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Abstract

Over the last three decades, atom interferometry has been developed rapidly and

has become an important tool in quantum metrology. It has been widely applied

both in the test of fundamental physics and in the precise measurement of gravity

and gravity gradients.

Atom interferometers based on the alkaline-earth (like) atoms such as stron-

tium (Sr) and ytterbium (Yb) have attracted increasing attention due to the

existence of narrow intercombination transitions and ultra-narrow clock transi-

tions. The bosonic 88Sr is a good candidate for transportable and space-borne

atom interferometers due to the immunity to stray magnetic fields in its elec-

tronic ground state, long coherence time and low collision rate. It can therefore

be used in space projects for precision measurement of gravity and gravity gra-

dients. However, there is a fundamental limit to the precision in a phase shift

measurement with atom interferometers, which is set by the number of atoms

involved δΦSQL = 1/
√
N . This limit is known as the standard quantum limit.

It is possible to surpass this limit by introducing correlations in the atomic en-

sembles thus reducing the phase uncertainty at the expense of an increase in the

population uncertainty. In this case the spin-squeezed states are generated and

can be used to improve the phase resolution of atom interferometers.

In this thesis, a method to generate spin squeezed states in 88Sr momentum

states for atom interferometry is considered and the necessary technology that

allows its implementation will be presented. Spin squeezing is achieved by resolv-

ing the Doppler effect due to momentum state superposition via cavity-enhanced

nondestructive measurement. An optical ring cavity is designed and constructed

for quantum nondestructive measurements. However, one major obstacle that

blocks the way to spin squeezing via cavity-enhanced measurement arises from

cavity length fluctuations, which can totally mask the atomic signal if no ap-

propriate scheme is adopted. Therefore, a method to cancel the cavity length

fluctuations in measuring the atom-induced phase shift is proposed and close to

30 dB reduction of the cavity noise down to the noise floor has been demonstrated.

We further apply the demonstrated noise-reduced measurement scheme in the

simulated squeezing experiment, where we mimic the atom-induced cavity phase

shift by varying the frequency of one of the two circulating beams. The noise

cancellation scheme demonstrates an improvement of a factor of 40 in phase sen-

sitivity with a phase resolution of 0.7 mrad. With this improvement we estimate

that the cavity noise will no longer play an important role in a real spin squeezing

measurement.
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Chapter 1

Introduction

Atom interferometry (AI) [1], since the first experimental realization some 30

years ago [2], has been developed rapidly and finds applications in various fields [3].

It has stimulated a new generation of quantum sensors with unprecedented pre-

cision, in measuring gravity acceleration [4, 5], gravity gradients [6, 7], gravity

curvature [8] and rotations [9, 10]. It provides also an excellent tool for testing

fundamental physics by measuring the Newtonian gravity constant G [11, 12, 13],

the fine-structure constant α [14, 15] and for testing the equivalence princi-

ple [16, 17, 18, 19]. Furthermore, it paves the way for the search of new physics

beyond the Standard Model, with heralded potential in the detection of gravita-

tional waves [20] and dark matter [21].

Atom interferometers with ultra-cold alkaline-earth (-like) atoms such as Sr

and Yb have attracted more attention in the last decade due to their exotic

atomic properties and promising advantages in quantum metrology. Ultra-cold

bosonic 88Sr, for example, has zero nuclear spin in the ground state which makes

it immune to ambient magnetic field fluctuations. With this advantage it be-

comes a prominent candidate for transportable [22] or space-borne sensors [23]

since no magnetic shield is needed. The extremely long coherence time of Sr in

an optical lattice [24, 25] has enabled the quantum sensor to reach a sensitivity

unprecedented by its alkaline counterparts like Rb and Cs. The large-momentum-

transfer technology based on Bragg diffraction [26, 27] also demonstrates, in some

cases, superior performance compared to the traditional AI with two-photon Ra-

man transition. Moreover, the famous clock transition existing in alkaline-earth

(-like) atoms like Sr and Yb with a sub-Hz narrow linewidth, which has already

been explored intensively and matured in the optical lattice clock and frequency

standard community [28, 29], has triggered the so-called single-photon interfer-

ometer [30, 31, 32] which is by nature insensitive to the laser phase noise and has

a potential in the detection of mid to low frequency gravitational waves [33, 34].

1



2 Introduction

1.1 Atom interferometer beyond the SQL

The ultimate aim for an atom interferometer is the estimation of a phase shift [35].

In fact, an atom interferometer is a device that converts the phase information

into a measurable atom population, where the quantity of interest (gravity accel-

eration, gradient, etc.) is embedded in this accumulated phase. However, there

is a fundamental limit to the sensitivity of phase estimation which is set by the

number of atoms involved,

δΦSQL =
1√
N
, (1.1)

where N is the number of atoms. This limit is known as the standard quantum

limit (SQL) [36]. Here the N uncorrelated atoms are assumed to be in the

coherent spin state (CSS) [37]. However, if correlation is introduced among the

atoms and thus entanglement forms, it is possible to create the so-called spin

squeezed state (SSS) [38, 39], which has a reduction in the phase uncertainty

at the expense of an increase in the atom number uncertainty. With SSS it is

possible to achieve a phase resolution beyond the SQL and ultimately approach

the Heisenberg limit (HL) [40],

δΦHL =
1

N
. (1.2)

There are several methods to generate spin squeezed states useful for quantum

metrology, which can be categorized into atom-light interactions and atom-atom

collisions [37]. Atom-light interactions, of which the effect can be significantly

enlarged by optical resonators, currently represents one of the most successful

methods for producing large amounts of squeezing and entanglement in atomic

ensembles [35]. This method relies on the non-destructive measurement of the

collective atomic states instead of the single atomic state, while essentially pre-

serving the coherence of the atomic ensemble. The optical resonators, through

which the light interacts with the atomic ensemble multiple times and amplify

the accumulated phase shift, can reach a metrological gain given by the collective

cooperativity [41] Nη, where N is the number of atoms and η is the single-atom

cooperativity, which is proportional to the finesse of the cavity.

The direct consequence of using spin squeezing in atomic sensors is the metro-

logical enhancement, which is given by the Wineland parameter [39].

ξ2
R =

(∆φ)2

(∆φ)2
CSS

, (1.3)

where ∆φCSS = 1/
√
N is the phase resolution of the CSS (standard quan-

tum limit). Experiments have demonstrated metrologically useful spin squeez-

ing through quantum non-demolition (QND) measurements with alkaline atoms
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Cs [42, 43] in free space and Rb [44, 45, 46] with the aid of an optical cavtiy.

Metrological gain up to 20 dB with respect to the standard quantum limit is

achieved [45]. Recently, experiments in alkaline earth (-like) atoms Yb [47, 48]

and Sr [49, 50] have reported prominent results with large spin squeezing in the

operation as an optical clock.

This thesis is focused on the design, construction and commissioning of a new

experimental apparatus for the realization of a Sr atom interferometer with a

phase resolution beyond the SQL with spin squeezed states [51, 52]. The aim is

to generate SSSs for a Bragg diffraction-based Sr atom interferometer by resolv-

ing the collective population difference between two momentum states through

the Doppler effect. To this end, an optical ring cavity is built to perform non-

destructive measurement for the generation of spin squeezed states. An optical

ring cavity in this case, provides a versatile tool since it allows for the manipula-

tion of both the atomic external states, as well as the internal states. Moreover,

this cavity scheme allows for the presence of two counter-propagating beams that

function as probe and reference, thus allowing the implementation of a differential

scheme where the common-mode cavity noise can be canceled.

One important obstacle in obtaining highly spin-squeezed states with cavity-

aided non-demolition measurement is the cavity length fluctuations. Since the

measurement of the atomic state can be enclosed into the measurement of a cav-

ity resonance phase shift, the cavity length-induced phase shift can completely

mask the atom-induced phase shift, in which case no valuable information can

be gained. In this thesis, a new method is proposed to cancel the effect of

cavity-length fluctuations by using two counter-propagating beams that func-

tion as probe and reference, in this differential scheme the common-mode cavity

length fluctuations can be canceled. Experiments have demonstrated close to

30 dB reduction in the cavity length fluctuations down to the noise floor and a

factor of 40 improvement in the phase resolution. With this improvement one

important barrier against obtaining highly spin squeezed states is removed [53].

1.2 Contribution to the single-photon Sr atom

interferometer

Apart from the spin squeezing activity presented in this thesis, I have also worked

on the single-photon Sr atom interferometer project together with Dr. Liang Hu

during the first part of the PhD fellowship and contributed to the publication [31].

My personal contribution focused on the update and optimization of the exper-

imental apparatus and the exploration of the single-photon atom interferometer
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based on fermionic 87Sr atoms. For consistency, this part of work is not presented

in the main text of this thesis, but is briefly introduced here.

Most previous light-pulse atom interferometers have relied on multi-photon

transitions to generate the superposition of momentum states required for sensi-

tivity to inertial forces. These transitions, driven by Raman or Bragg beams, in-

volve stimulated emission and absorption processes from two counter-propagating

laser beams, which imprint their relative phase difference on the interacting

atoms [1]. Due to the finite speed of light, however, atoms at different spa-

tial positions will interact with light emitted from the interferometric lasers at

different times, meaning that any laser phase fluctuations on this timescale will

be transferred to the interferometer and will not cancel even in a gradiometeric

scheme [33, 54]. For laboratory scale experiments the resultant phase error is neg-

ligibly small, but for proposed long-baseline experiments, this noise term could

begin to dominate [34, 54]. One potential application which would be affected by

this noise is gravitational wave detection, where in order to attain the necessary

instrument sensitivity, long baselines are usually employed, as for example in the

LISA detector which is designed for a 2.5× 106 km arm length [55].

Nevertheless, atom interferometers based on multi-photon transitions have

been proposed as a means of detecting gravitational waves, both in space-based

and in ground-based applications [34, 56, 55, 57], although they will be severely

affected by this noise at large scales. In our work, in contrast, we study a novel

atom interferometer based on the single-photon clock transition of atomic stron-

tium (1S0-3P0), where this problem is absent. As the phase of the interacting

photon is set at the point of emission from the laser, and does not acquire noise

in the vacuum path between the two sensors, the common laser phase noise does

not appear at the output of a single-photon gradiometer [34, 54].

In this work, we characterize the performance of a gravimeter and a grav-

ity gradiometer based on the 1S0-3P0 clock transition of strontium atoms. We

use this new quantum sensor to measure the gravitational acceleration with a

relative sensitivity of 1.7 × 10−5 after 150 s of integration time, representing

the first realisation of an atomic interferometry gravimeter based on a single-

photon transition. Various noise contributions to the gravimeter are measured

and characterized, with the current primary limitation to sensitivity seen to be

the intrinsic noise of the interferometry laser itself. In a gravity gradiometer con-

figuration, a differential phase sensitivity of 1.53 rad/
√

Hz was achieved at an

artificially introduced differential phase of π/2 rad. We experimentally investi-

gated the effects of the contrast and visibility based on various parameters and

achieved a total interferometry time of 30 ms, which is longer than previously re-

ported for such interferometers. The characterization and determined limitations
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of the present apparatus employing 88Sr atoms provides a guidance for the future

development of large-scale clock-transition gravimeters and gravity gradiometers

with alkali-earth and alkali-earth-like atoms (e.g. 87Sr, Ca, Yb, Cd).

1.3 Organization of thesis

The rest of the thesis is organized as follows.

Chapter 2 presents the theoretical background of quantum metrology with

spin squeezed states. The Bloch sphere representation is utilized to visualize

collective spin states and the noise distributions of coherent spin states and spin

squeezed states. The phase resolution of Ramsey interferometers with coherent

spin states and spin squeezed states are derived and the relationship between

spin squeezing and entanglement is explored. Finally, various approaches for

the generation of spin squeezed states are reviewed and the main experimental

achievements are cited.

Chapter 3 focuses on the proposal of squeezing on the momentum states in Sr

atom interferometry. The basic properties and laser cooling and trapping of Sr

atoms are introduced. The working principle of atom interferometry is studied

and the derivation of the phase shift for different types of atom interferometers

are presented. Finally the theoretical proposal for using spin squeezed states in

Sr atom interferometer to surpass the SQL is discussed, which lies the foundation

of this thesis.

Chapter 4 presents in detail the procedures of building an optical ring cav-

ity. The considerations for cavity design are reviewed and the basic properties

of optical cavities are introduced. Then the procedures and the first-hand expe-

rience in cavity construction are recorded, including cavity mirror manipulation,

ring cavity alignment, cavity components epoxying, etc. This chapter provides a

tutorial-like reference for people who want to build an optical cavity for general

experimental purpose.

Chapter 5 presents the experimental apparatus for laser cooling and squeezing

detection. The vacuum systems for Sr cooling and trapping and the science

chamber which holds the experimental ring cavity are presented. Then various

laser systems used in the experiments are discussed and a homemade optical

shutter is built. Finally, a detection system developed specifically for the detection

of light in the spin squeezing experiment is presented, which features a high gain

and low noise.

Chapter 6 presents a novel cavity noise cancellation scheme for precise phase

shift measurement and spin squeezing. The theoretical model for canceling the

cavity-length fluctuations in measuring a cavity phase shift is developed. Two
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laser beams with a frequency difference of one cavity free spectral range are

simultaneous resonant with the cavity, demonstrating noise correlation in the

Pound-Drever-Hall error signal due to the common-mode cavity-length fluctu-

ations. Experimental results show that the scheme reduces the cavity-length

fluctuations by 30 dB down to the noise floor. The scheme is further applied onto

a simulated spin squeezing experiment which shows an improvement in phase

resolution by a factor of 40. The proposed scheme removes one important barrier

against attaining highly spin-squeezed states.

Chapter 7 concludes the contents of this thesis and presents some prospects

for future work.



Chapter 2

Quantum metrology with spin

squeezed states

In this chapter, the theoretical background of spin squeezing in atom interfer-

ometry is discussed. An atom interferometer is a device that converts the accu-

mulated relative phase into an atomic population difference, the phase resolution

with uncorrelated atoms has a lower bound given by the standard quantum limit,

which is imposed by the number of atoms involved. However, by introducing

correlation or entanglement among the atoms thus producing the spin squeezed

states, it is possible to surpass the SQL and reach a phase sensitivity approach-

ing the Heisenberg limit. Various approaches have been proposed and used to

generate the SSSs, among them the quantum non-demolition measurement is one

of the most successful. QND measurements enhanced by optical cavities have

demonstrated so far the largest amount of spin squeezing in atomic ensembles.

2.1 Description of collective spin systems

In this first section the tools and methods to describe collective spin systems are

introduced [35, 58]. An atom or an atomic ensemble can be modeled as two-

level systems, which can be represented by a single spin or collective spins on a

Bloch sphere. The evolution of the atomic states under interaction with external

electromagnetic radiations can be described by a rotation of the spin states on

the Bloch sphere.

2.1.1 Single spin

When the two-level approximation holds for an atom, the two levels can be asso-

ciated with spin down |↓〉 and spin up |↑〉 states. The two modes can either be the

7
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Figure 2.1: Bloch sphere representation of an atomic state. The Bloch vector (red

arrows) can be fully parameterized by the polar and azimuthal angles θ and φ. (a)

Single spin with radius of 1/2; (b) collective spins with N spin-1/2 particles pointed at

the same direction, the shade area shows the uncertainty region.

atomic internal electronic energy levels (|g〉 for ground state and |e〉 for excited

state), or the external momentum states. In the Bloch sphere representation, a

single atom is a spin-1/2 particle, which is an arrow of radius 1/2 and with the

tip on the surface of the sphere. This arrow is also called the Bloch vector.

More generally, any pure state on the Bloch sphere can be written as,

|θ, φ〉 = cos

(
θ

2

)
|↑〉+ eiφ sin

(
θ

2

)
|↓〉 , (2.1)

with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π the polar and azimuthal angle, respectively,

as shown in Fig. 2.1 (a). The physical significance of θ and φ are related to the

amplitude probability and the relative phase between |↑〉 and |↓〉, respectively.

The Bloch vector can also be parameterized by,

ĵ = jxx̂+ jyŷ + jz ẑ, (2.2)

with ji ≡ 〈ĵi〉, i ∈ {x, y, z}, where 〈 〉 denotes the expectation value. ĵi is the spin

operator which is directly proportional to the Pauli spin operators as ĵi = σ̂i/2,

where,

σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0

0 −1

)
. (2.3)

We can also define the mean spin vector,

~n = 〈σ̂〉 = {sin θ cosφ, sin θ sinφ, cos θ} (2.4)
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with |~n| = 1. By these definitions the Bloch sphere is normalized and the z

component of the Bloch vector jz = (P↑ − P↓)/2 is equal to the difference of

probability amplitude between the two states.

2.1.2 Collective spins

In a real experiment, usually an atomic ensemble of 104-106 atoms is used. There-

fore, we consider the collective spin states with N indistinguishable spin-1/2 par-

ticles. We introduce the collective spin vector,

Ĵ = {Ĵx, Ĵy, Ĵz}, (2.5)

where,

Ĵx =
1

2

N∑
l=1

σ̂(l)
x , Ĵy =

1

2

N∑
l=1

σ̂(l)
y , Ĵz =

1

2

N∑
l=1

σ̂(l)
z , (2.6)

and σ̂
(l)
i is the Pauli vector of the lth particle.

In the Hilbert space, the collective spin operator Eq. (2.6) has a dimension of

2N , where each individual spin can have an independent orientation. One possible

choice of the basis of the 2N dimension Hilbert space is the symmetric Dicke basis

|J,m〉 [59, 60], which are the eigenstates of both Ĵz and Ĵ2,

Ĵ2 |J,m〉 = J(J + 1) |J,m〉 , (2.7a)

Ĵz |J,m〉 = m |J,m〉 , (2.7b)

with J ∈ {N/2, N/2− 1, ...} the pseudo-spin vector length which is proportional

to the atom number, and m ∈ {−J,−J + 1, ...,+J} is related to the number of

excitations.

One often assumed simplification is exchange symmetry among all the atoms

[58], which is physically motivated since in many experiments all operations done

with the atomic ensemble affect each spin in the same way. Under exchange

symmetry the dimension of the Hilbert space is reduced to N + 1, which will

linearly increase with the number of the atoms. Also in this case, the maximum

total spin length J = N/2 is obtained. In the following, unless otherwise stated,

we will assume that the maximal spin system is considered.

There are some important features of the collective spin operators Eq. (2.6).

First, since the Pauli matrix σ̂
(l)
z is given by |↑l〉 〈↑l| − |↓l〉 〈↓l|, the collective spin

operator Ĵz can also be expressed as the population difference as,

Ĵz =
N̂↑ − N̂↓

2
, (2.8)
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where N̂↑ =
∑N

l=1 |↑l〉 〈↑l| and N̂↓ =
∑N

l=1 |↓l〉 〈↓l| are the collective atomic pop-

ulation operators for spin up and spin down, respectively, and can be easily

measured via fluorescence detection or other methods.

Second, the collective spin operators obey the angular momentum commuta-

tion relations,

[Ĵx, Ĵy] = iĴz, [Ĵz, Ĵx] = iĴy, [Ĵy, Ĵz] = iĴx, (2.9)

which lead to a Heisenberg uncertainty relationship between ∆Jz and ∆Jy given

by,

∆Jz∆Jy ≥ |Jx|/2, (2.10)

where (∆Jz)
2 = 〈Ĵz

2
〉 − 〈Ĵz〉

2
is the variance of the measurement outcomes of

the spin projection Jz for many identical preparations and measurements of the

same collective spin state. This uncertainty in Jz can also be interpreted as the

randomness of projection when each atom is measured, as depicted by the shade

area in Fig. 2.1 (b). To be noticed, the uncertainty relationship like Eq. (2.10) is

completely general and does not rely on any assumption of the orientation of the

collective spin.

2.1.3 Collective rotations and phase estimation

Any unitary transformation of a single spin is a rotation e−i(θ/2)σ̂n on the Bloch

sphere, where n is an arbitary spin direction and the rotation axis and θ is the ro-

tation angle, respectively. With N spins, each locally rotated about the same axis

n and angle θ, the transformation is
⊗N

l=1 e
−i(θ/2)σ̂

(l)
n = e−iθĴn [35]. This collective

rotation is the idealized model of most of the interferometric transformations dis-

cussed in this chapter. In the collective spin language, a balanced beam splitter is

described by e−i(π/2)Ĵx and a relative phase shift by e−iθĴz . Combining the three

transformations,

e−i(π/2)Ĵxe−iθĴze−i(π/2)Ĵx = e−iθĴy , (2.11)

the whole interferometer sequence (Mach-Zehnder or Ramsey) is equivalent to a

collective rotation around the y axis on the generalized Bloch sphere of maximum

radius N/2.

When an interferometric measurement is performed with a single particle,

the phase estimation is limited by the quantum projection noise (QPN). To see

how this arises, we recall that in the interferometer one can arrange a situation

where the phase shift is measured through the relation ∆φ ' P↓ − P↑ ∝ 〈Ĵz〉
. The uncertainty of this measurement is therefore given by the variance of the
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operator, (∆Ĵz)
2. The phase resolution in the presence of quantum projection

noise can be computed as,

δ(∆φ) =
∆Jz

|∂〈Jz〉
∂∆φ
|
. (2.12)

This expression is important in determining the limit of phase estimation in the

following sections.

2.2 Coherent spin states and the standard quan-

tum limit

Coherent spin states are the most classical-like quantum states of a symmetric

ensemble of N spin-1/2 particles. In this section the definition of CSS is given

and the representations both in the Bloch states |θ, φ〉 and the Dicke states |J,m〉
are discussed. The probability distribution of CSS is shown on the Bloch sphere

and the limit of phase resolution with CSS is derived, which is known as the

standard quantum limit.

2.2.1 Coherent spin state

A CSS is made up of N identical but independent spin-1/2 particles with no

quantum correlations or entanglement among the particles. Mathematically, a

CSS can be written as the product of many single spin-1/2 particles (Eq. (2.1)),

|θ, φ〉 =
N∏
l=1

(
cos

θ

2
|↑l〉+ eiφ sin

θ

2
|↓l〉
)
. (2.13)

The physical significance of θ and φ is that the mean spin vector J = 〈Ĵ〉 =

〈θ, φ| Ĵ |θ, φ〉 points in the direction given by the spherical coordinates (θ, φ), the

same as in Eq. (2.1). The tip of the Bloch vector resides on the surface of the

sphere with a radius of J = N/2. Without considering fluctuations or noise in

the spin projections, the vector will behave classically.

In order to develop a more detailed understanding of the coherent spin state

and its fluctuations we start with the discussion of a special case where each

particle is in a 50/50 superposition of the two modes with 0 relative phase, i.e.,

each spin points in σx direction and its quantum state is,

|x〉 = (|1/2,−1/2〉+ |1/2,+1/2〉) /
√

2, (2.14)

where we have chosen the Dicke states in σz direction as the basis states. The

probability to observe each individual elementary spin in state up or down is
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equal to,

| 〈1/2,±1/2|x〉 |2 = 1/2. (2.15)

The N atom coherent spin state is a collection of these independent elementary

spins,

|X〉 = [(|1/2,−1/2〉+ |1/2,+1/2〉) /
√

2]⊗N (2.16)

and therefore the measurement of the Jz spin component is equivalent to N mea-

surements on a single spin. The probability distribution over the Dicke states is

therefore binomial. We could have chosen equally the Dicke states in Jy direction

to describe the spin state which shows again that the spin fluctuations in the

directions perpendicular to Jx, i.e., the mean spin direction, are isotropic.

A general coherent spin state |θ, φ〉 can therefore be described as a binomial

sum of Dicke states |J,m〉 :

|θ, φ〉 =
J∑

m=−J

|J,m〉 〈J,m|θ, φ〉 , (2.17)

where,

〈J,m|θ, φ〉 =

(
2J

J +m

)1/2

cos(θ/2)J−m sin(θ/2)J+me−i(J+m)φ. (2.18)

The CSS is one of the most common states used in atom interferometry, mainly

because it is readily obtained by the interaction with the laser fields. Indeed,

starting with all the atoms pumped in the ground |↓〉 state, corresponding to

|θ = π, φ〉, the state is rotated into any state |θ, φ〉 by the interaction with the

electromagnetic radiations.

2.2.2 The standard quantum limit

Assuming that a particular coherent spin state |θ, 0〉 is the output of an atom

interferometer. Because of the mapping of phase shift ∆φ into population dif-

ference, we have θ = ∆φ + π/2. In order to compute the spin mean value and

the variance, we note that the expression Eq. (2.18) corresponds to the binomial

distribution with probability,

| 〈J,m|θ, φ〉 |2 =

(
2J

J +m

)
cos(θ/2)2(J−m) sin(θ/2)2(J+m). (2.19)

The average is therefore 〈Ĵz〉 = −1
2
N sin ∆φ and the variance is,

(∆Jz)
2 = N cos2(θ/2) sin2(θ/2) =

1

4
N cos2 ∆φ. (2.20)
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With these information the interferometer phase resolution Eq. (2.12) can be

calculated as,

δ(∆φ) =
1√
N
. (2.21)

This phase resolution limit is known as the Standard Quantum Limit and the

corresponding phase noise is known as the shot noise.

We next consider the case where the interferometric measurement is repeated

m times with a single particle and assume that the various repetitions are uncor-

related, i.e., the outcome of one measurement does not affect the outcomes of the

following measurements [61]. In this case we will consider the random variable Jz
to be the sum of the random variables corresponding to each measurement trial

k, (Jz)k. If the independent trials are indistiguishable, by making use of the error

propagation formula, in the previous results we therefore make the replacements,

〈Jz〉 →
m∑
k=1

〈(Jz)k〉 = m〈Jz〉, (2.22)

(∆Jz)
2 →

m∑
k=1

(∆Jz)
2
k = m(∆Jz)

2, (2.23)

and the phase resolution is given by,

δ(∆φ) =
1√
m
. (2.24)

The phase measurement can also be performed with more than one atom. If

the atomic states of different atoms are uncorrelated, then this measurement is

equivalent to the repetition of a measurement with a single atom. This follows

from the fact that the interactions in the interferometer, namely the interaction

with the laser field and the phase shift, are local operations. This means that the

interferometer does not create correlations between particles. Therefore, with m

trials of the experiment, each with N atoms, the phase resolution is given by,

δ(∆φ) =
1√
Nm

. (2.25)

2.2.3 Visualizing CSSs using the Q representation

Employing the Husimi Q-representation [62], spin states can be conveniently vi-

sualized on a generalized Bloch sphere with radius J . In order to describe the

most general spin state, i.e., pure states and statistical mixtures, the density ma-

trix formalism is used [63]. The density operator ρ̂ in coherent spin state basis is
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Figure 2.2: Husimi Q representation of the coherent spin state (a) and the spin squeezed

state (b). The probability distribution of CSS is a disk on the surface of the the Bloch

sphere, while that of the SSS has a reduced spin noise distribution in one direction, at

the expense of an increased noise in the orthogonal spin direction. Python scripts for

the plot at the courtesy of Dr. Leonardo Salvi [52].

given by,

ρ̂ =

∫
P (θ, φ) |θ, φ〉 〈θ, φ| dΩ, (2.26)

where the integral covers the full solid angle and dΩ = sin(θ)dθdφ. The prob-

ability distribution P (θ, φ) is normalized to one. The Q-representation uses the

diagonal elements of the density operator to represent the quantum state,

Q(θ, φ) =
2J + 1

4π
〈θ, φ| ρ |θ, φ〉 . (2.27)

The Husimi Q function can then be written as,

Q(θ, φ) =
2J + 1

4π

∫
sin θ′dθ′dφ′P (θ′, φ′)| 〈θ, φ|θ′, φ′〉 |2

=
2J + 1

4π

∫
sin θ′dθ′dφ′P (θ′, φ′)(cos Θ/2)4J ,

(2.28)

where Θ is the angle between the directions of the coherent spin states |θ, φ〉 and

|θ′, φ′〉 and is given by,

cos Θ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). (2.29)

In the limit of large atom numbers, J � 1, this expression can be approximated
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by,

Q(θ, φ) ' J

2π

∫
sin θ′dθ′dφ′P (θ′, φ′) exp

[
−J

2
(θ − θ′)2 − J

2
(φ− φ′)2 sin2 θ′

]
.

(2.30)

If we consider the CSS ρ = |θ0, φ0〉 〈θ0, φ0|, then P (θ′, φ′) = δ(θ′ − θ0)δ(sin θ′(φ−
φ0)) and the Q function is expressed by a Gaussian distribution,

Q(θ, φ) =
J

2π
exp

[
−J

2
(θ − θ0)2 − J

2
(φ− φ0)2 sin2 θ0

]
. (2.31)

This function is represented in Fig. 2.2 (a) for a CSS pointing in the direction

(θ = π/2, φ = 0).

2.3 Spin squeezing and entanglement

The Heisenberg uncertainty relations for the collective spin operators Eq. (2.10)

set a lower bound to the product of spin variances. However, the spin variance

of one spin component can be reduced, at the expense of an increase in the

variance of the other. The result of spin variance reduction is the metrological

enhancement in quantum metrology, which drives the intuition of spin squeezed

states. In this section, we introduce the mainstream definitions of SSSs and

the relationship between spin squeezing and multiparticle entanglement. In the

next section we will show the metrological enhancement with SSSs in a Ramsey

interferometer.

2.3.1 Spin squeezed states

Spin squeezed states are a class of states having squeezed spin variance along a

certain direction, at the cost of an anti-squeezed variance along an orthogonal

direction. Spin squeezing is one of the most successful approaches to witness

large-scale quantum entanglement beating the standard quantum limit in inter-

ferometry [35, 37].

There are various definitions of spin squeezing depending on its applica-

tions [37]. Among them the most popular ones are the squeezing parameter

given by Kitagawa and Ueda [38] in terms of squeezing reduction and that given

by Wineland et. al [39, 64] in the application of spectroscopy enhancement.

Kitagawa criterion We first introduce the squeezing parameter ξ2
S given by

Kitagawa and Ueda [38]. For a CSS the variance of spin operators depends on
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the mean spin vector ~n and there exists a prior direction: the mean-spin direction

(MSD),

~n0 =
〈 ~J〉
|〈 ~J〉|

=
〈~σ1〉
|〈~σ1〉|

, (2.32)

where the second equation results from the exchange symmetry.

Below, we use ~n⊥ to denote the direction perpendicular to the MSD. For a

CSS, we have (∆J~n⊥)2 = j/2, thus a state is spin squeezed if the variance of J~n⊥
is less that j/2. We define the spin-squeezing parameter,

ξ2
S =

min(∆J2
~n⊥

)

j/2
=

4min(∆J2
~n⊥

)

N
, (2.33)

where j = N/2, and ~n⊥ refers to an axis perpendicular to the MSD and the

minimization is over all directions ~n⊥.

It is a fact that the spin-squeezing parameter ξ2
S is equal to 1 for the CSS.

Thus, if there are certain quantum correlations among the elementary spins, we

may have ξ2
S < 1, i.e., the fluctuation in one direction is reduced, as shown in

Fig. 2.2 (b). Therefore, the squeezing parameter ξ2
S has natural connections with

quantum correlations (entanglement).

Wineland criterion We then discuss the spin-squeezing parameter proposed

by Wineland et al. [39, 64] in the study of Ramsey spectroscopy. The squeezing

parameter proposed by Wineland et al. is defined as,

ξ2
R =

(∆φ)2

(∆φ)2
CSS

=
N(∆J~n⊥)2

|〈 ~J〉|2
. (2.34)

This is the ratio of the phase sensitivity of a general state versus the CSS. Here,

we choose the direction ~n⊥ where ∆J~n⊥ is minimized. The CSS here acts as

a noise-reference state. According to Eq. (2.12), the phase sensitivity can be

written as,

∆φ =
ξR√
N
. (2.35)

If ξ2
R < 1, ∆φ < (∆φ)CSS beats the quantum projection noise, which is also known

as the shot-noise limit. In contrast with ξ2
S, which is the analogue of bosonic

squeezing [65], the parameter ξ2
R is substantially connected to the improvement

of the sensitivity of angular-momentum states to rotations, and thus is attractive

for interferometric experiments.

This Wineland parameter ξ2
R is related to ξ2

S via,

ξ2
R = (

j

|〈 ~J〉|
)2ξ2

S. (2.36)
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Since j = N/2 ≥ |〈 ~J〉|, we have,

ξ2
S ≤ ξ2

R. (2.37)

Even though these two parameters are similar (when j = |〈 ~J〉|, ξ2
R = ξ2

S), their

physical meanings are different. In other words, metrological spin squeezing ξ2
R <

1 implies spin squeezing ξ2
S < 1 according to the definition of Kitagawa and

Ueda. The converse is not true: there is no direct relation between ξ2
S < 1 and

the improvement of metrological sensitivity.

The lower bound of the phase sensitivity is given by the Heisenberg uncertainty

relation,

(∆J~n⊥)2(∆J~n′⊥)2 ≥ 1

4
|〈J~n〉|2, (2.38)

from which we have,

ξ2
R

4(∆J~n′⊥)2

N
≥ 1. (2.39)

Using the relations N2/4 = j2 ≥ 〈J2
~n〉 ≥ (∆J~n)2 and the fact that the largest

eigenvalue of J2
~n is j2, we obtain,

ξ2
R ≥

1

N
. (2.40)

By using Eq. (2.35), we further have,

∆φ ≥ (∆φ)HL =
1

N
, (2.41)

where (∆φ)HL is the Heisenberg limit [40].

2.3.2 Squeezing and entanglement

It has been shown that spin squeezing can be used to surpass the standard quan-

tum limit in quantum phase estimation. In this subsection we exploit the rela-

tionship between squeezing and entanglement.

Multi-particle entanglement A state ofN particles in two modes is separable

(non-entangled) when it can be written as [66],

ρ̂sep =
∑
k

pkρ̂
(1)
k ⊗ ρ̂

(2)
k ⊗ ...⊗ ρ̂

(N)
k , (2.42)

where pk > 0,
∑

k pk = 1, ρ̂
(i)
k is the density matrix for the ith particle. Multi-

particle entanglement is quantified by the number of particles in the largest non-

separable subset. A mixed state is k-separable if it can be written as a mixture
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of k separable pure states [67],

ρ̂k sep =
∑
q

|Ψk sep,q〉 〈Ψk sep,q| . (2.43)

A state that is k-separable but not (k−1)-separable is called k-particle entangled,

it contains at least one state of k particles that does not factorize. In other words,

it has an entanglement depth large than k − 1 [68].

According to [69], particles are entangled if the state satisfies,

ξ2 ≡ N(∆Ĵ~n3)
2

〈Ĵ~n1〉
2

+ 〈Ĵ~n2〉
2 < 1, (2.44)

also it is spin-squeezed along the direction ~n3. This criterion is consistent with

the Kitagawa or Wineland definition of spin squeezing.

Literature [66] has shown a different approach by using the quantum Fisher

information (QFI) to define metrologically useful entanglement,

χ2 ≡ N

FQ[ρ̂inp, Ĵ~n]
< 1, (2.45)

where FQ[ρ̂inp, Ĵ~n] = 4(∆R̂)2 is the QFI [70, 71, 72] and ~n is an arbitrary direction.

The Hermitian operator R̂ is the solution of the equation
{
R̂, ρ̂inp

}
= i
{
Ĵ~n, ρ̂inp

}
.

The QFI is naturally related to the problem of phase estimation. Generally

speaking, an interferometer is quantum mechanically described as a collective,

linear, rotation of the input state by an angle θ: ρ̂(θ) = e−iθĴ~n ρ̂inpe
−iθĴ~n . For an

arbitrary interferometer and phase estimation strategy, the phase sensitivity is

limited by a fundamental bound, the Quantum Cramer-Rao (QCR) [72], which

only depends on the specific choice of the input state,

∆θQCR =
1√

FQ[ρ̂inp, Ĵ~n]
=

χ√
N
. (2.46)

A comparison with Eq. (2.46) reveals that Eq. (2.45) is not only a sufficient

condition for particle-entanglement, as already discussed, but also a necessary

and sufficient condition for sub-shot-noise phase estimation. χ < 1 provides the

class of entangled states which are useful for sub-shot-noise sensitivity.

Phase resolution limits for separable and entangled states We consider

the phase estimation of different input states as separable states and entangled

states [61] using the QFI. The QFI of any separable state of N qubits is upper

bounded,

FQ[ρ̂sep, Ĵ~n] ≤ N, (2.47)
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therefore the maximum phase sensitivity achievable with separable states is,

∆θsep =
1√
Nν

. (2.48)

where ν is the number of independent measurements. In Eq. (2.48) N and ν

play the same role: repeating the phase estimation ν times with one particle has

the same sensitivity bound as repeating the phase estimation 1 time with N = ν

particles in a separable state.

As for a k-particle entangled state, when used as an input state of an inter-

ferometer, the QFI increases monotonically with k as FQ[ρ̂k sep, Ĵ~n] ≤ Nk. The

maximum value of the QFI is obtained for genuine N -particle entangled states

k = N giving [66],

FQ[ρ̂, Ĵ~n] ≤ N2, (2.49)

which defines the ultimate Heisenberg limit of phase sensitivity,

∆θHL =
1

N
√
ν
. (2.50)

This result is consistent with the derivation of HL in Eq. (2.41).

We conclude this section by summarizing the relations between squeezing, en-

tanglement and sub shot-noise phase measurement. Useful entanglement, which

can be quantified by the QFI (Eq. (2.45)), is a necessary and sufficient condi-

tion for sub shot-noise phase measurement. However, it is to be noted that spin

squeezing is only a sufficient condition for entanglement yet not necessary, there

are states that are not spin-squeezed and yet entangled and useful for quantum

metrology, for example, the NOON state and the twin-Fock state (Dicke state),

which will be presented in the next section.

2.4 Atom interferometer with non-classical states

In this section, using non-classical states in atom interferometers for quantum

phase estimation is considered. We record that an AI is a device that converts

the accumulated relative phase between the two modes of a collective spin state

into the population difference between the two modes. The resolution of this

phase estimation is limited by the standard quantum limit δ(∆φ) = 1/
√
N for

uncorrelated particles. Entanglement, or correlations between the atoms can sur-

pass this limit. One of the most prominent candidate states for phase estimation

beyond the SQL is the spin squeezed state.

In this section, the Ramsey interferometer and its application in quantum

phase estimation is discussed. It is shown that the Mach-Zehnder interferometer
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used in atom interferometry is conceptually equivalent to the Ramsey interfer-

ometer in terms of phase estimation. The Ramsey interferometer sequences with

CSS and SSS are presented. The phase noise reduction of the SSS with respect

to the CSS is analyzed.

2.4.1 Ramsey interferometer and quantum phase estima-

tion

The Ramsey interferometer, or Ramsey spectroscopy is commonly used in the field

of atomic clocks and frequency standards [28]. The mathematical representation

of the Ramsey sequence in atom interferometry can be found in [73] and will be

briefly reviewed in section 3.2. Here we analyze the Ramsey interferometer in a

pictorial way on the Bloch sphere (as in Fig. 2.3) and explain the process of phase

estimation.

The optical counterpart of a Ramsey interferometer is an optical Mach-Zehnder

interferometer, which consists of two beamsplitters to split and recombine the

laser beams. The atomic optics counterpart for beamsplitters are the (π/2) pulses.

In the Bloch sphere, the (π/2) pulses rotate the Bloch vector by 90°.

The Ramsey interferometer sequence with CSS is depicted in Fig. 2.3 (a)

with the Bloch sphere representation. It consists of four steps, as detailed in the

following:

� The initial state is a CSS prepared in the ground state |↓〉, which is easily

available experimentally.

� The first (π/2) pulse prepares the state into a superposition state with equal

probability of |↓〉 and |↑〉, which corresponds to an unitary rotation of the

collective spin state by 90° around the Jy axis.

� After a free evolution of time τ the state accumulates a relative phase (∆φ)

between the two modes, which corresponds to a rotation of angle φ in the

equatorial plane.

� A second (π/2) pulse is then applied to transfer the relative phase φ into the

angle θ by rotating the Bloch vector by 90° around the Jx axis. This method

maps the relative phase between the two modes, which is not observable,

into the population difference, which can be further detected by fluorescence

or absorption detection.

It can be proven that the Mach-Zehnder interferometer which consists of a

pair of π/2-π-π/2 pulses is conceptually equivalent to the Ramsey interferometer
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Figure 2.3: Ramsey interferometers with (a) coherent spin states and (b) spin squeezed

states in the Bloch sphere representation. The uncertainty distributions according to

the Husimi Q function are represented by the colorful disks. The rotation of the Bloch

vector (red arrows) is stimulated by the (π/2)x,y pulses, with the subscript indicting

the axis of rotation. During the free evolution of time τ the collective spin states

accumulate a phase shift ∆φ, which corresponds to a rotation in the equatorial plane.

The Ramsey interferometer converts the accumulated phase shift between the two states

into the measurable population difference. This estimation of phase has a resolution of

∆φ ∼ 1/
√
N for the CSS (a), and can be surpassed by introducing spin squeezing into

the atomic ensemble (b). Figure adapted from [58, 74].

in terms of phase estimation. The (π) pulse, which inverts the population of the

|↓〉 and |↑〉 states, only contribute a relative phase between the two states and

can be included in the total accumulated phase φ.

Fig. 2.3 (b) shows the Ramsey sequence with SSS. After preparing the CSS

into the superposition state with the first (π/2) pulse, squeezing is introduced

and correlations between the atoms are created. This can be visualized as a

squeezing in the uncertainty region of the Husimi Q function. In Fig. 2.3 (b),

a phase-squeezed state is shown with reduced phase uncertainty and increased

atom number uncertainty. After the phase accumulation and the second (π/2)

pulse, the collective spin state is rotated by 90° around the Jx axis thus the

phase-squeezed state is converted into the number-squeezed state, of which the

uncertainty in the atomic population is reduced. Finally, the detection of atomic

number in the |↓〉 and |↑〉 states has a reduced uncertainty with respect to the
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SQL. This signifies an improved sensitivity in the phase estimation.

2.4.2 Sensitivity of the Ramsey interferometer

The phase sensitivity of a Ramsey interferometer can be quantified by considering

the population difference Jz = (N↑ − N↓)/2 as a function of the accumulated

relative phase φ, which is a sinusoidal wave called the Ramsey Fringe, as depicted

in Fig. 2.4. The phase sensitivity to a small phase shift is defined as,

∆φ =
∆Ĵz

|∂〈Ĵz〉/∂φ|
, (2.51)

where ∆Ĵz is the projection noise and |∂〈Ĵz〉/∂φ| is the slope of the Ramsey

fringe. Based on the sensitivity function Eq. (2.51), it is obvious that two differ-

ent ways can be used to improve the phase sensitivity of Ramsey interferometer.

One can either reduce the projection noise ∆Ĵz or increase the slope |∂〈Ĵz〉/∂φ|
in order to increase the overall sensitivity. The increase of slope can be achieved

in Schrödinger cat’s like entanglement interferometers, which will be briefly in-

troduced in subsection 2.4.3. In this thesis, we focus on the other method, which

aims at reducing the projection noise by squeezing the noise distribution.

Figure 2.4 (a) shows the Ramsey fringe with the CSSs (red solid line) and

the SSSs (blue dotted line), respectively. The shaded regions represent the rms

fluctuations of the Jz measurement. The maximum sensitivity is achieved when

Jz = 0 and at the largest slope, |∂〈Ĵz〉/∂φ|max = VN/2, where V is the visibility

which measures the mean spin length 〈J〉 = VN/2. For CSSs, V = 1 while for

SSSs, V ≤ 1 due to the decoherence. Nevertheless, the overall sensitivity can be

improved if the projection noise Jz can be reduced.

In Fig. 2.4 (b) an enlargement of the maximum sensitivity region is shown,

where we assume that slopes for the CSSs and the SSSs are similar and ' N/2.

The projection noise for CSSs is ∆Jz,CSS =
√
N/2 at the shot-noise-limit, which

yields a phase sensitivity of φSQL = 1/
√
N , and therefore corresponds to the

standard quantum limit. For SSSs the projection noise is reduced so that ∆Jz <

∆Jz,CSS, therefore the phase sensitivity overcomes the SQL with CSSs.

2.4.3 Useful states for quantum metrology

Apart from the SSS which can be used in Ramsey interferometry to surpass the

SQL, there are other non-classical states which are important for sub-shot noise

quantum metrology. Among them the NOON state and the Dicke state are most

studied and will be discussed here.
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Figure 2.4: Phase sensitivity of Ramsey interferometer. (a) Population difference Jz =

(N↑ − N↓)/2 as a function of the accumulated relative phase φ for CSSs (red solid

line) and SSSs (blue dotted line), respectively. Shaded regions show the uncertainty of

phase estimation. The maximum sensitivity is achieved when Jz = 0 and at the largest

slope of ' N/2. (b) shows the zoom in of the maximum sensitivity region where the

projection noise for CSSs and SSSs are shown by the shaded areas. The CSSs can

perform at best at the phase sensitivity of φSQL = 1/
√
N , while employing the SSSs,

it is possible to surpass the SQL. Figure adapted from [58, 74].

NOON states The NOON state is also called Schrödinger cat state in quantum

metrology and the name originates from its form in the Fock states basis,

|NOON〉 =
(
|N,O〉+ eiφN |O,N〉

)
/
√

2 (2.52)

It can be seen as a coherent superposition of all atoms in state |↑〉 and zero atoms

in state |↓〉 and vice versa. The Husimi Q function for the NOON state is written

as,

Q(θ, φ) =
2J + 1

8π

[
cos4J

(
θ

2

)
+ sin4J

(
θ

2

)
+ 2 sin2J

(
θ

2

)
cos2J

(
θ

2

)
cos(2Jφ)

]
.

(2.53)

A plot of this function is presented in Fig. 2.5 (a) showing that the NOON state

can be seen as an equal superposition of two coherent states.

The importance of this state stems from its large sensitivity to atomic phase

variations. In spin representation the NOON state is the superposition of the two

maximal Dicke states:

|NOON〉 =
(
|J,−J〉+ eiφN |J, J〉

)
/
√

2, (2.54)
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Figure 2.5: Husimi Q representation of NOON state and Dicke state. (a) The NOON

state can be viewed as an equal superposition of two coherent spin states. (b) The

Dicke state is also known as the twin Fock-state, which is represented by a ring in the

Bloch sphere. Figure adapted from [52].

The increase of the signal slope for a NOON state is obvious since the phase

acquired between the two components φN = Nφ is N times larger than for a

coherent spin state [40, 75, 76]. Experimentally it is important to note that the

readout of the interferometer cannot be realized by measuring 〈Ĵz〉. The reason

is the vanishing mean spin length 〈Ĵ〉 of this state. It has been shown that the

parity of the state is a useful experimental observable to make use of NOON

states in interferometry and to reach the Heisenberg limit [77, 78].

Dicke states Another important example is that of the Dicke state |J,m〉 with

Husimi Q function

Q(θ, φ) =
2J + 1

4π

(
2J

J +m

)
cos2(J+m)

(
θ

2

)
sin2(J−m)

(
θ

2

)
. (2.55)

Because the Dicke state is a state where the population between the two spin

states is defined, the Husimi Q function is represented by a ring in the Bloch

sphere (Fig. 2.5 (b) ). An interferometric phase measurement with such a state

would then proceed as follows. After preparation of the state |J, 0〉, also known

as the twin-Fock state [79], a π/2-pulse rotates the state into a phase-sensitive

state and after a precession, another π/2-pulse is applied as in a standard Ram-

sey interferometer. The result is a state with increased variance (∆Jz)
2 which is

proportional to (∆φ)2. A measurement of the relative population variance there-

fore yields the phase measurement. It can be shown that for small ∆φ the phase
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resolution is [80],

δ∆φ =

√
2

N
. (2.56)

2.5 Generating spin squeezed states with QND

measurements

It has been shown in the last section that SSSs can be used to surpass the SQL in

quantum metrology, which is advantageous for quantum sensors for the potential

to increase the phase sensitivity. In this section the main approaches for the gen-

eration of SSSs are reviewed. The major focus is put on spin squeezing induced

by QND measurement, which is the method considered in this thesis. QND mea-

surement can be performed either in free space through atom-light interactions,

or with the aid of optical resonators to increase the optical depth. Both methods

are analyzed and experimental achievements are reviewed. Finally, other methods

to generate SSSs are also briefly introduced.

2.5.1 Quantum non-demolition measurement

The QND measurement is currently one of the most successful methods for pro-

ducing large amounts of squeezing in atomic ensembles. It is based on the col-

lective measurement of the atomic states, since this kind of measurement does

not distinguish each individual atom, it prepares the atomic ensemble in an en-

tangled state. There are some requirements for a quantum measurement to be of

non-demolition type:

� (i) weak enough not to collapse the state into a certain Jz eigenvalue,

� (ii) strong enough to resolve Jz better than the SQL,

� (iii) does not resolve each spin.

(i) is important to maintain the phase coherence. If a state collapses to a specific

Jz state, the uncertainty in the Jz direction is zero, but the usefulness of this spin

state is zero, because the state wraps all around the sphere, and there remains

no phase resolution. (ii) sets a technical requirement on how strong the mea-

surement is. A squeezed spin state is generated only when the resolution of the

measurement is larger than SQL. (iii) means that we should keep the contrast of

the state through the measurement. In a typical situation of measuring the atom

state with photons, the scattering of a photon into free space, which is not cap-

tured by a photon detector, cannot be avoided. This free space scattering picks a
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Figure 2.6: Spin squeezing by QND measurement. (a) Atom-light interaction. By

detecting the output light one gains the information of the atomic state; (b) the initial

CSS changes into SSS after the QND measurement, the orange circle and the blue ellipse

show the uncertainty distributions; (c) QND protocol. The QND Hamiltonian ĤQND

preserves the atomic state, by resolving the light output state one gains information

about the atomic state. The shaded region shows the atom-light entanglement. Figures

adapted from [35, 81]

certain spin out of the coherent spin state, and the loss of contrast incorporated

in the Wineland parameter occurs.

We first consider a general model for quantum measurement, as shown in

Fig. 2.6, where a system (e.g. an atomic ensemble) and a meter (e.g. an probe

light) are coupled through the interaction Hamiltonian Ĥint and become entan-

gled. A projective measurement on the meter then gives information about the

system. Usually this kind of measurement changes the state of the system, how-

ever, if we can find an observable ô(t) which is a constant of motion, i.e.,

[ô(t), Ĥint(t)] = 0, (2.57)

then the state of the system can be preserved, as the name QND suggests.

A general QND Hamiltonian can be described by considering a far-off resonant

dispersive interaction between the collective spin of an atomic ensemble and a

two-mode light beam in free space [81, 82],

ĤQND = ~KŜzĴz, (2.58)
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where K ∝ (σ/A)Γ/∆ denotes the coupling strength between the two systems, σ

is the resonant photon scattering cross section of the probe transition, Γ is the

spontaneous emission rate, A is the spatial cross section of the atomic ensemble

illuminated by the probe, and ∆ is the detuning of the light from resonance [83].

Ĵ =
{
Ĵx, Ĵy, Ĵz

}
is the atomic collective spin, Ŝ =

{
Ŝx, Ŝy, Ŝz

}
is the Stokes

vector operator of the light, with components

Ŝx = (â†+â− + â†−â+)/2 (2.59a)

Ŝy = (â†+â− − â
†
−â+)/2i (2.59b)

Ŝz = (â†+â+ − â†−â−)/2. (2.59c)

The operators â± can refer to two polarization modes in which case describes the

paramagnetic Faraday rotation of light [84]; or two spatial modes of an optical

Mach-Zehnder interferometer where atoms are placed in one arm and phase shift

the light [85, 86].

The Hamiltonian satisfies the backaction evasion condition [Ĵz, ĤQND] = 0

such that Ĵz is a constant of motion. Using the Heisenberg’s equation of motion,

we can construct the input-output relations

Ŝoutx ≈ Ŝinx −KŜiny Ĵ inz , Ĵoutx ≈ Ĵ inx −KĴ iny Ŝinz (2.60a)

Ŝouty ≈ Ŝiny +KŜinx Ĵ inz , Ĵouty ≈ Ĵ iny +KĴ iny Ŝinz (2.60b)

Ŝoutz = Ŝinz , Ĵoutz = Ĵ inz (2.60c)

A measurement of Ŝoutx or Ŝouty thus realizes a QND measurement of Ĵz while

preserving the system’s quantum coherence.

2.5.2 QND measurements in free space

Taking the atomic and light pseudo-spin vectors to be aligned along the x-axis, we

consider the fluctuations in the two orthogonal directions. To gain information

about the atomic system we measure 〈Ŝouty 〉 = ys, and conditioned on this outcome

we get [83],

〈Ĵoutz 〉|ys = 〈Ĵoutz 〉 −
〈Ĵoutz Ŝouty 〉
〈(Ŝouty )2〉

ys , (2.61a)

var(Ĵoutz )|ys = var(Ĵoutz )−
〈Ĵoutz Ŝouty 〉

2

〈(Ŝouty )2〉
. (2.61b)

Here we have taken Ĵz and Ŝy to be Gaussian distributed random variables.

This is valid as Ŝiny and Ĵ inz are both Gaussian noise processes (shot noise and
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projection noise), and that ĤQND is linear. Taking the limit where Ĵouty and Ŝouty

are uncorrelated we see that a measurement of Ŝouty does not affect Ĵouty . From

Eqs. (2.59) and (2.60) we find that [87],

〈(Ŝouty )2〉 = (1 + κ2)
Nph

4
, (2.62)

where κ = KNphNat/4 and Nph and Nat are the number of photons and the

number of atoms, respectively. Inserting this back to Eq. (2.61) gives,

〈Ĵoutz 〉|ys = 〈Ĵ inz 〉 −
κ

1 + κ2

√
Nat

Nph

ys , (2.63a)

var(Ĵoutz )|ys =
1

1 + κ2
var(Ĵ inz ). (2.63b)

This equation shows that the noise of Ĵz has been reduced by a factor (1 +κ2)−1.

As we are starting from a CSS which minimizes Heisenberg’s uncertainty relation

the variance var(Ĵoutz ) is reduced below the SQL, i.e., the ensemble is in a SSS.

The consequence can be visualized in Fig. 2.6 (b), where the noise distribution

after the QND measurement is squeezed in one direction.

To quantify the amount of squeezing, we relate the coupling constant K to

the resonant optical depth and use the Wineland criterion and find

ξR =
1

exp(−ηNph)

1

1 + α0ηNph/4
, (2.64)

where α0 is the on-resonance optical depth, and η is the number of scattering

events per photon, such that exp(−ηNph) gives the coherence. From Eq. (2.64)

it is clear that it is desirable to have a high optical depth and at the same time

a low decoherence η. The photon number enters both in the loss of coherence

(the more photons the worse) and in the noise reduction (the more photons the

better). Therefore, the used photon number has to be carefully chosen to give

enough information while at the same time not destroying the coherence.

The first experimental demonstration of metrological spin squeezing (reaching

ξR < 1) via QND measurements in free space is reported in [42]. This experiment

used 1.2 × 105 Cs atoms (with measured κ2 ' 3.2 and optical depth α0 ' 16).

Two equally intense and linearly polarized laser beams of different frequencies

enter the arms of an optical Mach-Zehnder interferometer, see Fig. 2.7 (a). The

beams off resonantly probe different atomic transitions and experience phase

shifts proportional to the number of atoms in the probed levels [43]. The detection

of the relative phase shift φ accumulated in the optical path performs a QND

measurement of the relative population in the two atomic levels.
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Figure 2.7: QND measurements in free space and with an optical cavity. (a) Free

space QND measurement used in [42], the atoms are in one arm of an optical Mach-

Zehnder interferometer, two laser beams of different frequency (blue and red arrows)

probe the atomic phase shift and performs the QND measurement. (b) Cavity-aided

QND measurement used in [45], uniform atom-light coupling is achieved using trapping

and probe beams of commensurate frequencies. The cavity resonance is shifted in

proportion to the relative population of two clock levels. The shift is measured from

the transmission of a probe beam.

Spin squeezing is quantified by correlations between two consecutive QND

measurements. One finds

Var(φ2 − ζφ1) =
1

n
+

κ2

1 + κ2

N

4
(2.65)

where φ1 and φ2 refer to the first and second phase shift detections, respectively,

and the covariance

ζ = Cov(φ1, φ2)/Var(φ1) =
κ2

1 + κ2
(2.66)

expresses the correlations between the two measurements. The results reveal a

spin squeezing ξ2
R = −3.4 dB.

2.5.3 Cavity-aided QND measurements

The strength of the interaction between the light and the atomic ensemble is

usually weak, but can be enhanced by placing the atoms inside an optical cavity.

This method is very promising as the squeezing factor increases with the cavity

finesse, which can be pushed to large values.

The essential features of dispersive atom-light interaction in a cavity are cap-

tured by a simplified model comprising N three-level atoms. Each atom has two
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hyperfine levels |a〉 and |b〉 of energy difference ~ω, and an excited state |e〉 with

linewidth Γ (spontaneous decay rate into free space). The atoms are placed in an

optical cavity with resonance frequency ωc and linewidth κc, driven resonantly

with a single-atom-single-photon effective intracavity Rabi frequency 2g.

The detuning of the cavity from the |a〉 → |e〉 and |b〉 → |e〉 transitions is

chosen of equal magnitude ∆ = ±ω/2. Assuming homogeneous interaction, low

intracavity photon number (nc = 〈ĉ†ĉ〉 � ∆2/g2), and large detuning (∆ �
κc,Γ,

√
Ng), the coupling Hamiltonian is

Ĥ = ~ωcĉ†ĉ+ ~
2g2

∆
ĉ†ĉĴz + ~ωĴz, (2.67)

where ĉ and ĉ† are cavity photon annihilation and creation operators..

The effect of the light on the atoms is an ac Stark shift of the transition

frequency δω = (2g2/∆)nc between |a〉 and |b〉. Atoms in |a〉 (|b〉) increase

(decrease) the index of refraction seen by the probe light, so that the net effect

is a shift of the cavity resonance by

δωc =
2g2

∆

Na −Nb

2
=

2g2

∆
Jz, (2.68)

where Na and Nb are the numbers of the atoms in |a〉 and |b〉, respectively.

This shift can be probed by injecting a laser into the cavity, providing a QND

measurement of Ĵz. The possible gain considering the decoherence associated

with free-space scattering of the probe light is

ξ2
R =

1 +NC(Γ/ω)2

√
NC

, (2.69)

where C = (2g)2/(κcΓ) is the single-atom cavity cooperativity. C is the ratio

between the number of photons scattered into the cavity mode and those scattered

into free space and quantifies the optical depth of an atom with respect to the

cavity mode [41]. Note that C depends on the cavity geometry and is proportional

to the cavity finesse.

Spin squeezing via a cavity-based QND measurement was first demonstrated

by [44] using magnetically insensitive clock states of 87Rb atoms. This experiment

reported a spin squeezing ξ2
R = −1.45 dB with respect to the standard quantum

limit (∆θSQL)2 = 1/Neff , referring to Neff ' 0.66N uncorrelated atoms (Neff

accounts for spatial variation in the atom-light coupling due to the trapping

lattice being incommensurate with the cavity mode used for probing, and N =

5 × 104). This result is mainly limited by inhomogeneous dephasing due to the

cavity locking light.
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Figure 2.8: Spin squeezing with one-axis twisting Hamiltonian. (a) The OAT Hamilto-

nian twist the Bloch sphere around the z-axis, causing the noise distribution to shear.

(b)-(d) are the Q representation of the spin squeezed states with different interaction

strength. Figure adapted from [52].

[45] used a cavity of higher cooperativity and exploited probing and trapping

beams of commensurate frequencies, achieving a uniform atom-light coupling; see

Fig. 2.7 (b). This avoids the need for spin-echo techniques required for nonuni-

formly coupled systems. This experiment demonstrated 10.5 dB of improved

phase sensitivity with respect to (∆θSQL)2 = 1/N , with N = 5×105 87Rb atoms,

and a spin squeezing ξ2
R = −18.5 dB (−20.1 dB inferred). This represents the

highest value in expected metrological spin squeezing and measured phase sensi-

tivity gain to date.

2.5.4 Other methods to generate SSSs

Spin squeezing based on QND measurement is one of the most successful methods

to using squeezing in quantum metrology. There are, however, other important

approaches to generate metrological useful states. One important category is

based on non-linear Hamiltonians, both through atomic collision in Bose-Einstein

condensation (BEC) and through light-mediated interactions. In this subsection,

those approaches are introduced and the main experimental achievements are

presented.

Collisional interactions in BEC Kitagawa and Ueda proposed a method to

generate spin squeezing with a non-linear Hamiltonian, also referred to as the

one-axis twisting (OAT) Hamiltonian, written as

ĤOAT = ~χĴ2
z . (2.70)

The OAT Hamiltonian can be realized in BEC through atom-atom collisional

interactions.
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To explain how squeezing is generated, consider the evolution of a CSS along

x̂ under this Hamiltonian. The Dicke states [59] |J,m〉 are eigenstates of the

OAT Hamiltonian with eigenvalue χm2, and evolves phase in time as e−iχm
2t.

This implies the precession frequency of the state |J,m〉 scales linearly with m

as 2χm in a rotating frame whose frequency is proportional to m. As the CSS

is a (weighted) superposition of the Dicke states, the noise components of the

CSS with larger m would precess faster than those with smaller m. Also, noise

components with positivem would precess in the opposite sense compared to noise

components with negative m. This process is depicted pictorially in Fig. 2.8 with

the resulting noise distribution sheared such that noise in one direction is lower

than the CSS projection noise. The shearing process can be viewed as arising from

twisting the Bloch sphere about the z-axis, hence the name one-axis twisting. A

small rotation can be performed to rotate the squeezed quadrature to lie along ŷ

or along ẑ.

Recent experiments employing this collision-induced OAT has produced ξ2
R ∼

−4 to −8 dB of inferred squeezing after background subtraction in ensemble sizes

of N ∼ 400 to 2000 atoms [88, 89, 90]. It is in fact, not necessary to utilize BECs

and anti-squeezing has been observed in the non-degenerate 87Sr fermion optical

lattice clock at JILA [91].

Cavity mediated interactions In contrast to the measurement-based scheme,

off-resonant atom-light coupling can also be used to realize a light-mediated co-

herent interaction between distant atoms. When the light Stokes operator Ŝz is

proportional to the atomic Ĵz, the Hamiltonian Ĥ ∝ ŜzĴz describing atom light

interaction (Eq. (2.58)) becomes Ĥ ∝ Ĵ2
z [92, 93], corresponding to an effective

one-axis twisting nonlinearity that generates unconditional spin squeezing [38]. In

contrast to spin squeezing obtained from QND measurements, it deterministically

produces known entangled states, independently from the detector performance.

Furthermore, atom-cavity coupling can be easily switched on and off.

One-axis twisting by light-mediated interactions has been experimentally im-

plemented in an optical cavity [94, 95], using an effective number Neff = 3× 104

of 87Rb atoms. The squeezed state is characterized via spin noise tomography

and the contrast of Rabi oscillations. The results of [94] demonstrate a gain

ξ2
R = −4.6 dB over (∆θSQL)2 = 1/Neff (ξ2

eff = −5.6 dB over the sensitivity

experimentally reached in the absence of entanglement). [95] used the squeezed

states generated with this method to realize an atomic clock with short-time frac-

tional frequency stability a factor 2.8 (corresponding to 4.5 dB) in variance below

the SQL.

Recently, [47] reports near-unitary spin squeezing in 171Yb with light mediated
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OAT Hamiltonian in an asymmetric cavity [96]. The squeezing is induced between

the two nuclear sublevels |m = ±1/2〉 of the electronic ground state 1S0 of 171Yb

and is later transferred to the 3P0 excited clock state, which demonstrates the

first entanglement-enhanced optical atomic clock [48]. A metrological gain of

ξ2
R = −4.4+0.6

−0.4 dB over the SQL using a few hundreds 171Yb atoms allows to

reach a given stability 2.8± 0.3 times faster than the same clock operated at the

SQL.

Interactions with squeezed light Spin-squeezed states can be also created

by transferring quadrature squeezing of light to atomic spin squeezing [97, 83].

This effect can be understood from the Jaynes-Cummings model Hamiltonian

ĤJC = ~Ω(ĉĴ+ + ĉ†Ĵ−), (2.71)

describing the interaction of non-decaying two-level atoms with a light mode.

Quantum state transfer from light to atoms was first experimentally demon-

strated by [98] using an ensemble of 107 cold Cs atoms, following the theoretical

proposal of [97]. This experiment used a V-level scheme consisting of three atomic

hyperfine levels [98, 99]. The reduction of atomic spin noise below the projection

noise of uncorrelated atoms is generated by the absorption of polarized coherent

and squeezed vacuum light with opposite circular polarizations.

2.6 Conclusions

In this chapter, the theoretical background for quantum metrology with spin

squeezed states is discussed. Any quantum interferometric measurement using

an atomic ensemble is enclosed into the estimation of the accumulated phase of

the atoms during the interrogation. The resolution of this phase is limited by

the SQL for N uncorrelated atoms. This limit can be surpassed by introducing

correlation or entanglement between the atoms, thus generating spin squeezed

states.

Various methods for the generation of SSSs are reviewed and the main exper-

imental achievements are cited. QND measurement in an optical cavity is one of

the most successful methods for generating highly spin-squeezed states because

of the large available optical depth and the non-destructibility. This method is

considered in this thesis. The main purpose of this thesis is the construction

and characterization of an optical ring cavity for QND measurement in order to

generate spin squeezing in the momentum states of a Sr atom interferometer.
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Chapter 3

Squeezing on momentum states

in Sr atom interferometry

As described in chapter 2, spin squeezing can be used to surpass the SQL in

quantum precision measurements. The aim of this thesis is to generate spin

squeezing on the momentum states of a Sr atom interferometer. In this chapter,

the basic properties of Sr and the two-stage cooling of Sr atoms in a magneto-

optical trap (MOT) are introduced. Then the principle of atom interferometry

is discussed. Different types of atom interferometers are presented and their

respective phase shifts are calculated. Finally, the proposal for squeezing on

the momentum states of Sr atom interferometer is reviewed and the potential

squeezing and metrological gain are estimated.

3.1 Ultra-cold Sr atoms for precision measure-

ment

3.1.1 Basic properties of Sr atoms

Strontium is an alkaline-earth atom with atomic number Z = 38. There are four

stable isotopes of Sr in nature, among them three are bosons with zero nuclear

spin while the only fermion 87Sr has a nuclear spin I = 9/2. The nuclear spin

and scattering properties of all four isotopes are summarized in Table. 3.1.

The bosonic 88Sr isotope has the largest natural abundance. Due to the

absence of orbital and spin angular momentum in electrons and the zero nuclear

spin, the ground state of 88Sr is a pure scalar state with zero magnetic moment.

This property of 88Sr makes its ground state extremely insensitive to spurious

magnetic fields, which is advantageous in high-precision measurements since no

35
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Table 3.1: Four stable isotopes of strontium and their properties on abundance [102],

atomic mass [103], nuclear spin and scattering length [104, 105].

Isotope
Abundance

(%)

Atomic mass

(M)

Nuclear spin

(I)

Scattering length

(a0)
88Sr 82.58(1) 87.905612257(10) 0 −2.00(27)
87Sr 7.00(1) 86.908877497(9) 9/2 97.37(7)
86Sr 9.86(1) 85.909260731(9) 0 798(12)
84Sr 0.56(1) 83.913425(3) 0 122.76(9)

magnetic shield is needed. The 88Sr isotope has another special property of a small

s-wave scattering length. This leads to weak cold collisions which maintains the

long coherence time of atoms in an optical lattice [24, 100]. The drawback of this

small scattering length is that evaporative cooling of 88Sr is nearly impossible and

the BEC of 88Sr can be achieved only with sympathetic cooling [101].

Electronic properties Strontium, as well as all the alkaline-earth (like) atoms

such as Be, Mg, Ca, Ba, Ra, Zn, Cd, Hg and Yb, has two valence electrons in

the outer shell. Due to the different orientation of the two electron spins there

are two series of levels: singlet states for anti-parallel spins and triplet states

for parallel spins. The low level diagram of Sr is shown in Fig. 3.1, where each

energy level is presented with Russell-Saunders notation [106] 2S+1LJ , where S

is the total spin of the two electrons (either 0 or 1), L is the orbital angular

momentum of the electrons, and J is the total angular momentum of the state.

The interesting transitions for cooling and trapping of Sr atoms, as well as that

used in spin squeezing, are presented in Fig. 3.1. We describe in detail some of

the transitions used in this work.

� Dipole transition 1S0-1P1, corresponding to the laser wavelength of 461 nm,

with a natural linewidth of 32 MHz. It is used for the first stage MOT

laser cooling because it has a wide linewidth of 32 MHz. The strong, blue

transition is also useful for Zeeman slowing since the fast scattering rate

and relatively large per photon momentum give large deceleration.

� Intercombination transitions 1S0-3PJ . In the case of pure LS coupling, the

three 5s5p3P states are forbidden to decay to the ground state, so they are

meta-stable. However the spin-orbit interaction provides a finite lifetime

for the 3P1 state.

1S0-3P1, corresponding to the laser wavelength of 689 nm, with a natural

linewidth of 7.5 kHz. This narrow intercombination transition can be used
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Figure 3.1: Strontium low-level diagram and transitions of interest for cooling, trapping

and spin squeezing. The states are represented in the Russell-Sunders notation 2S+1LJ
and are divided between singlet (S = 0) and triplet (S = 1) states. We indicate the

valence electron configuration for each level and the wavelength corresponding to each

transition.

for efficient and simple Doppler optical cooling down to the recoil tempera-

ture. This transition can also be used for high-efficiency multiphoton Bragg

interactions. More details about atom interferometry using the intercombi-

nation transition with Sr atoms can be found in [27].

1S0-3P0 transition, also called the clock transition, corresponding to the

laser wavelength of 698 nm. The ultranarrow 1S0-3P0 transition is only

present in the isotope with nuclear spin (87Sr), and in the bosonic isotope it

can be induced by a static magnetic field through mixing the 3P0 and 3P1

states [107].

� Repump transitions. During optical cooling of strontium on the broad
1S0-1P1 transition, a small fraction of the atoms decay to the metastable
3P2 state through the 1D2 state thus reduce the lifetime of the cooled

and trapped atoms. As a result, it is often necessary to repump the
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atoms to the ground 1S0 state. This can be achieved in a number of

ways [108, 109, 110, 111].

One possibility is to repump the atoms from the 3P2 state to the 3P1

state through the 707 nm transition that connects to the excited state

5s6s3S1 [112]. From the 3P1 state the atoms decay back to the ground

state. A fraction of the atoms excited to the 3S1 state, however decays to

the 3P0 state and a second laser is then added, at 679 nm, resonant with

the 3P0-3S1 transition. From the 3S1 state, the atoms decay back to 3P1

state through the 688 nm transition.

Another option is repumping through the 5s5d3D2 state with the 497 nm

transition. Here a single laser is sufficient and the atoms are pumped to

the 3P1 state by decay on the 487 nm transition. All these transitions are

dipole-allowed with a linewidth of a few MHz.

3.1.2 Two-stage MOT of Sr atoms

In order to perform atom interferometry experiments with strontium atoms, it

is necessary to reduce the atomic kinetic energy to temperatures on the order of

1 µK, while working with reasonably large atom numbers. This result is achieved

in a magneto-optical trap, through two successive cooling stages, operating on

the broad 1S0-1P1 transition and on the narrow 1S0-3P1 transition. The goal of

the first stage, the so-called blue MOT, is to collect a large number of atoms

with a relatively large temperature. In the second stage, the red MOT, atoms

from the blue MOT are further cooled and large densities are reached owing to

the narrow linewidth of the red 1S0-3P1 transition. A more detailed discussion

about the laser cooling techniques of Sr can be found in [113, 28], here only a

brief introduction is given.

First stage cooling and the blue MOT The first stage of laser cooling is

performed on the broad 1S0-1P1 transition, which is shown in Fig. 3.1. After

exiting the oven, the atoms are slowed in a Zeeman slower with an optical power

of 30 mW, a polarization of σ+, and a detuning of approximately −317 MHz be-

low the 1S0-1P1 transition. Then, upon reaching the science chamber the atoms

are collected in a MOT operating on the 1S0-1P1 transition. Each MOT beam

operates close to s ' 1 where s = I/Is (I is the laser intensity) indicates the

saturation factor. The field gradient utilized for the 1S0-1P1 MOT is ' 50 G/cm

in the horizontal direction. The 1S0-1P1 transition has a decay pathway to the

metastable 3P2 state, in order to maintain efficient MOT operation, the atoms

in the 3P2 state must be repumped by a separate repump laser. Two repump
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schemes can be used, as already discussed before. The repumpers make a huge

difference with a factor of ' 20 improvement in the observed fluorescence. Ulti-

mately, the first-stage 461 nm MOT accumulates ' 2× 107 atoms in 2 s.

Second stage cooling and the red MOT In order to enable efficient trans-

fer from the blue MOT into the red MOT, two distinct MOT phases of the red

MOT are adopted. In the first phase, the red laser is modulated with a few

MHz modulation depth. The modulation is chosen to provide good overlap with

the Doppler profile of the atoms after being pre-cooled in the blue MOT, with a

final temperature of a few mK. In the initial broadband phase of the red MOT,

the magnetic field gradient is extinguished from the 50 G/cm employed in the

blue MOT. Subsequently, the field is slowly ramped up to 0.6 G/cm in 200 ms for

maintaining an adiabatic condition on the deceleration. The ramp compressed the

MOT in all three spatial dimensions. When the field gradient reaches 0.6 G/cm,

the broadband frequency modulation is switched off, and the laser is tuned closer

to the atomic resonance. Then steeping into the final phase of the MOT cool-

ing: the single frequency red MOT. After the broadband stage, the resonance

is broadened by sending all the laser power to the atoms. Then the power is

slowly decreased and the detuning is ramped down to approach the resonance.

The transfer efficiency from the blue MOT is approximately 30%, resulting in a

sample of atoms with µK temperatures.

3.2 Working principle of atom interferometry

This section describes the working principle of atom interferometry. We start

with the general model of atom-light interaction where the atom is considered as

a two-level system, the phenomenon of Rabi oscillation due to atomic excitation

is discussed. Then the principle of a general Mach-Zehnder atom interferometer

is analyzed and the phase determination is derived. Based on different transition

schemes atom interferometers can be categorized into single-photon interferom-

eter, two-photon Raman interferometer and multi-photon Bragg interferometer.

The differences between those schemes are addressed and the corresponding phase

shifts are calculated. For more information about atom interferometers, one may

refer to [1, 114, 115, 116, 117].

3.2.1 Atom-light interaction and Rabi oscillations

We consider the simplest model of the interaction between a two-level atom and

the electromagnetic field, as shown in Fig. 3.2 (a). Here the semi-classical treat-
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Figure 3.2: Atom-light interaction and Rabi oscillation. (a) Atom-light interaction.

The atom is modeled as a two-level system with the ground and excited states (|g〉 and

|e〉), respectively. A laser beam with a detuning δ to the atomic transition ωeg interact

with the atom and excite the atom between the two states. (b) Rabi oscillations with

different detunings. Excited state population Pe as a function of the laser pulse duration

Ωt for different laser detunings (δ = 0, δ = Ωeg/2 and δ = Ωeg).

ment is used where the atom is quantized while the electromagnetic field is clas-

sical. The atom is modeled as a two-level system with the ground state |g〉 and

excited state |e〉, the atomic wave function can be written as a superposition of

the two eigenstates |g〉 and |e〉 as,

|Ψ(t)〉 = cg(t)e
−iωgt |g〉+ ce(t)e

−iωet |e〉 , (3.1)

where ωg, ωe are the fast oscillating frequencies and cg(t), ce(t) are the slowly

varying factors of the ground and excited states, respectively.

The electromagnetic field has a frequency ωL, the detuning of the laser fre-

quency ωL to the atomic resonance frequency ωeg = ωe − ωg is defined as δ =

ωL−ωeg, when the condition δ � ωeg is satisfied, the rotating wave approximation

can be introduced and the light field can be expressed in the form:

E(t) = E0 cos(kL · r − ωLt0 + φL,0) =
E0

2
(ei(φL−ωLt) + e−i(φL−ωLt)), (3.2)

where

φL = kL · r − ωLt0 + φL,0 (3.3)

is the effective phase of the laser fields at the position r with a laser frequency of

ωL. t0 is the initial time of the atom-light interaction.
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The time-dependent Schrödinger equation for the atomic wave function |Ψ(t)〉
is

Ĥ |Ψ(t)〉 = i~
∂ |Ψ(t)〉
∂t

. (3.4)

Considering the electric dipole interactions, the time-dependent Hamiltonian is

composed of two parts,

Ĥ = Ĥa + Ĥint, (3.5)

where Ĥa = ~ωg |g〉 〈g| + ~ωe |e〉 〈e| describes the atomic internal energy, Ĥint =

−d ·E(t) describes the interaction matrix element between the electronic dipole

moment d for the atom and the electric field E(t). Here we define the on-resonance

Rabi frequency Ωeg and the general Rabi frequency ΩR with a detuning δ (δ =

ωL − ωeg) as,

Ωge = −〈g|d ·E0 |e〉
~

= −〈e|d ·E0 |g〉∗

~
= Ωeg

∗, (3.6)

ΩR =
√

Ω2
eg + δ2. (3.7)

By introducing the Hamiltonians (Eq. (3.5)) into the Schrödinger equation, one

gets,

i~
dcg(t)

dt
=

1

2
ce(t)~Ωeg

[
ei(φL−ωLt) + e−i(φL−ωLt)

]
e−iωegt, (3.8a)

i~
dce(t)

dt
=

1

2
cg(t)~Ω∗eg

[
ei(φL−ωLt) + e−i(φL−ωLt)

]
eiωegt. (3.8b)

The equations can be simplified by making the rotating wave approximation and

neglecting the rapidly oscillating terms at frequency ωL + ωeg as,

dcg(t)

dt
= −iΩeg

2
ce(t)e

i(δt−φL), (3.9a)

dce(t)

dt
= −i

Ω∗eg
2
cg(t)e

i(δt−φL). (3.9b)

A solution to Eq. (3.9) after an interaction time τ is

cg(t0 + τ) = ei
δτ
2

{[
cos

(
ΩRτ

2

)
+ i cos β sin

(
ΩRτ

2

)]
cg(t0)

+ei(δt0−φL)

[
−i sin β sin

(
ΩRτ

2

)]
ce(t0)

} (3.10)

ce(t0 + τ) = e−i
δτ
2

{
e−i(δt0−φL)

[
−i sin β sin

(
ΩRτ

2

)]
cg(t0)

+

[
cos

(
ΩRτ

2

)
− i cos β sin

(
ΩRτ

2

)]
ce(t0)

} (3.11)
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or in the matrix form:[
cg(t0 + τ)

ce(t0 + τ)

]
=

[
eiδτ/2 0

0 e−iδτ/2

]
·
[
cos
(

ΩRτ
2

)
+ i cos β sin

(
ΩRτ

2

)
−iei(δt−φL) sin β sin

(
ΩRτ

2

)
−ie−i(δt−φL) sin β sin

(
ΩRτ

2

)
cos
(

ΩRτ
2

)
− i cos β sin

(
ΩRτ

2

)] [ cg(t0)

ce(t0)

] (3.12)

In those equations sin β = Ωeg
ΩR

, cos β = − δ
ΩR

(0 ≤ β ≤ π). Suppose that the

initial state of the atom is the ground state, i.e. cg(t0) = 1, ce(t0) = 0, then,

cg(t) =

[
cos

(
ΩRτ

2

)
− i δ

ΩR

sin

(
ΩRτ

2

)]
eδτ/2, (3.13a)

ce(t) = −iΩeg

ΩR

sin

(
ΩR

2

)
e−i(δτ/2−φL). (3.13b)

Therefore, the probability to find the atom in the excited state is

Pe(τ) = |ce(τ)|2 =

(
Ωeg

ΩR

)2
1− cos(ΩRτ)

2
. (3.14)

Figure 3.2 (b) shows examples of Rabi oscillations for different detunings

δ = 0, δ = 0.5 Ωeg and δ = Ωeg, respectively. One can see that by increasing

the detuning, the contrast of the flopping is decreased and the Rabi frequency

is increased. There are two especially interesting times τ in terms of Eq. (3.14).

Firstly, if ΩRτ = π/2, the population is evenly distributed between |g〉 and |e〉,
the light pulse corresponding to this time duration can therefore be used as a

beamsplitter and is called π/2 pulse. The second interesting event occurs when

ΩRτ = π, where the population between two states is fully swapped. This can be

used as a mirror pulse and is referred as π pulse, as population is reflected from

one state to the other.

The discussion described above only focuses on the internal state. However,

the internal and external degrees of freedom are coupled. The absorption and

emission of a photon is correlated with a momentum change. If also the center-

of-mass motion is included in the description, then there are two eigenstates |g, p0〉
and |e, p0 + ~k〉, corresponding to a ground state |g〉 with momentum of p0 and

an excited state |e〉 with an additional momentum ~k. The wave function can be

described by

|Ψ(t)〉 = cg(t)e
−i[ωg+p2/(2m~)]t |g, p0〉+ce(t)e−i[ωe+(p+~k)2/(2m~)]t |e, p0 + ~k〉 . (3.15)

The eigenenergies of the system become

E|g,p0〉 = ~ωg +
p2

0

2m
, (3.16a)

E|e,p0+~k〉 = ~ωe +
(p0 + ~k)2

2m
. (3.16b)
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Figure 3.3: Mach-Zehnder type atom interferometer. A series of π/2, π and π/2 pulses

are used to split, redirect and recombine the atomic wave packet. After the first π/2

pulse, the initial ground state |g〉 is prepared into a superposition state of |g〉 and |e〉
with equal population. The momentum state is also split therefore a π pulse is needed

to redirect the two trajectories. Finally another π/2 pulse is applied to combine the

two wave packets and produce interference.

A typical type of Mach-Zehnder atom interferometer is shown in Fig. 3.3. A

series of π/2-π-π/2 pulses are used to split, redirect and recombine the atomic

wave packet. After the first π/2 pulse, the initial ground state |g〉 is prepared

into a superposition state of |g〉 and |e〉 with equal population. The momentum

state is also split therefore a π pulse is needed to redirect the two atomic trajec-

tories. Finally another π/2 pulse is applied to combine the two wave packets and

interference occurs. The atoms through two different paths accumulate different

phases, in the final state detection, the population of |g〉 and |e〉 depends on this

accumulated phase. One can tune the laser phase of the second π/2 pulse in order

to add a phase shift to the interferometer and scan the interference fringe.

3.2.2 Phase shift determination

Considering the atom center-of-mass motion during the interferometer, one can

rewrite the system Hamiltonian Eq. (3.5) as [118, 119],

Ĥtot = Ĥa + Ĥint + Ĥext, (3.17)

where Ĥext = p2

2m
+Vr is the Hamiltonian of the atomic external degrees of freedom.
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According to Eq. (3.17), the total phase shift accumulated by an interferom-

eter can be divided into three main contributions. Firstly, the differential laser

phase ∆φint is due to the interactions between lasers and atoms. Another source

is the differential free evolution since the two arms follow their independent tra-

jectories under the influence of a variety of forces, giving rise to the propagation

phase ∆φprop. The third source is due to the imperfect overlap of the trajecto-

ries of the two arms at the final beamsplitter pulse ∆φsep. Therefore, the total

interferometer shift is given by

∆Φ = ∆φint + ∆φprop + ∆φsep. (3.18)

The first term is the largest one and the main reason for high sensitivity and

accuracy in atom interferometry. It originates from the interaction of the atomic

wave packet with the interrogating light field and is the sum of the imprinted

laser phases ±φ(ti) defined in Eq. (3.3) at each time ti and position r at the

beginning of each optical pulse. The sign of the phase at each pulse depends on

whether the atom gains or loses momentum

∆φint =
∑
u

±φ(ti)−
∑
l

±φ(ti), (3.19)

where u and l represent the upper and lower arm, respectively. In a typical

Mach-Zehnder configuration as analyzed in the last section, the phase shift is

∆φint = φ1(t1)− 2φ2(t2) + φ3(t3). (3.20)

According to Eq. (3.3), suppose the initial time t0 = 0, the separation time is T ,

then the laser phase for each pulse is

φi(ti) = kL · r(ti) + φi, (3.21)

where r(ti) = v0ti + gt2i /2 follows the classical trajectory in the uniform gravita-

tional potential with gravity acceleration g, φi is the phase reference of the ith

pulse. Then the interaction phase can be simplified to

∆φint = kgT 2 + (φ1 − 2φ2 + φ3). (3.22)

The second contribution, the propagation phase, is given by taking the differ-

ence of the Lagrangian L integrated over the two interferometer arms along the

trajectory with inclusion of the phase evolution due to the internal state energy

E,

∆φprop =
1

~
∑
u

∫ tf

ti

(L − E)dt− 1

~
∑
l

∫ tf

ti

(L − E)dt, (3.23)
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The last phase shift term is due to imperfect overlapping in position and

velocity in a single output port from the two interferometer arms. This term

includes any such mismatch and depends on the position difference between two

arms at the final beamsplitter pulse, ∆x = xu−xl. The momentum in one of the

two output ports of the final interferometer, averaged between the two arms, is

p̄ = ([∇ẋL]u + [∇ẋL]l)/2. The separation phase can be described by

∆φsep = −1

~
p̄ ·∆x. (3.24)

Due to rotations and gravity gradients, the classical trajectories characterizing

the motion of the wave packets for the two branches of the interferometer do

not close in space, an effect which increases significantly with the interferometer

time. The relative displacement between the interfering wave packets in such open

interferometers leads to a loss of contrast. The problem can be mitigated by small

changes in the timing of the laser pulses which is very easy to implement [120] or

by adjusting the wave vector of laser pulses [121]. The latter is also interesting

for its opposite application as adopted in [27] to characterize the performance

of a gradiometer when the phase shift introduced by the gravity gradient is too

small to see an open ellipse where the interference fringes are plotted by on

interferometer against with the other one.

3.2.3 Different types of atom interferometer

In the last subsection we have discussed the working principle of a typical Mach-

Zehnder atom interferometer. The physics model is based on a two-level atom

system with single-photon transition, the expressions of atom excitation and the

accumulated phase during the interferometric process are presented. The single-

photon interferometer, being the simplest model, is however inconvenient to re-

alize due to the usually limited lifetime of the upper state. Only a few examples

of single-photon interferometers have been demonstrated very recently using the

clock transition [30, 31] or the intercombination transition [32] of Sr. The more

popular scheme is the interferometer based on two-photon Raman transitions [2].

In recent years, multi-photon Bragg interferometers also attracted attention due

to the benefit of large momentum transfer (LMT) [122]. The single-photon inter-

ferometer has been briefly discussed in section 1.2. In this subsection, the Raman

and Bragg type atom interferometers will be discussed and their advantages will

be presented.

Two-photon Raman interferometer The first implementations of atom in-

terferometers with separated arms exploited two-photon Raman transitions [2].
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Figure 3.4: Different types of atom interferometer. (a) Two-photon Raman interfer-

ometer; (b) multi-photon Bragg interferometer.

A simplified level diagram for this case is shown in Fig. 3.4 (a).

The system that we consider is composed of two internal and stable ground

states |g1〉 and |g2〉 and an optically excited state |e〉. The atomic system is

illuminated by a couple of counterpropagating laser beams with frequencies ω1

and ω2. Because of the photon recoil, the combined internal and external states

as |α, p〉, where α = g1, g2, e are considered. Starting from a plane wave with

momentum p and in the internal state g1, |g1, p〉, the field with frequency ω1

and Rabi frequency Ω1 couples to the excited state |e, p+ ~k〉. Similarly, the

counterpropagating field with frequency ω2 and Rabi frequency Ω2 couples the

excited state to the ground |g2, p+ 2~k〉 state. Both laser fields are detuned from

the transition to the excited state and we define the detunings of the two fields

from the excited states as ∆1 = ω1−ω31 and ∆2 = ω2−ω32, where ω31 and ω32 are

the frequencies of the |g1, p〉-|e, p+ ~k〉 and |g2, p+ 2~k〉-|e, p+ ~k〉 transitions,

respectively.

We first consider the Hamiltonian in the absence of the laser fields,

Ĥa = ~ω1 |g1, p〉 〈g1, p|+~ω2 |g2, p+ 2~k〉 〈g2, p+ 2~k|+~ω3 |e, p+ ~k〉 〈e, p+ ~k| ,
(3.25)

and transform the atomic state according to |ψ〉 = e−iĤat/~ |φat〉. We then write

the time-dependent Schrödinger equation for |φat〉 = c1 |g1, p〉+ c2 |g2, p+ 2~k〉+
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c3 |e, p+ ~k〉 as,

i~
dc1

dt
=

~Ω1

2
e−i(∆1t+φ1)c3 (3.26a)

i~
dc2

dt
=

~Ω2

2
e−i(∆2t+φ2)c3 (3.26b)

i~
dc3

dt
=

~Ω1

2
e−i(∆1t+φ1)c1 +

~Ω2

2
e−i(∆2t+φ2)c2, (3.26c)

where φ1 and φ2 are the phases of the two laser fields. In the limit where the

population of the excited state is kept small, |∆1|, |∆2| � Ω1,Ω2, |∆1 − ∆2|, it

is possible to adiabatically eliminate the excited state amplitude by integrating

Eq. (3.26a) with constant c1 and c2 and substituting the result in equations

Eq. (3.26b) and Eq. (3.26c). Then, by neglecting terms that oscillate at the

detunings ∆i, the system reduces to a soluble two-level problem,

i~
dc1

dt
= ~

Ω2
1

4∆
+ ~

Ω1Ω2

4∆
ei(δt+φe)c2 (3.27a)

i~
dc2

dt
= ~

Ω2
2

4∆
+ ~

Ω1Ω2

4∆
ei(δt+φe)c1, (3.27b)

where in the coefficients we neglected the difference between ∆1 and ∆2 by setting

∆1 ' ∆2 ≡ ∆ and in the complex exponentials we set δ = ∆1−∆2. The effective

phase φe is defined as the difference φe = φ1 − φ2.

If we only look at the second terms of the right-hand side of equations (3.27a)

and (3.27b), these are the same as in the actual two-level system but with an

effective (two-photon) Rabi frequency Ωeff = Ω1Ω2/(2∆) and the system is driven

by an effective laser with frequency ωeff = ω1−ω2, effective wavevector keff = 2k

and effective phase φe = φ1−φ2. The first two terms, on the other hand, represent

the light shift of the atomic levels. We note that when these are equal, they would

merely change the energy offset and therefore not cause an effect. On the other

hand, if these terms are different, they change the frequency difference between

the two ground states. The light shift terms can cause several difficulties in

precision measurements, especially if the intensity profile of the laser beams is

considered. In this case, the resulting spatial dependence of the Rabi frequency

can cause unwanted interferometer phase shifts.

It is possible to see that by a suitable unitary transformation, this system

of equations can be mapped into the Hamiltonian (Eq. (3.5)) with detuning,

generalized Rabi frequency and phase given by

δe = δ +
Ω2

1

4∆
− Ω2

2

4∆
(3.28a)

ΩR =
√

Ωeff + δ2
e (3.28b)

φe = φ1 − φ2 (3.28c)
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respectively. The phase shift of a Raman-based atom interferometer is written

by adapting Eq. (3.22) with the replacements k → keff and φ→ φe:

Φ = keffgT
2 + φe,1 − 2φe,2 + φe,3. (3.29)

Multi-photon Bragg interferometer Multi-photon transitions can be used

for the implementation of atom interferometers where the two states differ by

their momentum but have no internal excitation. These processes are gener-

ally identified as Bragg diffraction because of the analogy with the scattering

of X-rays and neutrons off crystals [123]. In atomic Bragg diffraction, the opti-

cal lattice formed by two counterpropagating laser fields acts as the diffracting

crystal planes and the atomic matter-waves act as the beam of X-rays. In the

atom-photon interaction picture, Bragg diffraction is described in terms of com-

bined cycles of absorption and stimulated emission resulting in the net transfer

of pairs of photon momenta (Fig. 3.4 (b)). Atomic Bragg diffraction was first

studied in [124]. The first experimental realization consisted in the diffraction of

a collimated atomic beam [125] and, in a related experiment, up to sixth-order

Bragg diffraction was observed on a beam of metastable neon atoms [126]. Later

on, Bragg diffraction was implemented in laser-cooled atomic systems, transfer-

ring up to 102 photon recoils and inducing momentum state superpositions with

a half-meter scale spatial separation between the wavepackets [122, 127, 128].

In order to describe atomic Bragg diffraction, we consider the same setup as

for Raman transitions, with two counterpropagating laser fields with frequencies

ω1 and ω2 and follow the same procedure. We write the wavefunction as a super-

position of atomic states for the ground and excited states and with momentum

differing by ~keff (Fig. 3.4 (b)):

|φat〉 =
∑
n

cg,n(t) |g, p+ n~keff〉+
∑
n

ce,n(t) |e, p+ n~keff + ~k〉 . (3.30)

Similar to the Raman transitions, we can perform adiabatic elimination of the

excited state by assuming that the detuning from the optical transitions is large

compared to the single-photon Rabi frequencies and to the frequency difference

between the two fields. The result is the system of coupled equations

i~
dcg,n
dt

= ~
(

Ω2
1

4∆
+

Ω2
2

4∆

)
cg,n + ~

Ωeff

2
ei(δnt+φe)cg,n+1 + ~

Ωeff

2
e−i(δn−1t+φe)cg,n−1,

(3.31)

where δn is the detuning from the transition |g, n〉-|g, n+ 1〉 which can be ex-

pressed in terms of the difference of kinetic energy of the two states as,

δn = ω1 − ω2 −
[

(2n+ 1)~k2
e

2m
+ keffυ

]
. (3.32)
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These results are similar to those for Raman transitions but there are some im-

portant differences. Indeed, because the transitions do not change the internal

state, the frequency of the transition between two internal states is absent. For

this reason Bragg diffraction is more robust against perturbations such as electro-

magnetic fields that can alter δn and therefore induce an undesired phase shift.

This same immunity is reflected in the light shift terms which are the same for

every state |g, p+ n~keff〉 as long as the conditions for adiabatic elimination

hold [129]. Bragg diffraction therefore appears to have a number of advantages

compared to two-photon Raman transitions.

The first advantage is the immunity to internal energy shifts. This immunity

is valid in the framework of adiabatic elimination and as long as spatial inter-

nal energy gradients are small. This means that if the internal atomic energy is

position-dependent, the resulting force acting on the atom might still cause unde-

sired systematic effects. This is the case, for example, when magnetic gradients

or laser intensity gradients are present during the interferometer. The second

advantage is the large momentum transfer. The possibility in Bragg diffraction

of transferring several pairs of photon momenta in a single light pulse, generally

referred to as large momentum transfer, enhances the phase sensitivity by in-

creasing the interferometer area. For a Mach-Zehnder interferometer, the phase

shift is given by

Φn = nkeffgT
2 + n(φ1 − 2φ2 + φ3). (3.33)

3.3 Bragg atom interferometer with spin squeezed

states

In this section we present the proposal of using spin squeezed states in a Bragg

atom interferometer. This proposal is based on the research work of Dr. Leonardo

Salvi [51, 52]. The main objective of the current thesis is the experimental real-

ization of this proposal.

3.3.1 Motivations

The Bragg atom interferometer based on bosonic 88Sr atoms has been imple-

mented both with the 1S0-1P1 dipole transition [26] and the 1S0-3P1 intercombi-

nation transition [27]. There are some advantages in using the Bragg diffraction

in Sr atom interferometers. First, the ground state of 88Sr has zero nuclear spin

and is therefore immune to the stray magnetic fields when operated as an atom

interferometer. This advantage is more pronounced with Bragg transitions since
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only the motional state changes. Second, the large-momentum transfer due to

high-order Bragg diffraction can significantly enhance the sensitivity of the quan-

tum sensor.

The presence of narrow intercombination transitions in Sr also makes the atom

well suited for squeezing experiments involving external degrees of freedom. The

squeezing method relies on resolving the Doppler effect due to the different speed

of the two momentum components. For dipole-allowed transitions, however, the

Doppler splitting, of the order of 10-100 kHz, is hidden by the large linewidth

on the order of 10 MHz. Probing on a dipole-allowed transition therefore can

only provide information about the total atom number rather than about the

population difference. The linewidth Γ = 2π × 7.5 kHz of the intercombination

transition at 689 nm of strontium is however small enough to perform as a probe

that can resolve the Doppler splitting.

In this proposal, squeezing is introduced with quantum non-demolition mea-

surements in an high-finesse optical ring cavity. It is shown that effective squeez-

ing can be introduced in the momentum states with large Bragg diffraction orders.

The scheme can be extended also to small Bragg diffraction orders and large atom

number by inducing atomic transparency at the frequency of the probe field.

3.3.2 Experimental scheme

The proposed scheme is illustrated in Fig. 3.5, where two vertical counterpropa-

gating laser beams B1 and B2 induce a momentum-state superposition between

the states |1S0, p = 0〉 and |1S0, p = 2n~kb〉 by nth-order Bragg diffraction [122]

on the dipole-allowed 1S0-1P1 blue Sr transition at 461 nm. Here the atomic

linear momentum is indicated by p, and the photon momentum is denoted by

~kb. The duration of the Bragg diffraction pulses is set in order to couple the two

momentum states only. This condition is typically met by pulse durations of the

order of 10 µs [26].

We consider the squeezing of the atomic states by collective measurements of

the relative population of the two momentum states through dispersive detection

in a ring cavity (Fig. 3.5). This is achieved by probing for a time Tm on the

red 1S0-3P1 intercombination line of strontium at 689 nm using a laser beam, of

angular frequency ωr, incident onto the cavity. Probing is performed when the

free-falling atoms cross the cavity mode volume.

In the following, measurements of the cavity output field b̂out are considered,

and the sensitivity to atom number fluctuations between momentum states is

computed. As such measurements provide collective information about the en-

semble without distinguishing between individual atoms, they project the ensem-
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Figure 3.5: Squeezing on momentum states with Sr atoms. (a) Experimental scheme,

an optical ring cavity is used for nondemolition probe of the atomic state, squeezing is

induced by resolving the two momentum states prepared by two counter-propagating

Bragg beams. (b) Level diagram and transitions related to Bragg pulse (blue arrows),

squeezing probe (red arrow) and EIT coupling (orange arrows). Figure adapted from

[51].

ble into a collective state which corresponds to the measurement outcome [44].

This process can produce conditionally squeezed atomic momentum states that

can be implemented in atom interferometers with significant metrological gain.

In this proposal, it is shown than with large Bragg diffraction orders (n > 5),

substantial metrological gain can be achieved. However, for small n, the opti-

cal transitions are not sufficiently resolved in frequency space compared to the

atomic linewidth, which prevents operating in the dispersive regime of atom-

light interaction and leads to substantial absorption and squeezing reduction.

This condition can be relaxed with the technique called electromagnetically in-

duced transparency (EIT) [130, 131], which couples the decaying 3P1 state to

the metastable state 3P0 with a much longer lifetime (Fig. 3.5 (b)). With this

technique it is possible to enhance the signal-to-noise ratio of momentum-state

population collective measurements also at small Bragg diffraction orders n, while

keeping the collective cooperativity Nη, and thus the squeezing, large.

An atom interferometry scheme including the squeezed source proposed here

is the following (Fig. 3.6): strontium atoms are cooled and trapped at the cavity
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Figure 3.6: Squeezing sequence and state evolution. (a) Trajectory of atomic wave

packet and the squeezing sequence, a standard Mach-Zehnder interferometer sequence

is applied. After the first π/2 pulse, squeezing measurement (M1) is performed through

the ring cavity for a duration of 200 µs, then the spin orientation is rotated through

the x-axis by 90° and transfers the number squeezing to phase squeezing. After state

evolution and phase accumulation, a final measurement (M2) detects the atomic state

with the fluorescence method. (b) Bloch sphere representation of the state evolution,

each sphere corresponds to the atomic state in the same position of (a). Figure adapted

from [51].

mode waist close to the center of the optical cavity, then a momentum superpo-

sition is created by a Bragg π/2 pulse, and immediately after that, the squeezing

measurement of the relative population is performed (M1). At this stage, the

atomic ensemble is projected into a state with reduced relative population uncer-

tainty. The state on the Bloch sphere is then transformed into a phase-sensitive

state by applying a Bragg π/2 pulse with a phase shift of 90° with respect to the

first pulse. Following this preparation stage, the π and π/2 laser pulses complete

the Mach-Zehnder interferometer sequence. Finally, a final state measurement

(M2) is performed using the fluorescence detection.
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3.3.3 Metrological gain and squeezing

We quantify the attainable metrological gain ξm by the ratio between the contrast

squared C2 and the population variance (2∆Jz)
2 normalized to the atom shot noise

variance 2J [64]:

ξm =
J

2(∆Jz)2
C2. (3.34)

The squeezing pre-measurement of Jz can be achieved by arranging a situation

where the atom-light interaction is dispersive and the two momentum states are

associated with opposite variations of the index of refraction and shift the cavity

resonance frequency in opposite directions. When the cavity resonance frequency

ωc is tuned halfway between the two optical transitions, atoms in the two mo-

mentum states produce opposite shifts of the cavity resonance frequency that can

be detected via the phase shift ∆φph of the light reflected from the cavity,

∆φph =
4κin
κ
JzηLd(δωr)[

2κin
κ
− 1−NηLa(δωr)

]
[1 +NηLa(δωr)]

, (3.35)

i.e., the population difference can be detected via the phase shift of the light

emerging from the cavity. Here Ld(∆) = −2Γ∆/(Γ2+4∆2) and La(∆) = Γ2/(Γ2+

4∆2) are the atomic dispersion and absorption profiles, respectively. The single-

atom cooperativity is indicated as η = 4g2/(Γκ), where 2g is the vacuum Rabi

frequency, κ is the cavity mode linewidth, and κin is the contribution to κ due to

the input mirror transmission. The light phase measurement can be performed,

for example, through the Pound-Drever-Hall technique. If the detector operates

at the photon shot noise level, the variance of the population difference between

the two momentum states, normalized to the variance 2J of the atom shot noise,

is given by [51],

2(∆Jz)
2

J
=
La(δωr) [1 +NηLa(δωr)]2

4Nηεdnsc [Ld(δωr)]2
, (3.36)

where εd is the detection efficiency [51], and we have expressed the measure-

ment strength in terms of the average number nsc of photons scattered per atom

into free space, since the latter process constitutes the main, and fundamental,

limitation to the attainable squeezing [43].

After the scattering of one photon by one atom, the momentum superposition

is destroyed, and the associated recoil causes the trajectory to deviate from the

vertical direction. The resulting losses cause a random imbalance 2(∆Jz)sc of the

populations in the two momentum states. Assuming that each atom scatters at

most one photon, the population variance increase is (2∆Jz)
2
sc = 2Jnsc. By ac-

counting for free space scattering, we can then compute the optimum metrological
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gain, which is attained for

nsc =

√
La(δωr) [1 +NηLa(δωr)]2

4Nηεd [Ld(δωr)]2
. (3.37)

Finally, we put some realistic parameters and estimate the potential squeez-

ing with the proposed measurement scheme. We consider an optical cavity where

one of the foci has a waist w0 = 150 µm, at the position where the atoms cross

the cavity mode volume. With a cavity finesse F = 105 and at the wavelength

λ = 689 nm, we get a single-atom cooperativity η = 3Fλ2/(2π3w2
0) ' 0.1 [41].

We then consider N ' 105 atoms occupying a volume with a linear size of about

30 µm. In this case, a collective cooperativity Nη ' 104 is achievable. The max-

imum possible Bragg diffraction order with our method is set by the condition

that the transit time of the wave packets corresponding to the two momentum

states through the cavity beam waist is larger than the time duration of the col-

lective measurement. Because the atoms are crossing the cavity beam vertically,

the effective mode waist is w0/ sinα. We therefore estimate the maximum Bragg

diffraction order as nmax = Mw0/(10~kbTm sinα), where Tm is the measurement

time duration. With α ' 0.4 rad and Tm ' 200 µs, we get nmax = 10. However,

the maximum Bragg order can be made considerably larger by a suitable design

of the cavity geometry, where w0 is made larger and α is made smaller.

The measurement time is set by the requirement that the number of photons

scattered into free space be sufficient to provide the optimum metrological gain.

To resume, by considering a collective cooperativity Nη = 104, first-order diffrac-

tion n = 1, a Raman coupling strength Ωeff = 2π × 400 kHz, a measurement

time Tm = 200 µs, and a detection efficiency εd = 1, we conclude that the op-

timum number of photons scattered into free space per atom is nsc = 5 × 10−3,

corresponding to the excited-state population Pext = nsc/(ΓTm) = 5 × 10−4. In

this case it is possible to achieve a metrological gain of 20 dB.

3.4 Conclusions

This chapter presents a proposal for squeezing on the momentum states in Sr

atom interferometry. The basic properties and two-stage cooling of Sr are intro-

duced and the working principle of atom interferometry is discussed. Different

types of atom interferometer are studied and the corresponding phase shifts are

determined. A novel proposal for squeezing on the momentum states of Sr atom

interferometers is presented and the metrological gain and squeezing are esti-

mated.



Chapter 4

Construction of an optical ring

cavity for QND measurement

This chapter is dedicated to the construction of the optical ring cavity, which

is the core element in the generation of spin squeezed states. Spin squeezing

based on the cavity-enhanced measurement has been realized in a few groups

with Rb [132, 45] and Yb [47, 48] atoms. Different cavity geometries such as

the Fabry-Pérot cavity [133] and the asymmetric cavity [96] have been proposed

and demonstrated, further details about the cavity building can be found in [134].

Indeed, the crafts of optical cavity construction by itself is already an active field,

especially in the community of optical lattice clocks, where ultra-stable cavities

are built to provide a stable frequency reference for clock lasers [135, 136].

The main difficulty in building an optical cavity lies on the dilemma that,

on the one hand, the cavity geometry needs to be tunable to find the optimized

alignment, ie., the designated mirror positions, angles and maximum laser-cavity

coupling, etc. On the other hand, the cavity geometry needs to be stable and

robust to maintain a fixed cavity length, which is directly related to the frequency

stability of an oscillator. The tunability and the stability are the two ends of a

balance scale. This dilemma is alleviated in the case of two-mirror cavities, where

we can fix one mirror on the one end of a cylindrical cavity spacer and tune the

other one in the other end, while monitoring the cavity transmission. Generally,

epoxy is used to glue the cavity mirrors on a spacer. In some cases with super-

polished surfaces on the cavity mirrors and spacers, optical contact is used to fix

the cavity mirrors with the spacer by creating a layer of molecule bonds between

the surfaces [137, 138], therefore better stability can be attained.

In this thesis, the construction of an optical ring cavity with four mirrors is

considered, which has far more complexity and degrees of freedom. In this chap-

ter, we first take an overview of the optical ring cavity under consideration and

55
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discuss the alignment and assembly procedures. Then a series of original designs

of cavity components are presented, which are essential in the manipulation and

assembly of the cavity. Then the laser-cavity mode matching is discussed and

the usage of different epoxies to glue different cavity components is presented in

detail. Finally, a cavity prototype is constructed and assembled which can be

used for performance characterization and finally serve as a transfer cavity for

laser locking. The contents presented in this chapter can be a tutorial guide for

the construction of an optical ring cavity or similar multi-mirror cavities.

4.1 Cavity design considerations

Optical cavities can either consist of two mirrors facing each other (a Fabry-

Pérot cavity) or more than two mirrors forming a traveling wave (ring cavity) or

standing wave resonator [133]. They are one of the fundamental building blocks

of many laser interferometers, including LIGO-Virgo and LISA, and provide a

platform where atom-light interaction effects can be enhanced. The theory of a

Fabry-Pérot cavity has already been investigated intensively and a more general

description can be found in [139, 133]. Here we investigate some of the most

important properties of an optical ring cavity, which is the main concern of this

thesis.

4.1.1 General description of an optical cavity

Cavity geometry In this thesis an optical ring cavity geometry composed of

four mirrors is considered. We start from the simplest model where only the

fundamental mode of the cavity is considered and use the general ABCD matrix

treatment [139] for the analysis.

The ray transfer matrix or the ABCD matrix describes the beam propagation

in an optical system. In the paraxial approximation, it describes the transforma-

tion from the input beam with position x1 and slope x′1 to the output beam with

quantities x2 and x′2, (
x2

x′2

)
=

(
A B

C D

)(
x1

x′1

)
(4.1)

with the ray transfer matrix of the optical system

H =

(
A B

C D

)
. (4.2)

For a ray propagating through multiple optical systems, the collective effect can

be enclosed in one single ABCD matrix given by the product of each individual
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matrix.

For the laser beam circulating in an optical ring cavity, we first define the

sagittal plane which is orthogonal to the cavity plane and the tangential plane

which is parallel to the cavity plane. The ABCD matrix for a beam propagating

freely through a distance d is

Mf (d) =

(
1 d

0 1

)
. (4.3)

The ABCD matrix for a beam at reflection from a mirror with a radius of curva-

ture Rm and angle of incidence θ in the tangential plane Mt(Rm, θ) and sagittal

plane Ms(Rm, θ) are

Mt(Rm, θ) =

(
1 0

− 2
Rm cos θ

1

)
, (4.4)

and

Ms(Rm, θ) =

(
1 0

−2 cos θ
Rm

1

)
, (4.5)

respectively.

Cavity stability condition The field envelope of a Gaussian beam is supposed

to follow the Gaussian function,

U =
A0

q
exp

(
−iπr

2

λq

)
, (4.6)

where A0 is the amplitude, λ is the wavelength, r is the radial distance from the

center axis of the beam. The complex q parameter is a very useful parameter

which can fully characterize the beam at a certain point with the beam waist w

(1/e2 radius) and the radius of phase front curvature R as

1

q
=

1

R
− i λ

πw2
. (4.7)

As the beam is circulating in the cavity, here the cavity can be considered as

an optical system with a round trip matrix

Hcavity =

(
A B

C D

)
. (4.8)

Suppose qin and qout as the beam parameters in the input and output planes of

the cavity, following the ABCD law we have

qout =
Aqin +B

Cqin +D
. (4.9)
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For the cavity to be stable, the q parameter should fulfill the self-consistency

condition, which means that the q parameter should regain its value after a

round-trip in the cavity. Therefore we can rewrite Eq. (4.9) as

Cq2 + (D − A)q −B = 0. (4.10)

For the q parameter to be self-consistent, the solution of q should have an imag-

inary part, which leads to

(D − A)2 + 4BC < 0. (4.11)

Since the ABCD matrix has an unitary determinant AD − BC = 1, Eq. (4.11)

leads to the cavity stability condition

|A+D| < 2. (4.12)

4.1.2 Optical ring cavity properties

As for the optical ring cavity model we have established in this chapter, the

collective matrix in the tangential plane and sagittal plane are

Mt =M(1)
t M

(1)
f M

(2)
t M

(2)
f M

(3)
t M

(3)
f M

(4)
t M

(4)
f , (4.13)

and

Ms =M(1)
s M

(1)
f M

(2)
s M

(2)
f M

(3)
s M

(3)
f M

(4)
s M

(4)
f , (4.14)

respectively. In those expressionsM(i)
t andM(i)

s are the mirror reflection matrix

for the ith mirror in the tangential plane and the sagittal plane, respectively,M(i)
f

is the free space propagation of the ith path (L1 ∼ L4) in the cavity. With the

ABCD matrix of the cavity at hand, we can consider the cavity geometry which

fulfills the stability condition (Eq. 4.12).

As for the optical ring cavity used in this work, we consider a setup with

two curved and two flat mirrors that produce a mode with two foci, one with

a large waist and the other with a smaller waist, as shown in Fig. 4.1 (a). We

considered a geometry where the two curved mirrors have a radius of curvature

of R = 50 mm, the length of the first vertical arm is L1 = 55 mm and the second

is L3 = 44 mm long. The angle of incidence on the cavity mirrors is set to be

θ = 0.2 rad (11.5°).

Beam size propagation In order to characterize the beam size propagation

inside the cavity, the beam waist on the four paths (L1 ∼ L4) should be considered

separately. As an example, if we consider a point P in L3 with a distance d from
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Figure 4.1: Ring cavity schematic and beam size propagation. (a) Computed cavity

geometry. The numbers on the plot label the arms of the ring cavity and the green

circles identify the waist positions. The upper waist (in arm 2) is the largest whereas

the lower (arm 4) is the smallest. The dashed line indicates the midpoint, where the

atomic trajectories are likely to be. (b) Evolution of the cavity waist along the optical

axis. Red line: waist on the tangential plane. Green line: waist on the sagittal plane.

Blue vertical lines: mirror positions. Figure adapted form [52].

mirror 4, following the beam propagation in the cavity, the round-trip ABCD

matrix can be written as,

Mt,s =Md
fM

(4)
t,sM

(4)
f M

(1)
t,sM

(1)
f M

(2)
t,sM

(2)
f M

(3)
t,sM

(L3−d)
f . (4.15)

Then the beam waist at point P can be calculated as,

w2 =
2λ

π

|B|√
4(AD −BC)− (A+D)2

, (4.16)

where AD − BC = 1. By changing the position of the point and considering

different ABCD matrices when P is located in different paths, the beam size

propagation inside the cavity can be calculated, as shown in Fig. 4.1 (b), where

the red and green lines shows the waists on the tangential and the sagittal plane,

respectively.

Basic properties of a ring cavity The cavity resonance occurs when the

cavity round trip length is an integer multiple of the laser wavelength. Thus we

should be able to detune the cavity either by moving a mirror, or by changing

the laser frequency. The distance in frequency between two resonance peaks
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Figure 4.2: Basic properties of an optical cavity. Cavity transmission, reflection and

intra-cavity power as a function of frequency detuning from cavity resonance. The

distance in frequency between two resonance peaks is called the FSR. The FWHM of

the transmission peak is called the cavity linewidth (δν). The finesse of the cavity is

defined as F = FSR/(δν).

is defined as the free spectral range (FSR) of a cavity. The FSR is often an

important property of a cavity since it tells how well separated the resonance

peaks are.

For an optical ring cavity, the laser propagating inside the cavity forms a

traveling wave, therefore the FSR is,

FSR =
c

L1 + L2 + L3 + L4

, (4.17)

where c is the speed of light,
∑
Li is the cavity round-trip length.

The finesse of an optical cavity is defined as its FSR divided by the linewidth

of its resonances. It is fully determined by the cavity losses and is independent of

the cavity length. For ring cavity with four mirrors, the finesse can be expressed

as,

F =
π
√
R1R2R3R4

1− r1r2r3r4

, (4.18)

where ri and Ri are the reflection amplitude and power ratio of each mirror and

ri =
√
Ri.

Finally, the linewidth of a cavity is commonly defined as the Full Width at

Half Maximum (FWHM) of the resonance peak and can be evaluated through,

δν =
FSR

F
. (4.19)
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Figure 4.3: Ring cavity schematic. The ring-shaped cavity spacer can be fixed on a

CF 100 flange with four PEEK plastic pillars. The four cavity mirrors are supported

by four V-shaped grooves, forming the butterfly shape ring resonator. The V-grooves

under M1 and M4 are supported by shear-force PZTs which is used for cavity length

modulation.

Figure 4.2 plots the cavity transmission, reflection and intra-cavity circulating

power as a function of the frequency detuning from cavity resonance. The defini-

tions of cavity FSR, linewidth and finesse and their relationships are also shown.

4.1.3 Optical ring cavity for spin squeezing

The cavity geometry design has been discussed in the last subsection. Here we

consider the cavity schematic which can be assembled into the vacuum chamber

and is capable for performing cavity QED experiments.

The ring cavity schematic is illustrated in Fig. 4.3. Here we denote the four

mirrors as M1, M2, M3 and M4 as shown in the figure. The cavity mirrors are

manufactured and coated by Fivenine Optics. M1 and M4 are plane mirrors,

while M2 and M3 are curved mirrors with a radius of curvature (ROC) of 50 mm,

corresponding to a focal length of 25 mm. The mirror diameter is 7.75 mm and

the thickness is 4 mm, the small size of the mirror guarantees sufficient optical

access for the experiment. The mirror reflection surfaces are super-polished and
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are coated to have different transmission rate with lasers at 689 nm, 461 nm and

813 nm wavelength, which correspond to the probe beam, Bragg beam and lattice

beam in the Sr spin squeezing experiment. Table 4.1 lists the basic properties of

the cavity mirrors, transmissions are expressed in parts per million (ppm). The

mirror transmission surfaces are AR (anti-reflection) coated in order to avoid the

etalon effects inside the substrates.

Table 4.1: Cavity mirror basic properties. Mirror transmissions are expressed in ppm,

data acquired from the specs sheet of the company.

Mirror ROC (mm) Ti 689 (ppm) Ti 461 (ppm) Ti 813 (ppm)

M1 +∞ 240(5) 9990(100) 950(10)

M2 50 0.5(2) 800(10) 75(5)

M3 50 0.5(2) 800(10) 75(5

M4 +∞ 7(1) 9000(100) 970(10)

The four cavity mirrors are positioned on the ring spacer with the designated

geometry. The mirrors are connected with the cavity spacer with four V-shaped

supports. The support is a V-shaped groove where the angle of the V is 120°,

the cross section of the support body is a square with side lengths of 5 mm. The

V-grooves that hold M1 and M4 are based on two piezoelectric actuators (PZT,

Noliac NAC2402-H2.3) with size of (5×5×2.3 mm). When the voltage is applied

on the two electrodes of the PZT, it undergoes a shear movement, which can be

used for fine tuning and fast modulation of the cavity length. All the connections

between the mirrors, V-grooves, PZTs and the cavity spacer are performed with

high-vacuum compatible epoxies, the usage of the epoxy is detailed in section 4.5.

4.2 Ring-cavity alignment and assembly proce-

dures

In this section we describe the procedures for cavity alignment and assembly. We

follow the steps listed here with more details illustrated in the following sections.

The ring cavity and the corresponding optics are all set in an independent bread-

board (600× 300 mm) which is fixed on an optical table. The breadboard can be

moved around without changing the alignment of the optics, which enables us to

flip the breadboard upside-down and mount it on a vertical translation stage (ele-

vator). With the reversed breadboard mounted on the elevator we can epoxy the

four cavity mirrors on the cavity spacer, at the same time maintaining the cavity
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geometry and alignment. These procedures provide our optimum compromise to

the dilemma of the tunability and the stability.

� Cavity mirror holder design. Design and manufacture a kind of mirror

holder which has the freedom for alignment both in the horizontal and

vertical directions, the access for epoxying the mirror on a cavity spacer,

and the ability to be released after the mirrors are glued without changing

the cavity alignment. See subsection 4.3.1.

� Fix the mirrors on the mirror holder, check the angle of the mirror surface

plane and preset it to be vertical. Locate the center of the mirrors which

are fixed on the mirror holder and mark the height of the mirror center.

� Laser setup. Set the laser beam with optimized mode-matching with

the cavity. This includes the measurement of the laser beam size in the

propagation direction from the fiber output, the calculation and simulation

of the laser-cavity mode-matching, and choose lenses with appropriate focal

length and relative distances. After setting up the laser beam size, align

the beam height to coincide with that of the mirror center.

� Design on a paper the optical paths that the cavity beams should follow,

mark the corresponding positions of the mirrors and the mirror holders.

Align the paper path with the incident beam of the cavity laser and paste

the paper on the breadboard.

� Put the four cavity mirrors which are now mounted on the cavity holders one

by one on the corresponding positions indicated by the path paper. After

putting each one, check that the transmission of M1 and the reflections of

the remaining mirrors follow the beam path and that the height of the beam

is always correct.

� Set the other optics after the cavity transmission, including a λ/2 waveplate,

a PBS, a camera and a fast photodetector at the transmission and reflection

of the PBS, respectively.

� Cavity alignment. Align the cavity with the mirror holders, optimize the

alignment to reach the highest ratio between the TEM00 mode and all the

other higher-order modes. Check that the cavity beams follow the designed

paths regularly.

� Loose the cavity breadboard from the optical table, flip it upside-down and

mount it on a vertically translation stage (elevator), check and re-optimize
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the cavity alignment. Test the robustness of the cavity alignment against

the translation movement of the elevator.

� Prototype cavity spacer. Design and manufacture a prototype cavity

spacer which is made of a stainless steel block (70 × 50 × 30 mm). Mark

the cavity beam paths and the corresponding positions of the PZTs and the

V-grooves on the top surface of the block with a cutter. Pre-bake the block

at 200 � for 3 hours to remove the water inside the material.

� Test epoxies. Test different epoxies which will be used to glue the cav-

ity components, including the electric-conductive epoxy (EPO-TEK, H20E,

curing condition: 150 � for 1 hour from the specs sheet), the thermally con-

ductive epoxy (EPO-TEK, H77, curing condition: 150 � for 1 hour from

the specs sheet) and the Torrseal epoxy (curing condition: 25 � for 24

hours from the specs sheet). See section 4.5.

� Heating preparation. Wind the prototype cavity spacer with a heating

tape and cover with aluminum foils for heating, insert thermistors for tem-

perature monitoring . Fix the spacer on a small breadboard (300×300 mm)

with pillars and clamps, move the cavity spacer under the elevator, align

the cavity mirrors with the marked positions of the PZT and the V-grooves

on the spacer. Then fix the small breadboard on the optical table, note that

the breadboard is fixed on the optical table through four bars and pillars

to reduce the heat sinking to the large table.

� Epoxying of components Glue the PZTs at their positions with H20E

epoxy, make sure that the two electrodes of the PZT are not shorted. Check

that the PZTs are healthy by measuring the resistance and capacitance and

the varying voltage when they are mechanically solicited.

� Glue the four V-grooves at their positions, follow the steps in section 4.5.2.

� Glue the cavity mirrors to the V-grooves with Torrseal epoxy. Follow the

steps as the gluing of the V-grooves, except that the curing condition of the

Torrseal epoxy does not require heating.

4.3 Cavity components design

4.3.1 Cavity mirror holder design

The cavity mirrors have a diameter of 7.75 mm and a thickness of 4 mm. Due to

the small size, the manipulation of the mirror is challenging. The necessity for
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gluing them on the cavity spacer also pose some requirements for the geometric

structure of the mirror holder. Commercial mirror mounts and holders cannot

fulfill the requirements since they wrap the whole mirror side, leaving no access for

the epoxy. A homemade mirror holder which is capable for holding and aligning

the cavity mirrors is therefore designed and manufactured. To start, we list the

requirements for this home-made mirror holder design:

� It should have the freedom for alignment both in the horizontal and vertical

directions.

� It can hold the mirror in a way that allows the mirror to be glued on a

V-groove, and the V-groove glued on a spacer.

� It should be capable for holding the mirror tightly and be able to release the

mirror freely after the epoxy is cured without changing the cavity alignment.

� The size of the mirror holders should be small enough to avoid conflicting

with each other since the distance between the mirrors are small (21 mm,

44 mm and 55 mm).

With those considerations in mind, we designed a kind of mirror holder which

is composed of three parts, a home-made mirror mount, a base plate for clamping

and a commercial rotary stage. As shown in Fig. 4.4, the top part is a base plate

which holds the other parts and can be clamped on a breadboard with standard

clamps. The middle one is a commercial rotary stage (Edmund Optics, ID:2399)

which enables 360 ° coarse adjustment and 17 ° fine adjustment. The top and

middle parts are locked with three 2 mm screws.

The bottom part is the core of this mirror holder design. Generally, it is a U

shaped aluminum part, on the front plane there is a half cylinder cut with 8 mm

diameter to hold the mirror, on both side planes there are two 3 mm screw holes

for inserting plastic screws to lock the mirror, the top small arc is left for the

access of tweezers when transferring the cavity mirrors. On the back plane there

is a structure where a commercial fine-tuning screw-barrel couple can be inserted

(Thorlabs NO.F25USA1 and F25US075, see Fig. 4.4 for details). This structure

enables the tuning of vertical angles of the mirrors with a resolution of 1 µm.

When combined with the rotary stage, tuning the mirror both in the vertical and

horizontal directions is possible. To ensure the passage of light beams both in the

transmission and reflection, the through hole in the back plane is made expansive,

as a 120° cone. The stability of this mirror holder is tested by reflecting one laser

beam from the mirror and monitoring the beam position in a 2 meter distance.

The mirror holder has proved robust enough for our application.
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Figure 4.4: Cavity mirror holder design. The mirror holder is composed of three parts.

From top to bottom: Base plate, which is used for clamping on the breadboard and

connecting the remaining parts with three screws. Commercial rotary stage, which

enables a fine tuning of rotary angle of 17 °. Homemade mirror holder, which can

grab and release the cavity mirror without changing alignment, the screw barrel on the

back enables a fine tuning of the vertical angle of the mirror (see the right pictures for

details). The combination of the rotary angle and vertical angle freedom makes the

tuning of the cavity mirror possible.

4.3.2 Cavity prototype design

The building of the optical ring-cavity is the core of the spin-squeezing experi-

ment, and it is experimentally challenging. In order to gain experience from the

gluing activities and characterize the cavity alignment under a simpler condition,

a cavity prototype is built with the same gluing procedure as the real experimen-

tal cavity, but without time-consuming baking and vacuum-pumping processes.

Indeed, this cavity prototype is not just a prototype, but can be used as a transfer

cavity to bridge the frequency gap between the lattice laser (813 nm) and the red

laser (689 nm), where the latter is locked to a high-finesse Fabry-Pérot cavity

and to the atomic absorption line, thus attaining frequency stability both in the

short and the long term.

As a fast try and prove, we made the cavity prototype as simple as possi-

ble. The cavity prototype is composed of a cavity spacer and a box. The spacer
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Figure 4.5: Section view of the cavity prototype design. The cavity spacer is made

of a stainless steel block, which holds the four cavity mirrors in a ring shape. The

spacer is laid on a plexiglass cavity box with four rubber balls, which can suppress the

vibration from the optical table. The cavity box has two wedged windows to allow for

the incidence, reflection and transmission of the cavity beam. The cavity prototype can

be put in a clean nitrogen flowing environment in order to avoid dust contamination of

the cavity mirrors.

is chosen as a stainless-steel block for its stiffness and comparatively low ther-

mal expansion ratio. Of course there are some other ultra-low expansion (ULE)

materials like Invar, which are better candidates for the cavity spacer, but here

stainless-steel is chosen mainly due to its availability and since we have the PZT,

the cavity length can be tuned at will.

The top surface of the cavity block (spacer) is super-polished and marked

with the cavity beam paths and the corresponding positions of the PZT and the

V-grooves. The mark is done with a cutter following a paper covering the block

with printed beam paths. The bottom plane of the block contains three M4 screw

holes, which are used to connect with three 5 cm-high pillars to fix the position

while gluing the V-grooves and the mirrors. The stainless steel block is cleaned

with acetone and baked at 200 � for 3 hours after manufacturing. This process

can remove the dust in the surface and the water inside the material.
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Once the cavity prototype spacer is ready, one can glue the PZT and the

four V-grooves on the top surface. The process of gluing and the characteristic

of different epoxies are detailed in section 4.5. After the cavity mirrors are also

glued, the cavity prototype is ready.

The cavity length is sensitive to the temperature fluctuation of the cavity

spacer and to the air flow which can cause fluctuations in the index of refraction

of air. Therefore, it is appropriate to temperature stabilize the cavity spacer and

put the cavity inside the vacuum environment. However, in our case, as a fast try

and prove, a prototype cavity is designed without the consideration of vacuum

pumping but is kept inside a cavity box which can provide a clean and safe

environment for the cavity mirrors. The cavity box is made from plexiglass, with

two wedged windows which allow for the incident, reflection and transmission

beam accesses for the cavity. There is also a feed-through BNC connector for

the connections of PZT cables. The assembly of the cavity prototype with cavity

spacer inside the box is illustrated in Fig 4.5.

4.4 Laser setup and mode-matching

In order to couple the laser beam into an optical cavity with high efficiency, it is

necessary to match the mode of the Gaussian beam and the cavity fundamental

mode. This process is usually referred to as mode-matching. On the one hand,

the cavity modes are determined once the cavity geometry is fixed, usually the

fundamental mode is Gaussian and has the largest power coupling efficiency.

On the other hand, the laser mode is also Gaussian and usually has certain

divergence, this divergence can be determined by measuring the beam size at

different positions. The purpose of mode-matching is to find a pair of lenses to

shape the laser mode to match the cavity mode.

4.4.1 Laser beam propagation

The laser beam that we use for coupling into the cavity is the output of a fiber-

EOM (Jenoptik PM705), the fiber output is through an integrated collimation

lens. The beam radius varies along the propagation direction according to [140]

w(z) = w0

√
1 + (

x− xf
zR

)2, (4.20)

where xf is the position of the beam focus, zR =
πw2

0n

λ
is the Rayleigh range. By

measuring the beam waist along the propagation direction, we can fit the data

to derive the beam waist w0 and the focus position xf .
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Figure 4.6: Laser beam waist measurement. The laser beam waist from the output of

the fiber-EOM is measured with a CCD camera at different distances, the wx and wy
are the beam size in the horizontal and vertical directions, respectively. The two lines

are the fit of the data according to Eq. (4.20), which yields the focused beam size of

wx ' 0.608 mm and wy ' 0.716 mm, respectively.

We use the CCD camera to measure the laser beam spot at various distances

along the propagation direction. The image is fitted with the Gaussian function,

y = y0 + A exp

{
−2(

x− x0

wz
)2

}
, (4.21)

which yields the beam size wz. The beam size in the horizontal and vertical

directions as a function of distance is plotted in Fig. 4.6 as the orange and the blue

dots, respectively. The two lines are the fit of the data according to Eq. (4.20),

which yields the beam size of wx ' 0.608 mm and wy ' 0.716 mm. The waist at

the focus is chosen as the geometric mean, which is w0 ' 0.660 mm. The cavity

mode is calculated based on ABCD matrix. From Fig. 4.1 it is shown that the

target beam waist of the cavity should be 0.159 mm.
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Figure 4.7: Laser setup for mode-matching. The laser cavity mode-matching is realized

with a pair of lenses, positioned at the calculated distances. The laser beam provides

a reference for cavity building and alignment. The CCD camera is used to monitor

the cavity transmission modes, the two PDs are used to detect the transmission and

reflection power, providing an indication for laser-cavity coupling efficiency.

4.4.2 Laser cavity mode-matching

When the initial beam waist (laser mode) and the target waist (cavity mode)

are known, we need to find a pair of lenses to perform the mode-matching. We

choose two lenses with focal lengths of f1 = 150 mm and f2 = 50 mm, respectively.

Other combinations of lenses may also do the job, here we choose those due to

their availability and convenience. We run a simulation based on the ray transfer

matrix to minimize the difference between shaped laser waist and the target waist

at the focus position, which yields the optimized distances d1, d2 and fx, as shown

in Fig. 4.7.

When the mode-matching parameters are determined, we place the lenses at

the calculated positions and use the CCD camera to measure the beam size prop-

agation after shaping. With the same analysis presented in the last subsection,

we can confirm if the shaped beam has the right properties as we expect. Results

confirmed that the shaped beam has a waist of 0.168 mm, which matches the

target cavity waist of 0.159 mm.
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4.4.3 Cavity alignment

When the laser setup is ready, we could put the four cavity mirrors one by one at

the designated positions. However, the resonance condition of the optical cavity

puts stringent requirements on the cavity alignment, also we want to build the

cavity as close to the designed one as possible. This means that every angle,

every distance should be kept exactly the same as the calculation. In order to

facilitate the cavity alignment procedure, we consider the following steps.

Pre-check the mirror verticality and center The cavity mirrors are mounted

on the homemade mirror holders with two plastic screws, as shown in Fig. 4.4.

In order to reduce the degrees of freedom in the ring cavity alignment, we fix

the vertical degree of freedom by setting all the mirrors vertically. This can be

achieved by setting a horizontal collimated beam on the optical table, incident on

the cavity mirror with 0° incidence angle so the reflection goes back. By tuning

the micro screw at the back of the mirror holder, the reflection beam superim-

poses with the incidence beam, this confirms the verticality of the mirror with

high precision. For curved mirrors M2 and M3, the laser beam is incident on the

back facet which is plane.

It is practical to make sure that the laser beam hits the center of the cavity

mirrors while circulating inside the cavity. In order to do this, we pre-check the

height of the cavity mirrors and locate the mirror center. This can be done by

illuminating a large size collimated beam on the mirror and project the image

of the mirror on a CCD camera. Then by putting an iris mounted on a 3D

translation stage before the cavity mirror, we can locate the center of the mirror

on the camera. Then we can determine the mirror height by recording the iris

center height. Finally, we mark the beam height on a paper pasted on a vertical

bar, which could be a simple and good tool for checking the laser height during

the cavity alignment.

Cavity path indicator The cavity beam should follow the designed geometry

strictly. In order to provide a reference for the beam alignment, a cavity path

indicator is made by printing on a paper the ring cavity path and the positions

and angle orientations of each mirror holder. We print the paper with 1 : 1 scale

and paste it on the optical breadboard at the right position. While aligning each

mirror, we should make sure that the transmissions and reflections of each mirror

follow the path indicator.

Positioning of M1 The positioning of the first cavity mirror (M1) is crucial

due to the fact that the following three mirrors would change accordingly. To
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precisely position the M1, we need to pre-define a schematic where the incident,

transmitted and reflected light beams strictly follow. We should also consider

the fact that the 4 mm thick mirror substrate, with an index of refraction of

n = 1.455 for fused silica, may shift the laser beam by 250 µm in transmission

and 500 µm in the reflection, with the condition that the angle of incidence is

11.5°(0.2 rad).

Detection setup After the four mirrors are well positioned and fixed, we setup

a detection system as shown in Fig. 4.7. In the cavity transmission, the half-

waveplate and the PBS split the transmitted light into two and are detected

by a CCD camera and a photodiode PD1, respectively. The cavity reflection is

detected by PD2. When the laser is scanning, PD1 can detect the transmission

peak while PD2 detects the reflection dip.

Since we have already preset the verticality of all cavity mirrors, the vertical

alignment of the cavity should be well defined and can be checked through the

cavity transmission modes in the CCD camera. In addition, the horizontal degree

of freedom can be adjusted by tuning the rotary stage of the mirror holder. The

optimization of the cavity alignment can be achieved when TEM00 mode appears

and that the highest power in PD1 is obtained, which indicates the highest laser-

cavity coupling efficiency. During the cavity alignment, one should always check

that the cavity beams are following the path indicator and that the beams are

hitting the center of each mirror.

4.5 Epoxying of cavity components

In the last section we align a cavity on a breadboard with four independent mirrors

mounted on four mirror holders. The cavity geometry is as what we designed and

the laser-cavity coupling is optimized, which leads to the maximum power in the

fundamental cavity mode. The next step is to glue the four mirrors on a single

cavity spacer, while keeping the cavity geometry unchanged. Additionally, mirror

1 should be supported on a PZT in order to tune the cavity length. The gluing

work is fulfilled by epoxies.

In this section, we characterize different epoxies which are used for gluing

cavity components. We present the electrically conductive epoxy (H20E), the

thermally conductive epoxy (H77) and the Torrseal epoxy. Those epoxies are

used in different situations and have different curing condition, however, they are

all high-vacuum compatible and typically have a total mass loss of 0.2% or less

at a temperature of 200 � [134].
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4.5.1 Characterization of different epoxies

Table 4.2: Epoxies used for gluing cavity components. Three types of epoxies used for

gluing different cavity components are presented, with their characteristics, mixing ratio

and curing conditions. Note that the curing of H20E and H77 requires 2 hours heating

to become fully solid instead of what presented in the specs sheet. Abbreviations: P:

PZT; S: spacer; V: V groove; H: heater.

Epoxy Character Mixing ratio Curing condition Interface

H20E E-conductive 1:1 150 � 2 hours P-S, V-P, V-S

H77 T-conductive 100:15 150 � 2 hours H-S

Torrseal Mirror protective 2.5:1 25 � 24 hours M-V

Table 4.2 summarizes all the epoxies used in our experiments and their cor-

responding characteristics. The interface indicates that the epoxy can be used

to glue the two components. The schematic view of using different epoxy for

different cavity components are depicted in Fig. 4.8.

Electrically conductive epoxy H20E The electrically conductive epoxy (H20E)

is used to glue the PZT and the V-grooves to the cavity spacer and the V-grooves

to the PZT, or more generally, the metal-to-metal contact. The epoxy is com-

posed of two ingredients, part A and part B. Following the prescription, we mix

part A and B with 1 : 1 ratio in a plastic tube with a 2 mm diameter needle. As a

preliminary test of the epoxy characteristic and the curing condition, we glued a

small piece of aluminum plate onto the surface of an aluminum block. We wound

heating tapes on the aluminum block for heating and used a K-typed thermistor

to monitor the temperature. After a few tries, we found that the super-polishing

of the contacting faces and the pressing during curing process are necessary for

a solid curing. We heat the aluminum block at 150 � for 2 hours and the curing

is very robust.

Then we start the gluing of the PZT and the four V-grooves. As discussed

before, mirror M1 is positioned on a shearing-force piezo, which is used for mod-

ulating the cavity length. The PZT has two electrodes (V+) and (GND), where

(GND) is shorted with the PZT surface and thus to the cavity spacer. The applied

voltage on the PZT electrodes can reach ' 300 V, thus it is of great importance

to avoid shorting the two electrodes during the gluing process since the epoxy is

electrically conductive.
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Figure 4.8: Schematic view of epoxying different cavity components. The choice of

epoxy depends largely on the material to be glued. The E-conductive epoxy is used

in the case of metal to metal contact, eg. V-groove, PZT and cavity spacer, while the

Torrseal epoxy is applied when glass or ceramic is involved, like the cavity mirrors. T-

conductive epoxy is used in the case that efficient heat transfer is required, for example,

the glue of heaters.

Thermally conductive epoxy H77 The thermally conductive epoxy (H77)

also has two components part A and B, part A is black while part B is amber.

This epoxy is thermally conductive and electrically insulating which can be used

for gluing the heaters to the cavity spacer. The curing condition for the H77 is

150 � for 2 hours and it is tested in the same way as the H20E. The heaters

are kapton insulated round metal foils with a diameter of 12.7 mm (from Allectra

company), they can provide temperature control of the cavity spacer. In the

case that the PZT range is not enough for cavity length tuning, the heaters can

provide additional tuning of the cavity length.

After mixing the two parts A and B with a ratio of 100 : 15, the haters can

be glued on the surface of the cavity spacer with the epoxy. The heaters should

be pressed with a bar and the temperature of the spacer should be kept around

150 � for 2 hours for curing.

Torrseal epoxy The Torrseal epoxy is used to glue the mirrors to the V-

grooves. The choice of Torrseal epoxy in gluing the mirrors is motivated by the
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Figure 4.9: Bending simulation of the inverting breadboard. The simulation is per-

formed using Solidworks simulation by fixing the two edge sides of a breadboard and

gravity is applied as the only simulating force. The simulation result shows a maximum

displacement of ' 10 µm.

fact that the curing of Torrseal does not require high temperature. In the case of

H20E and H77, both require 150 � curing condition and the baking of the cavity

spacer. It is possible that the baking of the cavity mirror at high temperature can

break the mirror, or at least damage the super-polished high-reflectivity surfaces,

due to the uncontrolled thermal gradients as well as the fact that we have all

sorts of optics around when the mirrors are close to the spacer. Therefore baking

should be avoided when we glue the mirrors.

The Torrseal epoxy is a good option for gluing the mirrors since it can cure

at room temperature (25�) after 24 hours. It has two components which should

be mixed at the ratio of 2.5 : 1 in volume before the application. In a test of the

Torrseal epoxy we glue a fused-silica lens vertically on the surface of an aluminum

block. The epoxy is cured after 6 hours at room temperature and became robust

overnight.

4.5.2 Epoxying of cavity components

The epoxying process is facilitated by a vertical translation stage (elevator) shown

in Fig. 4.10. The elevator can be fixed on the optical table with two base plates, an

optical breadboard can be fixed on the top layer and the height of the breadboard

can be tuned through the adjusting screws. We preset the breadboard to be

horizontal and rotate the two adjusting screws simultaneously and with the same

speed, this ensures that the translation of the breadboard is vertical.
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The epoxying work requires precision to make sure that every components

is glued at the designed position. It also requires caution since cavity mirrors

are delicate so any dust or nonuniform heat distribution may damage the mirror

surface. Finally, it requires patience since if one of the components is wrong, we

need to break the glue and do everything again. To proceed with the epoxying

of the V-grooves and the cavity mirrors in a way that fulfills those requirements,

we follow the steps as described here.

� Invert the cavity breadboard. Flip the cavity breadboard, fix it on

the elevator, check the horizontality of the breadboard. Re-optimize the

cavity alignment. Since the breadboard has a limited stiffness, the effect of

gravity may induce a bending of the breadboard, which induces a change in

the cavity length and cavity alignment. In order to estimate how much this

bending effect could be, a simulation is performed using Solidworks simu-

lation by fixing the two edge sides of a breadboard and applying gravity as

the only simulating force. The simulation result is shown in Fig. 4.9, giving

a maximum displacement of ' 10 µm. By flipping the cavity breadboard,

we observed a vertical misalignment from the cavity transmission modes.

After optimization of the alignment, we re-found the fundamental mode,

which is robust against the translation of the elevator.

� Prepare the cavity spacer. Wrap the cavity spacer with heating tapes

and aluminum foils, fix the spacer on an independent breadboard, which is

held by four pillars. The purpose of doing this is to reduce the heat dissi-

pation to the optical table. During the heating, another small breadboard

covered with aluminum foils will be put between the spacer and the cavity

to avoid the heat transfer to cavity mirrors. The mirrors are protected by

flowing clean nitrogen continuously.

� Glue the V-grooves. Use the cavity mirrors on the elevator to find the

positions of the V-grooves on the spacer, then go up with the elevator, mark

the positions of the V-grooves, place the E-conductive epoxy. Then place

the V-grooves using a bar which can grab the V-grooves from the side, fix

the bar on the optical table. Then go down with the elevator, verify that

the positioning of the V-grooves is correct, go up with the elevator. Finally,

do the heat isolation as described before, heat the spacer to 150 � for 2

hours. After the E-conductive epoxy is cured, use the cavity mirrors to

check the V-groove positions again.

� Setup the monitoring optics. Using the 497 nm green laser available in

our lab, setup a monitoring system for each cavity mirror. Go down with
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Figure 4.10: Epoxying of cavity components. The vertical translation stage (elevator)

holds the inverted breadboard and can translate in the vertical direction by tuning

the adjusting screws. The four-mirror cavity and the corresponding optics and the

detection system are all mounted on the breadboard. The cavity spacer is put under

the breadboard, wrapped with heating tapes and aluminum foils for heating, the small

board which holds the cavity spacer is fixed on four pillars to reduce heat sinking to the

optical table. The monitoring optics are arranged to send a laser beam to each mirror

independently, the reflections are monitored during the curing of the Torrseal epoxy.

the elevator until the cavity mirrors approach close to the V-grooves but do

not contact, direct the green laser beams on each cavity mirror and monitor

the reflections. Then go up with the elevator, put the Torrseal epoxy on the

V-grooves, go down with the elevator until the mirrors reach the Torrseal

epoxy. Check the mirror reflections and monitor them until the end of the

curing. This extra monitoring system proves to be useful since if the cavity

misaligns during the movement or curing, we can distinguish immediately

which mirror has moved from the reflection signals.

� Removal of the mirror holders After the Torrseal epoxy is cured and

the cavity is still aligned, we can say that the epoxying is successful. The

final step is to remove the two plastic screws that fix each cavity mirror to

the mirror holder, and separate the cavity from the elevator. This removal

procedure should be carefully done because any hit-force applied to the
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mirrors can possibly break the Torrseal epoxy or misalign the cavity. Since

the access to reach some of the plastics screws is limited, we developed a

tool which resembles a screw driver but has a longer handle and thinner

diameter to loose the screws. In fact, when we remove the screws, we

observed a slight misalignment of the cavity mode but the epoxies are still

robust. After all the screws are released, we went up with the elevator

breadboard and remove the surrounding optics. Finally, the cavity is there.

As a fast confirmation that the cavity is not misaligned, we flipped the optical

breadboard again and use the mode-matching setup to test the cavity alignment.

This time, we align the cavity by tuning the input beam, with some effort we can

see the TEM00 mode, which confirms that the cavity alignment is still good.

4.6 Cavity prototype assembly

4.6.1 Cavity prototype assembly

After the epoxying of the PZT, V-grooves and the cavity mirrors on the cavity

spacer is done, we assemble this cavity inside a plexiglass box as a prototype

cavity. This prototype cavity is used, first for the characterization of the cavity

performance, second for the test of the cavity noise cancellation scheme and finally

as a transfer cavity to bridge the 689 nm laser stability to the 813 nm lattice laser.

The assembled prototype cavity is shown in Fig. 4.11. We made a box from

the plexiglass according to the geometry of the cavity spacer. The two side walls

of the box are both with a one-inch hole, where two wedged windows are glued

through the standard lens holder. The red lines in Fig. 4.11 show the incident,

reflected, transmitted and circulating cavity beams. Inside the box lies the cavity

spacer, which is on four pieces of rubber balls for vibration isolation. The four

cavity mirrors are glued on four V-grooves, the V-groove which holds M1 is based

on a PZT. The two electrodes of the PZT are connected to a BNC connector,

which can be used for cavity length modulation. An extra hole is left near the

bottom of the box, where a tube can be inserted to flow clean nitrogen. The

whole cavity box is then fixed on the optical table by two clamps, in this way the

vibration of the optical table will be damped before transmitting to the cavity.

4.6.2 Cavity mirror cleaning

The cavity mirrors are delicate optics and the surfaces are super-polished. Any

damage or dust on the mirror surface may increase the scattering of light and

degrade the cavity finesse. Therefore the cavity is assembled in a plexiglass box
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PZT N2

Cavity prototype

Figure 4.11: Prototype ring cavity. The ring cavity is assembled inside a plexiglass box

with two wedged windows, the spacer lies on four rubber balls for vibration isolation.

The two electrodes of the PZT are connected to a BNC connector, an extra hole is left

for flowing in clean nitrogen. The plexiglass box is fixed on the optical table with two

clamps.

and kept in the clean nitrogen flowing environment to avoid the dusts in the air.

However, during the process of epoxying in the ambient air, it is unavoidable that

the mirror surfaces will be contaminated, mainly by the dusts. When it happens,

we need to clean the mirrors with great caution.

Following the suggestions from the Fivenine optics company, in order to clean

the mirrors, we should first blow away the dusts on the mirror surfaces with

flowing nitrogen. Then we use acetone to remove the remaining dusts, after

acetone we use methanol to clean the remaining acetone. With this procedure

we can clean most of the dusts on the mirror surface. It is appreciable that every

time after cleaning, a sizeable finesse improvement can be obtained.
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Figure 4.12: New cavity design and the improved cavity alignment tools. (a) Optical

ring cavity spacer to be assembled into the vacuum chamber. (b) Improved cavity

alignment tools, an additional clamping plate is added into the original cavity mirror

holder (see Fig. 4.4) to facilitate the mirror holding, a common baseplate with fixed

positions corresponding to the four mirror holders helps align the cavity in the initial

stage. (c) Schematic for gluing the cavity mirrors with the new tools, details in the

red circle is expanded in (d). (d) Cavity mirror gluing with the new tools, a circular

baseplate with four rectangular holes corresponding to the positions of four V-grooves

is used as an indicator for V-grooves.

4.7 Improvements and progress

There are some difficulties in the construction of the cavity prototype where

the corresponding designs can be improved to facilitate the building of the in-

vacuum squeezing cavity (see Fig. 4.12). Here I list the main difficulties that we

met during the construction and discuss some improvements in the design.

� The mirror holder design. In the original design (see Fig. 4.4), the cavity

mirror is fixed on the holder with two plastic screws from both sides. The

fixing with screws exerts a non-even force on the mirror which tends to

rotate the mirror. Also after epoxying the cavity mirrors it is difficult to

remove the plastic screws due to the constrains of the space (see subsec-

tion 4.5.2).
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An improved design of the mirror holder is presented in Fig. 4.12 (b), where

an additional plate is fixed on the original holder which can clamp the cavity

mirror with the curved face by exerting a force between the two halves

through a screw. Also in this case one can release the mirrors from the

external side of the cavity therefore the space constrain is relaxed.

� Common baseplate design. The original idea is to use four independent

mirror holders for each mirror. At the initial stage of cavity alignment, a

path indicator is used by printing on a paper the corresponding positions of

the mirror holder baseplates and the laser paths. This procedure involves

the degree of freedom of four baseplates. Although it is helpful to prove

that our cavity alignment procedure is applicable, once it is proved, the

freedom of movement of four baseplates can be reduced to only one.

Indeed, in the new design (see Fig. 4.12), a common baseplate with four

fixed positions is used instead of four independent baseplates. This new de-

sign reduces the degree of freedom, therefore facilitates the cavity alignment

and improves the overall stability of the cavity.

� V-groove indicator. In the cavity prototype (see subsection 4.3.2), the po-

sitioning of four V-grooves on the cavity spacer is indicated by marking on

the spacer with a cutter, which is not precise. Also during the epoxying

of the V-grooves with the H20E epoxy, the curing requires pressing which

may displace the positions of V-grooves.

In order to avoid those problems, a V-groove indicator is designed, which is

a circular plate with four rectangular holes corresponding to the positions

of four V-grooves. This indicator can be a reference when the V-grooves

are positioned, also it prevents any movement of the V-grooves during the

epoxying.

The construction of the in-vacuum squeezing cavity is illustrated in Fig. 4.12.

The ring-shaped cavity spacer is fixed on the CF 100 flange with four PEEK

plastic pillars (Fig. 4.12 (a)). The ring of the spacer is interrupted by inserting

a piece of electrically insulating material called Macor, which can significantly

suppress the Eddy currents in the material when variable magnetic fields are

applied during the laser cooling of Sr. The electronic connections, including

those for piezo electrodes, temperature sensors and heaters, are all assembled in

a D-sub vacuum feedthrough with kapton-foil cables.

The schematic for epoxying the cavity mirrors with the new tools on the

squeezing cavity spacer is shown in Fig. 4.12 (c), where the details in the red
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Figure 4.13: Real cavity construction. By the time I finish this thesis, a real cavity is

constructed using the improved design and alignment tools, which can be assembled

into the vacuum chamber and used for spin squeezing experiments.

circle are expanded in (d). The procedures are similar to subsection 4.5.2 but

with the new tools the construction will be easier and more robust.

By the time I finish this thesis, a real ring cavity is constructed using the

improved design and alignment tools, which can be assembled into the vacuum

chamber through the CF 100 flange (see Fig. 4.13). The construction procedure

is simplified thanks to the newly-designed V-groove indicator, since once the

relative position of the V-groove indicator and the cavity mirrors is confirmed,

we can heat the flange to cure the H20E epoxy independently, without affecting

the cavity mirrors. With the help of those improvements, the construction of

the new cavity takes only three weeks. In the future, this ring cavity will be

assembled into a vacuum chamber, where low-temperature baking (≤ 110 �)

and vacuum pumping will be conducted.

4.8 Conclusions

In this chapter, a complete construction procedure of an optical ring cavity is

presented. We aim at resolving the dilemma of the tunability and the stability

in the construction of an optical cavity. A novel cavity mirror holder is designed
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and tested which has the tuning freedom both from the horizontal and the ver-

tical directions, and is able to be removed after epoxying the mirrors without

changing the cavity alignment. Different types of epoxies are characterized and

the procedures and considerations in conducting the epoxying are described in

detail. Finally, a cavity prototype is constructed and assembled inside a plexiglass

cavity box. This cavity prototype is characterized and used for demonstrating a

cavity noise cancellation scheme in chapter 6. The improvements of the design

based on the limitations we met are discussed and the progress of the real cavity

building is reported. The methods and considerations presented in this chapter

provides first-hand experiences for the construction of a general-purpose optical

cavity in physics laboratories.
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Chapter 5

Apparatus for atom cooling and

squeezing detection

In this chapter we present the apparatus for the spin-squeezing experiment, except

for the optical ring cavity which has already been discussed in chapter 4.

In section 5.1, the vacuum system for preparing a Sr MOT is presented, with

the main focus on the novel science chamber and the MOT coils. Then in section

5.2, the laser systems for cooling and trapping Sr atoms and squeezing probe are

discussed, a homemade optical shutter is also presented. Finally in section 5.3,

a detection system is designed and characterizeed specifically for the purpose of

weak light detection for cavity phase shift measurement, which features a low-

noise and high gain.

5.1 Vacuum system

In this section the vacuum system used for laser cooling and trapping of Sr atoms

and for the squeezing probe is discussed. The vacuum system used in this work is

based on an existing apparatus which has already been described elsewhere [114].

In order to adapt it for our scientific purpose, we have kept the atomic oven and

Zeeman slower while updated the science chamber and MOT coils. The ion pumps

and some mechanical parts are also updated. The optical accesses for two stage

MOT and squeezing cavity are also presented together with the corresponding

vacuum parts.

5.1.1 Vacuum system overview

A top view of the updated vacuum system is shown in Fig. 5.1. We follow the

trace of the Sr atoms inside the vacuum system from the source in the atomic

85
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Figure 5.1: Schematic overview of the vacuum system. A collimated atomic beam is

produced in the Sr oven and is slowed by the counterpropagating Zeeman slowing beam

in combination with the Zeeman slower coils. The atoms are cooled and trapped at

the center of the science chamber, where three pairs of orthogonal counterpropagating

MOT beams (blue for 461 nm and red for 689 nm) and a pair of anti-Helmholtz coils

generate the condition for magneto-optical trap. The optical ring cavity which is fixed

on one of the flanges of the science chamber provides non-demolition measurement of

the trapped atoms and induce spin-squeezing. The blue Bragg beams in the vertical

direction are used for atom interferometry.

oven to the MOT in the science chamber.

The atomic source is provided by a compact in-vacuum oven [141] contain-

ing about 5 g of solid strontium (99.99% purity). The oven is operated at the

temperature of 430 � with a power consumption of 15 W. The atomic beam

is collimated by a collimation tube filled with 120 stainless-steel capillaries with

internal diameters of 100 µm.

After the oven, a transverse cooling cube is connected. The cube can be

used for the transverse cooling of the atomic beam, which further reduces the

transverse expansion of the atomic beam. In reality this cube can also be used

for the spectroscopy purpose for locking of blue lasers on the 1S0-1P1 transition.

After the transverse cooling cube a gate valve is connected which can close the

atomic beam when not needed.

The Zeeman slower consists of a tube with length L = 30 cm, around which

two tapered coils are wound. The magnetic profile produced by the solenoid allows

the compensation of the Doppler shift during the slowing [142]. In practice the

solenoid is divided into two parts, with opposing independent current control in

order to arbitrary set the input capture velocity and the output velocity for best

loading of the MOT. The Zeeman slower can reduce the velocity of the atoms

from ' 430 m/s at the oven to ' 50 m/s at the end of the Zeeman slower. Then



5.1 Vacuum system 87

the atoms enter the science chamber and are further cooled and trapped by the

magneto-optical trap. The science chamber and the MOT coils will be discussed

in detail in the next subsection.

In order to maintain the high-vacuum condition, after the preliminary pump-

ing stage, one 55 L/s ion pump (Agilent Technologies StarCell) and one getter

pump (Saes Getters, Nextorr D 500-5) are used for the oven side and the science

chamber side, respectively. The ion pump is attached to a cube connected to the

oven, providing a residual pressure of about 10−8 mbar. The getter pump is an

extremely compact pump able to absorb gases very effectively. It consists of a

getter cartridge and a diode ion pump where the two parts are connected by a CF

63 flange. The getter cartridge can remove gases at room temperature without

any need for electric power after the activation is carried out (500 � for 1 hour).

This configuration maintains a pressure of about 10−9 ∼ 10−10 mbar level in the

science chamber with low power consumption.

5.1.2 Science chamber and MOT coils

The science chamber is where the magneto-optical trap of the Sr atoms and the

atom-light interaction in the cavity happens. In this subsection we describe the

structure of the science chamber and the corresponding optical accesses. The

novel MOT coils with efficient internal water cooling are also presented.

Science chamber The science chamber is based on a stainless-steel octagon

chamber shown in Fig. 5.2. It has eight CF 40 viewports, of which six are used

for windows and the remaining two are used for the connection to other vacuum

parts. The front and back sides are CF 100 viewports. On the front side a CF

100 windows is fixed while on the back side a CF 40 window is attached on a

CF 100 flange. On the inner side of the CF 100 flange the experimental cavity is

fixed.

The optical accesses for the science chamber are also shown in Fig. 5.2. The

three blue beams orthogonal to each other are the MOT beams, which are com-

binations of the 461 nm and 689 nm laser beams for the blue and red MOTs,

respectively. The two oblique beams are shone from the edge of the windows

instead of the center to avoid conflicting with the experimental cavity mirrors.

The two vertical thin red beams are the cavity beams for non-demolition mea-

surement, the reflections of the incident beam are redirected by angled mirrors

glued on the cavity spacer to exit from the CF 100 window. The vertical thick

green beam is the Bragg beam for atom interferometry. Other beams which are

not shown in the figure are the repump beams, detection beams for fluorescence
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Figure 5.2: Science chamber and the optical accesses. The science chamber is an oc-

tagon chamber with six viewports for CF 40 windows and 2 viewports for vacuum parts

connection. The front side is a CF 100 window and the back side is a CF 40 window

fixed on a CF 100 flange. On the inner side of the CF 100 flange the experimental

cavity is fixed. The optical accesses for the Zeeman slower beam, two-stage MOT

beams, Bragg beams and the squeezing and lattices beams coupled into the ring cavity

are shown. Other beams which are not shown in the figure are the repump beams,

detection beams for fluorescence and image and EIT beams.

detection and absorption imaging and EIT beams.

MOT coils In order to generate the magnetic field and gradient required for the

Sr MOT, we updated a pair of MOT coils so that it is compatible with our science

chamber. Since in our case the MOT coils are put outside of the science chamber,

the distance between the MOT coils and the center of the science chamber is

large (' 7 cm). Therefore the current needed for generating the desired magnetic

gradient is comparatively high (' 75 A) which leads to the undesired heating. In

order to solve those problems, we choose a kind of coils made with a hollow core

copper wire which enables efficient water cooling [143].

The MOT coils are customer ordered from Scanditronix company, a sketch of

the MOT coils in anti-Helmholtz configuration is shown in Fig. 5.3. The copper
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Figure 5.3: MOT coils schematic. Two MOT coils in anti-Helmholtz configuration

provide the desired magnetic fields and gradients in the center of the science chamber.

Internal water cooling is used to reduce the heat generated by the high operation

current. The two flag connectors are used for current connections.

wire has a cross section of square with a dimension of 5 mm, the cross section for

the hollow core has a diameter of 4 mm. The coils are wound with the number of

both the axial and radial layers of 8, the inner and outer diameters of the MOT

coils are 160 mm and 240 mm, respectively. At the two ends of the MOT coils,

there are input and output water connectors for flowing water. Additionally, two

copper flags are soldered near the water connectors to serve as general power

supply connectors. A thermistor is attached to one of the copper flags to monitor

the temperature.

The water cooling is provided by a chiller which has a power of 300 W in

fully function mode. The fast switching of the magnetic fields can be achieved

by using an IGBT in series with a DC current supply [143]. The current flowing

through the coil can be stabilized by servo control of the gate voltage of the IGBT,

a reference current servo schematic can be found in [144]. Overall, a switching

time less than 1 ms can be achieved.
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5.2 Laser system

In this section we discuss the laser systems used for the two-stage cooling and

trapping of Sr atoms. This involves the 461 nm blue laser for the Zeeman slowing

and blue MOT, the 689 nm red laser for the red MOT and the probe beam in

the cavity, the 497 nm repump laser for recycling atoms from the metastable
3P2 state. We also present the 813 nm lattice laser used to trap the atoms in

an optical lattice circulating inside the cavity. Finally, we present a home-made

optical shutter, which is used for switching on and off the laser beam for sequence

control. Table 5.1 summarizes the main laser systems used in the experiment,

except for the EIT laser system whose design still needs to be finalized.

Table 5.1: Laser systems for Sr cooling and squeezing

Lasers λ (nm) Transition Function Laser type

Red 689 1S0-3P1
Red MOT,

squeezing probe

Master ECDL (HL6738MG)

Slave, TA (EYP-TPA-0690)

Blue 461 1S0-1P1
Blue MOT,

blue Bragg

Master ECDL (NDBA116T)

Slave (NBD4916E)

Repump 497 3D2-3P2 Repumping
Infrared ECDL(EYP-RWE-1060)

Frequency doubling

Lattice 813 - Optical lattice ECDL (EYE-RWE-0840)

EITs
679

688

3S1-3P0
3S1-3P1

EIT ECDLs

5.2.1 Red laser

The 689 nm red laser system is used for laser cooling and squeezing and details

can be found in [145]. Here we rearrange the laser system for the spin squeezing

experiment, typically for the second stage cooling of Sr atoms and for the probing

beam in the optical ring cavity inside the vacuum chamber.

The schematic of the red laser system is illustrated in Fig. 5.4. The red

master is an ECDL locked to a high finesse Fabry-Pérot cavity and is stabilized

to the spectroscopy signal obtained in a heat-pipe. Here we report the update

and improvement of the red laser system, where we have optimized the mode-

matching between the laser beam and the high-finesse cavity with a couple of

lenses, implemented a master-slave configuration and use the slave laser to inject

a tapered amplifier (TA). With this improvement we can get more laser coupling
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Figure 5.4: Optimized red laser system. (a) Red master and the cavity locking. The

red master is an ECDL with an output power ' 20 mW, a beam with power around

100 µW is phase modulated at 12 MHz with the EOM and is sent to the high-finesse

(F ' 8860) cavity for PDH locking. One beam of 5 mW is used for injection locking

two slave laser, the other two beams are coupled to fibers and used for spectroscopy

and future locking to an ULE cavity. (b) Power amplification. Two slave lasers are

injected by the beam from the red master, both the outputs are split with a small

portion (' 2 mW) to the etalon for injection checking, a flip mirror is used to switch

between the two beams. Slave 1 is used for sending the light to another building via a

200 meters PM fiber, while Slave 2 is boosted by injecting a tapered amplifier. After

power amplification, a total power of 180 mW is available.

efficiency to the high-finesse cavity and higher laser power. The improved red laser

system can provide 180 mW power output with a narrowed FWHM linewidth of

20 Hz for a 100 µs averaging time, which is sufficient for the second stage cooling

of Sr atoms and for the spin squeezing probing beam.

Mode-matching improvement

We first measure the finesse of the F-P cavity with the cavity ring-down method.

The transmission of the cavity is monitored by a fast photodetector, when the

laser is resonant with the cavity and the input beam is turned off abruptly, the

photodetector records the decay of power inside the cavity. An exponential decay

fit of the data gives a time constant τ ' 0.9596 µs, corresponding to a cavity

finesse of F = 8860. Compared to the value from [145], it proves that after 12

years of function, the cavity finesse did not degrade.
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Figure 5.5: Frequency PSD of the high finesse F-P cavity. The frequency noise is

measured before (dotted line) and after (solid line) the mode-matching improvement.

The blue lines are the noise floors when the laser is out of lock, the red lines are laser

noise PSD when the laser is locked to the high-finesse cavity.

We then optimize the laser-cavity mode matching. The laser beam size in the

propagation direction is measured and the optimized lens position is determined.

The alignment of the cavity is optimized through maximizing the transmission

power in the TEM00 mode. The standard PDH method is used to lock to cavity,

the frequency noise of the cavity is evaluated by sending the PDH error signal to

a low frequency spectrum analyzer (FFT, Agilent 35670). Figure 5.5 shows the

frequency noise of the cavity before and after the mode-matching improvement,

the dotted lines are the noise floors when the laser is off-resonance with the

cavity. The plot shows that the frequency noise of the error signal is on the level

of 7 Hz2/Hz, which corresponds to a laser linewidth of about 20 Hz.

Laser power amplification

In order to get higher available laser power, we adopt the master-slave injection

setup to inject two single mode slave lasers (Slave 1 and Slave 2). Slave 1 provides

a power of about 40 mW and is kept as a free beam for future use. Slave 2 provides

a power of about 36 mW and is used to inject a tapered amplifier (TA). The TA
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Figure 5.6: TA current supply noise performance. The curves show the TA current

noise PSD measured at different operating current (80 mA, 250 mA and 500 mA,

respectively). Dashed lines show the calculated electron shot noise at the corresponding

current level. The TA current noise is close to the shot noise limit at an operating

current of 250 mA.

can work at a current up to 1 A with a maximum output power of 180 mW.

A low-noise current supply is built to drive the TA with a maximum operation

current of 3 A. Since the noise requirement for the red laser is high, any active

sources like the current supply can add extra electronic noise which induces power

fluctuations. Therefore we characterize the noise performance of the TA current

supply and compare it to the current shot noise limit, of which the one-sided

power spectrum density (PSD) is

Si(f) = 2eI , (5.1)

where e = 1.602× 10−19 is the electron charge and I is the current.

We apply the current supply output on a 50 Ω resistor and monitor the voltage

PSD on the resistor with an FFT. The voltage PSD is then converted to the

current PSD and the result is shown in Fig. 5.6. From the plot one can see that

the current supply is current shot noise limited already at a operation current of

250 mA. For our typical application where ≥ 500 mA is used, the current supply

is current shot noise limited.
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The spatial mode of the TA is elliptical with a horizontal to vertical ratio

of 3 : 1. This ratio matches the spatial mode of Slave 2, so no shaping lens

or prism pair is used between the Slave 2 and the TA. The coupling efficiency

of the TA is largely dependent on the polarization of the injection light, the

polarization should be tuned with a half wave-plate to optimize the TA output

when the operation current changes. The output of the TA is also elliptical,

therefore a cylindrical lens is used to attain a 1:1 aspect ratio, making a circular

mode and couple to a high power PM fiber. With an injection power of 25 mW,

the TA output can reach 180 mW at the operation current of 700 mA. From

the specification sheet of the TA chip, it can hold a maximum current of 1 A,

however, for the consideration of longer lifetime, we always operate the TA below

700 mA. It is also noted that these TAs are observed (not only by us) to degrade

over time quite significantly.

5.2.2 Blue laser

The blue laser at 461 nm is used for the Zeeman slowing and for the first stage

cooling of Sr atoms. Due to the large scattering rate of the 1S0-1P1 transition

Γ = 2π × 32 MHz, the requirement for the laser intensity is high. Generally a

total laser power of larger than 100 mW is needed.

Traditionally, second-harmonic generation (SHG) with doubling crystals are

used to frequency double the 922 nm infrared light to produce 461 nm blue

light. Different crystals like KNbO3 [146], BIBO [147] and periodically poled

KTiOPO4 (PPKTP) [148] are used in a butterfly cavity configuration. With the

SHG method, an output power close to 1 W is available. However, this scheme

involves a 922 nm ECDL, a TA, a frequency doubling crystal and a ring cavity,

which is expensive and cumbersome to operate. The stability of the laser intensity

largely depends on the stability of the cavity, which is not easily controllable. The

large size of the system also limits the application of transportable Sr clocks or

atom interferometers.

Recently, thanks to advances in semiconductor technology, lasers emitting in

the 450-460 nm spectral region have become available [149]. We use one such laser

diode from Nichia to build an ECDL at the wavelength of 460.8 nm with an output

power of about 20 mW. By injection locking of two other laser diodes, a total

power of 150 mW is available, which is sufficient for the Sr cooling experiment.

Most recently, the blue laser diode with an output power ' 500 mW has become

commercially available and can be used as a slave laser by injection locking [150].

The combination of this ECDL master and the high power slave can provide more

than 500 mW blue laser power with fairly good single mode operation. This will
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Figure 5.7: Blue ECDL in Littrow configuration. A collimation lens is used to collimate

the beam. The first order diffraction of the grating (red arrow) is fed back to the laser

diode while the specular reflection (blue beam) is the output. The PZT is used to fine

tune the angle, which determines the frequency of the ECDL output.

facilitate the Sr cooling and trapping experiments.

In this subsection the construction and characterization of a blue ECDL with

Nichia NDBA116T laser diode is discussed. The configuration of the ECDL and

the procedure for external cavity alignment is described in detail. Finally, the

characterization of the blue laser is presented.

Blue ECDL construction

The blue ECDL in the Littrow configuration is shown in Fig. 5.7. The blue

ECDL is composed of a laser diode (LD, Nichia NDBA116T), a collimation lens

(Thorlabs C230 TMD-A), a holographic grating (Thorlabs GH13-24V) and a

piezoelectric transducer (PZT, AE0203D08F), which are all commercial parts, the

rest of the system which are mechanical parts are manufactured by the Mechanical

Workshop of LENS. The grating has a resolution of 2400 grooves/mm and the

direction of the grooves is in parallel with the polarization of the laser. The first

order diffraction is fed back to the laser diode to form an external cavity, while the

specular reflection is the output of the laser. The PZT is fixed between a screw

and the front plate to adjust the angle of the grating, this enables a coarse tuning

of the angle through the screw and a fine tuning through the PZT. Changing the
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angle of the grating can be used to select the frequency of the external cavity,

therefore a frequency modulation can be applied through the PZT. The output of

the ECDL has a dimension of 2 mm (1 mm) in the horizontal (vertical) direction,

a prism pair is used after the laser output to shape the beam as a Gaussian

beam. Finally, an optical isolator is used to extinguish the light from the optical

feedback, which may lead to a damage to the laser diode.

The procedure of building the blue ECDL is as follows.

� External cavity alignment. We fix the laser diode on a specific holder

and power it with a current supply. When the current reaches ' 30 mA

the spontaneous emission from the LD can be observed, using this spon-

taneous emission we align the collimation lens in order to make the beam

collimated. Then we put the grating which is already glued on a flexible

part, we tune the angle orientation of the grating in order to send the first

order diffraction back to the LD. A homemade optical spectrum analyzer

is used to monitor the output spectrum to distinguish the single-mode pat-

tern due to the external cavity resonance. We increase the LD current and

optimize the external cavity alignment until the lasing is observed.

� Current modulation at threshold. A current modulation circuit is built

in order to apply external modulation on the LD current [151]. We set the

current at the lasing threshold and apply a triangle wave modulation. We

optimize the external cavity alignment by tuning the positions and angles

of the collimation lens and the grating, in order to reduce the LD lasing

threshold.

� Gluing of collimation lens. Finally, when the external cavity alignment

is optimized, we fix the flexible parts that hold the grating, and glue the

collimation lens on the baseplate. The collimation lens is fixed on a small

aluminum piece (20× 2× 10 mm) which is held by a stable 3D translation

stage. We found that the curing of the glue will exert a force on the collima-

tion lens, and the external cavity is very sensitive to misalignment. During

the curing of the glue, we apply the current modulation and monitor the

threshold of the ECDL. We found a drift of the threshold and tuned the

position of the collimation lens in order to keep the cavity alignment. After

four hours of curing, the glue is fixed but we wait 24 hours before unmount-

ing the stage used to align the collimation lens. Finally, the collimation

lens is glued and the ECDL is constructed.
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Figure 5.8: Performance characterization of the blue ECDL. (a) Power-current plot

with different wavelength. At the target wavelength of ' 460.8 nm, an output power

of 20 mW is available with a current of 180 mA. (b) Power-current plot at different

temperatures. An optimal temperature of 19 � is used for the optimal output power.

Performance characterization

We characterize the blue ECDL performance after it is constructed. We observed

a current threshold for lasing ' 134 mA with the external cavity, the output

power can be tuned to the maximum of ' 23 mW at the current of ' 210 mA

and wavelength close to 460.9 nm. However, in order to keep a longer lifetime

of the blue LD, we operate the laser around 180 mA, where 20 mW power is

available. From the specification sheet, we know that the LD is selected from

a patch with a centered wavelength of 461 nm. We can tune the angle of the

grating and monitor the wavelength of the laser beam with a wavemeter. We

measured two power-current traces at the wavelength around 461.5 nm and 460.9

nm, respectively, as shown in Fig. 5.8 (a). In our aimed wavelength of 460.862 nm,

which corresponds to the 1S0-1P1 dipole transition of Sr, we obtain a maximum

power of ' 20 mW.

We tune the laser frequency close to 460.86 nm and test the performance with

temperature variations. The temperature sensing and control of the ECDL is

achieved with a thermistor and a Peltier device put under the aluminum base-

plate. We measure the power-current trace with different temperatures as shown



98 Apparatus for atom cooling and squeezing detection

Figure 5.9: Schematic view of the repump laser. The 994 nm ECDL in Littrow config-

uration serves as a master and injects a TA for power amplification. A SHG module

consisting a frequency doubling crystal converts the 994 nm laser to 497 nm green laser.

The frequency stabilization of the master laser is achieved by locking the 994 nm laser

to a F-P etalon. Abbreviations: TC, temperature control; DM: dichroic mirror.

in Fig. 5.8 (b). The temperature control can also be used to fine tune the laser

wavelength. Finally, we keep the temperature of the ECDL at 19 �.

5.2.3 Repump laser

As has been discussed already in Section 2.1, there are two commonly used re-

pumping schemes in the Sr Blue MOT. The first scheme is to use two repump

lasers at 707 nm and 679 nm corresponding to the transitions of 3S1-3P2 and 3S1-
3P0, while the second scheme involves only one laser at 497 nm, corresponding

to the transition of 3D2-3P2. The advantage of the second scheme is obvious,

we need only one laser instead of two. However, due to the limitation of diode

laser technology, the green laser diode at 497 nm has been made commercially

available only recently. A first demonstration of the green ECDL working as the

repump laser for Sr cooling is achieved by [152]. Here in our lab, we use the

497 nm repumping scheme with frequency doubling of a 994 nm infrared ECDL

[145].

The schematic of the repump laser system is shown in Fig. 5.9. In brief, a



5.2 Laser system 99

Figure 5.10: Schematic view of the lattice laser. The output of the 813 nm ECDL is split

into two and are independently modulated by two AOMs in double-pass configuration.

The two lattice beams in counter-propagating configuration forms the optical lattice

inside the optical ring cavity.

994 nm ECDL in Littrow configuration provides a output power of about 22 mW,

of which about 18 mW is injected to a TA. The TA gives an output power of

' 450 mW at the operation current of 3.4 A. The output of the TA then injects

a fiber coupled SHG module with a frequency doubling crystal inside, which

provides the 497 nm output. The output of the SHG module is a combination of

497 nm laser and some remaining 994 nm laser, which are split with a dichroic

mirror. The transmission (497 nm) is coupled to a fiber and sent to the MOT,

while the reflection (994 nm) is sent to a F-P cavity for stabilizing the frequency

of the master ECDL. This system can deliver more than 20 mW of green light,

which is sufficient for our purposes.

5.2.4 Lattice laser

The lattice laser at 813 nm forms the optical lattice which can confine the cold

atoms in its potential. In our case, two lattice lasers in counter-propagating

configuration are coupled to the optical ring cavity from M1 and M4, respectively,

as shown in Fig. 5.10. In this configuration, the atoms are confined in the lattice

potential and the non-demolition probe can be performed homogeneously.

The 813 nm lattice laser is based on an ECDL similar to the blue laser. A total

output power of about 80 mW at the operation current of 160 mA is achieved.
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The laser output is split into two parts that are independently modulated with

two AOMs in double-pass configuration. The outputs are coupled to optical fibers

and are sent to the optical ring cavity in counter-propagating configuration, the

frequency modulation on the two beams through the two AOMs can provide an

acceleration to the cold atoms confined in the lattice.

5.2.5 Optical shutter

In our laser system, all the laser beams should be controlled with a certain se-

quence in accordance with the atom cooling and trapping procedure. This is

usually achieved by AOMs, which have a fast response speed. However, AOMs

cannot extinct the laser beam totally and the leaked light may introduce some

perturbations to the atoms. It is a common practice to put an optical shutter

before or after the AOM to block the light when needed. In some cases where

only the switching of the laser beam is needed, an optical shutter can even replace

an AOM.

Commercially available optical shutters are often expensive, bulky and noisy,

while in typical laser cooling experiments usually tens of optical shutters are

needed. In this subsection, we present a low-budget solution with homemade

optical shutters which is proposed by [153] and has been adapted to fit our ex-

periment. To build the optical shutter, we need a 3D-printed shutter body and

blade, a DC motor and several simple electronic devices for the motor driving

circuit. The optical shutter presented here is easy to assemble and robust for

operation. We measured the activation delay and the jitter of the device with a

focused laser beam. The results show that the jitter is within 100 µs in a running

time duration of more than 4 hours, which fulfills the demand of our experiments.

Assembly

We take a reference from [153] where the design of the 3D-print file can be found

in the supplementary materials. We redesigned the shutter body to fit our exper-

imental conditions. Typically, the shutter body is glued on a baseplate instead

of being fixed on a bar, therefore the base of the body is made flat. In addition,

only one aperture instead of two is left for light beam going through. Finally, the

front face of the shutter blade is covered with a piece of aluminum foil to avoid

over heating due to lasers. The shutter body and blade are printed with a 3D

printer from INFN mechanical workshop. The 3D design of the shutter and the

assembled one are shown in Fig. 5.11 (a) and (b), respectively.
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Figure 5.11: Optical shutter schematic. (a) Solidworks design of the shutter body and

the blade; (b) assembled shutter glued on a baseplate with a pillar. The blade can be

rotated by a DC motor and will be stopped by the two rubbers, the motor is controlled

by a TTL signal, which can apply a sequence to turn on and off the aperture.

An DC motor is inserted inside the shutter body and can rotate the shutter

blade according to the TTL signal applied on it. The shutter blade will be

stopped by two pieces of rubber on the either side of the rotating direction to

block the aperture or not, realizing the switching on and off of the laser beam.

The electronic components and the schematic of the driving circuit for the motor

are all available from [153].

Performance characterization

We characterize the performance of the optical shutter by measuring the activa-

tion delay both in a short term (' 3 minutes) and a long term (' 4 hours) time

periods. The long term stability represents the jitter of the device, which is the

main characterization in optical experiments.

We align a focused laser beam with two lenses and put the shutter aperture

at the focus. A photodetector is put on the transmission of the shutter and the

output is sent to an oscilloscope. We apply a TTL signal through the DC motor

driver and send the same TTL to the oscilloscope. By setting the oscilloscope in

the measurement mode of the time delay at rising edges between the TTL signal

and the PD signal, the activation delay of the shutter is acquired. Figure. 5.12
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Figure 5.12: Optical shutter delay time and jitter measurement. (a) Activation delay

in a time period of 3 minutes, each point is a record from the oscilloscope time delay

reading. (b) Long-term measurement for 4 hours, each point is an average of 20 points.

(a) and (b) show the activation delay in a measurement period of 3 minutes

and 4 hours, respectively, where in Fig. 5.12 (b) each point is an average of 20

measurements. From Fig. 5.12 (b) we estimate the jitter is within 100 µs in a

time duration of 4 hours, which fulfills the typical requirement of ' 1 ms in laser

cooling experiments.

5.3 Detection system

It is essential to have a good detection system in any atom-optical related experi-

ments to retrieve the information embedded in the light which interacts with the

atoms. Usually there are two aspects that need to be considered when we choose

or design a detection system: the signal to noise ratio (SNR) and the bandwidth

[154].

Semiconductor photodiodes are widely used for the detection of light in the

visible and near-infrared region due to the high quantum efficiency. The simplest

photodetector (PD) is composed of a photodiode and a resistor, which converts

the photo current into the output voltage with a trans-impedance gain of the

resistance R. However, in this case the bandwidth is limited when a high gain

R is adopted since the bandwidth is defined as f−3dB ' 1/(2πRCj), where Cj is

the p-n junction capacitance. It is therefore more practical to use the operational

amplifier based transimpedance amplifiers (TIAs) to increase the bandwidth while

keeping a high gain. The TIAs are active amplifiers therefore they also introduce

some extra noise which needs to be addressed.
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In this section, the requirements for the photo detection in our system are

analyzed and the appropriate TIAs have been chosen. Later the TIA noise sources

are specified and the total TIA noise is calculated based on the data sheets. The

PD schematic is designed using the Eagle software and the PCB board is produced

for the assembly of the PD circuit. Finally, when the PD is built, the bandwidth

and the noise performance are characterized.

5.3.1 Detection requirements

In the cavity-aided spin squeezing experiments, a general PDH method [155] is

used for cavity locking and the non-demolition measurement for spin squeezing.

The atom-induced cavity resonance phase shift is retrieved from the PDH error

signal, this shift is usually small and covered by the cavity noise. We propose

a cavity noise-reduced phase shift measurement scheme in chapter 6 which can

cancel the cavity length fluctuations as the common mode noise. It is therefore

important to have a detection system which is low-noise and high-gain and is

capable of detecting the phase modulated light in the PDH method.

Here we analyze the requirements for the detection system set by the squeezing

experiment.

� Low noise. The noise for the detection system can be categorized into two

parts, the photon shot noise (PSN) which is from the incident light, and the

technical noise which originates from the dark current of the photodiode,

TIA noise and circuit noise, etc.. The best situation would be that the PD

is photon shot noise limited, which means that the PSN dominates over all

the other technical noise sources.

� High gain. The transmission power of the cavity is usually very low, which

gives a photo induced current of I ' s ·P = 10 nA, where s ' 0.5 (A/W) is

the photo sensitivity of semiconductor photodiodes, P is the incident power.

It is therefore necessary to have a high transimpedance gain to convert the

photo current to voltage output. We expect for a transimpedance gain of

G ' 100 kΩ which leads to an output voltage of 1 mV.

� Bandwidth. With the PDH method, the laser locked to the cavity is

phase modulated at 10.5 MHz by an electro-optic modulator (EOM). It

sets the minimum bandwidth of the PD and we expect a bandwidth of

around 20 MHz. Note that we cannot set the bandwidth as high as possible

since it will degrade the gain. Therefore it is always necessary to find a

compromise between bandwidth and gain in designing a photodetector.



104 Apparatus for atom cooling and squeezing detection

With all those requirements in mind, we choose the right photodiode and

TIA. The Hamamatsu PIN photodiode S-5821-01 has a high quantum efficiency

of ηPIN ' 0.8 and a photo sensitivity of s = 0.47 (A/W) in the wavelength close

to (650 ∼ 700 nm), which is a good choice. For the TIA, we considered two kinds

of low-noise TIAs OPA 657 and OPA 847ID. In the following, we start with the

calculation of the TIA noise.

5.3.2 Noise calculation of TIA

In order to characterize the noise spectrum of the TIA, we first establish the

noise model, identify the noise sources, segment them into different categories

and compute the rms noise of each category independently. Finally, we combine

them by root-sum-squares to get the total noise [156, 157].

The noise model of TIA with a photodiode is depicted in Fig. 5.13. We assume

an ideal op-amp as the noise is separated as voltage noise source VA and current

noise source IA. The equivalent circuit of the photodiode is shown in the dashed

rectangle in Fig. 5.13, where the dark current noise is modeled as Id, R1 ' 108 Ω

is a typical resistance for small geometry PIN photodiodes. The capacitance C1

can be modeled as the sum over the photodiode internal capacitance Cd, the TIA

differential capacitance Cdiff and the TIA common-mode capacitance Ccm as

C1 = Cd + Cdiff + Ccm. (5.2)

The value of CF ' 1 pF is what would be expected from the stray capacitance

with moderately careful layout. The thermal noise due to the large feedback

resistor RF is modeled as VR.

The open loop gain of the circuit is

A(ω) =
AOLωA
iω + ωA

=
AOLωA

2

ω2 + ωA2
− i AOLωAω

ω2 + ωA2
, (5.3)

where AOL = 3.2× 103 for OPA 657, ωA = 2π× 500 kHz is the cut-off frequency,

where the amplification of the op-amp decrease by 3 dB. We also define

1

β
= 1 +

RF (1 + iωR1C1)

R1(1 + iωRFCF )
, (5.4)

where β is the feedback factor. It is the amount of output voltage feedback to

the input of the op-amp.

We calculate the total noise PSD by multiplying each noise contribution with

their corresponding transfer functions and combine them by quadrature sum in

the output port.



5.3 Detection system 105

Figure 5.13: Noise model of the TIA for the photodiode application. The op-amp is

assumed to be ideal while the noise sources are modeled as voltage noise VA and current

noise IA. The equivalent circuit of the photodiode is shown in the dashed rectangle,

which shows the dark current noise source Id and equivalent R1 and C1. The thermal

noise source of the large feedback resistor is modeled as VR. Figure adapted from [156].

� Voltage noise The amplifier’s internal voltage noise is modeled as VA and

the value can be found in the data sheet. The voltage noise contribution in

the output PSD is

SVA = | 1
β

A(ω)

1 + 1
A(ω)β

|2 VA2. (5.5)

� Current noise The current noise contribution of the TIA in the output

PSD is

SIA = |A(ω)
RF

1 + iωRFCF

1
1
β

+ A(ω)
|2 IA2. (5.6)

� Dark current shot noise The photo diode has a dark current which means

that even with no light incident on the photo diode, there is a biased current

Id. The contribution of the dark current amplified by the TIA presented in

the output is

SId = |A(ω)
RF

1 + iωRFCF

1
1
β

+ A(ω)
|2 Id2. (5.7)

� Johnson noise The large feedback resistor RF has a thermal noise which

is also called Johnson noise. It can be modeled as the thermal noise source
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VR =
√

4KTRFB, where K = 1.38 × 10−23 is the Boltzmann constant, T

is the absolute temperature in Kelvin, B is the effective noise bandwidth.

The contribution of the Johnson noise in the output is

SVR = | A(ω)

RF [ 1
R1

+ iωC1 + ( 1
RF

+ iωCF )(A(ω) + 1)]
|2 VR2. (5.8)

Finally the total noise is the root-sum-square of all above

Stotal = SVA + SIA + SId + SVR . (5.9)

We consider a photodetector based on the Hamamatsu S-5821-01 photodiode

and OPA 657 transimpedance amplifier. From the datasheets we evaluate the

values of VA ' 4.8 nV/
√

Hz, IA ' 1.3 fA/
√

Hz, and Id ' 35 nA/
√

Hz. We

calculate the noise contributions as analyzed above and the result is plotted in

Fig. 5.14

From the calculation we can see that in the low frequency range the Johnson

noise is dominating while at high frequency the voltage noise becomes dominant.

In the whole spectrum the noise level is close to 100 nV/
√

Hz, which corresponds

to a noise equivalent power (NEP) of 47 nW/
√

Hz. With those considerations in

mind, we can start designing the photodetector circuit.

5.3.3 Photodetector design

The photodetector is based on a Hamamatsu photodiode S-5821-01 and a tran-

simpedance amplifier OPA 657. The photodiode works in the reverse-biased mode

and the TIA gives a transimpedance gain of 100 kΩ. The simplified schematic

of the PD is shown in Fig. 5.15 (b). When light is incident on the photodiode,

it generates a photo current, which is then amplified by the TIA with a gain of

100 kΩ. The output voltage is terminated with a 50 Ω resistor.

We use software Eagle to design the circuit on a printed circuit board (PCB)

with surface-mount components (SMD). Using SMD components can further sup-

press the technical noise and increase the response speed, therefore alleviating the

bandwidth limitation. We use two 12 V batteries as power supplies as they are

extremely low noise compared to the DC power supplies. In order to supply the

TIA, two ±5 V voltage regulators are used to convert the ±12 V to ±5 V. The

biased voltage for the photodiode is provided by the −12 V battery. The PD

schematic and the PD board on Eagle design are shown in Fig. 5.15 (a) and

(c), respectively. The PCB board is commercially manufactured and the SMD

components are soldered in the lab. Finally the PD circuit is assembled in an alu-

minum box in order to shield the ambient electromagnetic fields and the output

of the PD is transported via a BNC connector.
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Figure 5.14: Calculation of the TIA (OPA 657) noise PSD. Presented here are the

contributions from the TIA voltage noise, TIA the current noise, the photodiode dark

current shot noise and the Johnson noise. The total noise is the root-sum-squares of

all these noise sources.

5.3.4 Photodetector characterization

We characterize the PD performance with light sources and compare the results

with the calculated values. The two main aspects that are interesting are the

bandwidth and the noise performance.

Bandwidth measurement

The bandwidth of the PD is evaluated by measuring the beatnote of two laser

beams. The frequency of the beatnote can be tuned with two AOMs which control

the two beams independently. The output of the PD is therefore a sinusoid wave

and is monitored by an oscilloscope, while the frequency of the beat note is

tuned from 1 Hz to 20 MHz. We record the peak-to-peak voltage of the sinusoid

signal as a function of the beatnote frequency, the result is plotted in Fig. 5.16.

The red line shows a polynomial fit of the data, which yields a bandwidth of
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Figure 5.15: Photodetector design. (a) PCB schematic, the ±12 V battery supplies are

converted to ±5 V via two voltage regulators, in the feedback network RF = 100 kΩ

while CF = 0.1 pF is provided by the stray capacitance of the TIA. (b) Simplified

schematic of the PD, the photodiode works in the reverse-biased mode, the output of

the PD is terminated with a 50 Ω resistor. (c) PCB board, the board has a size of

40 × 40 mm with all surface-mount components, the board can be assembled in an

aluminum box to shield the ambient electromagnetic fields.

f−3dB = 10.5 MHz.

Noise measurement with thermal light

We characterize the PD noise by illuminating the photodiode with thermal light,

which is assumed to be photon shot noise limited [154]. The output voltage

of the PD is V = RFPs, where RF = 100 kΩ is the transimpedance gain, P

is the incident thermal light power, s = 0.47 A/W is the photon sensitivity of
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Figure 5.16: Photodetector bandwidth measurement. Blue dots are the peak-to-peak

voltage of the beat signal normalized to the maximum, error bars shows the error of

five measurements. Red line shows the polynomial fit of the data, which yields a −3 dB

bandwidth of 10.5 MHz.

the S5821-01 photodiode with respect to the light close to 689 nm. Due to the

uneven photon sensitivity of the PD in the thermal light spectrum, the measured

PSD is a factor of 2 lower than the real PSD at 689 nm, this is corrected in

the spectrum. We can therefore record the output voltage and convert it into

light power. The photodetector noise is measured with a spectrum analyzer with

a resolution bandwidth of 100 kHz, the converted voltage PSDs with different

thermal light power as well as the background noise floor are shown in Fig. 5.17,

in a frequency range from 500 kHz to 20 MHz.

We compare the photodetector noise with the photon shot noise (PSN) at the

wavelength of λ = 689 nm. The PSD of the PSN is white and can be calculated

as,

SpsnV (f) = 2hνPRF
2s2, (5.10)

where h is Plank’s constant and ν = c/λ is the laser frequency, c is the speed

of light in vacuum. The result is shown as the dashed lines in Fig. 5.17 where
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PSN~60 µW

PSN~40 µW

PSN~20 µW

Figure 5.17: Photodetector noise measured with incident thermal light at different

power levels (60 µW, 40 µW, 20 µW) and the background noise floor without light

(top to bottom). The PSDs of PSN at different power levels are indicated by the

dashed lines.

different colors represent different laser power levels.

From the spectrum we can see that around the modulation frequency of '
10.5 MHz, the PD noise is close to the PSN limit at the power of 40 µW, which is

typical for our measurement condition. This means that the PSN of the light is

equal to or larger than the electronic noise of the PD. This response was measured

also for the laser light and shows no significant difference at the modulation

frequency compared to the thermal light.

5.4 Summary

In summary, this chapter presents the experimental apparatus for preparing the

Sr MOT and for the squeezing detection. The vacuum system is based on an

upgraded version of the Sr apparatus where the science chamber and the MOT

coils are novel. The main laser systems are constructed for laser cooling of Sr
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atoms in a MOT and for performing squeezing probe in an optical cavity. The

detection system is designed specifically for the purpose of weak light detection

for cavity phase shift measurement, which is characterized to be high gain and

low noise. Finally the power required to reach the shot noise is probably too

large for certain schemes and that we will consider similar circuits with avalanche

photodiodes (APDs) and multi-pixel photon counters (MPPCs).
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Chapter 6

A new method of cavity noise

cancellation for differential phase

measurement and spin squeezing

In this chapter a series of experiments are described that were performed on the

optical ring cavity which has been built and presented in chapter 4. It is demon-

strated that by using two laser beams with a frequency gap of one FSR which

are simultaneously resonant with the cavity, the cavity length fluctuations be-

come common-mode to the two PDH error signals and can therefore be canceled.

Furthermore, we simulate an atom-induced cavity phase shift by shifting the fre-

quency of one of the two circulating laser beams and demonstrate an improved

sensitivity to the cavity phase shift with the noise cancellation scheme [53].

6.1 Motivation

One of the main limitations in monitoring a quantum system lies in the destruc-

tion of the quantum states when a measurement is performed. In recent years,

non-destructive measurements of quantum systems have been proposed [81, 158,

159] and demonstrated [43, 160], and have found applications in the fields of quan-

tum simulation [161] and quantum metrology [61, 45]. They have stimulated a

new generation of quantum sensors including atomic clocks [28, 95] and atom

interferometers [1, 162], which utilize the so-called spin-squeezed states [35, 37]

that are capable of surpassing the standard quantum limit [36] given by the num-

ber of the atoms involved [38, 64]. Such non-destructive measurements also assist

in the realization of non-classical states of macroscopic systems [163, 164] which

can be used to probe quantum gravity effects [165]. They also help pave the way

113
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for searches of new physics beyond the standard model [166, 167].

In a quantum system the value of a given variable can often be enclosed into a

phase shift of light interacting with the observed system [35]. It is often possible

to arrange a situation where this phase shift is large for light only in a given

frequency range [168]. Moreover, multiple interactions with the system as in an

optical cavity [169], can amplify this phase shift, reaching a metrological gain

given by the collective cooperativity [41] Nη, where N is the number of atoms

and η is the single-atom cooperativity, which is proportional to the finesse of

the cavity. However, there are many noise sources that can prevent a precise

phase shift measurement with an optical cavity. Yet it is possible to arrange

a differential measurement scheme, where the phase shift for the probe mode is

large while for another reference mode it is negligible, allowing the common-mode

cavity noise to be canceled. Cavity noise cancellation in a Fabry-Pérot cavity has

been demonstrated by probing two adjacent [170] or far-detuned [44] cavity modes

simultaneously with a single phase-modulated light [49, 50], or with a laser locked

to the cavity at twice the atomic transition wavelength and is frequency-doubled

for probing [45].

In this chapter, we report a phase shift measurement scheme with reduced

cavity-length-induced phase noise using an optical ring cavity and two counter-

propagating beams that function as probe and reference with a frequency dif-

ference of one cavity free spectral range. The proposed scheme has several ad-

vantages over the general noise cancellation scheme in a Fabry-Pérot cavity with

single phase-modulated light [44, 170, 45, 49, 50]. First, the ring cavity geom-

etry allows for the manipulation [171] and probing [51] of atomic momentum

states as well as their internal states. Second, the scheme where two independent

beams are simultaneously resonant with the cavity is very flexible in practical

applications, which enables independent phase modulation of the two beams. In

addition, if the two lasers used are sufficiently stable individually, then they can

be separated by an arbitrary frequency difference, extending the range of cav-

ity modes that can be used for the reference measurement beyond the range of

beat-note measurements [172] or the phase modulation bandwidth. Finally, the

technique presented here could be used in addition to any of the existing tech-

niques, treating the error signal of a frequency lock as the reference signal for

additional suppression of cavity noise beyond the locking bandwidth.

The proposed system demonstrates close to 30 dB reduction in the cavity

length fluctuations down to the noise floor in a frequency range up to half the

cavity linewidth (δν/2 ' 30 kHz). We further apply this measurement scheme in a

simulated spin-squeezing experiment [51] where a cavity phase shift measurement

is performed with a 200 µs averaging time. We demonstrate an improvement in
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phase sensitivity by a factor of 40 with a phase resolution of 0.7 mrad. With this

improved phase resolution, the scheme removes one important barrier against

attaining highly spin-squeezed states.

6.2 Theoretical model for cavity noise cancella-

tion

Even though the proposed cavity noise-reduced phase shift measurement scheme

can be used in general quantum systems, here we focus on a particular application

in a spin squeezing experiment [51], where an optical ring cavity is used for the

non-destructive measurement of the atomic momentum states (see Fig. 6.1). In

this proposal 20 dB squeezing is estimated considering only the atom shot noise

versus the scattering into free space. In reality, the effect of cavity length fluctu-

ations is not considered and might present a major obstacle. These cavity length

fluctuations may originate from acoustic and sub-acoustic pressure changes, res-

onances of piezoelectric transducers used to tune the cavity length, etc. Taking

into account the phase shift δφ induced by cavity length fluctuations, we express

the cavity overall phase shift in the presence of the atoms as,

δΦ = 2Φ1Jz + δφ. (6.1)

Under the assumptions that the detuning from atomic resonance ∆e is larger than

the linewidth Γ of the optical transition, and that the coupling from the |↑〉 to the

|e〉 can be neglected (whether because of selection rules or because the detuning

∆e is much smaller than the ground-state splitting), Φ1 = ηΓ/(2∆e) [44] (see

supplementary materials, Sec. IV), where η is the single-atom cooperativity and

Jz = (N↑ − N↓)/2 is the atom number difference between two sublevels of the

ground state (Fig. 6.1 (b)). At the atom shot noise limit, Jz follows a Gaussian

distribution with a standard deviation of
√
N/2.

We denote the atom-induced cavity phase shift as the signal and the cavity-

length-fluctuations-induced phase shift as noise and compute the signal-to-noise

ratio (SNR) as,

SNR =
(2Φ1

√
N
2

)2

〈(δφ)2〉
, (6.2)

where the numerator is taken at the atom shot noise limit Jz =
√
N/2 and

〈〉 denotes the expectation value. In order to resolve the atom-induced phase

shift and achieve 20 dB squeezing, it is essential to suppress the cavity-length-

fluctuations-induced phase noise down to a level 20 dB lower than the atom-

induced phase shift.
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Figure 6.1: (a) Non-destructive phase shift measurement with reduced noise due to

cavity length fluctuations. Laser cooled atoms (red circle) interact with the fundamental

mode of an optical ring cavity and induce a shift ∆ of the cavity resonance frequency.

Two beams (Ref and Probe) are coupled to the cavity in counter-propagating directions

and the reflections are collected by two photodetectors (PD1 and PD2). (b) Simplified

level diagram of the reference and probe beams with respect to the atomic transitions.

The probe is close to the atomic resonance while the reference is far detuned. (c)

Two beams are resonant with two modes of the cavity therefore the PDH error signals

display common cavity-length fluctuations. In the differential scheme the atom-induced

phase shift ∆ can be resolved while the common-mode cavity noise can be suppressed.

The proposed noise-reduced phase shift measurement scheme is illustrated in

Fig. 6.1, where we consider two laser beams (Ref and Probe) with frequencies ω1

and ω2 that are resonant with two modes of an optical cavity at frequencies ωc1
and ωc2, respectively. The resulting Pound-Drever-Hall (PDH) error signals [155],

E1 and E2, in the limit where the cavity resonance frequency fluctuations are

small compared to the cavity linewidth, are proportional to the detunings δc1 =

ω1 − ωc1 and δc2 = ω2 − ωc2. If the laser noise can be neglected, then δc1 and δc2
are proportional thus making it possible to consider a single detuning δc and a



6.2 Theoretical model for cavity noise cancellation 117

combination of E1 and E2 that is immune to cavity length fluctuations. Taking

into account additional, uncorrelated noise contributions to the error signals, δE1

and δE2, whose minimum variance is set by photon shot noise fluctuations, the

two error signals can be expressed as,

E1(t) = A1R1(t) ∗ δc(t) + δE1(t), (6.3)

E2(t) = A2(R2(t) ∗ δc(t)−∆) + δE2(t), (6.4)

where A1 and A2 are constants representing the amplitude of the signal. In

these expressions we have introduced the convolution with the response functions

R1(t) and R2(t) which can arise from, e.g., electronic filtering, time delays or the

response of the optical cavity. In this model, a constant shift ∆ of the mode at

frequency ωc2 is also introduced, as illustrated in Fig. 6.1 (c). This can be caused,

for example, by the presence of a state-dependent index of refraction introduced

by an atomic ensemble, as shown in Eq. (6.1). While temporal variations of ∆

can be considered, here we assume that these are slow compared to the averaging

time scale. It is the main purpose of the proposed noise cancellation method to

find a function E of the error signals E1, E2 that maximizes the sensitivity to the

shift ∆. To this end, we define the sensitivity error function S as,

S2 =
Var(E)(
∂〈E〉
∂∆

∣∣
∆=0

)2 , (6.5)

where Var denotes the variance.

It is instructive to first consider the trivial situation where δE1 = δE2 = 0 and

R1 = R2. In this case one can see that S2 is minimized and vanishes for a linear

combination E = E1 +αE2 with α = −A1/A2. If now the condition δE1 = δE2 =

0 is relaxed, but the noise floor fluctuations remain small, i.e. 〈δE2
i 〉 � A2

i 〈δ2
c 〉,

and R1 = R2, it is still possible to consider the linear combination E = E1 +αE2.

In this limit, one can show that minimizing S2 is equivalent to minimizing,

Var(E) = Var(E1) + α2Var(E2) + 2αCov(E1, E2), (6.6)

where Cov denotes the covariance. The minimum variance is attained when

α = −Cov(E1, E2)/Var(E2) and the resulting sensitivity error is,

(S2)min =
〈δE2

1〉
A2

1

+
〈δE2

2〉
A2

2

, (6.7)

which is the sum of the noise floor contributions from the two error signals in

frequency units.
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We finally consider the case where the response functions Ri differ. While

determining the individual functions may not be experimentally straightforward,

it is possible to measure the ratio of their Fourier transforms, i.e., the ratio of the

transfer functions R̃ = R̃1/R̃2. Such a measurement can be performed, for exam-

ple, by modulating the cavity length or the laser frequencies at a known frequency

and then measuring the amplitude ratio and relative phase of the two error sig-

nals. Alternatively, in the presence of broadband cavity noise, as is our case, R̃

is determined by averaging the ratio of the Fourier transforms Ẽ1/Ẽ2, calculated

from the (noisy) error signals. Once R̃ is determined, the noise cancellation can

be applied to E1 and the inverse transform of R̃Ẽ2 = A2R̃1δ̃c + R̃δ̃E2. These two

signals now share the same frequency response to cavity length fluctuations.

Finally, if R̃ differs from unity and one wishes to determine the residual cavity

noise due to imperfect cancellation, it is first necessary to realize that the value

of α determined as −Cov(E1, E2)/Var(E2) differs from the value −A1/A2 by a

factor I =
∫∞

0
|R̃(ν)| cos(φR(ν))S(0)

δc
(ν)dν/

∫∞
0
S(0)
δc

(ν)dν, where R̃ = |R̃|eiφR and

S(0)
δc

= |R̃2|2Sδc is the spectral density of cavity frequency fluctuations multiplied

by the amplitude of R̃2. In this case, the residual cavity noise can be computed

as,

δSE = A2
1(|R̃|2 + I2 − 2I|R̃| cosφR)S

(0)
δc
. (6.8)

6.3 Optical ring cavity characterization

In this section, a series of measurements are performed to characterize the optical

ring cavity prototype, including the cavity mirror transmissions, cavity FSR,

linewidth and finesse. Methods for the measurement are presented and the data

is analyzed, giving the results in accordance with the designed cavity properties.

6.3.1 Cavity mirror transmission

The first measurement is the cavity mirror transmission ratio. The purpose of

this measurement is to evaluate the total loss of the cavity, which is directly

related to the scattering and absorption of light on the cavity mirrors .

Let us review the definition of the cavity finesse for a four-mirror ring cavity,

which can be written as

F =
π
√
R1R2R3R4

1− r1r2r3r4

, (6.9)

where ri and Ri are the reflection amplitude and power ratio and ri =
√
R1. For
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high-reflectivity mirrors,
√
R1R2R3R4 ' 1, and due to the energy conservation,

ri =
√

1− Ti − Li ' 1− 1

2
(Ti + Li), (6.10)

where the second part of the equation is obtained by the Taylor expansion and

by omitting the high-order components. Therefore the cavity finesse can be ap-

proximated as,

F =
π

1− r1r2r3r4

=
2π∑4

i=1(Ti + Li)
. (6.11)

In this case, if the finesse F and the total transmission ratio
∑4

i=1 Ti are measured,

the total loss of the cavity
∑4

i=1 Li can be estimated.

Here we perform the measurement of the mirror transmission ratios for each

mirror (M1-M4) and at different wavelengths (689 nm, 461 nm and 813 nm),

which are also specified in the datasheet from the manufacturing company (see

Table 4.1). Note that for each wavelength we measured the transmission ratio for

light both with the horizontal and the vertical polarizations. This is motivated

by the fact that the laser beams are incident on the mirrors with an angle of

11.5° and in that case the fused silica substrates are polarization sensitive.

The measurement of the mirror transmission ratio is quite straightforward.

A laser beam is shone onto the mirror surface with the right incidence angle, a

half waveplate and a PBS are used to check the polarization. Then the input

power Pin and the output power Pout are measured with Thorlabs power meter

and the transmission ratio is Ti = Pout/Pin. For 461 nm and 813 nm lasers, the

measurement is simple because the transmission ratio is high so that a compar-

atively higher signal-to-noise ratio is available. However, for low transmission

wavelengths like 689 nm red lasers, and especially for curved mirrors M2 and M3,

of which the transmission is lower than 1 part-per-million (ppm), the ambient

light or the laser light scattered from the mirror substrates can have a significant

influence.

A simple setup is considered to address this problem. At the output of the

mirror, two irises separated by a black tube are put to block the ambient and

scattered light, a CCD camera is put at the end of the second iris to detect

the transmission spot. When we checked from the camera that the transmission

beam is detected and that the ambient and scattered light are blocked, we use

the Thorlabs power meter in the non-filtering condition to measure the transmis-

sion power. This method proves to be very useful for weak transmission power

detection, however, for M2 and M3 with 689 nm laser, the transmission is too

low and we can only provide an upper bound to the transmission ratio. Table 6.1

presents all the measured transmission ratios in ppm for four cavity mirrors at

different wavelengths and for both polarizations.
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Table 6.1: Mirror transmission ratio in ppm, for each wavelength the measurement is

performed both with the horizontal and vertical polarizations. For M2 and M3 the

transmission power at 689 nm is too weak and we can only provide an estimated upper

bound to the transmission ratio.

Mirrors
689 nm

Horizontal Vertical

461 nm

Horizontal Vertical

813 nm

Horizontal Vertical

M1 303.8(4) 219.6(4) 10993(4) 9573(8) 1926(6) 1396(5)

M2 < 0.2 < 0.2 904(9) 652(5) 266(2) 183(8)

M3 < 0.2 < 0.2 1032(3) 851(9) 258(8) 171(7)

M4 8.8(1) 6.6(1) 10258(9) 9372(9) 1246(3) 1012(6)

6.3.2 Cavity free spectral range

For an optical ring cavity, the free spectral range is defined according to Eq. (4.17).

As a first estimation of the cavity FSR, one can measure the cavity length by

summing the four light paths inside the cavity, which gives:

Ltotal = L1 + L2 + L3 + L4 = 55 + 44 + 54 + 54 = 207 mm. (6.12)

with an uncertainty of ±1 mm. Since the cavity is in air (or nitrogen) en-

vironment, one should also consider the index of refraction of the air nair =

1.0003±0.0001, so the total cavity length in air is Lair = Ltotal×nair = 207±2 mm.

Therefore one can estimate the FSR as,

FSRest =
c

Lair
' 1.449 GHz. (6.13)

A more precise measurement of FSR can be implemented by measuring the

transmission peaks of the cavity with phase-modulated light. Here a fiber-EOM

is used for phase modulating the incident laser beam. When the laser frequency

is tuned close to the cavity resonance and the cavity length is scanning with

PZT, in the transmission a carrier and two sidebands can be recorded on the

oscilloscope. When the modulation frequency of the fiber-EOM equals to one

FSR, the two sidebands should merge with the carrier. For each modulation

frequency, we record the temporal difference between the sideband and the carrier

by fitting the trace with multi-peak Lorentzian function, as shown in Fig. 6.2.

Since the detuning of the modulation frequency to the FSR is proportional to

the temporal difference of the sideband and the carrier, by fitting the data with

function y = a × |x − b|, one can derive the FSR as the fitting result of b, as

shown in Fig. 6.3. Therefore, the measured FSR is,

FSRmea = 1.43136± 0.00003 GHz. (6.14)
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Figure 6.2: Cavity transmission signal with fiber-EOM modulation frequency at

1.424 GHz. The temporal difference between the carrier and the side-band is pro-

portional to the difference between the modulation frequency and the cavity FSR.

The transmission signal (red) is fitted with a multi-peak fitting function specifying

Lorentzian peak shapes (blue). The positions of three peaks (black) are shown in the

lower panel, the fit residuals (green) are shown in the upper panel. The temporal

difference between peak 0 and peak 1 is 0.141125 ms.

6.3.3 Cavity linewidth and cavity finesse

The cavity ringdown measurement is a precise method to evaluate the cavity

photon lifetime and the cavity linewidth. When the laser is on resonance with

the cavity, the photons inside the cavity will be reflected by the cavity mirrors

for multiple times which is close to the order of the cavity finesse, therefore the

intensity of the light inside the cavity is also amplified. When the incident light is

switched off, the photon number inside the cavity will not disappear immediately

but decay from the cavity mirrors exponentially. If we consider the laser power

transmitted from the cavity as a function of time, we have

A(t) = A0e
−t/τ , (6.15)

where A0 is the initial laser power and τ is the photon lifetime of the cavity.
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Figure 6.3: Free spectral range measurement data and fitting curve. The data is the

temporal difference between peak 0 and peak 1 at different modulation frequency. When

the modulation frequency equals to one FSR, the two sidebands merge with the carrier,

thus the temporal difference is zero. The data is fitted with function y = a × |x − b|,
where b = (1.43136± 0.00003) GHz is the cavity FSR.

For the measurement of the cavity decay, we need to keep the laser resonant

with the cavity and switch off the incident laser quickly. This is achieved by

applying a TTL signal on the RF of the double-pass AOM, whose response time

τAOM ' 100 ns. On the cavity transmission, a fast photodiode with a response

time τPD < 100 ns records the cavity photon decay. Generally, τAOM , τPD � τ

so the measurement will not be limited by the response speed of the AOM or the

photodiode. Figure 6.4 shows the cavity decay signal with an exponential decay

fit, the fit gives a time constant τ ' 2.7557× 10−6s. We have acquired 100 such

cavity decay signals, the average value of the photon lifetime inside the cavity is,

τ̄ = (2.763± 0.003)× 10−6 s. (6.16)

With the measured τ̄ one can estimate the cavity linewidth according to,

δν =
1

2πτ̄
= 57.6(1) kHz . (6.17)

One can perform another independent cavity linewidth measurement using the

setup in Fig. 6.6 by locking one beam to the cavity while scanning the frequency
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Figure 6.4: Cavity photon decay signal and the fitting curve with exponential decay

function. The laser incident onto the cavity is tuned close to the resonance with the

cavity. The double-pass AOM which is used to shift the laser frequency is modulated

with a TTL signal which turns on and off the laser beam. When the laser is on

resonance with the cavity and then immediately switched off, the number of photons

remained in the cavity will decay through the cavity mirrors. The red plot is the cavity

photon decay in the transmission, the blue curve is the exponential decay fit of the

data, the time constant τ of the fit is the lifetime of the photon in the cavity. We

have acquired 100 photon decay signals, the average value of the photon lifetime is

τ̄ = (2.763± 0.003)× 10−6 s.

of another beam. The cavity output power of the scanning beam as a function

of the scanning frequency follows the Lorentzian lineshape, therefore a fit of the

data yields the FWHM of the Lorenzian lineshape, which is the linewidth of the

cavity (see Fig. 6.5). This measurement gives δν = 63.6(5) kHz, which agrees

with the photon decay measurement.

With the cavity FSR and the cavity linewidth measured, one can estimate the

cavity finesse according to,

F =
FSR

δν
= 2.40(2)× 104. (6.18)

Note that all those measurement are performed with 689 nm laser and with
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Figure 6.5: Cavity linewidth measurement by locking one beam to the cavity while

scanning the frequency of another beam. Red circles are the measured cavity output

power with respect to the scanning beam, blue curve is the Lorentzian fit of the data,

which yields a cavity linewidth (FWHM) δν = 63.6(5) kHz.

the vertical polarization, in this condition the highest finesse can be obtained.

Finally, the total cavity loss can be estimated with Eq. 6.11 as

4∑
i=1

Li =
2π

F
−

4∑
i=1

Ti = 34.8(5) ppm, (6.19)

where
∑4

i=1 Ti = 226.6(4) is the total transmission ratio measured with 689 nm

at the vertical polarization.

In summary, a full characterization of the cavity prototype is performed. In

Table 6.2 the main cavity characteristics are summarized. The mirror ROC and

the mirror transmission are given in the sequence of (M1-M4) with respect to

the cavity schematic of Fig. 6.6. The mirror transmission ratio, linewidth and

finesse are all specified with laser wavelength of 689 nm, which is also used in the

following sections.
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Table 6.2: Relevant cavity parameters with respect to the laser wavelength at 689 nm.

Parameter Symbol Value Units

Mirror ROC ROCi +∞, 50, 50,+∞ mm

Mirror transmission Ti 219.6(4), < 0.2, < 0.2, 6.6(1) ppm

Free spectral range FSR 1.43136(3) GHz

Linewidth δν 57.6(1) kHz

Finesse F 2.40(2)× 104 −
Total loss

∑
Li 34.8(5) ppm

6.4 Cavity noise cancellation setup

The core of the experimental setup is a bow-tie optical ring cavity with four

high-reflectivity mirrors, shown in Fig. 6.6. The cavity mirrors are glued onto

four V-shaped grooves, the V-groove that holds mirror 1 (M1 in Fig. 6.6 ) is

placed on a shear-force PZT in order to tune the cavity length. The whole cavity

is assembled inside a plexiglass box and is supported on sorbothane rubber balls

for vibration isolation. Additionally, we can flow clean nitrogen through the box

in order to reduce dust contamination.

The experimental setup for cavity noise cancellation and phase shift measure-

ment is also illustrated in Fig. 6.6 and it is divided in two parts: (i) preparation

of the two optical beams; (ii) measurement and detection setup using the cavity.

The two parts of the setup are placed on two independent breadboards, BD1

and BD2. While BD1 is fixed on the optical table, BD2 is placed on four pieces

of sorbothane rubber for vibration isolation. The input laser light is frequency

stabilized by locking to a high-finesse Fabry-Pérot cavity (F ′ ' 8600), reaching

a 20 Hz laser linewidth [145] and is transported to BD1. The input beam is split

into two parts with a frequency difference of one FSR by two acousto-optic mod-

ulators (AOM) in double-pass configuration. AOM1 is a high-frequency AOM

(Brimrose) which shifts the frequency of the beam by −1.21 GHz, while AOM2

introduces a frequency shift of +220 MHz. The two beams are then phase mod-

ulated independently with two EOMs at 10.5 MHz and are transported to BD2

via two optical fibers. We refer to the two beams after the optical fibers as Ref

and Probe, as shown in Fig. 6.6 and corresponding to the beams in Fig. 6.1.

On BD2, the two beams are independently mode-matched to the optical cavity.

Optical isolators are used to couple two s-polarized beams to the optical cavity

and detect the corresponding reflections from the back of the cavity incoupling

mirror. The reflected beams emerging from the side ports of the optical isolators

are detected via two homemade photodetectors (PD1 and PD2) in order to derive
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the two error signals using the PDH method.

PD1 and PD2 are low-noise and high-gain photodetectors with a bandwidth

of 20 MHz, optimized for this application (see section 5.3). The output of the PDs

are band-pass filtered at 10.5 MHz and are sent directly to a mixer (Minicircuits

ZAD-1-1+) with no need for extra amplification. A single two-channel signal

generator is used to produce the local oscillator (LO) and modulation (MOD)

signals required for both PDH signals. The two output channels are both split and

sent to the independent mixers and phase modulators, respectively. The output

of the two mixers, which are the PDH error signals, are filtered by a second-order

anti-aliasing low-pass filter (LPF) with a cut-off frequency of f0 = 80 kHz and a

low-frequency gain of 10. This amplification reduces the relative contribution of

the quantization noise of the analog-to-digital converter (ADC). Finally, cavity

locking is achieved by acting on the PZT under M1 using a standard PI controller

with error signal E1. Due to the limitation on the PZT response speed, the low

frequency (. 100 Hz) noise is largely compensated by cavity locking, while the

high frequency (& 100 Hz) noise remains and can be further suppressed by our

noise cancellation scheme.
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6.5 Experimental results

In this section the results for the cancellation of the cavity length fluctuations

are presented. With the proposed scheme the cavity length fluctuations can be

canceled down to a level close to the noise floor, which is set by other noise

sources. The contributions from various noise sources to the noise floor are also

estimated.

6.5.1 Noise cancellation performance

In the following, the experimental sequence for data acquisition and the analysis

are described. We set the laser power of Ref and Probe (in Fig. 6.6) to be

40 µW at the reflection which is detected by PD1 and PD2. When the cavity

is scanning, the error signals E1 and E2 exhibit a typical dispersive shape with

a peak-to-peak voltage of Vpp ' 2.45 V. When the cavity is locked with the PI

controller acting on the PZT under M1, E1 and E2 show strong correlations since

they both represent the cavity length fluctuations, as shown in Fig. 6.7. The error

signals are acquired by a digital oscilloscope for 10 ms with a sampling rate of

10 MHz. In order to analyze the data in the frequency domain, we compute the

Fast Fourier Transform (FFT) and estimate the voltage power spectral density

SV (f) in a frequency range from 100 Hz to half the sampling rate, i.e., 5 MHz.

The spectral density of frequency fluctuations can then be expressed as,

Sν(f) =

(
δν

Vpp

)2

SV (f) , (6.20)

where δν = 57.6(1) kHz is the cavity linewidth.

The result of cavity noise cancellation is shown in Fig. 6.8. The red trace 1

shows the original frequency fluctuations of E1, while the green trace 2 shows the

dramatically reduced frequency fluctuations of the combined error signal E =

E1 + αE2, where α = −Cov(E1, E2)/Var(E2). The orange trace 3 shows the

noise floor corresponding to Eq. (6.7) and is obtained when the two laser beams

are out of the cavity resonance. Figure 6.8 shows that the original cavity noise

patterns are frequency-dependent. In the low-frequency range (100 Hz to 1 kHz),

it follows a 1/f behavior indicating that flicker noise is dominating. In the mid-

frequency range (1 kHz to 10 kHz), oscillations due to mechanical structures are

dominating. For the cavity-aided phase shift measurement, we are interested in a

bandwidth close to half the cavity linewidth (δν/2 ' 30 kHz). It is demonstrated

that with our cavity noise cancellation scheme, within this frequency range the

cavity noise can be reduced by more than 30 dB, close to the noise floor. At

higher frequencies, up to 100 kHz, the cancellation scheme is still able to reach
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Figure 6.7: Time domain error signals and noise cancellation. The blue solid lines

and the orange dotted lines represent the error signals E1 and E2, respectively, which

show strong correlations. The black dashed line shows the canceled signal, which has

significantly reduced noise fluctuations compared to the non-canceled ones.

the noise floor, but the reduction is lessened due to the original cavity noise being

strongly filtered.

6.5.2 Noise sources analysis

In the following we analyze the noise sources in our system and estimate their

contributions to the noise floor. We investigate the effects from the laser inten-

sity noise, the residual amplitude modulation (RAM) of the EOMs, the phase

noise due to the fiber transportation, the different frequency responses of the two

channels and the quantization noise in the ADC. The noise analysis of the PD

has already been discussed in subsection 5.3.4.

Laser intensity noise It is known that the PDH error signal is first-order

immune to laser intensity fluctuations [155]. In our system, however, the cavity

is locked on one beam while the other beam can be tuned. If there is a mismatch
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Figure 6.8: Cavity noise cancellation results. Traces 1 and 2 (red and green solid traces)

show the frequency PSD of the error signals before and after the noise cancellation,

showing about 30 dB noise reduction in a frequency range up to half the cavity linewidth

(δν/2 ' 30 kHz). The noise of the canceled error signal is close to the noise floor

(orange solid trace 3) determined when the laser is off-resonance with the cavity. Also

shown are the residual noise due to the difference in the frequency response of the two

channels (grey solid trace 4), the laser relative intensity noise (blue dotted trace), the

quantization noise (black dashed trace) due to ADC and the fiber phase noise (purple

dashdot trace).

between the laser frequency and the cavity resonance, then the laser intensity

fluctuations may give a noise contribution in the PDH error signal. We cannot

say a priori how large this frequency mismatch is, but we can estimate an upper

limit to it. We observed that the amplitudes of the time domain error signals are

within 1/5 of the Vpp, therefore we choose the upper limit of frequency mismatch

as 1/5 of the cavity linewidth δν. With this hypothesis we can estimate the

maximum contribution of the laser intensity noise to the PDH error signal.

In order to measure the relative intensity noise (RIN), we illuminate the laser

beam on PD1 and record the output for 10 s with an oscilloscope. We compute

the PSD of this trace SrinV (f) and normalize it to the mean PD output voltage
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VPD. Note that in the PDH method, the laser is filtered by the cavity and

the error signals are filtered by a second-order LPF at the cut-off frequency of

f0 = 80 kHz. Therefore, in order to compare the RIN with the noise floor

in Fig. 6.8, the computed SrinV (f) should be corrected by the amplitude of the

transfer function of the cavity, |Hcav|2 = [1 + (2f/δν)2]−1, and that of the LPF,

|HLPF |4 = [1 + (f/f0)2]−2. Finally, the upper-limit contribution of the laser RIN

to the PDH error signal in frequency PSD is,

Srinν (f) =

(
δν

5

)2 SrinV (f)

V 2
PD

· |Hcav|2 · |HLPF |4. (6.21)

The result is shown as the dotted blue line in Fig. 6.8, which has the largest

contribution to the noise floor in a frequency range from 100 Hz to 10 kHz.

Residual amplitude modulation (RAM) The residual amplitude modu-

lation arises from the imperfections in laser phase modulation when an EOM

is used. It has been studied extensively and has confirmed contributions from

the etalon effect [173], the misalignment of light from the principal axis of the

crystal [174] and temperature variations, etc. Methods to actively cancel the

RAM have also been demonstrated with a reduction down to the thermal noise

level [175]. In order to estimate an upper limit of the noise contribution from the

RAM, we record the PDH error signals for 10 s when the laser is out of resonance

with the cavity and compute the frequency PSD in a range from 100 mHz to 5

kHz. The results show that the noise contribution from the RAM of both the

two EOMs are below 10−1 Hz2/Hz at 10 Hz. At this level the RAM would not

have an effect on the cavity noise cancellation since we are concerned about a

frequency range where the contributions from the RAM are negligible. Indeed no

active cancellation of the RAM is needed in our experiment.

Fiber phase noise As shown in Fig. 6.6, two 2-meter fibers are used for light

transmission and mode-cleaning. Due to the pressure and temperature variations,

the fiber transmission can introduce phase noise on the light, which can cause a

phase shift in the cavity for the two beams and degrade the noise cancellation.

To evaluate the differential phase noise introduced by the fiber transmission,

we combined the two transmitted beams and measured the phase noise of the

beatnote. A fast photodetector is used to detect the 1.43 GHz beatnote and the

output is sent to a phase noise analyzer (R&S FSWP). Since the phase PSD

Sfiberφ (f) is related to the frequency PSD by a factor of f 2, we can compute the

frequency PSD due to the fiber phase noise as,

Sfiberν (f) = f 2Sfiberφ (f) · |Hcav|2 · |HLPF |4, (6.22)
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where the transfer functions of the cavity response and the second-order LPF

are considered. The result is plotted as the purple dashdot trace in Fig. 6.8,

which is well below the noise floor and has a negligible effect on the cavity noise

cancellation.

Frequency response difference between the two channels The difference

in the frequency response of the two channels E1, E2 to cavity-length fluctuations

may degrade the noise cancellation. However, as discussed in section 6.2, this dif-

ference can be compensated if it is a dominating noise source. Different responses

can originate from different polarizations of the two beams, accumulated phase

shifts from electronics and optics, etc. We minimize this difference by using laser

beams with the same polarization and cables with the same length for the RF

signals. In order to measure the ratio R̃ = R̃1/R̃2 of transfer functions for the

two channels, we acquire 100 traces of E1 and E2 on resonance for 10 s with a

sampling rate of 1 MHz. For each trace we compute the phase and amplitude of

the ratio between the FFTs of the two channels and average over all the traces.

We establish that the relative phase between the two channels is less than about

1° in the relevant frequency range (see Fig. 6.9). We computed the residual cav-

ity noise contribution by evaluating Eq. (6.8) and the result is shown as the grey

solid trace 4 in Fig. 6.8, thus showing that compensation of R̃ is unnecessary at

the current level.

Quantization noise Quantization noise is introduced in the process of analog-

to-digital conversion. In our data acquisition system, a digital oscilloscope (Tek

MDO3014) is used to acquire the error signal data for 10 ms with a sampling

frequency of fs = 10 MHz. The 8-bit oscilloscope has a vertical resolution of

28 − 1 = 255 and is set for a vertical full scale of FS = 1 V. As a result, the

least-significant-bit is LSB = FS/(28 − 1) = 3.9 mV and the one-sided voltage

PSD is SqtV (f) = LSB2/(6fs). We compute the frequency PSD contribution due

to quantization noise in the combined error signal E as,

Sqtν (f) = SqtV (f)

(
δν

Vpp

)2

(1 + α2) = 3.08× 10−4 Hz2/Hz, (6.23)

where α = 1 is used as an approximation. The quantization noise is plotted as

the dashed black trace in Fig. 6.8, it is clear that the quantization noise becomes

dominant in the noise floor only in a frequency range higher than 100 kHz, which

is beyond the cavity response and the effect can be neglected.

In summary, taking into account the PD noise analysis presented in Fig. 5.17,

we conclude that for the current setup, the main contributions to the noise floor
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Figure 6.9: Estimation of the relative phase between the two channels. Red solid trace

is the relative phase between the two channels, data is acquired by computing the FFTs

of the traces of two channels and average over 100 traces. The blue curve is the fit

with a double ratio of low-pass filter transfer functions, showing that the relative phase

between the two channels is below 1° in the relative frequency range.

come from the detection circuitry and the laser RIN, while the other noise sources

and the effect due to different response between the two channels have negligible

contributions. The current noise performance is still far above the shot noise limit

which is set by the probe power, however, it is possible to further reduce the noise

floor by adopting low-noise detection systems and by actively stabilizing the laser

power, and the noise cancellation scheme should still work.

6.6 Application: measuring a cavity phase shift

6.6.1 Experimental procedure

The cavity noise cancellation method provides a powerful tool for the precise

measurement of a phase shift of the light circulating inside the cavity. We apply

this scheme on a simulated squeezing measurement [51], where we mimic the
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atom-induced cavity shift ∆ in Eq. (6.4) by shifting the frequency of the Probe

beam in Fig. 6.6. This frequency shift can be introduced through the frequency

shift key (FSK) modulation on the RF source of AOM2. Therefore, the Probe

beam will be detuned from the cavity resonance by the amount of the FSK. We

apply an FSK modulation of 2 kHz and record the time domain traces of the error

signal E2 and compute the combined error signal E, as shown in Fig. 6.10. The

black trace shows the trigger of the FSK modulation, where the data before the

trigger are used for determining the value of α in Eq. (6.6) and the same value is

applied on the whole dataset for noise cancellation.

As for a squeezing measurement, a typical probe time Tm = 200 µs is used

and a differential scheme is adopted. In our scenario, we simulate the squeezing

measurement by extracting 200 µs data segments from both the non-shifted and

shifted regions (P1 and P2 in Fig. 6.10) with a delay time of 1 ms. We calculate

the difference in the average of the two time series as δP = P2 − P1 for both

E2 and E. For ten acquisitions with the same FSK frequency shift, the standard

deviation in δP for E is reduced by a factor of 25 when compared to that of E2,

as shown by the error bars in Fig. 6.11.

6.6.2 Performance analysis

For a more precise estimation of the measurement sensitivity to laser frequency

(phase) shift, a series of FSK modulations from 20 Hz to 2 kHz is performed.

Figure 6.11 shows the δP values of E (red circles) and E2 (blue squares) as a

function of the FSK modulation frequency, with error bars signifying the standard

deviation of ten acquisitions. We quantify the sensitivity to laser frequency shift

with Eq. (6.5) by computing the frequency sensitivity S = σ/a, where σ =√
n−1
kn−1

∑k
i=1 σ

2
i is the weighted standard deviation of the error bars σi, k = 37

is the number of FSK frequencies, n = 10 is the number of acquisitions for each

frequency and a is the slope of the linear fit of δP as a function of the FSK

modulation frequency. For E2 and E we compute the frequency sensitivity as

SE2 = 801 Hz and SE = 20 Hz, respectively, which can be converted into cavity

phase resolution through δφ = S/(δν/2) as δφE2 = 28 mrad and δφE = 0.7 mrad,

signifying an improvement in phase sensitivity by a factor of 40. In order to prove

the consistency of the frequency sensitivity measurements made with the FSK

(Fig. 6.11) and the measured frequency PSDs (Fig. 6.8), we evaluate the frequency

sensitivity from the measured frequency PSDs, using the transfer function for the

difference between averages of a time series (see Appendix A). This yields a phase

resolution of δφE1 = 24 mrad and δφ′E = 0.5 mrad, consistent with the results

from the FSK measurement.
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Figure 6.10: FSK modulation with 2 kHz laser frequency shift. The black trace is the

trigger of the FSK, P1 and P2 are Tm = 200 µs long probes with a delay time of 1 ms,

representing the measurement sequence of a typical squeezing experiment.

We can therefore use Eq. (6.2) to estimate the SNR (in dB) of the atom

shot noise versus the cavity noise. For realistic experimental parameters [51],

where η ' 0.025, Γ ' 2π × 7.5 kHz is the linewidth of the 1S0-3P1 transition

of Sr, ∆e ' 2π × 2.8 MHz is the effective detuning from atomic resonance with

electromagnetically induced transparency (EIT) [51] and N ' 1 × 105 atoms

are involved, we estimate the atom-induced phase shift as 2Φ1

√
N
2
' 10.7 mrad.

Therefore the SNRs with and without the noise cancellation are SNRw = 24 dB

and SNRw/o = −8 dB, respectively. In the proposal paper [51], 20 dB squeezing

is estimated by considering only the atom shot noise versus the scattering into

free space, the cancellation of the cavity noise to a level 24 dB lower than the

atom shot noise makes the conclusion of this proposal solid, as the cavity noise

would no longer play a dominant role. If instead the cancellation method were

not applied, our current level of cavity-length fluctuations would completely mask

the atomic signal.
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Figure 6.11: FSK modulation and sensitivity to laser frequency shift. A series of

frequency shifts ranging from 20 Hz to 2 kHz is applied, each with ten acquisitions.

The blue squares and red circles show the value of δP for E2 and E, respectively,

error bars represent the standard deviation of 10 acquisitions. The red line is a linear

fit of the red circle data. Inset shows the calculated phase resolutions of E2 and E,

respectively.

6.7 Conclusions and prospects

In conclusion, we have demonstrated for the first time a phase shift measurement

with pronounced immunity to cavity-length fluctuations using an optical ring

cavity and two separate beams. We have achieved more than 30 dB reduction

in the cavity noise due to length fluctuations, close to the limit of the measured

noise floor. We have applied this phase shift measurement scheme in a simulated

spin squeezing experiment where we mimic the atom-induced cavity phase shift by

changing the frequency of one of the two circulating laser beams. An improvement

in phase sensitivity by a factor of 40 with a phase resolution of 0.7 mrad is

achieved. With this method, squeezing up to 20 dB would not be limited by

cavity-length fluctuations.

This method is also applicable to two laser beams with largely different wave-

lengths as long as their frequency noise is negligible compared to the cavity res-
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Figure 6.12: Experimental design of dual-color cavity noise cancellation. The squeezing

cavity has two PZTs under M1 and M4 respectively and four heaters (H) for long-range

and versatile cavity length tuning. Two 689 nm laser beams are coupled into the cavity

for locking and probing purposes, the same as in Fig. 6.6. In addition, two 813 nm

laser beams are coupled into the cavity from M1 and M4, respectively, to form a one

dimensional optical lattice. Two shortpass dichroic mirrors (DM) are used to couple

and split the lasers with different frequencies. In this scenario, one can derive the two

PDH error signals for 689 nm and 813 nm lasers and explore the cancellation of the

common mode cavity length fluctuations.

onance frequency fluctuations. This condition can be met by using the current

cavity prototype as a transfer cavity to bridge the frequency stability of two lasers

with largely different wavelengths, in our case, the 689 nm laser for squeezing and

the 813 nm laser for optical lattice. The 689 nm red laser is further stabilized to

a high-finesse F-P cavity (induced laser linewidth ' 20 Hz), therefore in this con-

dition both laser frequency noise are negligible compared to the cavity resonance
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frequency fluctuations.

Another squeezing cavity will be built and assembled into the vacuum chamber

and can be used to demonstrate the noise cancellation in a dual-color cavity

scheme, as illustrated in Fig. 6.12. The squeezing cavity has two PZTs under M1

and M4 respectively and four heaters (H) for coarse cavity length tuning. Two

689 nm laser beams are coupled into the cavity for locking and probing purposes,

the same as in Fig. 6.6. In addition, two 813 nm laser beams are coupled into the

cavity from M1 and M4, respectively, to form a one-dimensional optical lattice.

Two shortpass dichroic mirrors (DM) are used to couple and split the lasers with

different frequencies. In this scenario, one can derive the two PDH error signals

for 689 nm and 813 nm lasers and explore the cancellation of the common mode

cavity length fluctuations.

In the future, we will apply this method to quantum non-destructive measure-

ments for the generation of spin-squeezed states in atom interferometers. This

method can find direct application to the cancellation of the effect of cavity length

fluctuations in a cavity-aided non-destructive probe of Bloch oscillations [176]

and Rabi oscillations [177]. More generally, it can assist in the non-destructive

monitoring of quantum systems and find applications in the field of quantum

simulation and quantum metrology.
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Conclusions and prospects

In this thesis, we have studied the cavity-enhanced measurement for the genera-

tion of spin squeezed states in Sr atom interferometry. It has been proposed that

by resolving the Doppler effect due to momentum state superposition via cavity-

enhanced nondestructive measurement, we can prepare the spin squeezed states

for Bragg atom interferometers which can surpass the standard quantum limit

for phase estimation. However, one major obstacle that we are going to meet is

the cavity length fluctuations, which will mask the atomic signal. A method to

cancel the cavity length fluctuations in measuring the atom-induced phase shift is

therefore proposed and we have demonstrated close to 30 dB reduction of cavity

noise down to the noise floor.

The core of the whole thesis is an optical ring cavity, which is designed for

generating spin squeezed states. We dedicate a whole chapter to describe in detail

the procedure for cavity alignment and construction. Innovative tools for cavity

holding and manipulation are designed and implemented. Various epoxies are

tested and the curing conditions are specified for gluing different cavity compo-

nents. This chapter provides a tutorial for the construction of optical cavities in

general.

We also demonstrate a method to cancel the cavity length fluctuations in

measuring a phase shift, which removes a major barrier in attaining highly spin-

squeezed states. Two independent laser beams which can potentially have largely

different wavelengths are simultaneously resonant with the optical ring cavity,

demonstrating noise correlations in the PDH error signals. In the differential

scheme the common-mode cavity noise can be canceled, therefore higher sensitiv-

ity to phase shift can be achieved. In our setup, close to 30 dB noise reduction

is demonstrated down to the noise floor, with the main limitation from the PD

noise and the laser intensity noise.

We further apply the demonstrated noise-reduced measurement scheme in a
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simulated squeezing experiment, where we mimic the atom-induced cavity phase

shift by shifting the frequency of one of the two circulating beams. The noise

cancellation scheme demonstrates an improvement by a factor of 40 in phase sen-

sitivity with a phase resolution of 0.7 mrad. With this improvement we estimate

that the cavity noise will no longer play an important role in spin squeezing mea-

surement. While if the noise cancellation is not applied, the cavity noise will

completely mask the atomic signals.

The demonstrated cavity noise cancellation scheme has a broader application

in monitoring a general quantum system, where the signal is enclosed onto the

light phase shift and can be enlarged by optical cavities. It can find direct applica-

tions to the cancellation of the effect of cavity length fluctuations in cavity-aided

non-destructive probe of Bloch oscillations and Rabi oscillations. More gener-

ally, it can assist the non-destructive monitoring of quantum systems and find

applications in the field of quantum simulation and quantum metrology.

As we are making progress in the lab, a new optical ring cavity is constructed

and assembled inside the vacuum chamber. In the future, we will use this cavity to

interact with laser-cooled atoms and measure the atom induced phase shift. The

collective measurement of the atomic momentum state can induce spin squeezing

in the atomic ensembles. Atom interferometers that utilize this spin squeezed

state can achieve better phase resolution, even surpassing the standard quantum

limit.



Appendix A

Transfer function for the

difference between averages of a

time series

We consider the time series of N points x(n) for n = 0, · · ·, N − 1. The difference

between averages of the time series can be expressed as

∆S =
1

na

na−1∑
n=0

x(n)− 1

na

2na+nd−3∑
n=na+nd−2

x(n) , (A.1)

where the two terms correspond to averages over na points, spaced by a delay of

nd points.

The corresponding response function is given by

R(n) =
1

na
×


1 if 0 ≤ n ≤ na − 1

−1 if na + nd − 2 ≤ n ≤ 2na + nd − 3

0 otherwise

(A.2)

and the discrete Fourier transform (i.e. the transfer function) reads

R̃(k) =
N−1∑
n=0

R(n) exp

(
−2πi

nk

N

)
. (A.3)

This can be computed by using the identity

m∑
n=0

qn =
1− qm+1

1− q
(A.4)
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so that

R̃(k) =
1

na

[
na−1∑
n=0

exp

(
−2πi

nk

N

)
−

2na+nd−3∑
n=na+nd−2

exp

(
−2πi

nk

N

)]

=
1

na

[
na−1∑
n=0

exp

(
−2πi

nk

N

)
−

2na+nd−3∑
n=0

exp

(
−2πi

nk

N

)
+

na+nd−3∑
n=0

exp

(
−2πi

nk

N

)]

=
1

na

1 + exp
[
−2πi (ana+nd−2)k

N

]
− exp

(
−2πinak

N

)
− exp

[
−2πi (na+nd−2)k

N

]
1− exp

(
−2πi k

N

) .

(A.5)

Note that this expression is not valid for k = 0, where both the numerator

and the deminominator vanish. In this case we recall that ey = 1 + y + o(y) and

we find limk→0 R̃(k) = 0 so that we can take R̃(0) = 0. This agrees with intuition

in the sense that in the difference of two averages one does not expect significant

contributions from the low-frequency part of the spectrum.

Finally, the expected variance of ∆S, given the numerical PSD of x, Sx(k) for

k = 0, · · ·, N − 1, is

Var(∆S) =
N−1∑
k=0

|R̃(k)|2Sx(k)∆µ, (A.6)

where ∆µ = 1/T is the frequency spacing and T the acquisition time correspond-

ing to N points. Note that here the full numerical spectrum should be accounted

for. If only half of the spectrum is known, one can still use Eq.(A.6) but multiply

the result by 2 given the symmetry of Sx and R̃ around half the sampling rate.
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This research activity has led to publications in international journals and con-

ferences. These are summarized below.

International Journals

1. E. Wang, G. Verma, J. N. Tinsley, N. Poli and L, Salvi. “Method for the differ-

ential measurement of phase shifts induced by atoms in an optical ring cavity”,

Physical Review A, 103,022609(2021). [DOI:10.1103/PhysRevA.103.022609]

2. L. Hu, E. Wang, L, Salvi, J. N. Tinsley, G. M. Tino and N. Poli. “Sr atom

interferometry with the optical clock transition as a gravimeter and a grav-

ity gradiometer”, Classical and Quantum Gravity, 37(1),014001, 2019. [DOI:

10.1088/1361-6382/ab4d18]

3. G. Rosi, A. Viceré, L. Cacciapuoti, G. D’Amico, L. Hu, M. Jain, N. Poli,

L. Salvi, F. Sorrentino, E. Wang and G. M. Tino. “Detecting gravitational

waves with atomic sensors”, IL NUOVO CIMENTO, 100(130), 41, 2018. [DOI:
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International Conferences and Workshops
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