastics or ceramics and in the crazing of polymers [3, Chapter
6]: the crack propagation is preceded by the nucleation of microcracks and microvoids,
with some “bridging elements” that contribute in transferring stresses between the
crack’s faces, thus adding resistance to large crack-opening and to further growth.

2. Setting of the problem and statement of the main result. In this
section we recall some definitions and introduce notation we employ in the paper. For
the sake of generality we now work in dimension n ≥ 2.

For the general theory of special functions of bounded variation we refer to [2] (see
also [8]).

Let U be an open bounded subset of Rn. The space of special functions of
bounded variation on U is denoted by SBV (U). For every u ∈ SBV (U), ∇u denotes
the approximate gradient of u, Su the approximate discontinuity set of u, and νu the
generalized normal to Su, which is defined up to the sign. If u+ and u− are the
traces of u on the sides of Su determined by νu and −νu, respectively, the difference
u+−u− is called the jump of u and is denoted by [u]. Note that with this convention,
if we reverse the orientation of νu, we change the sign of [u]. It turns out that
[u] ∈ L1(Su;Hn−1).

We consider the vector subspace of SBV (U)

SBV 2(U) := {u ∈ SBV (U) : ∇u ∈ L2(U ;Rn) and Hn−1(Su) < +∞}.
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1182 M. BARCHIESI, G. LAZZARONI, AND C. I. ZEPPIERI

We consider also the larger space of generalized special functions of bounded variation
on U , GSBV (U), which is made of all functions u ∈ L1(U) whose truncations um :=
(u ∧ m) ∨ (−m) belong to SBV (U) for every m ∈ N. By analogy with the case of
SBV functions, we say that u ∈ GSBV 2(U) if u ∈ GSBV (U), ∇u ∈ L2(U ;Rn), and
Hn−1(Su) < +∞.

For r > 0 we denote by Qr the n-dimensional cube with side-length r, centered
at the origin, i.e., Qr := (−r/2, r/2)n, while we simply write Q in place of Q1.

The canonical basis in Rn is denoted by {e1, . . . , en}.
Unless otherwise stated, in what follows the Γ-convergence of functionals is always

understood with respect to the strong L1-topology,
Let Ω be an open bounded subset of Rn and let δε > 0 be such that δε → 0 as

ε→ 0. We introduce the functionals Fε : L1(Ω)→ [0,+∞] defined as

Fε(u) :=


∫

Ω∩εP
|∇u|2 dx+ δε

∫
Ω\εP

|∇u|2 dx+Hn−1(Su) if u ∈ SBV 2(Ω),

+∞ otherwise in L1(Ω),

where P ⊂ Rn is open, connected, and Q-periodic. We recall that in our model Ω
represents the reference configuration of a periodic brittle composite made of two
constituents having different elastic properties. More precisely, the elastic modulus
of the constituent located in Ω \ εP is represented by the vanishing sequence δε. For
this reason, in what follows, Ω \ εP is referred to as the soft inclusions. In order to
keep our analysis as simple as possible, we assume that the two constituents have the
same toughness, here normalized to one. However, straightforward computations show
that analogous results also hold when the two constituents have different toughnesses
independent of ε. For the case where the toughness of the soft inclusions scales as εβ

with β > 0, we refer to Remark 6 below.
We also consider the functionals F̂ε : L1(Ω)→ [0,+∞] given by

F̂ε(u) :=


∫

Ω∩εP
|∇u|2 dx+Hn−1(Su ∩ Ω ∩ εP ) if u|Ω∩εP ∈ SBV 2(Ω ∩ εP ),

+∞ otherwise in L1(Ω).

Notice that in this case Ω \ εP represents a so-called perforation. The asymptotic be-
havior of F̂ε has been recently studied in [5, Theorem 4] (see also [14, 22]). Specifically,
F̂ε Γ-converges with respect to the strong L1-topology to

(3) F̂ (u) :=


∫

Ω

f̂(∇u) dx+

∫
Su

ĝ(νu) dHn−1 if u ∈ GSBV 2(Ω),

+∞ otherwise in L1(Ω),

where f̂ : Rn → [0,+∞) and ĝ : Sn−1 → [0,+∞) satisfy

c1|ξ|2 ≤ f̂(ξ) ≤ |ξ|2 for every ξ ∈ Rn,
c2 ≤ ĝ(ν) ≤ 1 for every ν ∈ Sn−1,

(4)

for some constants c1, c2>0 only depending on n and P . Moreover, f̂ is a quadratic
form given by the following homogenization formula:

(5) f̂(ξ) = inf

{∫
Q∩P

|ξ +∇w|2 dx : w ∈ H1
per(Q ∩ P )

}
,
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A BRIDGING MECHANISM IN HOMOGENIZATION 1183

where H1
per(Q ∩ P ) := {u ∈ H1

loc(P ) : u is Q-periodic and u|Q∩P ∈ H1(Q ∩ P )}. If P
is Lipschitz, the infimum in (5) can be taken over H1

per(Q).
The convergence result as above is proved in [5] with respect to the strong L2-

topology; a technical but standard argument (see, e.g., [21, Theorem 3.4]) allows us to
deduce that the Γ-convergence of F̂ε to F̂ takes place also with respect to the strong
L1-topology.

The estimates in (4) and the fact that the domain of F̂ is GSBV 2(Ω) are direct
consequences of the compactness result provided in [5, Theorem 1], while (5) follows
from [5, formula (40)].

It is also convenient to consider the Mumford–Shah functional

MS(u) :=


∫

Ω

|∇u|2 dx+Hn−1(Su) if u ∈ GSBV 2(Ω),

+∞ otherwise in L1(Ω).

We notice that by virtue of the compactness result in GSBV [2, Theorem 4.36] MS
is L1(Ω)-lower semicontinuous on GSBV 2(Ω).

We remark that

(6) F̂ε ≤ Fε ≤MS on SBV 2(Ω),

while, in view of the bounds from below in (4), we get

(7) min{c1, c2}MS ≤ F̂ on L1(Ω).

The bounds (6) and (7) will be crucial in the proof of the homogenization result below.

Theorem 1. For every decreasing sequence of positive numbers converging to
zero, there exists a subsequence (εk) such that (Fεk) Γ-converges to a functional
F : L1(Ω)→ [0,+∞] of the form

(8) F (u) :=


∫

Ω

f0(∇u) dx+

∫
Su

g0([u], νu) dHn−1 if u ∈ GSBV 2(Ω),

+∞ otherwise in L1(Ω),

where f0 : Rn → [0,+∞) coincides with the quadratic form f̂ defined in (5), and
g0 : R× Sn−1 → [0,+∞) is a Borel function satisfying the following properties:

(i) for every t 6= 0 and ν ∈ Sn−1, c2 ≤ g0(t, ν) ≤ 1, where c2 > 0 is as in (4);
(ii) for any ν ∈ Sn−1, g0(·, ν) is nondecreasing and left-continuous in (0,+∞)

and satisfies the symmetry condition g0(−t,−ν) = g0(t, ν).

The proof of Theorem 1 is contained in section 3.

Remark 2. The assumption that the matrix P is open and connected is needed
to invoke the results in [5]. Specifically, the proof of Theorem 1 strongly relies on the
fact that F̂ = Γ- lim F̂ε as well as on the bound (7). The latter, in its turn, together
with (6), allows us to deduce that the domain of F is GSBV 2(Ω).

Remark 3. The quadratic form f0 does not depend on either the elastic modulus
δε or the surface term in Fε.

The homogenization result Theorem 1 asserts that the Γ-limit F may depend on
both [u] and νu, which in our modeling represent the opening and the orientation
of the crack, respectively. In Theorem 4 below we show that for δε = ε we can
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Fig. 3. In dark gray, the stiff matrix Ω ∩ εP .

find an elementary two-dimensional microgeometry εP (see Figure 3) leading to a
homogenised functional F whose surface energy density g0 actually depends on the
crack-opening [u]. We notice that the choice δε = ε provides the only meaningful
scaling for the microgeometry under consideration; indeed other choices of δε give no
cohesive behavior in the limit (see Remark 6 below).

For the sake of simplicity, we prove the dependence of g0 on [u] only when the
normal to the crack ν is one of the coordinate vectors. Moreover, we state the result
in the physically relevant case of dimension two; for higher dimension, see Remark 7
below.

The following theorem is the main result of this paper and is proved in section 4.

Theorem 4. Let n = 2; set δε := ε and

(9) P := R2 \
⋃

(i,j)∈Z2

Q 1
4

+ (i, j).

Then for every t > 0 the energy density g0 appearing in (8) satisfies the growth
conditions

(10) min
{

3
4 + c3t

2, 1
}
≤ g0(t, ei) ≤ min

{
3
4 +
√

2 t , 1
}

for i = 1, 2

for some c3 > 0. In particular, for i = 1, 2, we have that g0(0+, ei) = 3/4 and
g0(t, ei) = 1 for t larger than some t0 > 0.

The following remarks are in order.

Remark 5. The homogenization formula for ĝ provided in [5, Theorem 4] gives
ĝ(e1) = ĝ(e2) = 3/4 when computed for the microgeometry εP as in Theorem 4.
Then, since

ĝ(ν) ≤ g0(t, ν) for every t > 0 and ν ∈ S1,

in view of Theorem 4 we may deduce that for i = 1, 2, ĝ(ei) is a sharp lower bound
for g0(t, ei) whenever t→ 0+.
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Remark 6. In this remark we briefly discuss a few further scalings. To this end
let

Fα,βε (u) =

∫
Ω∩εP

|∇u|2 dx+ εα
∫

Ω\εP
|∇u|2 dx

+H1((Ω ∩ εP ) ∩ Su) + εβH1((Ω \ εP ) ∩ Su),

(11)

where α, β > 0 and Ω, P are chosen as in Theorem 4. The free-discontinuity func-
tionals in (11) are a particular case of those analyzed by Braides and Solci in [13].
Then, thanks to [13, Theorem 3] it is possible to deduce that for every α, β > 0
(Fα,βε ) Γ-converges to F̂ , where F̂ is as in (3). This implies, in particular, that a limit
of cohesive type cannot be obtained if in our model also the toughness of the soft
inclusions vanishes as ε→ 0.

Choosing in (11) α = 1, we end up with the sequence

F βε (u) =

∫
Ω∩εP

|∇u|2 dx+ ε

∫
Ω\εP

|∇u|2 dx

+H1((Ω ∩ εP ) ∩ Su) + εβH1((Ω \ εP ) ∩ Su).

Then, our functionals Fε can be viewed as a “limit” case of F βε when we let β → 0+.
From [13, Theorem 3] we know that for every fixed β > 0 the Γ-limit of F βε is F̂ . On
the other hand, in Theorem 2 we prove that when β = 0 the Γ-limit of Fε = F β=0

ε

depends on [u] in a nontrivial way. This fact can then be interpreted as a sort of
nonuniformity (or a lack of continuity) of the Γ-limit with respect to the exponent β.

We finally notice that for β = 0 and α > 1 (which in our notation corresponds
to choosing δε � ε) the Γ-limit is again F̂ , as it can be seen arguing as in section 4.
Moreover, a heuristic argument also shows that for α < 1 (or equivalently δε � ε) the

volume energy density in the Γ-limit does not change, being always equal to f̂ , while
the surface energy density does not depend on the crack-opening and is identically
equal to one. Hence in our case δε = ε is the only choice leading to a cohesive limit
effect. Indeed, at this scaling, bulk and surface energies of the soft part are comparable
at a mesoscopic level.

Remark 7. The choice n = 2 has been made only for the sake of clarity as it
simplifies the exposition in the proof of Theorem 4. In fact, Theorem 4 can be
implemented in higher dimensions still choosing δε = ε and considering the micro-
geometry corresponding to

P := Rn \
⋃
i∈Zn

Q 1
4

+ i.

3. Γ-convergence and integral representation. This section is devoted to
the proof of the Γ-convergence of the functionals Fε.

In order to prove Theorem 1 we use the well-known localization method of Γ-
convergence (for which we refer the reader to [17, Chapters 14–20]) in combination
with the integral-representation result [7, Theorem 1]. To this end, we start intro-
ducing the localized functionals as below. We denote by A(Ω) the class of all open
subsets of Ω and for every pair (u, U) ∈ L1(Ω)×A(Ω) we set
(12)

Fε(u, U) :=


∫
U∩εP

|∇u|2 dx+

∫
U\εP
|∇u|2 dx+Hn−1(Su ∩ U) if u ∈ SBV 2(U),

+∞ otherwise in L1(Ω).
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1186 M. BARCHIESI, G. LAZZARONI, AND C. I. ZEPPIERI

Moreover, it is also convenient to introduce the following notation:

MS(u, U) :=


∫
U

|∇u|2 dx+Hn−1(Su ∩ U) if u ∈ GSBV 2(U),

+∞ otherwise in L1(Ω).

We notice that the functionals Fε : L1(Ω) × A(Ω) → [0,+∞] enjoy the following
properties: for every ε > 0, u ∈ L1(Ω), and U ∈ A(Ω),

Fε is increasing: Fε(u, V ) ≤ Fε(u, U) for every V ∈ A(Ω): V ⊂ U,
Fε is local: Fε(u, U) = Fε(v, U) for every v ∈ L1(Ω): u = v Ln-a.e. in U,

Fε decreases by truncation: Fε
(
(u ∧M) ∨ (−M), U

)
≤ Fε(u, U) for M > 0.

(13)

Moreover Fε is periodic, i.e., for yε := byε cε (here the integer part is meant component-
wise)

Fε(u(· − yε), U + yε) = Fε(u, U) for all y ∈ Rn such that U + y ⊂⊂ Ω

and sufficiently small ε,
(14)

and invariant by translations in u, i.e.,

(15) Fε(u+ s, U) = Fε(u, U) for every s ∈ R.

Now let (εk) be a vanishing sequence of strictly positive numbers and define the
functionals F ′, F ′′ : L1(Ω)×A(Ω)→ [0,+∞] as

F ′(·, U) := Γ-lim inf
k→+∞

Fεk(·, U) and F ′′(·, U) := Γ-lim sup
k→+∞

Fεk(·, U)

for every U ∈ A(Ω). The functionals F ′, F ′′ are lower semicontinuous [17, Proposition
6.8] and inherit the properties in (13). Specifically, they are increasing [17, Proposition
6.7], local [17, Proposition 16.15], and it is immediate to show that they decrease by
truncation. Moreover, in view of [5, Theorem 4], (6), and (7) we may deduce that the
domain of F ′ and F ′′ is GSBV 2(Ω) and that for every (u, U) ∈ GSBV 2(Ω) × A(Ω)
the following estimate holds:

(16) min{c1, c2}MS(u, U) ≤ F ′(u, U) ≤ F ′′(u, U) ≤MS(u, U).

Now fix ε > 0 and u ∈ GSBV 2(Ω); clearly Fε(u, ·) is the restriction to A(Ω) of a
Radon measure, and therefore Fε(u, ·) is in particular inner regular. On the other
hand, F ′(u, ·), F ′′(u, ·) are in general not inner regular, and hence we also consider
their inner regular envelope, i.e., the two functionals F ′−, F

′′
− : L1(Ω)×A(Ω)→ [0,+∞]

defined as
F ′−(u, U) := sup

{
F ′(u, V ) : V ⊂⊂ U, V ∈ A(Ω)

}
and

F ′′−(u, U) := sup
{
F ′′(u, V ) : V ⊂⊂ U, V ∈ A(Ω)

}
.

We notice that F ′− and F ′′− are both increasing, lower semicontinuous [17, Remark
15.10], and local [17, Remark 15.25]. Moreover, invoking [17, Theorem 16.9] we can
find a subsequence (εk) converging to zero such that the corresponding functionals F ′

and F ′′ satisfy

(17) F ′− = F ′′− =: F.
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Next, appealing to [17, Proposition 18.6] we show that on GSBV 2(Ω) we actually
have F = F ′ = F ′′. A preliminary result needed in this direction is the so-called
fundamental estimate. The following variant of the fundamental estimate can be
derived from the more general [11, Proposition 3.1]. For the reader’s convenience we
give here a simplified proof relative to our specific case.

Lemma 8 (fundamental estimate). For every η > 0 and for every U ′, U ′′, V ∈
A(Ω), with U ′ ⊂⊂ U ′′, there exists a constant M(η) > 0 satisfying the following
property: for every ε > 0, for every u ∈ L1(Ω) with u ∈ SBV 2(U ′′), and for every
v ∈ L1(Ω) with v ∈ SBV 2(V ), there exists a function ϕ ∈ C∞0 (Ω) with ϕ = 1 in a
neighborhood of U ′, sptϕ ⊂ U ′′, and 0 ≤ ϕ ≤ 1 such that

Fε(ϕu+ (1− ϕ)v, U ′ ∪ V ) ≤ (1 + η)
(
Fε(u, U

′′) + Fε(u, V )
)

+M(η)‖u− v‖2L2(S)

with S := (U ′′ \ U ′) ∩ V .

Proof. Let η > 0, U ′, U ′′, V ∈ A(Ω) be fixed as in the statement and let ϕ be a
function in C∞0 (Ω) with 0 ≤ ϕ ≤ 1, sptϕ ⊂ U ′′, and ϕ = 1 in a neighborhood of U ′.

Let u and v be two functions as in the statement and let w := ϕu + (1 − ϕ)v;
clearly, w ∈ SBV 2(U ′ ∩ V ). Then,

Fε(w,U
′ ∪ V ) = Fε(u, U

′) + F ∗ε (v, V \ U ′′) + F ∗ε (w, (U ′′ \ U ′) ∩ V ),(18)

where for fixed u ∈ L1(Ω), F ∗ε (u, ·) denotes the measure which extends Fε(u, ·) to the
σ-algebra B(Ω) of Borel subsets of Ω in the usual way, i.e.,

F ∗ε (u,B) := inf{Fε(u, U) : U ∈ A(Ω), B ⊂ U}.

We now estimate the last term in the right-hand side of (18). To this end set S :=
(U ′′ \ U ′) ∩ V . For any fixed η ∈ (0, 1) we have

F ∗ε (w, S) ≤
∫
S∩εP

∣∣∣(1− η)
ϕ∇u+ (1− ϕ)∇v

1− η
+ η
∇ϕ(u− v)

η

∣∣∣2 dx

+ δε

∫
S\εP

∣∣∣(1− η)
ϕ∇u+ (1− ϕ)∇v

1− η
+ η
∇ϕ(u− v)

η

∣∣∣2 dx

+Hn−1(Su ∩ S) +Hn−1(Sv ∩ S)

≤ 1

1− η

(∫
S∩εP

|∇u|2 dx+

∫
S∩εP

|∇v|2 dx
)

+
δε

1− η

(∫
S\εP

|∇u|2 dx+

∫
S\εP

|∇v|2 dx
)

+
1

η

∫
S

|∇ϕ|2|u− v|2 dx+Hn−1(Su ∩ S) +Hn−1(Sv ∩ S)

≤ 1

1− η

(
F ∗ε (u, S) + F ∗ε (v, S)

)
+

1

η

∫
S

|∇ϕ|2|u− v|2 dx.

(19)

Finally, setting M := ‖∇ϕ‖L∞ and combining (18) and (19) give

Fε(w,U
′ ∪ V ) ≤ 1

1− η

(
Fε(u, U

′′) + Fε(v, V )
)

+
M

η
‖u− v‖2L2(S)

and hence the thesis.
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We are now ready to state and prove a compactness result by Γ-convergence.
We notice that in the proof of Theorem 9 below the only difference from the general
approach developed in [17, Chapter 18] is that in our case the rest in the fundamental
estimate is small when computed along sequences converging in L2(Ω) (see Lemma 8)
while we are interested in the Γ-convergence of Fε with respect to the L1(Ω)-topology.

Theorem 9 (compactness by Γ-convergence). Let F be as in (17). Then
(a) (measure property) for every u ∈ GSBV 2(Ω) the set function F (u, ·) is the

restriction to A(Ω) of a Radon measure on Ω;
(b) (compactness) for every U ∈ A(Ω)

F (·, U) = F ′(·, U) = F ′′(·, U) on GSBV 2(Ω);

(c) (translational invariance in x) for every u ∈ L1(Ω) and U ∈ A(Ω)

F (u(· − y), U + y) = F (u, U) for all y ∈ Rn such that U + y ⊂⊂ Ω;

(d) (translational invariance in u) for every u ∈ L1(Ω) and U ∈ A(Ω)

F (u+ s, U) = F (u, U) for all s ∈ R.

Proof. The proof of (a) relies on the measure-property criterion of De Giorgi
and Letta [17, Theorem 14.23]. The only delicate point here is to show that F
is subadditive. This can be handled first by appealing to a standard truncation
argument and to the fact that on SBV 2(Ω)∩L∞(Ω) there is an equivalent sequential
charactherization of (17) (see also [17, Proposition 16.4 and Remark 16.5]) and then
arguing as in, e.g., [21, Theorem 3.4].

The proof of (b) readily follows from (17) once we prove that for every u ∈
GSBV 2(Ω), F ′′(u, ·) is inner regular. Indeed, by definition of the inner regular enve-
lope and by monotonicity we always have

(20) F = F ′′− = F ′− ≤ F ′ ≤ F ′′;

hence if we show that F ′′ ≤ F ′′− (which is equivalent to the inner regularity of F ′′),
from (20) we may conclude that F = F ′ = F ′′ and hence (b).

Appealing to Lemma 8 and to the upper bound in (16), we now prove that for
every fixed u ∈ GSBV 2(Ω) the set function F ′′(u, ·) is inner regular on A(Ω). To this
end, let u ∈ GSBV 2(Ω) and fix W ∈ A(Ω). Since MS(u, ·) is a Radon measure, for
every η > 0 there exists a compact set K ⊂W such that MS(u,W \K) < η.

Choose U,U ′ ∈ A(Ω) satisfying K ⊂ U ′ ⊂⊂ U ⊂⊂ W and set V := W \ K.
Recalling that F ′′ is increasing, Lemma 8 easily yields

F ′′(u,W ) ≤ F ′′(u, U ′ ∪ V ) ≤ F ′′(u, U) + F ′′(u, V ) = F ′′(u, U) + F ′′(u,W \K).

Moreover, by the definition of F ′′− and in view of the bound F ′′ ≤MS we have

F ′′(u,W ) ≤ F ′′−(u,W ) +MS(u,W \K) ≤ F ′′−(u,W ) + η.

Hence by the arbitrariness of η > 0 we get

F ′′(u,W ) ≤ F ′′−(u,W ) for every W ∈ A(Ω),

and thus the inner regularity of F ′′(u, ·) for u ∈ GSBV 2(Ω).
Finally, by virtue of (14) and (15), the proof of (c) and (d) follows by standard

arguments (see, e.g., [11, Lemma 3.7])
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On account of the compactness result Theorem 9 we are now ready to accomplish
the proof of Theorem 1, that is, to represent the Γ-limit F in an integral form. This
last step will be accomplished by means of a standard truncation argument and then
appealing to the representation result [7, Theorem 1]. For the reader’s convenience,
below we rephrase [7, Theorem 1], adapting it to our specific setting.

Theorem 10. Let G : SBV 2(Ω)×A(Ω)→ [0,+∞] be a functional satisfying for
every (u, U) ∈ SBV 2(Ω)×A(Ω) the following conditions:

(i) G(·, U) is local;
(ii) G(·, U) is L1(Ω)-lower semicontinuous;
(iii) G(u, ·) is the restriction to A(Ω) of a Radon measure;
(iv) G(·, U) is invariant under translation in x and in u;
(v) there exists C > 0 such that

1

C
MS(u, U) ≤ G(u, U) ≤ C

(
MS(u, U) + 1

)
.

Then, there exist Borel functions f0 : Rn → [0,+∞) and g0 : R × Sn−1 → [0,+∞)
such that

G(u, U) =

∫
U

f0(∇u) dx+

∫
Su∩U

g0([u], νu) dHn−1

for every pair (u, U) ∈ SBV 2(Ω)×A(Ω).
Moreover, g0(t, ν) = g0(−t,−ν) for every t ∈ R, and ν ∈ Sn−1.

Proof. The proof follows from [7, Theorem 1] by means of a perturbation argu-
ment. To this end let σ > 0 and for every (u, U) ∈ SBV 2(Ω) × A(Ω) define the
functionals

Gσ(u, U) := G(u, U) + σ

∫
Su∩U

(1 + |[u]|) dHn−1.

Clearly

Gσ(u, U) ≥ 1

Cσ

(
MS(u, U) +

∫
Su∩U

|[u]|dHn−1

)
,

Gσ(u, U) ≤ Cσ
(
MS(u, U) +

∫
Su∩U

|[u]|dHn−1 + 1

)
for Cσ > 0, and thus Gσ satisfies the growth conditions in [7, Theorem 1]. Moreover,
it is immediate to check that Gσ satisfies the other hypotheses of [7, Theorem 1] (the
lower semicontinuity being a consequence of [1, Theorem 3.7]). Then, we deduce the
existence of two Borel functions fσ : Rn → [0,+∞) and gσ : R×Sn−1 → [0,+∞) such
that

Gσ(u, U) =

∫
U

fσ(∇u) dx+

∫
Su∩U

gσ([u], νu) dHn−1

for every (u, U) ∈ SBV 2(Ω)×A(Ω).
By construction the two families of functions (fσ) and (gσ) are decreasing as

σ decreases (cf. (1)–(3), [7, Theorem 1]). Hence, setting f0 := limσ→0+ fσ and
g0 := limσ→0+ gσ, by the pointwise convergence of (Gσ) to G and the monotone
convergence theorem we deduce

G(u, U) =

∫
U

f0(∇u) dx+

∫
Su∩U

g0([u], νu) dHn−1

for every (u, U) ∈ SBV 2(Ω)×A(Ω), and thus we prove the thesis.
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We are now in a position to prove the Γ-convergence result Theorem 1.

Proof of Theorem 1. Let F be as in (17) and let (εk) be the corresponding van-
ishing subsequence. Then, Theorem 9 ensures that

F (u, U) := Γ-lim
k→+∞

Fεk(u, U)

for every (u, U) ∈ GSBV 2(Ω)×A(Ω) and hence, in particular, that F (·, U) is L1(Ω)-
lower semicontinuous on GSBV 2(Ω). Moreover, again appealing to Theorem 9 and to
the bound (16) ensures that F fulfills the set of hypotheses of Theorem 10. Therefore
we deduce the existence of two Borel functions f0 : Rn → [0,+∞) and g0 : R×Sn−1 →
[0,+∞) such that

(21) F (u, U) =

∫
U

f0(∇u) dx+

∫
Su∩U

g0([u], νu) dHn−1

for every (u, U) ∈ SBV 2(Ω)×A(Ω).
Let y ∈ Rn, r > 0, and ν ∈ Sn−1. We denote by Qνr (y) the open cube of center y,

side-length r > 0, and one face orthogonal to ν. Now fix y ∈ Ω and let r > 0 be such
that Qνr (y) ⊂ Ω; then the bounds c1|ξ|2 ≤ f0(ξ) ≤ |ξ|2 and c2 ≤ g0(t, ν) ≤ 1 readily
follow from (3), (4), (the localized version of) (6), and (21) by testing F (·, Qνr (y)) on

uξ(x) = ξ · x and uνt (x) =

{
t if (x− y) · ν > 0,

0 if (x− y) · ν ≤ 0,

respectively.
Moreover, it is immediate to prove that g0(·, ν) is nondecreasing in (0,+∞) for

every fixed ν ∈ Sn−1 (see, e.g., [21, Proof of Theorem 2.2]), while the symmetry
property directly follows from [7, Theorem 1]. Finally, the left-continuity of g0(·, ν)
in (0,+∞) is a consequence of its monotonicity and of the lower semicontinuity of F .

We now show that the representation formula for F holds on the wholeGSBV 2(Ω).
To this end, for (u, U) ∈ GSBV 2(Ω)×A(Ω) set

F̃ (u, U) :=

∫
U

f0(∇u) dx+

∫
Su∩U

g0([u], νu) dHn−1,

and for every M > 0 let uM := (u∧M)∨(−M). Notice that F̃ decreases by truncation
and that it is L1(Ω)-lower semicontinuous on GSBV 2(Ω). Then by the L1(Ω)-lower
semicontinuity of F on GSBV 2(Ω) and by (21) we have

(22) F (u, U) ≤ lim inf
M→+∞

F (uM , U) = lim inf
M→+∞

F̃ (uM , U) ≤ F̃ (u, U).

On the other hand, since F decreases by truncation we may also deduce

(23) F̃ (u, U) ≤ lim inf
M→+∞

F̃ (uM , U) = lim inf
M→+∞

F (uM , U) ≤ F (u, U).

Hence gathering (22) and (23) gives the desired representation result on GSBV 2(Ω).
Then, choosing U = Ω yields the Γ-convergence result.

To conclude the proof it only remains to show that f0 = f̂ . To this end, for any
fixed δ ∈ (0, 1) consider the functionals F δε : L1(Ω)→ [0,+∞] given by

F δε (u) :=


∫

Ω∩εP
|∇u|2 dx+ δ

∫
Ω\εP

|∇u|2 dx if u ∈ H1(Ω),

+∞ otherwise in L1(Ω).
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Then, (F δε ) Γ-converges to the quadratic form

(24) F δ(u) :=


∫

Ω

fδ(∇u) dx if u ∈ H1(Ω),

+∞ otherwise in L1(Ω),

where fδ : Rn → [0,+∞) is defined as

fδ(ξ) = min

{∫
Q

(χQ∩P (x) + δχQ\P (x))|ξ +∇w|2 dx : w ∈ H1
per(Q)

}
for every ξ ∈ Rn (see [9, subsection 5.2]). For sufficiently small ε > 0 we have

F̂ε ≤ Fε ≤ F δε and therefore f̂ ≤ f0 ≤ fδ. We show that

(25) lim
δ→0+

fδ(ξ) = f̂(ξ)

for every ξ ∈ Rn. To this end, we first assume that P is Lipschitz so that

f̂(ξ) = inf

{∫
Q∩P

|ξ +∇w|2 dx : w ∈ H1
per(Q)

}
.

Fix ξ ∈ Rn; for any given η > 0, let wη ∈ H1
per(Q) be such that∫

Q∩P
|ξ +∇wη|2 dx ≤ f̂(ξ) + η.

Then

fδ(ξ) ≤
∫
Q

(χQ∩P (x) + δχQ\P (x))|ξ +∇wη|2 dx ≤ f̂(ξ) + η + δ

∫
Q\P
|ξ +∇wη|2 dx.

Thus (25) follows by letting δ tend to zero and by the arbitrariness of η > 0.

Finally, if P is not Lipschitz, the fact that f0 = f̂ can be recovered as in [5,
equation (44)] by approximating P with an increasing sequence of Lipschitz open sets
(Pm) invading P .

4. Dependence on the crack-opening. In the present section we prove the
main result of this paper, namely, Theorem 4. To this end, we need several ingredients
which are collected in the following lemmas.

Henceforth, without loss of generality, we restrict ourselves to the case Ω = Q; cf.
(27).

Lemma 11. Let (Uk) be a sequence of Borel subsets of Q such that χUk
⇀ θ

weakly* in L∞(Q) with θ ∈ (0, 1]. Let (uk), (vk) be two sequences in L1(Q) such that
uk = vk L2-a.e. in Uk. Then, if uk → u and vk → v in L1(Q), we have u = v L2-a.e.
in Q.

Proof. For every fixed k ∈ N, (uk − vk)χUk
= 0 L2-a.e. in Q. On the other hand

(uk − vk)χUk
⇀ (u − v)θ weakly in L1(Q), and then by virtue of the positivity of θ

we immediately infer that u = v L2-a.e. in Q.

The following lemma allows us to replace a converging sequence (uk) by a sequence
of functions vk, periodic and symmetric in the first variable, still converging to the
same limit, without essentially increasing the energy Fε.
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Lemma 12. Set ut := t χQ∩{x2>0} and let (uk) ⊂ L1(Q) be such that uk → ut
in L1(Q). Assume that (ε−1

k ) is a sequence of odd integers (so that Q is union of
periodicity cells). Then, for any fixed η > 0 there exists (vk) ⊂ L1(Q), εk-periodic
and symmetric in its first variable (i.e., vk(x1, x2) = vk(x1 + εk, x2) and vk(x1, x2) =
vk(−x1, x2) for every (x1, x2) ∈ Q) such that vk → ut in L1(Q) and

(26) lim inf
k→+∞

Fεk(uk) ≥ lim inf
k→+∞

Fεk(vk)− η.

Proof. Let Sik be the open strip (i εk/2, (i+ 1)εk/2)× (−1/2, 1/2) and let (λk) be
a sequence such that

λk → +∞ and sup
k

(
λk

∫
Q

|uk − ut|dx
)
≤ η.

Let ik ∈ Z be a solution to

min

{
Fεk(uk, S

i
k) + λk

∫
Si
k

|uk − ut|dx : i = −ε−1
k , . . . , ε−1

k − 1

}
,

where Fεk(uk, S
i
k) is defined as in (12). In order to define vk we first extend uk|Sik

k

to the strip ((ik − 1) εk/2, (ik + 1)εk/2) × (−1/2, 1/2) by reflection with respect to
x1 = ikεk/2; we denote by ũk such an extension. Then we extend ũk by εk-periodicity
in the x1-variable to the whole R× (−1/2, 1/2). Hence we call vk the latter extension.
Then, (26) holds true by definition of vk, while the penalization term also ensures
that vk → ut in L1(Q).

Lemma 15 below represents a key ingredient in the proof of Theorem 4 and is
a consequence of the elimination lemma [19, Lemma 0.7], which we recall for the
reader’s convenience.

Definition 13. Let V ⊂ Rn be open. We say that v ∈ SBV 2(V ) ∩ L∞(V ) is a
local minimizer for MS(·, V ) if MS(v,A) ≤ MS(w,A) for every open set A ⊂⊂ V ,
whenever w ∈ SBV 2(V ) ∩ L∞(V ) and {w 6= v} ⊂⊂ A ⊂⊂ V .

Lemma 14 (elimination property). Let V ⊂ Rn be open. There exists a dimen-
sional constant ϑ = ϑ(n) > 0, independent of V , such that if v ∈ SBV 2(V ) ∩ L∞(V )
is a local minimizer for MS(·, V ) and B2ρ(x̄) ⊂ V is any ball with center x0 ∈ V and
radius 2ρ with

Hn−1(Sv ∩B2ρ(x̄)) < ϑ(2ρ)n−1,

then u ∈ H1(Bρ).

Lemma 15. There exist two constants α, β > 0 with the following property: Let
u ∈ SBV 2(Q)∩L∞(Q) be symmetric in its first variable and such that MS(u, U) ≤ β,
where U := (−1/2, 1/2)× (−3/8, 3/8). Then there exists a function v ∈ SBV 2(Q) ∩
L∞(Q) still symmetric and such that

(i) v is constant in (−1/2, 1/2)× (−1/4, 1/4);
(ii) v = u in Q \ U ;
(iii) ‖v‖L∞(Q) ≤ ‖u‖L∞(Q);
(iv) α

∫
Q
|∇v|2 dx+H1(Sv ∩Q) ≤MS(u,Q).

Proof. We first substitute u with a solution w to the minimization problem

min
{
MS(w,Q) : w ∈ SBV 2(Q) ∩ L∞(Q), w = u in Q \ U

}
.
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A BRIDGING MECHANISM IN HOMOGENIZATION 1193

Fig. 4. The function v of Lemma 15.

We clearly have ‖w‖L∞(Q) ≤ ‖u‖L∞(Q). Since u is symmetric in x1, we can always
assume that w inherits the same property. Moreover, we can extend w by reflection
to (−3/2, 3/2) × (−1/2, 1/2) keeping the minimality with respect to all competitors
coinciding with u in (−3/2, 3/2) × ((−1/2, 1/2) \ (−3/8, 3/8)), where u is extended
by reflection, too. This allows us to apply the elimination property Lemma 14. More
precisely, let ρ ∈ (0, 1/8) be fixed and β := 2ρϑ, where ϑ = ϑ(2) is as in Lemma
14. If B2ρ(x̄) ⊂ (−3/2, 3/2) × (−3/8, 3/8), then our assumptions imply H1(Sw ∩
B2ρ(x̄)) ≤ β; hence in its turn the elimination property ensures that w ∈ H1(Bρ(x̄)).
By moving x̄ in (−3/2, 3/2)×[−3/8+2ρ, 3/8−2ρ], we infer that w ∈ H1((−1/2, 1/2)×
(−3/8+ρ, 3/8−ρ)).

The desired function v is finally obtained by means of a standard cut-off argument
(see Figure 4). Specifically, let ϕ be a smooth function defined on Q and depending
only on the second variable, with ϕ(x1, x2) = 1 for |x2| > 5/16 and ϕ(x1, x2) =
0 for |x2| < 1/4. We define v := (w−m)ϕ + m, where m is the mean value of
w on (−1/2, 1/2) × (−5/16, 5/16). Then (i)–(iii) hold by construction, while (iv)
follows by the Poincaré–Wirtinger inequality, recalling that w is a Sobolev function
in (−1/2, 1/2)× (−5/16, 5/16).

Remark 16. It is worth mentioning that the previous lemma can be generalized
to any dimension n with some β = β(n) (compare with Lemma 20 in section 5,
which is a purely two-dimensional argument). Moreover, by using the scaled functions
x 7→ u(εx)/

√
ε, Lemma 15 can be stated in the cube Qε up to replacing β by εn−1β.

We are now in a position to prove Theorem 4. By using approximate displace-
ments uk mimicking a “bridging effect” in the microstructure (see, e.g., Figure 5),
we will show that the surface energy density g0 depends on the crack-opening in a
nontrivial way.

Proof of Theorem 4. We start by noticing that in view of the symmetry of the
microgeometry the functionals Fε are invariant under 90-degree rotations. Then it is
immediate to check that g0(t, e1) = g0(t, e2) for every t ≥ 0. Thus it is enough to
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1194 M. BARCHIESI, G. LAZZARONI, AND C. I. ZEPPIERI

Fig. 5. The “bridging” sequence (uk). The discontinuity set Suk is given by the union of the
horizontal interface between the white and the dark gray zone and the vertical part of the boundary
of the light gray rectangles. The light gray rectangles (where uk is affine) are contained in the soft
inclusions and act as “bridging elements” in the deformed configuration.

prove (10) when i = 2. By Theorem 1 we have that

(27) g0(t, e2) = F (ut, Q), where ut := t χQ∩{x2>0}.

We divide the proof into two main parts.

Estimate from above. By (6) we immediately deduce that g0(t, e2) ≤ 1 for every
t > 0. Then, to prove that g0(·, e2) satisfies the estimate from above in (10), we
need to show that g0(t, e2) ≤ 3/4 +

√
2 t whenever t ≤ 1/(4

√
2). To this end, let

t ≤ 1/(4
√

2) and let R ⊂ R2 be the open rectangle defined as

R := (− 1
8 ,

1
8 )× (− t

4
√

2
, t

4
√

2
).

With this choice of t we also have R ⊂ Q1/4. Set

Rk := Q ∩ εk
⋃
i∈Z

(
R+ (i, 0)

)
and let (uk) ⊂ SBV 2(Q) be the sequence of “bridging” functions defined as

uk(x) :=


t if x ∈ Q \Rk and x2 ≥ 0,
t
2 + 2

√
2

εk
x2 if x ∈ Rk,

0 if x ∈ Q \Rk and x2 < 0

(see Figure 5). We clearly have uk → ut in L1(Q); moreover∫
Rk

|∇uk|2 dx ≤ (b 1
εk
c+ 1)

(
t√
2

)
and H1(Suk

) ≤ εk(b 1
εk
c+ 1)

(
3
4 + t√

2

)
.

Thus we readily deduce

g0(t, e2) = F (ut, Q) ≤ lim sup
k→+∞

Fεk(uk, Q) ≤ 3
4 +
√

2 t

and hence the estimate from above.

D
ow

nl
oa

de
d 

03
/2

9/
16

 to
 1

47
.1

22
.4

0.
20

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A BRIDGING MECHANISM IN HOMOGENIZATION 1195

Estimate from below. Let uk → ut in L1(Q); we want to prove that

(28) lim inf
k

Fεk(uk, Q) ≥ min{ 3
4 + c3t

2, 1}

for some c3 > 0.
The strategy of the proof is to show that the energy essentially concentrates in

a horizontal layer of thickness proportional to εk, giving a contribution controlled
from below as in (28); this is shown in Step 4. In order to prove this, we suitably
modify (uk) obtaining a new sequence (wk) that is Sobolev outside the layer as above
and whose gradient has equibounded L2-norm in the same layer. The construction
of the sequence (wk) is performed in Steps 1, 2, and 3 and is based on consecutive
modifications of (uk), which have the property of keeping the limit ut. Indeed, at
each step the sequence remains unchanged in “large” portions of each periodicity cell,
so that the convergence to ut is preserved thanks to Lemma 11. Moreover the various
modifications of (uk) are such that their energy changes in a way that can be suitably
controlled in terms of Fεk(uk, Q).

We start noticing that we may assume

(29) lim inf
k

Fεk(uk, Q) ≤ 1;

otherwise there is nothing to prove. Up to an extraction of a subsequence, we can ad-
ditionally assume that the liminf in (29) is actually a limit. In this way we can modify
the sequence (uk), possibly extracting further subsequences, keeping the estimates.

Since Fεk decreases by truncation, we can also suppose that 0 ≤ uk ≤ t in Q.
Moreover, we assume that ε−1

k is an odd integer and, in view of Lemma 12, that uk
is εk-periodic and symmetric in its first variable.

We divide the proof into four steps.

Step 1. Appealing to Lemma 15, in this step we modify uk, replacing it by
constant values in suitably chosen regions of the domain Q.

We decompose Q into squares of side-length εk by setting Qi,jεk := Qεk + pi,jk ,
where

pi,jk :=
(
− 1

2 + (i− 1
2 )εk,− 1

2 + (j − 1
2 )εk

)
, i, j ∈

{
1, . . . , 1

εk

}
.

We also consider the smaller squares Qi,jεk/4 := Qεk/4 + pi,jk and the strips

T jεk :=
(
(− 1

2 ,
1
2 )× (− εk2 ,

εk
2 )
)

+
(
0,− 1

2 + (j − 1
2 )εk

)
,

T jεk
2

:=
(
(− 1

2 ,
1
2 )× (− εk4 ,

εk
4 )
)

+
(
0,− 1

2 + (j − 1
2 )εk

)
.

Moreover, we define the sets Ri,jεk := εkR+ pi,jk (see Figure 6), where

R := ((−1/2, 1/2)× (−7/8, 7/8)) \Q1/4.

Let Jk ⊂ {2, . . . , ε−1
k − 1} be the set of indices j such that

MS(uk, R
1,j
εk

) ≤ βεk,

where β > 0 will be chosen later. Thanks to the periodicity of uk, for j ∈ Jk we have

MS(uk, R
i,j
εk

) ≤ βεk

for every i ∈ {1, . . . , ε−1
k }.
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1196 M. BARCHIESI, G. LAZZARONI, AND C. I. ZEPPIERI

Fig. 6. In gray the sets Qi,j
εk \ Q

i,j
εk/4

and Ri,j
εk . The dashed line indicates the boundary of the

translated square Qi,j
εk + (0, εk/2).

For β small enough, by scaling and translation (see also Remark 16) we can
apply Lemma 15 in each square Qi,jεk ± (0, εk/2), for i ∈ {1, . . . , ε−1

k } and j ∈ Jk,

thus obtaining a new sequence (vk) which is equal to (uk) (at least) in Qi,jεk/4 and is

constant in the translated strips T jεk/2 +(0, εk/2), T jεk/2−(0, εk/2) (the dark gray part

in Figure 7(a)). We call these two constant values bjk and ajk, respectively. Moreover,
Lemma 15 yields the existence of a constant α > 0 such that

(30) α

∫
Qk

|∇vk|2 dx+H1(Svk ∩Qk) ≤MS(uk, Qk),

where Qk := Q ∩ εkP is the stiff matrix; cf. (9). Note that vk = uk in Q \ εkP .
Due to the lack of control on ∇uk in the soft inclusions Q \ εkP , it is not obvious

that vk → ut in L1(Q). Then, to prove the desired convergence we employ a result
from [5], originally stated for perforated domains. In fact, by [5, Theorem 1] one can
find a sequence (v̄k) such that v̄k = vk in Qk and v̄k → ut strongly in L1(Q) (up to
subsequences not relabeled). Hence,∫

Q

|vk − ut|dx =

∫
Qk

|v̄k − ut|dx+

∫
Q\εkP

|uk − ut|dx→ 0,

and the convergence to ut is preserved.

Step 2. In this step we modify vk in each strip T jεk/2, for j ∈ Jk, by replacing it

with the affine interpolation between the values ajk and bjk.

Denote by vaff
k the function defined in

⋃
j∈Jk

T jεk/2 (light gray part in Figure 8(a))

which is constant in its first variable and is the affine interpolation between ajk and

bjk in its second variable. We set

ṽk :=

{
vaff
k in

⋃
j∈Jk

T jεk
2

,

vk otherwise in Q.
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A BRIDGING MECHANISM IN HOMOGENIZATION 1197

(a) (b)

Fig. 7. (a) In black the boundary of the set Ri,j
εk . The function vk is defined in Step 1 and

assumes constant values in each dark grey strip. (b) In light gray the intersection of εkP̂ with the

strips
⋃

j∈Jk
T j
εk/2
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1198 M. BARCHIESI, G. LAZZARONI, AND C. I. ZEPPIERI

(a) (b)

Fig. 8. (a) The function ṽk is defined in Step 2 and is affine in the light gray strips. (b) The
function wk is defined in Step 3; it assumes constant values in each dark gray strip and is affine in
the light gray strips. Note that the surface energy concentrates in the strip Li∗

εk
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A BRIDGING MECHANISM IN HOMOGENIZATION 1199

For each x1 ∈ (−1/2, 1/2) let Sjx1
be the vertical one-dimensional slice of T jεk/2 through

x1, i.e.,
Sjx1

:=
(
{x1} × [− εk4 ,

εk
4 ]
)

+
(
0,− 1

2 + (j − 1
2 )εk

)
.

By [2, Theorems 3.28, 3.107, and 3.108], for L1-a.e. x1 such that Sjx1
∩ Svk = Ø the

function vk(x1, ·) is absolutely continuous and therefore

|bjk − a
j
k| ≤

∫
Sj
x1

|∂x2
vk(x1, s)|ds.

Appealing to Jensen’s inequality, we get

(31)

∫
T j

εk
2

|∇vaff
k |2 dx = 2

εk
|bjk − a

j
k|

2 ≤
∫
Sj
x1

|∂x2
vk(x1, s)|2 ds

for x1 as above. Let

P̂ := R2 \
((⋃

i∈Z
(− 1

8 ,
1
8 ) + i

)
× R

)
;

we notice that the vertical one-dimensional slices of P̂ do not intersect any of the
soft inclusions. We now assume β ≤ 1/4, so that at least half of the vertical one-
dimensional slices in T jεk/2 ∩ εkP̂ (see Figure 7(b)) do not intersect Svk ; indeed

H1({x1 : Sjx1
⊂ εkP̂ and Sjx1

∩ Svk = Ø}) ≥ 3
4 − β ≥

1
2 ,

where we have used the fact that for j ∈ Jk

H1(Svk ∩ T
j
εk
2

∩ εkP̂ ) ≤ H1(Suk
∩ T jεk

2

∩ εkP̂ ) ≤ β.

Integrating (31) on {x1 : Sjx1
⊂ εkP̂ and Sjx1

∩ Svk = Ø} we find

1

2

∫
T j

εk
2

|∇vaff
k |2 dx ≤

∫
T j

εk
2

∩ εkP̂
|∇vk|2 dx.

Define
C :=

⋃{
T jεk : j ∈ Jk

}
and consider the open set A := int(C). By construction, we have

(32)
1

2

∫
A

|∇ṽk|2 dx ≤
∫
A∩εkP

|∇vk|2 dx.

We want to show that ṽk → ut in L1(Q). To this end we introduce the auxiliary
sequence (v̂k) defined as

v̂k :=

{
ṽk in A,

0 in Q \A.

Denote by L1
k, . . . , L

nk

k the connected components of Q \ A (see Figure 8(a)), enu-
merated going from the bottom to the top of Q. By definition of Jk, we have that

T 1
εk
⊂ L1

k and T
ε−1
k
εk ⊂ Lnk

k . Let J ck be the complement of Jk in {1, . . . , ε−1
k }. For

i ∈ {1, . . . , ε−1
k } and j ∈ J ck we have

MS(uk, R
i,j
εk

) > βεk.
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Thus, recalling that lim infk Fεk(uk) ≤ 1, for k large enough we deduce

(33) nk ≤ #J ck ≤
2Fεk(uk)

β
≤ 3

β
,

where #J ck denotes the number of elements of Jck and the prefactor 2 comes from
the partial superposition of the sets Ri,hεk . We clearly have (v̂k) ⊂ SBV 2(Q) with

discontinuities concentrated along the boundaries of Lhj . Gathering (30), (32), and
(33), we have that MS(v̂k, Q) is bounded. Therefore, appealing to the compactness
result [2, Theorem 4.8], we deduce that (v̂k) is precompact in L1(Q). Since by the
definition of v̂k

ṽk =

{
v̂k in A,

vk in Q \A,

we have that also (ṽk) is precompact in L1(Q). Further, since ṽk = vk on T jεk/2 ±
(0, εk/2), invoking Lemma 11 gives ṽk → ut in L1(Q).

Step 3. We now introduce the final sequence (wk) as a further modification of the
sequence (ṽk); specifically, we set wk := ṽk in A and define it in Q \ A as explained
below. We start observing that since

L2(Q \A) = εk#J ck ≤
3 εk
β
→ 0,

this last modification will keep the limit ut. Therefore we only need to check that we
can also control the energy along the new sequence in terms of Fεk(uk, Q).

We start defining wk in L1
k and Lnk

k . To this end let mk := minJk and Mk :=

maxJk and set wk := amk

k in L1
k and wk := bMk

k in Lnk

k . Since in this way we have
not added any new discontinuities, this first modification of ṽk does not increase the
energy.

Consider now an intermediate strip Lik, i ∈ {2, . . . , nk − 1}. Observe that here
ṽk = vk. By definition, Lik is adjacent to two strips T jεk and T j+hεk

for some j, j+h ∈ Jk
(see Figure 8(a)). If H1(Svk ∩ Lik) < 1/2, we argue as in Step 2 and define wk in Lik
as the affine interpolation between the values bjk and aj+hk , obtaining

(34)
1

4

∫
Li

k

|∇wk|2 dx ≤
∫
Li

k∩ εkP̂
|∇vk|2 dx.

If H1(Svk ∩Lik) ≥ 1/2, we simply set wk := vk in Lik. We notice that if there are two
or more strips Lik such that H1(Svk ∩ Lik) ≥ 1/2, then∫

Qk

|∇uk|2 dx+H1(Suk
∩Q) ≥ 1

and the lower bound (28) holds true. On the other hand, there must be at least one
such strip; otherwise, wk would be piecewise affine (thus Sobolev) in the whole Q, so
in view of (30), (32), and (34) we should get

α

4

∫
Q

|∇wk|2 dx ≤ Fεk(uk, Q)

and then deduce that (wk) converges weakly in H1(Q), thus violating the L1(Q)-
convergence to ut. Therefore, we can assume that there is precisely one index i∗ for
which H1(Svk ∩ Li

∗

k ) ≥ 1/2.
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A BRIDGING MECHANISM IN HOMOGENIZATION 1201

Summarizing, in this step we have defined a sequence (wk) that is piecewise affine

in Q \Li∗k (see Figure 8(b)). In particular wk = bjk in T jεk/2 + (0, εk/2) and wk = aj+hk

in T j+hεk/2
− (0, εk/2). Moreover, by construction wk → ut strongly in L1(Q).

Step 4. In this step we show that the energy of wk concentrates in the strip Li
∗

k

and provides us with a lower bound on Fεk(uk, Q) as in (28).

To this end, we start observing that since P̂ ⊂ P and wk = vk in Li
∗

k , for k large
enough (so that εk < α), by (30) we have

Fεk(uk, Q) ≥ α
∫
Li∗

k ∩εkP̂
|∇wk|2 dx+ εk

∫
Li∗

k \εkP̂
|∇wk|2 dx+H1(Swk

∩ Li
∗

k ).

Since j + 1, . . . , j + h− 1 ∈ J ck (see Figure 8(b)), similarly to (33), we get

(35) h− 1 ≤ 2H1(Swk
∩Q)

β
≤ 3

β
.

Moreover, since wk → ut strongly in L1(Q) and outside the strip Li
∗

k the function
wk is piecewise affine with gradient uniformly bounded in L2(Q;R2), necessarily Li

∗

k

converges to {x2 = 0} ∩Q in the sense of the Hausdorff distance and bjk − a
j+h
k → t

as k → +∞; hence in particular

(36)
∣∣bjk − aj+hk

∣∣ ≥ t
2

for k large enough. Comparing the bulk energy of wk in Li
∗

k ∩ εkP̂ with that of the

affine interpolation between the values bjk and aj+hk we get

(37)

∫
Li∗

k ∩εkP̂
|∇wk|2 dx ≥

(
3
4 −H

1(Swk
∩ Li

∗

k ∩ εkP̂ )
) |bjk − aj+hk

∣∣2
εk(h− 1)

.

Since
εk(h− 1) = L2(Li

∗

k ) ≤ L2(Q \A)→ 0,

gathering (29), (36), and (37) we have

(38) lim inf
k→+∞

H1(Swk
∩ Li

∗

k ∩ εkP̂ ) ≥ 3
4 .

We now estimate the energy in Li
∗

k \ εkP̂ . When we come to minimize

F̂ (wk) := εk

∫
Li∗

k \εkP̂
|∇wk|2 dx+H1(Swk

∩ (Li
∗

k \ εkP̂ )),

by an easy one-dimensional argument we find that in each connected component of
Li
∗

k \ εkP̂ the minimum is attained either at the affine interpolation between the two

constants or at a function that is piecewise constant, takes values in {bjk, a
j+h
k }, and

jumps along a horizontal line. Computing the energy of these two competitors leads
to the estimate

(39) F̂ (wk) ≥ min

{
|bjk − a

j+h
k

∣∣2
4(h− 1)

,
1

4

}
.
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1202 M. BARCHIESI, G. LAZZARONI, AND C. I. ZEPPIERI

Fig. 9. In darker gray, the reinforcement Ω \ εDε.

Hence, finally, combining (35)–(39) gives

lim inf
k

Fεk(uk) ≥ 3
4 + min

{
β
48 t

2, 1
4

}
= min

{
3
4 + β

48 t
2, 1
}

and thus (28) with c3 = β/48.
We now remove the assumption that ε−1

k is an odd integer. To this end, let
mk be the largest integer such that (2mk + 1)εk ≤ 1. Since Q(2mk+1)εk can be
decomposed into periodicity cells entirely contained in Q, we can repeat in Q(2mk+1)εk

the construction leading to the sequence (wk) . Finally, we extend wk by reflection in
the vanishing frame Q \Q(2mk+1)εk and conclude.

5. Homogenization of a fiber-reinforced brittle composite. The object of
this last section is the homogenization of a laminar composite made of a brittle con-
stituent reinforced by periodically distributed tougher fibers (see Figure 9). Although
from a modeling point of view this problem is quite different from the one analyzed
in the previous sections, we show that the same mathematical techniques apply also
in this case (with minor modifications) and lead again to a homogenized model of
cohesive type.

Let Ω be a bounded open subset of R2 with Lipschitz boundary. For any ε > 0
we consider the energy-functional Eε : L1(Ω)→ [0,+∞] defined as
(40)

Eε(u) :=


∫

Ω

|∇u|2 dx+H1(Su ∩ Ω ∩ εDε) +
1

ε
H1(Su ∩ (Ω \ εDε)) if u ∈ SBV 2(Ω),

+∞ otherwise in L1(Ω),

where

Dε := R2 \
⋃
i∈Z

(
Aε + (i, 0)

)
, Aε := (− ε2 ,

ε
2 )× R.

Here, Ω \ εDε (constituted by vertical strips of thickness ε2) models the so-called
fiber-reinforcement. Therefore, unlike the previous case, the two constituents Ω∩ εDε
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A BRIDGING MECHANISM IN HOMOGENIZATION 1203

and Ω \ εDε now differ in their toughness, while they share (for simplicity) the same
elastic modulus, equal to one; however, the same qualitative behavior described below
is retrieved when the two constituents have different elastic moduli (both independent
of ε).

We notice that following [4, 21] one could also model the tough fibers as a con-
stituent with infinite toughness (thus imposing a restriction on the location of the
jump set of the admissible displacements). We rather find it less artificial to model
the reinforcement as a material whose toughness diverges as ε tends to zero. Further,
in order to obtain a nontrivial limit model we require that the toughness be equal to
the inverse of the length-scale of the microstructure. Indeed, different choices lead to
a Γ-limit where the surface energy density either is identically equal to one or grows
linearly with the crack-opening. (This can be seen, for instance, arguing as in the
estimate from above in the proof of Theorem 17.) When the toughness equals 1/ε
we prove instead that the surface energy density depends on the crack-opening and
becomes constant when the crack-opening is large (see (43)).

The following result holds true.

Theorem 17. For every decreasing sequence of positive numbers converging to
zero, there exists a subsequence (εk) such that (Eεk) Γ-converges to a functional
E : L1(Ω)→ [0,+∞] of the form

(41) E(u) :=


∫

Ω

|∇u|2 dx+

∫
Su

g([u], νu) dH1 if u ∈ GSBV 2(Ω),

+∞ otherwise in L1(Ω),

where g : R× S1 → [0,+∞) is a Borel function satisfying the following properties:
(i) For any fixed ν ∈ S1, g(·, ν) is nondecreasing in (0,+∞) and satisfies the

symmetry condition g(−t,−ν) = g(t, ν); moreover, for every t 6= 0 and ν ∈ S1

(42) 1 ≤ g(t, ν) ≤ 2.

(ii) For every t > 0

(43) min{1 + ct2, 2} ≤ g(t, e2) ≤ min{1 + 2
√

2 t , 2}

for some c > 0. Hence in particular g(0+, e2) = 1 and g(t, e2) = 2 for t larger
than some t0 > 0.

We remark that (40) shares some similarities with the energy-functionals con-
sidered in [4, 21], where the authors analyze the asymptotic behavior of a brittle
material reinforced by a reticulated (connected) unbreakable structure, modeled as
a constituent with infinite toughness. In [4, Theorem 3.1] and [21, Theorem 2.2] it
is shown that a composite as above gives rise to a homogenized model of cohesive
type (with an activation threshold). Moreover, the effect of having (suitably cho-
sen) regions with infinite toughness is that the limit surface energy density grows
linearly in the crack-opening, which, however, is unsatisfactory from a physical point
of view. In this perspective, Theorem 17 provides us with a homogenized model which
is physically more relevant than the one obtained in [4, 21].

The proof of Theorem 17 closely follows those of Theorems 1 and 4, and for this
reason in the present section we give just a sketch of this proof detailing only the
parts which are substantially different.

Γ-convergence and integral representation. The Γ-convergence of the func-
tionals Eε can be derived also in this case by combining the localization method
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1204 M. BARCHIESI, G. LAZZARONI, AND C. I. ZEPPIERI

and the integral representation result [7, Theorem 1]. The main difference with the
previous case is that now we trivially have MS ≤ Eε, while Eε does not satisfy an
estimate from above in terms of the Mumford–Shah functional. Hence, to fully fit
the assumptions needed to apply the localization method of Γ-convergence, we set
E′′ := Γ-lim supε→0Eε and prove that E′′ ≤ 2MS. To this end, it is convenient to
introduce the following notation.

Let us fix an open rectangle R containing Ω and let W(R) be the space of all
functions w ∈ SBV 2(R) ∩ L∞(R) enjoying the following properties:

• Sw ⊂ L with L finite union of pairwise disjoint closed segments contained
in R;

• w ∈W 1,∞(R \ L).
Moreover, we denote by AL(Ω) the class of all open subsets of Ω with Lipschitz

boundary.
To obtain the desired estimate on E′′ we need the following approximation lemma,

which is a consequence of [16, Theorem 3.9].

Lemma 18. Let U ∈ AL(Ω) and let u ∈ SBV 2(U) ∩ L∞(U). Then u has an
extension v ∈ SBV 2(R) ∩ L∞(R) with compact support in R such that

H1(Sv ∩ ∂U) = 0,

and ‖v‖L∞(R) = ‖u‖L∞(U). Moreover, there exist a sequence (wj) ⊂ W(R) converging
to v in L1(R) and a sequence (Lj) of finite unions of pairwise disjoint closed segments
contained in R and such that Swj

⊂ Lj with the following properties:

‖wj‖L∞(R) ≤ ‖v‖L∞(R) = ‖u‖L∞(U),

∇wj → ∇v strongly in L2(R;R2), hence ∇wj → ∇u strongly in L2(U ;R2),

H1(Lj ∩ U)→ H1(Sv ∩ U) = H1(Su ∩ U).

Proof. To prove the first assertion we can use locally a reflection argument in
a curvilinear coordinate system for which the boundary is flat. The global ex-
tension can be obtained, as usual, through a partition of unity. Then, the ex-
istence of the approximating sequence (wj) is a consequence of the density result
[16, Theorem 3.9].

We are in a position to prove the following proposition.

Proposition 19. For every u ∈ SBV 2(Ω) ∩ L∞(Ω) and for every U ∈ AL(Ω)
we have

(44) E′′(u, U) ≤
∫
U

|∇u|2 dx+ 2H1(Su ∩ U).

Proof. We fix U ∈ AL(Ω); in view of Lemma 18 and of the locality of E′′ it is
enough to prove

E′′(u, U) ≤
∫
U

|∇u|2 dx+ 2H1(L ∩ U)

for u ∈ W(R).
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A BRIDGING MECHANISM IN HOMOGENIZATION 1205

We want to construct a sequence (uk) ⊂ SBV 2(U) converging to u in L1(Ω) and
such that

lim sup
k→+∞

Eεk(uk, U) ≤
∫
U

|∇u|2 dx+ 2H1(L ∩ U).

Since U has Lipschitz boundary, we can slightly modify u near each connected com-
ponent of Su to find an L that intersects ∂U in a finite number of points. This can
be done, for instance, by slightly shifting these connected components taking into
account the area formula for ∂U .

Now we explicitly construct (uk) when L is a single closed segment; then, the
general case follows easily. Let ν ∈ S1 denote the normal to L. We need to distinguish
two cases.

Case 1. ν = e1; i.e., L is a vertical segment.

To fix the ideas let c ∈ R and suppose that L ⊂ {x1 = c}. Let R′ be an
open rectangle such that Ω ∪ L ⊆ R′ ⊂⊂ R. In this case we obtain uk as a suitable
translation of u. The latter is needed in order to prevent the possibility that L entirely
falls in a tough vertical fiber, thus paying too much in energy. To this end, for k large
enough and for x ∈ R′ we set

uk(x) := u
(
x+

(
c−

⌊ c
εk

⌋
εk − ε2

k

)
e1

)
so that Suk

is contained in the vertical line x1 = b cεk cεk+ε2
k. Hence, (uk) ⊂ SBV 2(R′),

Suk
∩ Ω ⊆ Ω ∩ εkDεk , uk is bounded in L∞(R′), uk → u in L1(Ω). Moreover,

lim
k→+∞

Ek(uk, U) = lim
k→+∞

∫
U

|∇uk|2 dx+H1(Suk
∩ U ∩ εkDεk)

≤
∫
U

|∇u|2 dx+H1(L ∩ U),

which gives the desired estimate in this case.

Case 2. ν 6= e1.

Let ϑ be the angle (measured anticlockwise) between e1 and ν⊥; thanks to the
symmetries of the problem, it is enough to consider the case 0 ≤ ϑ < π/2.

Let Nk ∈ N be the number of tough fibers intersecting L∩U ; notice that since L
intersects ∂U in a finite number of points, we have

(45)
εk

cosϑ
Nk ≤ H1(L ∩ U) + o(1) as k → +∞.

Then, setting uk := u for every k ∈ N, in view of (45) we find

lim
k→+∞

Ek(uk, U)

= lim
k→+∞

(∫
U

|∇uk|2 dx+H1(Suk
∩ U ∩ εkDεk) +

1

εk
H1(Suk

∩ (U \ εkDεk))

)
=

∫
U

|∇u|2 dx+ lim
k→+∞

(
Nk

εk
cosϑ

+
1

εk
Nk

ε2
k

cosϑ

)
≤
∫
U

|∇u|2 dx+ 2H1(L ∩ U),

and thus we prove the thesis.
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Thus by virtue of Proposition 19, arguing as in section 3 we can deduce that Eε
Γ-converges to the functional E as in (41). We also remark that the bound from above
in (42) follows from (44) choosing

u(x) =

{
t if x · ν > 0,

0 if x · ν ≤ 0,
and U = Q.

Dependence on the crack-opening. We now turn to the proof of Theo-
rem 17(ii). We start by proving the estimate from above in (43).

Estimate from above. We want to show that g(t, e2) ≤ 1 + 2
√

2 t. To this end, let
Rε ⊂ Aε be the open rectangle defined as

Rε := (− ε2 ,
ε
2 )× (− t

2
√

2
, t

2
√

2
).

Set
Rk := Q ∩ εk

(⋃
i∈Z

Rεk + (i, 0)
)

and let (uk) ⊂ SBV 2(Q) be the sequence of functions defined as

uk(x) :=


t if x ∈ Q \Rk and x2 ≥ 0,

t

2
+

√
2

εk
x2 if x ∈ Rk,

0 if x ∈ Q \Rk and x2 < 0

(see Figure 10). We clearly have uk → ut in L1(Q); moreover∫
Rk

|∇uk|2 dx ≤ εk(b 1
εk
c+ 1)(

√
2 t) and H1(Suk

) ≤ εk(b 1
εk
c+ 1)(1 +

√
2 t).

Since Suk
⊂ Q ∩ εkDεk , we readily deduce

g(t, e2) = E(ut, Q) ≤ lim sup
k→+∞

Eεk(uk, Q) ≤ 1 + 2
√

2 t

and hence the estimate from above.

Estimate from below. We now discuss the more delicate estimate from below in
(43). Here we follow the steps of the proof of Theorem 4, from which we borrow some
notation.

We notice that in this case the consecutive modifications of a sequence with
equibounded energy are in general easier with respect to those in Theorem 4. For
instance, since Eε is bounded from below by the Mumford–Shah functional, now
we can readily deduce that the (analogues of the) two sequences (vk) and (ṽk) are
precompact in SBV 2(Q). On the other hand, in the present case, when we come
to define (the analogue of) vk we cannot directly apply Lemma 15. Indeed, to keep
the control on the energy of vk, now we need to avoid the introduction of new jumps
falling in the reinforced fibers. For this reason we need a suitably improved variant
of Lemma 15.

The following lemma is a slight modification of the patching lemma [4, Lemma
3.3], to which we refer for an idea of the proof, and it holds true in dimension two
only.
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A BRIDGING MECHANISM IN HOMOGENIZATION 1207

Fig. 10. The optimal sequence uk.

Lemma 20. There exist two constants α, β > 0 with the following property: Let
u ∈ SBV 2(Q) ∩ L∞(Q) be symmetric in the first variable and such that H1(Su ∩
U) ≤ β, where U := (−1/2, 1/2) × (−3/8, 3/8). Then there exists a function v ∈
SBV 2(Q) ∩ L∞(Q) still symmetric and such that

(i) v is constant in (−1/2, 1/2)× (−1/4, 1/4);
(ii) v = u in Q \ U ;
(iii) ‖v‖L∞(Q) ≤ ‖u‖L∞(Q);
(iv) α

∫
Q
|∇v|2 dx ≤

∫
Q
|∇u|2 dx;

(v) Sv ⊂ Su.

On account of Lemma 20 we are now ready to show that for any given (uk) ⊂
SBV 2(Q) such that uk → ut in L1(Q), we have

(46) lim inf
k

Eεk(uk) ≥ min{1 + ct2, 2}

for some c > 0.
We may assume that lim infk Eεk(uk) ≤ 2; otherwise there is nothing to prove.

As in Theorem 4, we can additionally assume that the liminf is actually a limit,
that 0 ≤ uk ≤ t in Q, that ε−1

k is an odd integer, and, in view of Lemma 12, that
uk is εk-periodic and symmetric in its first variable. Also the general strategy of
the proof remains the same: we are going to modify (uk) obtaining two intermediate
sequences (vk) and (ṽk) and then finally the more regular sequence (wk) whose energy
concentrates in a horizontal layer of thickness proportional to εk.

Let Ri,jεk := εkR + pi,jk , where R := (−1/2, 1/2) × (−7/8, 7/8), and let Jk ⊂
{2, . . . , ε−1

k − 1} be the set of indices j such that

H1(Suk
∩R1,j

εk
) ≤ β.

Therefore, proceeding as in Theorem 4, Step 1, we may now appeal to Lemma 20
to define a new sequence (vk) without introducing any new jumps, thus keeping the
control on the energy. Moreover, since Eε ≥ MS the sequence (vk) is precompact in
SBV 2(Q).
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Then, arguing as in Theorem 4, Step 2, we further modify (vk) constructing a new
sequence (ṽk). We also get the analogue of (32), with the only difference that now
we take into account all of the vertical one-dimensional slices and not only a subset
of them.

Afterward, we modify (ṽk) in those strips Lik such that H1(Svk ∩Lik) < 3/4, thus
obtaining the final sequence (wk). The latter is defined replacing ṽk by a suitably cho-
sen affine function, as in Theorem 4, Step 3. As before, the strong L1(Q)-convergence
to ut is preserved.

We notice that in this case there is at least one strip Lik such that H1(Svk ∩Lik) ≥
3/4 (otherwise wk would be a Sobolev sequence with gradient uniformly bounded
in L2(Q;R2), thus violating the convergence to ut). Moreover, if there are three or
more of such strips, then H1(Suk

∩ Q) ≥ 2 and the lower bound (46) holds trivially
true. We are then left with the case where there are one or two strips such that
H1(Svk ∩ Lik) = H1(Swk

∩ Lik) ≥ 3/4. Since wk → ut strongly in L1(Q), at least in
one of the two strips as above we have∣∣bjk − aj+hk

∣∣ ≥ t
3

for k large enough. We denote this strip by Li
∗

k . As in Theorem 4, Step 4, we now
estimate from below Eεk(uk, Q) with the energy of wk in Li

∗

k . We find

Eεk(uk, Q) ≥ α
∫
Li∗

k

|∇wk|2 dx+H1(Swk
∩Li

∗

k ∩ εkDεk) +
1

εk
H1((Swk

∩Li
∗

k ) \ εkDεk),

where α is the constant given by Lemma 20.
Comparing the bulk energy of wk in Li

∗

k ∩ εkDεk with that of the affine interpo-

lation between the values bjk and aj+hk and using the same argument as in (37) we
obtain

lim inf
k→+∞

H1(Swk
∩ Li

∗

k ∩ εkDεk) ≥ 1.

On the other hand, comparing the energy of wk in Li
∗

k \ εkDεk with that of the affine

interpolation and of the piecewise constant function taking values in {bjk, a
j+h
k } we

get

α

∫
Li∗

k \εkDεk

|∇wk|2 dx+
1

εk
H1((Swk

∩ Li
∗

k ) \ εkDεk) ≥ min

{
α|bjk − a

j+h
k

∣∣2
(h− 1)

, 1

}
.

Gathering the previous inequalities and the analogue of (35) gives

lim inf
k

Eεk(uk) ≥ min
{

1 + αβ
27 t

2, 2
}
,

whence (46) follows. This concludes the proof of Theorem 17.
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