
Machine Learning with Applications 4 (2021) 100033

T
D
a

b

A

K
C
C
T
T
W

1

e
u
p
p
w
i
s
t
a
(
n
t
d
2
m
t
t
e
a
r
M

f
n
p
o

B

Contents lists available at ScienceDirect

Machine Learning with Applications

journal homepage: www.elsevier.com/locate/mlwa

ext categorization with WEKA: A survey
onatella Merlini a,∗, Martina Rossini b

Dipartimento di Statistica, Informatica, Applicazioni, Università degli Studi di Firenze, Italy
Università degli Studi di Firenze, Italy

R T I C L E I N F O

eywords:
lassification
lustering
ext categorization
ext Mining
EKA

A B S T R A C T

This work shows the use of WEKA, a tool that implements the most common machine learning algorithms, to
perform a Text Mining analysis on a set of documents. Applying these methods requires initial steps where
the text is converted into a structured format. Both the processing phase and the analysis of the transformed
dataset, using classification and clustering algorithms, can be carried out entirely with this tool, in a rigorous
and simple way. The work describes the construction of two classification models starting from two different
sets of documents. These models are not meant to be good or realistic, but just illustrate how WEKA can be
used for a Text Mining analysis.
. Introduction

Text Mining is a term which generally refers to the automatic
xtraction of interesting and non-trivial information from text in an
nstructured form; generally, its purpose is not to understand all or
art of what is said by a particular speaker/writer, but rather extract
atterns from a large number of documents. Text Mining is connected
ith Natural Language Processing (NLP), which includes linguistically

nspired techniques, i.e., a text is typically analyzed from a lexical and
yntactic point of view using a formal grammar, the resulting informa-
ion is then interpreted semantically and used to extract information
bout what was said (Kao & Poteet, 2007). Named Entity Recognition
NER) is a standard task in NLP, consisting in searching and classifying
amed entities, i.e., portions of text of natural language documents
hat represent real world entities, such as names of people, places,
ata and companies (Konkol & Konopík, 2014; Nadeau & Sekine,
007). NLP is a huge sub-field of artificial intelligence that deals with
odels and representations for natural language. A very common way

o represent words, phrases, and documents in modern NLP involves
he use of sparse vectors. These vector representations, called word
mbeddings, are typically learned from models based on neural network
rchitectures. One of the most famous models used for learning vector
epresentations of words is the Word2Vec technique (Church, 2016;
ikolov, Sutskever, Chen, Corrado, & Dean, 2013).

The applications in the field of Text Mining do not manage data
rom archives and databases but rather semi-structured or entirely
atural language collections, composed for example of emails, blog
osts, HTML files, posts in social media as Twitter and Facebook
r other text documents.

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: donatella.merlini@unifi.it (D. Merlini), martina.rossini@stud.unifi.it (M. Rossini).

Text Mining is an extremely broad field of study: some of its most
common forms are topic tracking, automatic summary of one or more
documents, Information Retrieval and text categorization; the latter,
in particular, refers to the classification of texts written in natural
language within thematic categories chosen from a predefined set. The
algorithms that have the task of assigning such class labels are generally
called classifiers. A recent survey on text categorization can be found
in (Dhar, Mukherjee, Dash, & Roy, 2020), where an overview of some
of the significant research works carried out in various languages to
address the text categorization task is presented.

Categorization is a type of supervised learning — that is, the cate-
gories are known a priori for each document in the training set. Using
an inductive process, we search for rules to distinguish each class from
the others and then employ these directives to assign a category to new
documents, which constitute our test set. Nowadays, this technique has
numerous practical applications, including SMS and email spam filter-
ing (Delany, Buckley, & Greene, 2012; Günal, S, Gülmezoğlu, & Gerek,
2006), sentiment analysis (Maks & Vossen, 2012; Singh, Singh, & Singh,
2017) and hate speech recognition (Mollas, Chrysopoulou, Karlos, &
Tsoumakas, 2020). Among the most used classification algorithms in
this context, we find Bayesian classifiers, decision trees, random forests,
support vector machines and lazy classifiers, such as the 𝑘-nearest
neighbors algorithm. There are also unsupervised learning techniques:
in clustering, for instance, there are no predefined categories and the
documents of the training set are not labeled in any way; we therefore
try to use only the content of the texts to identify relationships between
them. The groups obtained from these relationships are called clusters
and the biggest problem of this technique is to obtain significant
https://doi.org/10.1016/j.mlwa.2021.100033
Received 13 November 2020; Received in revised form 17 March 2021; Accepted 2
Available online xxxx
2666-8270/© 2021 The Author(s). Published by Elsevier Ltd. This is an open acces
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1 March 2021

s article under the CC BY-NC-ND license

https://doi.org/10.1016/j.mlwa.2021.100033
http://www.elsevier.com/locate/mlwa
http://www.elsevier.com/locate/mlwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mlwa.2021.100033&domain=pdf
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:donatella.merlini@unifi.it
mailto:martina.rossini@stud.unifi.it
https://doi.org/10.1016/j.mlwa.2021.100033
http://creativecommons.org/licenses/by-nc-nd/4.0/


D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033
ones without having additional information about the documents. In
low-dimensional spaces, two well-known families of techniques are
hierarchical and non-hierarchical clustering. The latter produce a data
set partition and the former a hierarchical structure of partitions.
Hierarchical clustering techniques are not feasible in high dimensional
spaces, due to their computational burden. A clustering method often
used for textual data is the well-known 𝑘-means algorithm (Balbi,
2010). Moreover, for many text classification problems, acquiring class
labels for the documents in the training set can be extremely expensive,
while gathering large quantities of unlabeled data is usually cheap.
When the appropriate quantity of labeled documents is not available,
the accuracy of a text classifier can be improved by augmenting its
small training set with a large pool of unlabeled texts, thus combining
supervised and unsupervised strategies (Nigam, Mccallum, & Thrun,
1998).

Since all these machine learning models are unable to process
unstructured information as it appears initially, a typical Text Mining
system contains some intermediate steps such as text preprocessing and
feature extraction in which the text is brought into a more structured
format. The techniques used in the preprocessing phase include, for
example, the removal of the most common words of a language (such as
articles and prepositions) and the reduction of terms to their basic form.
The most common way to extract features from raw text data is the
Bag of Words (BoW) encoding: documents are transformed into vectors
in the high dimensional space spanned by words, which corresponds
to the vector space model (Salton, Wong, & Yang, 1975). When a term
occurs in the document, its value in the vector is non-zero. This latter
quantity can be seen as a weight representing the importance of the
term, i.e. how much the term contributes to explain the content of
the document. A recent research explaining how to prepare a set of
documents for quantitative analyses and compare the different ap-
proaches widely used to extract information automatically can be found
in (Misuraca & Spano, 2020). The preprocessing and feature extraction
steps will be better explored in Sections 2.1 and 2.2, respectively. Due
to the high number of features that the BoW model usually generates,
there is another phase which is extremely common in Text Mining tasks
and usually precedes the actual model’s application — that is, feature
selection. It can be defined as the process of selecting a subset of the
original features based on their importance (Shah & Patel, 2016) and
it will be discussed in more detail in Section 2.3. The importance of
text representation factors such as stop words removal, word stemming
and weighting is illustrated in (Debole & Sebastiani, 2004; Song, Liu,
& Yang, 2005; Uysal & Gunal, 2014). A complete overview of the
proposed framework for the text categorization process can be found
in Fig. 1.

Given the great possibilities offered by textual categorization and,
more generally, by the discipline of Text Mining, over the years nu-
merous tools and software packages that implement the most common
algorithms in these fields and facilitate their application on new data
have been developed; among these we find toolkits offering a visual
experience like Knime, Orange, RapidMiner and WEKA but also
a vast collection of specialized libraries for many different program-
ming languages like the Phyton package Scikit-Learn or the
R packages Caret and RTextTools. In particular, WEKA (Waikato
Environment for Knowledge Analysis), available at https://www.cs.
waikato.ac.nz/ml/weka/, is an advanced collection of machine learning
algorithms and preprocessing techniques that has been designed to
test different existing methodologies; it provides, among other features,
several methods for transforming and preprocessing the input data and
for making an attribute selection, as well as for classification, clustering
and regression tasks and for a statistical evaluation of the resulting
learning schemes. WEKA is a very user-friendly tool and it can also be
easily interfaced with some of the most commonly used languages for
machine learning tasks, such as Java, Phyton and R.

For what concerns textual data, WEKA provides some filters that
allow to carry out the pre-computation phases and subsequently to ap-

ply the classification and clustering techniques in a quick and flexible,

2

Fig. 1. Proposed framework for text categorization.

although not trivial, way. Unfortunately, the existing documentation on
the subject is not very rich and finding one’s way among the informa-
tion available in the literature is not easy (see, however, the book (Wit-
ten, Frank, & Hall, 2011), the paper (Hall et al., 2009), the documen-
tation at https://waikato.github.io/weka-wiki/documentation/ and the
online course https://www.futurelearn.com/courses/more-data-mining
-with-weka). A comparison of some classification algorithms for Arabic
text categorization is illustrated in (Hmeidi et al., 2014), by using both
WEKA and RapidMiner; a similar comparison, performed by WEKA
on a benchmark dataset for text categorization, can be found in (Dan,
Lihua, & Zhaoxin, 2013); a content-based citation analysis based on text
categorization by WEKA is presented in (Taskin & Al, 2018).

WEKA offers several algorithms of both supervised and unsupervised
types that can be applied to document datasets after the preprocessing
phase. Clear descriptions of these algorithms ca be found in (Leskovec,
Rajaraman, & Ullman, 2020; Tan, Steinbach, & Kumar, 2006; Witten
et al., 2011); a general discussion of some of the most popular classi-
fication techniques and the corresponding WEKA implementations can
be found in Section 4.

The goal of this paper is to illustrate the steps required to perform
a text categorization analysis, using WEKA as the only tool; our starting
point is the work described in the thesis (Rossini, 2020). We believe
that, in addition to being a great analysis tool, WEKA is very useful in
an educational context, because it allows students to become familiar
with the most important machine learning algorithms and to deepen
their theoretical aspects. The application of this gui tool is useful both
in research and teaching and, in fact, it is used in many universities.

In Section 5, a first case study is presented concerning the prob-
lem of language identification, a relatively simple task but capable
of providing important information for the construction of metadata
relating to documents in international collections. As a second study,
a simple classification task is illustrated in Section 6. The datasets
are accessible at https://github.com/mwritescode/text-categorization-
with-WEKA. The two studies allows us to describe the not trivial
activities necessary to perform a text categorization analysis entirely
with WEKA. In both cases, we used in particular the version 3.8.4 of
the software.

2. Basic methodology for text categorization

In this section we describe the basic methodology for the text

categorization process as depicted in Fig. 1.

https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/
https://waikato.github.io/weka-wiki/documentation/
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://www.futurelearn.com/courses/more-data-mining-with-weka
https://github.com/mwritescode/text-categorization-with-WEKA
https://github.com/mwritescode/text-categorization-with-WEKA
https://github.com/mwritescode/text-categorization-with-WEKA


D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033

c

2

t
a
a
r
t
u
s
t
a
n
a
2

L
a
t
s
&
t
f
d
F
p
w
d
t
m
s
a
b
a
f

2

(
a
t
d
b
d
p

B

2.1. Preprocessing techniques

The preprocessing methods are the first step in a Text Mining
process and aim to transform the unstructured information of the text
files into a structured and ordered form, which can then be interpreted
by the machine learning algorithms (Song et al., 2005; Uysal & Gunal,
2014). Some of these techniques can also reduce the eventual noise
present in a collection and the space necessary for storing it; it is in fact
estimated that about 20%–30% of the total words in a document are
stopwords, that is, terms that can be eliminated as they are repetitive
and have no semantic value. In this section we simply summarize the
most common practices used in this area, but a complete discussion
can be found starting from (Gupta & Lehal, 2009; Kannan & Gurusamy,
2014; Manning, Raghavan, & Schütze, 2008).

2.1.1. Tokenization
Tokenization is the process of breaking text into words, phrases,

symbols or other significant elements, called tokens. These terms can
be single items (1-gram) or sets of them (n-gram); the items can be
phonemes, syllables, letters, words or even sentences. Formally, a token
is defined as a sequence of characters grouped together as they are con-
sidered a semantic unit useful for processing. The biggest problem when
applying this technique is deciding which are the correct tokens to use;
for example, one can think that it is enough to separate the words in
correspondence of spaces and tabs and eliminate the punctuation marks
but this, in reality, is not enough. Separating terms at whitespace also
divides characters that should be considered a single token (i.e., city
names like Los Angeles). Another problem is due to characters that,
depending on the context, may or may not be token delimiters: for
example, the period used as the end of a sentence is to be considered
a delimiter but the same cannot be said for the period used to separate
the part integer from the decimal in numbers. Finally, it must also be
taken into account that the tokenization problem is language-specific.
Considering the English language, for example, we can see that the
hyphen is used for several purposes, including: to divide vowels into
words, to join surnames and to indicate grouping of words. It is easy to
understand that the first case should be treated as a single token and
the last as separate tokens; in the second case, however, it is less clear
how to behave. Similarly, consider the problem of apostrophes, used in
the English language both for contractions and to indicate possession:
it is clear that, if we simply chose all non-alphanumeric characters as
delimiters, good results would not be obtained. Other languages pose
different problems. The difficulties described here are just some of those
that must be faced during the tokenization process, thus, it is often
chosen to develop ad hoc tools based on the problem to be solved.

WEKA makes available a tokenizer that allows to choose among
various tokenization techniques, based on words or n-grams. We will
see this in Section 3.

2.1.2. Stemming and lemmatization
Stemming is a preprocessing technique that deals with reducing a

word to its basic form, called stem. In this context it is not important
that the chosen stem is a real word, it is enough that the morphological
variants of the same term – which in most cases have similar semantic
interpretations – are all mapped to the same stem. In classification
problems, this procedure allows to reduce the number of distinct terms
in the text and to increase the frequency of some of them, something
that can improve the performance of the entire system. However,
attention must be paid to two very common types of errors: over-
stemming and under-stemming. There is a case of over-stemming when
two words with different roots are mapped to the same stem; in this
case we have a false positive. Instead, there is a case of under-stemming
when two words that should be reduced to the same root are mapped
to different stems; this error is also called a false negative. Stemming
algorithms can be classified into three categories: truncation methods,
statistical methods and mixed methods, as illustrated in (Jivani, 2011).
3

Lemmatization is a preprocessing technique similar to stemming;
the goal is to reduce the morphological variant of a word to its lemma.
The fundamental difference between the two methods lies in the fact
that, in order to obtain the lemma of a term, it is reduced to its
basic form after having analyzed its context and part-of-speech in the
sentence in which it appears; instead, to get the stem of a word,
some syntactic rules must be applied. As we have already seen, with
stemming it is not necessary that the found base form be a real word.
With lemmatization, however, what you get is the linguistically correct
root of a term. Generally this technique is difficult to implement as it
requires a vocabulary to refer to and a morphological analysis of the
words. Furthermore, it is much more difficult to create a lemmatizer
for a new language than a stemmer, as it requires a very thorough
understanding of the language structure.

The WEKA StringToWordVector filter gives the possibility to
hoose among various stemmer algorithms.

.1.3. Stopwords removal
The term stopwords refers to words that occur very often in the

ext but which do not contribute in any way to defining the context
nd content of the document; they are commonly articles, prepositions
nd pronouns. Generally we choose to remove these terms, not only to
educe the space required for storing the tokens, but also to improve
he performance of the system, as they are traditionally considered
seless for most classification tasks. The classic technique for removing
topwords involves relying on a pre-filled list, containing all those
erms not considered semantically relevant for a given language. This
pproach for stopwords identification is sometimes called static. A
umber of stopword lists adopted as standard in many research works
re available for many languages (Kaur & Buttar, 2018; Ladani & Desai,
020).

As discussed in (Debole & Sebastiani, 2004; Kaur & Buttar, 2018;
am & Ho, 1998; Misuraca & Spano, 2020), there are also several
pproaches to create a list of stopwords based on the weights assigned
o the words. This can be seen as a dynamic approach, where the
topwords are identified on the go and not fixed apriorly (Ladani

Desai, 2020) and the words, or features, are selected in terms of
heir weights. Various term weighting techniques – among which term
requency and inverse document frequency feature prominently – will be
iscussed in Section 2.2 when dealing with feature extraction methods.
or now, suffice to say that taking advantage of these measures, it is
ossible to choose as stopwords to eliminate, for example, all those
ords with a very high term frequency and/or with a low inverse
ocument frequency. In the first case, in fact, we are dealing with terms
hat appear too often within the same document, probably providing
inimal useful information about its content; in the second case, in-

tead, the words appear in most of the texts of the dataset and therefore
re not useful for categorization. Finally, case-folding can be useful,
ringing all characters in the collection to lowercase. Note that these
pproaches to stopwords removal can also be seen as a very primitive
orm of feature selection (see Section 2.3 for more information).

.2. Feature extraction

As already observed in the Introduction, the vector space model
Salton et al., 1975) is commonly used to represent a document 𝑑𝑖 as
vector (𝑤𝑖1, 𝑤𝑖2,… , 𝑤𝑖𝑛) in a 𝑛-dimensional vector space spanned by

he terms belonging to the vocabulary. When a term 𝑗 occurs in the
ocument, its value 𝑤𝑖𝑗 in the vector is non-zero and this quantity can
e seen as a weight representing the importance of the term in the
ocument 𝑑𝑖. Several ways of computing these term-weights have been
roposed in the literature, for example binary weights, raw frequency
weights (𝑡𝑓 ), normalized frequency weights, inverse document frequency
(𝑖𝑑𝑓 ) and term frequency-inverse document frequency weights (𝑡𝑓 − 𝑖𝑑𝑓 ).

inary weights just consider the presence or the absence of a term 𝑗 in



D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033

I
a
o
l
o
o
b
t

𝑤

a
f

n
f
t
p
M
t
i

a document 𝑑𝑖 by assigning to 𝑤𝑖𝑗 a value of 1 or 0, respectively. How-
ever, this binary representation is not efficient in some applications,
and in these cases more sophisticated weighting schemes are needed.
Since terms that frequently appear in the single documents usually have
a good discrimination capacity, a measure of the term occurrence in
each text is often considered. Raw frequency weights are calculated as
the number of occurrences of a term in a document and correspond to
the absolute frequency 𝑡𝑓𝑖𝑗 , providing a way to estimate how well this
term describes the content of the text under consideration. Normalized
frequency weights incorporate 1∕max𝑙=1⋯𝑛 𝑤𝑖𝑙 as normalization factor
of the raw frequencies, thus dividing by the highest number of oc-
currences observed in the document 𝑑𝑖. However, if terms with high
frequency are not concentrated in a set of few documents but occur
in the whole collection, then their predictive power lessens. Thus, also
a measure of the presence of each term in the whole collection must
be used. The inverse document frequency 𝑖𝑑𝑓 , indicates the inverse of
the frequency of a certain term in all the documents of the dataset.
It is an important indicator as it is possible to assume that a term
which appears in all, or in many, documents to be classified is not
particularly useful for distinguishing the texts of a category from those
of another. If 𝑁 is the total number of documents in the collection and
𝑛𝑗 the proportion of documents in which the term 𝑗 appears, 𝑖𝑑𝑓𝑗 can
be obtained as

𝑖𝑑𝑓𝑗 = log 𝑁
𝑛𝑗

.

n 𝑡𝑓 − 𝑖𝑑𝑓 schemes, the raw frequencies or the normalized frequencies
re multiplied by 𝑖𝑑𝑓 . When the collections are composed of documents
f very different lengths, the longer ones usually are associated with
arger term sets and, thus, are favored in the classification. Therefore,
ften the 𝑡𝑓−𝑖𝑑𝑓 weights are normalized by the Euclidean vector length
f the document (Salton & Buckley, 1987), to avoid biases introduced
y unequal document lengths, where the length is represented as the
otal number of tokens used in a document:

𝑖𝑗 =
𝑡𝑓𝑖𝑗 log

𝑁
𝑛𝑗

√

∑𝑛
𝑙=1

(

𝑡𝑓𝑖𝑙 log
𝑁
𝑛𝑙

)2
.

Among other variants, the logarithmic 𝑡𝑓 , computed as log(1 + 𝑡𝑓 ), is
another standard weight used in literature (Debole & Sebastiani, 2004).

As we will describe in Section 3, in WEKA there is the String-
ToWordVector filter to transform a set of documents into a set of
numeric vectors, with a stopwordsHandler facility that allow us
to choose among various stopwords lists or to specify a new one.
There is also the possibility to set the minimum term frequency with
the parameter minTermFreq, by using raw 𝑡𝑓 , logarithmic 𝑡𝑓 and
𝑡𝑓 − 𝑖𝑑𝑓 weights, eventually normalized via the parameter normal-
izeDocLength.

Finally, note that the transformation of documents into vectors with
the BoW approach does not consider the meaning, context or order in
which the terms appear, but only if they are present in the document
under analysis or not. Therefore, it is easy to understand that the model
considers two documents with similar representation vectors as similar
also in content, even if this is not always correct. However, several
practical experiments have shown that more sophisticated approaches,
which consider meaning and word order, can lead to worse perfor-
mance. A review of syntactic similarity measures can be found in (Gali,
Mariescu-Istodor, Hostettler, & Fränti, 2019), while semantic similarity
measures are discussed in (Corley & Mihalcea, 2005).

2.3. Feature selection

The feature space of a text categorization problem usually has
got a very high dimensionality and that is not always solved just by
applying stopwords removal. The feature selection process lets us select
a subset of our original feature set, eliminating the attributes that are
4

considered to have limited predictive power. There are many different
approaches to this task: wrapper methods, for instance, perform a
search over all the possible subsets of the original feature set, evalu-
ating the performance of a classifier over each one (Forman, 2003).
However, they proved to be impractical for large scale problems and
thus, are not widely used in text classification, where filter methods
are favored: indeed, they are independent from the classifier and have a
lower computational cost (Uysal & Gunal, 2014). Filter methods simply
assign a score to each term in the initial feature space, according
to a particular feature selection metric, and then select the 𝑘 best
attributes according to it. Filters that are commonly applied prior to
using the feature selection metric include elimination of rare words and
overly common words, as already discussed in Section 2.2; moreover,
the common practice of stemming or lemmatization, merging various
word forms such as plurals and verb conjugations into one distinct
term, also reduces the number of features to be considered. Some
commonly used metrics for score computation are document frequency,
that measures in how many documents a word appears, informa-
tion gain, F-measure and the common statistical test chi-squared. A
complete analysis of the various measures and of their performances
can be found in (Forman, 2003; Yiming & Pedersen, 1997). Feature
selection include the extraction of new features which combine lower
level features, that is words, into higher-level orthogonal dimensions.
Feature extraction based on principal component analysis is discussed
for example in (Lhazmir, El Moudden, & Kobbane, 2017; Uğuz, 2011),
where orthogonal dimensions in the vector space of documents are
found.

In WEKA, the Select attributes panel of the Explorer inter-
face allows us to perform some of the previous tasks.

3. Preprocessing in WEKA

The acronym WEKA stands for Waikato Environment for Knowledge
Analysis and indicates a software developed in Java by the University of
Waikato in New Zealand and released under the GNU General Pub-
lic license. This software is made up of a collection of algorithms
for machine learning and tools for pre-processing and transforming
data, including methods for discretization and sampling. A general
description of the application can be found in (Witten et al., 2011).

When starting the software, the GUI chooser is displayed (Fig. 2),
window that allows the user to select one of the five WEKA interfaces

or use - Explorer, Knowledge Flow, Experimenter, Work-
bench and Simple CLI; through this window it is also possible to
access various other tools, such as the Package Manager and the
visualization toolkits.

Since WEKA has constantly evolved over time, with the addition of
ew algorithms and features, it soon became necessary to remove some
eatures from the main package so as not to unnecessarily complicate
he initial experience; these features were then included in additional
ackages that can be installed and removed through the Package
anager. In addition to the official packages, reviewed by the WEKA

eam, there are also unofficial packages, that the user can choose to
nstall by clicking on File/URL in the unofficial panel and then

entering the address in the corresponding dialog box: one of these,
for example, is graphviz-treevisualize, the package for the
visualization of decision trees which was used to produce Fig. 3.

The main interface is the Explorer, which allows you to import
data in various formats, visualize and pre-process it and finally analyze
the data using classification, clustering and association rules mining
algorithms. Together with the Experimenter, this is the interface
that has been mainly used for this work.

The Explorer interface consists of six different panels, which can
be accessed from the bar at the top left; each of them corresponds to
a different Data Mining task supported by WEKA. In particular, these

panels have the following tasks:



D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033
Fig. 2. WEKA: GUI Chooser.
Fig. 3. Decision trees generated by J48 for the language identification problem.
o
d

• Preprocess: allows you to choose the datasets, view their
attributes and modify them in various ways;

• Classify: allows you to apply machine learning schemes and
evaluate their performance;

• Cluster: used to identify significant groups (clusters) in a
dataset;

• Associate: allows you to find association rules for the data in
the collection and evaluate them;

• Select attributes: allows you to select the most relevant
features of the dataset;

• Visualize: allows you to view various two-dimensional graphs
relating to the dataset in question and to interact with them.
 p

5

Along the top of the Preprocess interface there are buttons for
pening files, databases or urls. As for the first option, WEKA’s native
ata type is ARFF, but other formats are also supported, including CSV,
JSON and XRFF; as we will show below, there is also an option to
acquire the contents of a folder of .txt files: each document becomes
an instance of the dataset, with a string type attribute that collects its
contents and with a class label equal to the name of the subfolder it
belongs to. Table 1 illustrates a sample ARFF file containing a dataset
consisting of a set of texts to which a class has been associated.

WEKA offers some tools particularly useful for text classification
urposes:



D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033

r
N
a
f
b
P
t
a
d
w
T
m
m
w
t
c
o
@
o
o
d
b
t
b
i
a
o
l
i
e
l
c
t
i

a
T
a
c
a
a

u
c
a
s
b

t
m
s
w
m
o
f
a
e
o
c
g

u
p
c
p
r
w
t
t
t
t
r
r
t
o
t
l
c

Table 1
A sample ARFF file with text data.
@relation text_data
@attribute text string
@attribute class {class1,class2}
@data
‘text1’, class1
‘text2’, class1
‘text3’, class2
‘text4’, class2

• the TextDirectoryLoader, to load each .txt file of a folder
as an instance;

• the StringToWordVector filter, to transform each text of the
dataset into a feature vector.

Assuming that each document in the training set is a separate .txt
file and that these files are all located in the text_classification
folder, in order for this to be imported into WEKA via the TextDi-
ectoryLoader its structure must reflect the one shown in Fig. 4.
ote that each subfolder groups the documents belonging to a category
nd that, in fact, the name of this folder will become the class label
or them in WEKA. Once the files that make up the collection have
een properly organized, they can be imported into WEKA: from the
reprocess panel of the Explorer, select Open file, look for

he text_classification folder and click Open. At this point
n error message is displayed as WEKA is not able to independently
etermine the selected file type; by clicking OK you access another
indow: from here, using the Choose button you can choose the
extDirectoryLoader as the data acquisition mode (Fig. 5). This
ode allows you to specify the encoding with which to read the files;
oreover, through the outputFilename option, you can choose
hether to save the file names in an additional attribute or to ignore

hem. Once this procedure has been completed, the dataset has been
orrectly imported into WEKA; it consists of only two attributes: text,
f type string, in which the contents of each file are stored and
@class@@, which is the class attribute and has as values the names
f the subfolders. Note that WEKA inserts the @ symbol in the name
f this attribute to prevent ambiguous situations: an English language
ocument could in fact contain the word class inside it, which would
ecome a feature of the dataset during a word-vector conversion, with
he same name as the class attribute. Manual conversion to ARFF files is
etter suited for small files, while using the TextDirectoryLoader
s better for long and numerous texts. We point out that WEKA does not
dmit newline in string-type attributes in an ARFF file, so in the case
f large files these must first be processed in order to remove all new-
ines, the TextDirectoryLoader takes care of them automatically
nstead. Note that manual conversion to ARFF file can be problematic
ven for short sentences because you have to be careful of characters
ike quotes, which WEKA uses to delimit strings. Finally, a dataset with
ases to predict needs to have the same structure that the dataset used
o learn the model. The difference is that the value of the class attribute
s ? for all instances.

It is now necessary to convert the data from natural language to
more structured format; this is possible by applying the String-
oWordVector filter, which implements many of the preprocessing
lgorithms described in Section 2.1. Once this filter has been selected,
licking on the box next to the Choose button opens a screen that
llows you to configure its parameters; the possible options are many
nd are described in detail in Table 2.

Once these parameters have been set correctly, the filter is applied
sing the Apply button in the Preprocess panel; the new dataset
an be inspected using the Edit button and we can also delete some
ttributes using the Remove button, if we believe they are not very
ignificant, or apply other filters. The dataset thus obtained is ready to
e processed by a machine learning algorithm.
6

Fig. 4. Example of a text directory structure.

A more accurate investigation of the behavior of the various learn-
ing schemes typically requires running different classifiers on different
collections and with different initial parameters; although it is possible
to carry out this experiment using Expolorer, this is complex and
repetitive. To cope with this problem, the Experimenter allows the
user to set up large-scale experiments, run them and then analyze the
results, automating the experimental process. This interface consists of
three panels, Setup, Run and Analyse, the first of which is shown
in Fig. 6.

To start a new experiment, use the New key at the top right; the
other two buttons on the same line are used to save a configuration
and to open a previously stored one. The box immediately below them
is then used to specify the path and the format of the file in which
to save the results, so that they can eventually become the subject of
new Data Mining activities. In addition, the Experiment Type box
allows you to specify whether to use cross-validation or hold-out as the
validation and to define the type of task to be performed (classification
or regression); Iteration Control instead allows you to choose the
number of repetitions of the experiment. Using the boxes immediately
below it is then possible to specify the datasets on which to perform
the experiment and the algorithms to be used for it. We note explicitly
that it is not possible to read a directory as it is in Explorer with
he TextDirectoryLoader. To modify the parameters of one of the
ethods already entered, select it in the list and then click on Edit
elected. Finally, the Experimenter also has an advanced mode,
hich can be accessed by selecting Advanced from the drop-down
enu located near the top of the page; this option increases the number

f parameters that can be changed to control the experiment, allowing
or example to generate learning curves, to experiment using clustering
lgorithms and to divide the work across multiple machines. To start an
xperiment it is then necessary to go to the Run panel, which contains
nly the Start and Stop keys and a log box, where any error is
ommunicated; once the execution is complete, to analyze the results,
o to the Analyse tab (Fig. 7).

To view the data produced by the experiment you just performed,
se the Experiment button at the top right; otherwise it is also
ossible to load a file that contains the results of a previous test. By then
licking on Perform test in the Actions box, you can compare the
erformance of the first classifier in the list with those of the others; the
esults of this comparison are shown as a table in the space labeled
ith Test output. Note that by default the test is performed on

he error rate, but it is possible to change this metric by clicking on
he Comparison field: the values obtained by each method for
he chosen measure are then displayed in the corresponding boxes of
he table; the symbol possibly located next to them indicates if the
esult is statistically better (v) or worse (*) than that obtained by the
eference classifier. You can also use the Basic Test menu to change
he reference method for the analysis; in addition to the other classifiers
n which the experiment was carried out, this menu also allows you
o choose Summary and Ranking: the first option compares all the
earning schemes with each other and returns a matrix whose cells
ontain the number of datasets on which a model was better than the



D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033
Fig. 5. WEKA: TextDirectoryLoader’s setup.
Table 2
StringToWordVector’s parameters.

Parameter Purpose

IDFTransform and TFTransform allow you to decide whether the term frequency should be transformed into 𝑓𝑖𝑗 log(
𝑁
𝑛𝑖
) and log(1 + 𝑓𝑖𝑗 ),

respectively, where 𝑓𝑖𝑗 is the frequency of word 𝑖 in document 𝑗, 𝑁 is the number of documents and 𝑛𝑖 the
number of documents with word 𝑖 (default values False)

attributeIndices allows you to specify the range of attributes to which to apply the filter; first and last are also valid
values to indicate the first and last attribute of the dataset without having to specify the index

attributeNamePrefix allows you to choose a common prefix to add to the name of each feature; this is useful to avoid any
instance of naming ambiguity

dictionaryFileToSaveTo allows you to specify a file in which to save the vocabulary produced

doNotOperateOnPerClassBasis when set to True, the maximum number of words saved and the minimum term frequency are not
calculated based on the class but on the entire dataset (default value False)

lowerCaseTokens allows you to convert all words into lowercase characters before processing the text (default value False)

minTermFreq allows you to specify the minimum value allowed for the term frequency (default value 1)

normalizeDocLenght allows you to decide whether to normalize the frequencies of the words or not (default value No
normalization)

outputWordCounts when set to True, the algorithm uses the number of times the words appear in the text instead of limiting
itself to the Boolean value to indicate their presence, 1, or absence, 0 (default value False)

stemmer allows you to choose a stemming algorithm to use

stopwordsHandler allows you to choose how to manage stopwords; if nothing is specified, they are not removed

tokenizer allows you to choose the algorithm for tokenization

wordsToKeep allows you to decide how many words to keep, per class if the option doNotOperateOnPerClassBasis
is set to false, otherwise in total.
others, while the second sorts the algorithms according to the number
of collections on which they performed better and then prints this list
on the screen. Finally, note that the Analyse panel output can be
saved to a file using the Save output button.

4. Supervised and unsupervised classification

Text categorization can be formally defined as the task in which a
Boolean value must be associated with the pair (𝑑𝑗 , 𝑐𝑖) ∈ 𝐷 × 𝐶, where
𝐷 is a collection of documents and 𝐶 is a predefined set of categories.
If 𝑑𝑗 is considered to belong to category 𝑐𝑖, the pair (𝑑𝑗 , 𝑐𝑖) must be
assigned the value 𝑡𝑟𝑢𝑒, otherwise the value 𝑓𝑎𝑙𝑠𝑒. More precisely,
what needs to be done is to approximate the unknown target function
𝜙 ∶ 𝐷 × 𝐶 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} with the function 𝜙̄ ∶ 𝐷 × 𝐶 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒},
called a classifier. This approximation must be obtained by exploiting
only the information contained in the documents of the collection,
without having access to any type of metadata. As already mentioned,
categorization is a type of supervised learning, where the categories are
7

known a priori for each document in the training set ; an inductive
process generate rules that allow the various classes to be distinguished
and then these rules are used to assign the category to which the new
documents, which constitute the test set, belong.

The different strategies through which test and training sets can be
selected from a single text collection are collectively known as valida-
tion schemes. The simplest of these uses the entire textual collection both
to train the model and to test it; obviously, it records overly optimistic
performances. A more sensible scheme is called hold-out evaluation and
involves dividing the initial dataset into two parts, with the training
set usually being about twice the size of the test set. Although this
method is simple to apply, it has some important disadvantages: the
performance evaluation is in fact carried out only on a small part of
the data and it may happen that the instances contained in the test
set are too simple or too difficult to classify compared to those of
the rest of the collection, thus distorting the results obtained. Also,
depending on how the split is done, some instances that are critical
to build the model may not be part of the training set. To try to



D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033
Fig. 6. WEKA: Experimenter in Setup panel.
Fig. 7. WEKA: Experimenter in the Analyse panel.
solve these problems, a more systematic approach has been developed,
known as 𝑘-fold cross-validation, which consists in dividing the data
into 𝑘 equal parts and classifying each of them using a model trained
on the remaining 𝑘 − 1 (Aggarwal, 2014).

Given a training set, supervised classification procedures build the
rules for assigning a new document (object) to a category; on the other
hand, unsupervised classification algorithms do not need any background
knowledge and search data to be partitioned in groups (clusters).
Such techniques do not use predefined categories and the documents
of the training set are not labeled in any way: only the content of
8

the documents is used to identify relationships between them. The
groups obtained from these relations are called clusters and the biggest
problem of this technique is to obtain significant ones without having
additional information about the objects.

In the following paragraphs we explore several well known su-
pervised and unsupervised algorithms which are often applied to text
classification problems, highlighting their particular implementation in
WEKA. Clear descriptions of the algorithms described below and many
other, including classification methods based on neural networks, can
be found in (Leskovec et al., 2020; Tan et al., 2006; Witten et al., 2011).



D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033
Less conventional methods based on fuzzy logic and deep learning are
discussed in (Dhar et al., 2020). Note that, in addition to the algorithms
we will present, WEKA offers several other classification and clustering
models. Finally, we illustrate some of the most common metrics to
evaluate the performance of the algorithms.

4.1. Bayesian methods

Among the supervised classification methods we find Bayesian meth-
ods, probabilistic models based on the application of the Bayes theorem
which are known, in particular, for their simplicity and efficiency. The
Bayes Theorem provides a simple formula for calculating the posterior
probability which, in the case of categorization, can be interpreted as
the probability that document 𝑑𝑗 belongs to class 𝑐𝑖 given the vector
of its features 𝑥. In the field of text categorization, reference is often
made to naive Bayesian classifiers, methods that assume a conditional
independence between the characteristics (features) of the dataset.
However, this hypothesis does not reflect reality; frequently, in fact,
the occurrences of two or more terms in a document are interrelated
— just think, for example, of the words machine and learning in texts
dealing with machine learning. Despite this, the naive hypothesis al-
lows you to estimate the parameters for each feature independently
of the rest, greatly simplifying the construction of the model without
excessively penalizing its performance. In particular, the Bernoulli naive
Bayes model assumes that all features are binary; therefore, the 𝑘th
element of the representation vector 𝑥 = (𝑥1, 𝑥2,…) can only assume
two values, 1 if the term 𝑥𝑘 appears in the document and 0 otherwise.
The multinomial naive Bayes model instead considers the frequency of
words in documents. Therefore, within the representation vector 𝑥 of a
generic document, the weight 𝑥𝑘 represents the number of times that
this term appears in the text; more precisely, often this is measured
using the term frequency. These models have been successfully used
in a number of practical experiments throughout the years, including
classification of app review topics (Maalej & Nabil, 2015) and spam de-
tection (Zhang & Li, 2008); WEKA has several Bayesian classifiers, in our
experiments we used in particular the NaiveBayesMultinomial
classifier illustrated in (Mccallum & Nigam, 1998).

4.2. Decision tree models

Another important classification technique is that based on the
construction of a decision tree, that is, a simple direct tree with root, in
which each internal node corresponds to a partitioning rule and each
leaf corresponds to the predicted class. In order for an instance to be
classified, it must cross the tree starting from its root: once it reaches an
internal node, the data is directed to one of the child nodes following
the corresponding splitting rule and the path continues like this until a
leaf is reached. Being as easy to interpret as they are to use, models of
this type are among the most intuitive tools for text classification. Once
all the possible splitting rules have been determined, it is necessary to
define a metric to evaluate their goodness. Since the ideal test is the
one that creates pure partitions, with instances that all belong to the
same class, the rule that minimizes the value of impurity after the split
is considered to be the best. Among the best known impurity functions
we find entropy and information gain. The process of building a decision
tree continues as long as the impurity function continues to report
some improvement after the split. This greedy strategy, however, risks
causing overfitting, a phenomenon in which increasing the complexity of
the model causes a decrease in the error rate on the training set and, at
the same time, an increase in the same value on the test set. To reduce
the size of the tree obtained and, at the same time, limit overfitting,
a technique called pruning is therefore used, which involves replacing
some sub-trees with leaf nodes or with simpler sub-trees, maintaining
an acceptable accuracy in the classification. Decision trees are very
common classification algorithms, which are also extremely easy to
interpret; they have thus been used in many different domain, including
9

text classification (Maalej & Nabil, 2015; Pawar & Gawande, 2012).
Among the best known algorithms for the construction of decision trees
we find the C4.5 algorithm which uses the normalized information
gain, the gain ratio, as a partitioning criterion, ends the construction of
the tree when the number of instances to divide falls below a certain
threshold and uses pruning techniques. In Sections 5 and 6, we used
J48, which is the WEKA implementation of C4.5 algorithm (Quinlan,
1993).

4.3. Instance based learning

Most classification methods first build a global model from the data
in the training set and then use it to categorize specific instances of the
test set; this two-step modality is also known as eager learning as the
models are built before it is known which examples they will have to
classify. In instance-based learning, however, given the entire training
set and known the instance to be classified, a local model is built based
on the most relevant examples for it. This mode is also known as lazy
learning, as most of the processing is not done in advance, but only
in the classification phase, when the instance of the test set becomes
known. The best known instance-based learning algorithm is the 𝑘-
nearest neighbors, which uses the 𝑘 closest neighbors to the instance 𝑖
to be classified to build a local model for it; in the simplest case, this
model trivially consists in choosing as a class for 𝑖 the one assumed
by the majority of its neighbors. However, this approach may not be
appropriate for unbalanced datasets; in these cases, in fact, the rare
class may not be sufficiently present among the closest neighbors of 𝑖,
even if 𝑖 is, indeed, part of it. It is therefore advisable to assign weights
to the instances to reflect the class distribution in the collection before
moving on to determine the most frequent category. One of the most
important traits of this classifier is that it can be used for almost any
type of data, as long as it is possible to define a distance function
for its objects. Despite this advantage, the 𝑘-nearest neighbors is not
without problems; in particular, computational efficiency represents a
great criticality, as obtaining the closest 𝑘 neighbors can have a linear
cost in the size of the dataset. To cope with this problem it may be
useful to build indexes and other data structures capable of facilitating
the process of searching for the neighbors. Typically, the distance
function adopted by the 𝑘-nearest neighbors for numeric attributes is
the Euclidean norm.

The 𝑘-nearest neighbors classification is a widely used techniques
for text classification (Bijalwan, Kumar, Kumari, & Pascual, 2014;
Pawar & Gawande, 2012; Trstenjak, Mikac, & Donko, 2014). In WEKA,
the implementation of the algorithm as illustrated in (Aha, Kibler, &
Albert, 1991) is called IBk.

4.4. Support vector machines

Support vector machines or SVMs were introduced by (Vapnik &
Chervonenkis, 1964) but, despite the solid theoretical background, they
were initially underestimated by the scientific community, as they
were deemed unsuitable for practical applications. This conviction was
however disproved when the SVMs demonstrated excellent results on
reference datasets in fields such as computer vision, text categorization
and digit recognition. Nowadays, these models are able to obtain
results comparable to those of Neural Networks and other statistical
methods on the most common benchmark problems. A crucial notion
for understanding the way these machines operate is that of a linearly
separable collection. Suppose you have a two-dimensional dataset with
only two possible class labels; it is said to be linearly separable if there
is a line that clearly divides the two classes from each other. Note that
this concept can be easily generalized to three-dimensional collections,
in which a dividing plane is sought instead of a straight line, but also
to 𝑛-dimensional datasets, in which it is necessary to find a hyperplane
that separates the two classes. The purpose of SVMs is to orient this
hyperplane so that it is as far as possible from the closest examples of



D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033

a
c
a
d
t
a
u
v
T
i
p
i

a
s
o
m
t
l
l
w

each class. The use of SVMs for learning text classifiers can be found
for example in (Ji et al., 2012; Joachims, 1998; Luo, 2021); WEKA
implements the SMO (Sequential Minimal Optimization) algorithm for
training a support vector classifier; a more precise description of the
algorithm can be found in (Platt, 1998).

4.5. Random forest

There are also techniques known as ensemble methods which aggre-
gate the predictions of different classifiers with the aim of improving
the accuracy of the classification. An ensemble method constructs
a set of base classifiers from training data and perform classification
by taking a vote on the predictions made by each base classifier. In
particular, the class can be obtained by taking a majority vote on
the individual predictions or by weighting each prediction with the
accuracy of the base classifier. Among these methods, Random forest
is a class of ensemble methods designed specifically for decision trees:
multiple trees are generated from a set of vectors sampled indepen-
dently and with the same distribution from the original training data
set and then combined to obtain the final classification. Examples of the
method’s application in text classification can be found in (Gaikwad
& Halkarnikar, 2014; Usman, Ayub, Shafique, & Malik, 2016); WEKA
makes available the implementation RandomForest of the algorithm
described in (Breiman, 2001).

4.6. Clustering

As already observed, clustering is an unsupervised classification
technique. In particular, a partitional clustering is simply a division of
the data into non-overlapping subsets such that each data object is in
exactly one subset. If we permit clusters to have subclusters, then we
obtain a hierarchical clustering, which is a set of nested clusters that are
organized as a tree.

In Data Mining and Text Mining, a simple partitional algorithm
which is often considered the parent of other proposed models is 𝑘-
means (MacQueen, 1967), which partitions a set of 𝑛 points lying in
𝑑-dimensional space into 𝑘 non-overlapping groups. First, 𝑘 initial

entroids are chosen. Each object is then assigned to the closest centroid
nd each collection of objects assigned to a centroid is a cluster;
istances can be calculated with different measures depending on the
ype of objects. The centroids are then updated based on the objects
ssigned to the cluster. The assignment and update steps are repeated
ntil centroids do not change. The 𝑘-means algorithm has a number of
ariations, for example, different ways of choosing the initial centroids.
he success of the algorithm is due to its simplicity and speed, although

t often converges to a local solution. The WEKA implementation Sim-
leKMeans allows also to use the variation of the algorithm described

n (Arthur & Vassilvitskii, 2007).
The most common approach for hierarchical clustering is agglomer-

tive, i.e., we start with the objects as individual clusters and, at each
tep, merge the closest pair of clusters. This requires defining a notion
f cluster proximity, which is the key operation. Among the various
ethods proposed, the single link and complete link strategies correspond

o define cluster proximity as the proximity between the closest and the
ongest two points that are in different clusters, respectively; the average
ink strategy, instead, defines cluster proximity to be the average pair-
ise proximities of all pairs of points from different clusters. In WEKA

the implementation HierarchicalClusterer admits various link
strategies, including the ones described. Applications of clustering al-
gorithms for text classification can be found in Aly and Kelleny (2014),
Fung, Wang, and Ester (2005), Singh, Tiwari, and Garg (2011).
10
Table 3
Predicted versus true classes.

Predicted

Pos Neg

Ac
tu

al Pos TP FN
Neg FP TN

4.7. Evaluation metrics for classification

In the following case studies we used different metrics to evaluate
the models’ performance: in particular, accuracy, precision, recall, F-
measure, AUC and Kappa statistic. Accuracy can be simply defined as
the number of correctly classified instances over all the instances in
the test set, while Kappa statistic is a measure that can compensate for
classification that may be due to chance or random effects. Both scale
really well from binary to multi-class classification problems.

Given a binary classification task, we can call the first class label
the positive class and the other the negative class. Then the predictions
of a classifier can be divided into True Positives, False Positives, True
Negatives and False Negatives, according to Table 3.

Precision can then be defined as the rate of the true positives
amongst all the elements classified as positive, while recall can be
thought of as the rate of the true positives over all the elements that
actually are of positive class. F-measure is simply the harmonic mean
of precision and recall.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Note that an immediate extension of these metrics to the multi-class
problem is given by simply computing the score individually for each
class label and then returning a weighted average over all classes. In the
Experimenter such a behavior is obtained through
Weighted_avg_IR_precision, Weighted_avg_IR_recall
and Weighted_avg_IR_F_measure. Lastly, AUC stands for Area
under the ROC Curve, where a ROC curve is an evaluation metric
particularly suited for those classifiers that return probability estima-
tions for each class instead of a single value. The curve is obtained
by choosing different probability thresholds and plotting the True
Positive rate against the False Positive rate in a two dimensional
graph. The area between this curve and the 𝑥 axis is the AUC. This
score can be computed for each class label separately and then aver-
aged to get an overall value; in WEKA’s Experimenter a weighted
average of this metric over all the classes can be computed using
Weighted_avg_area_under_ROC. A more detailed explanation of
each of the mentioned metrics can be found in (Aggarwal, 2014).

5. A first case study: language identification

Language identification is a simple but popular application of text
classification techniques, which can help generate metadata for doc-
uments in international collections. Moreover, many Natural Language
Processing systems need to know the language of the documents they
work with: using a model trained on English data to classify French
documents can lead to a dramatic decrease in performance. Thus,
language identification is often used as a preliminary step in this kind
of applications.

At the moment there are two state of the art approaches which aim
to solve this problem using machine learning techniques. The first one
looks for the most common words of each language in the training
set and compares them to the most common words in the document
it is trying to classify. The second approach does something similar but
using common 𝑛-grams instead of common words, where an 𝑛-gram is
a portion of a bigger string that is exactly 𝑛 characters long (Cavnar
& Trenkle, 1994; Witten, 2004). Usually white spaces are added at the
beginning and at the end of each word in order to distinguish if an
𝑛-gram occurs at the extremities of the word or in the middle of it.



D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033

s

Table 4
Some of the instances in our dataset, with the respective classes.

Recipe Class

Preheat oven to 350 degrees F (175 degrees C). Grease and flour 2 - 8
inch round pans. In a small bowl, whisk together flour, baking soda and
salt; set aside. In a large bowl . . .

EN

Lavate i mandarini e grattugiate la buccia. Spremete i mandarini fino ad
ottenere 100 ml di succo. Sbucciate i rimanenti frutti e tagliateli a
fettine. In un’ampia ciotola montate . . .

IT

Étape 1 : Préchauffer le four Th.6 (180 ◦C). Étape 2 : Dans un saladier,
mettre : le sucre, les oeufs, le beurre ramolli, la levure, le lait, le rhum,
la farine, remuer. Étape 3 . . .

FR

Eier trennen, Eiweiße mit 1 Prise Salz steif schlagen. Den Boden einer
Springform mit Backpapier auslegen. Nüsse im Food Processor oder
Mixer fein mahlen. Datteln . . .

DE

Previous experiments (Cavnar & Trenkle, 1994; Grefenstette, 1995)
howed that the common words approach is faster than the 𝑛-grams

one. This is probably due to the fact that, in any given sentence, there
are usually a lot less words than there are 𝑛-grams. However, the 𝑛-
grams method proved to be extremely resilient to errors, thus being
the most suitable approach to work with data that comes from noisy
sources, like tweets or optical character recognition (OCR). Moreover,
this approach also performs a kind of stemming, since 𝑛-grams coming
from similar words (i.e., ‘advance’, ‘advancing’, ‘advanced’) are natu-
rally related. Note that this form of stemming is language independent,
something that is not true for the traditional techniques.

The dataset

The dataset we used for this case study was constructed starting
from cooking blogs in various languages, specifically English, French,
Spanish, German, Italian and Portuguese. Using the Python library
recipe-scrapers we extracted between 25 and 40 cake recipes
for each language, for a total of 186 recipes, and saved each one in
a text file. Thus, our collection initially was not in ARFF format, but
could still be imported in WEKA using the TextDirectoryLoader
described above. Note that each recipe is a short document, with less
than 800 words and a mean number of terms of 173. Table 4 shows an
extract from this first collection.

Note that the aim of this paper is not that of building a state
of the art model for the language identification problem, but rather
that of showing how such a problem can be solved using WEKA. Still,
we would like our resulting model to be at least realistic, which
is why we used another dataset as a test set to verify that it can
actually recognize the languages in various kinds of texts and not only
in cake recipes. This second collection was built starting from the
LeipzigCorporaCollection (Goldhahn, Eckart, & Quasthoff, 2012); more
precisely, for each language, we downloaded the 2014/2015 newscrawl
and then extracted the first 50 sentences. This produced a toy dataset
of small random phrases with a mean number of words of about 25.
Both datasets are available at https://github.com/mwritescode/text-
categorization-with-WEKA.

The framework for classification

We choose to solve this language identification problem using two
separate approaches, which differ one from the other mainly in the
construction of the feature vectors. Indeed, in the first approach, ex-
plored in Section 5.1, we extracted bi- and tri-grams from our document
collection, computed their frequency of occurrence and used them as
the terms for our vectorized representation. In the second approach
instead we extracted a set of words from our collection, computed
their frequency and only used the more frequent ones as the elements

of our feature vectors. The only other preprocessing step we applied

11
in this experiment is stopwords removal: for the common words ap-
proach, in fact, we explored two different scenarios, with or without the
stopwords. We choose not to use a stemmer, as WEKA only provides
monolingual implementations of this tool and those would obviously
not perform well on our dataset. Moreover, as we stated before, the
𝑛-grams approach natively performs some kind of simple stemming.
We also choose not to employ any form of normalization for the
document lengths as, in this case, the collection is composed of texts of
similar length. A clear explanation of the steps we followed during the
experiments can be found in Fig. 8.

The data, now in a structured form, can be used to train differ-
ent classification models; in particular we used J48, NaiveBayes-
Multinomial, RandomForest, IBk with 𝑘 = 1, 3 and 5 and SMO.
For this last algorithm we choose a linear kernel as it has been proved
that many text classification problems are linearly separable (Song
et al., 2005); every other model, for the sake of simplicity, has been
used with the default parameters provided by WEKA. Also note that we
used the Experimenter interface to set up 10 rounds of 10 fold cross-
validation for each of these algorithms, in order to get a good idea of
how they would perform on new data. The different metrics we used to
evaluate the models’ performance are those explained in Section 4.7 –
that is, accuracy, precision, recall, F-measure, AUC and Kappa statistic.
Using them, we were able to select the model with the best performance
on our initial dataset, which we then tested also on the Leipzig set.

The framework for clustering

As we observed in the Introduction and in Section 4, in the context
of Text Mining, in addition to classification techniques, unsupervised
learning methods such as clustering can also be used: in this case there
are not predefined categories and the documents are not labeled with
a class attribute. The goal is to automatically identify groups of docu-
ments with common characteristics. For this clustering experiment we
choose not to use any form of stemming and to repeat the experiment
two times, both keeping and removing the stopwords. Moreover, a
vectorized representation of the input text has been built starting from
the single words extracted from the documents in our collection. Unlike
the solution adopted for the classification tasks, in this case we used
simple Boolean values for the weights and normalized the documents
to unit length. The reason for this will be clear in a second. WEKA
offers several partitioning, hierarchical and density-based clustering
algorithms and most of these methods require the computation of the
distance between pairs of records in the dataset for the composition
of the groups. Depending on the type of records, it may be convenient
to use one distance measurement rather than another: the Euclidean
distance, for example, is convenient when there are instances with
non-binary and non-asymmetric numeric attributes while the Jaccard
distance is well suited for asymmetric binary attributes where 0-0
matches are not of interest. When we have word vectors associated
with documents, often containing relatively few non-zero attributes, it
is convenient to use the cosine distance that, like Jaccard, does not
depend on the number of 0-0 matches but is able to handle non binary
vectors (see, e.g., Tan et al., 2006). However, in WEKA, among the
parameters of the various clustering algorithms, the cosine distance
is not in the list. The normalization step is needed because using
the cosine distance is equivalent to using the Euclidean distance after
normalizing the instances so that they all have the same unit length. A
clear explanation of how the experiment was structured can be found
in Fig. 9.

The clustering schemes we choose are 𝑘-means and agglomerative
hierarchical clustering, two simple and easy to understand and interpret
methods. Note that, since we maintained information regarding the real
class labels of our documents, we choose to perform a classes to clusters
evaluation to estimate our models’ accuracy. This process computes
the majority class for each cluster 𝑖 found by our models using the
supervised labels, then it assigns that class to all the documents in 𝑖

and computes the accuracy.

https://corpora.uni-leipzig.de/en
https://github.com/mwritescode/text-categorization-with-WEKA
https://github.com/mwritescode/text-categorization-with-WEKA
https://github.com/mwritescode/text-categorization-with-WEKA


D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033

a
m
o
C
c
a
T

w
r
N
t
t
a

‘
w
t
t
i
i

Fig. 8. Language identification experiment framework.
Fig. 9. Language identification clustering experiment.
g
i

d
i
t
p
a
o
s
a
o
d
f
t
c
a
t

c
f
l
t

5.1. The n-gram approach

To implement this approach in WEKA we first need to extract the
single 𝑛-grams from the various documents. This can be done using the
tool CharacterNGramTokenizer, which is accessible through the
settings of the filter StringToWordVector. In particular, since we
are only interested in getting bi- and tri-grams we set the tokenizer’s
parameters accordingly (NGramMaxSize = 3 and NGramMinSize =
2). Regarding the other configuration options for StringToWord-
Vector, to avoid repetitions of the same 𝑛-gram with mixed character
cases, we set lowerCaseTokens to True. We also choose to keep

maximum of 5000 sub-strings, as to limit the number of 𝑛-grams
emorized by the model and to not overwhelm the machine we run

ur tests on (wordsToKeep = 5000 and doNotOperateOnPer-
lassBasis = True). Lastly, since we are looking for the most
ommon 𝑛-grams, we choose to measure their logarithmic frequency
nd not only their presence or absence in a document; thus we set both
FTransform and outputWordCounts to True.

Once StringToWordVector’s parameters are set to satisfaction,
e can run the filter and peruse the results. Using the above configu-

ation, we get a new dataset with 186 instances and 5302 attributes.
ote that we actually ended up with more 𝑛-grams than we intended

o (recall that we set wordsToKeep to 5000). That is due to the fact
hat WEKA does not break ties: thus, if there are some sub-strings which
re as common as the least common 𝑛-gram, those are kept too.

As shown in Fig. 10, however, our new dataset contains some
strange’ tokens (numbers, punctuation signs, parenthesis), which we
ant to remove as we do not think they are useful for the classification

ask. WEKA’s unsupervised filter RemoveByName does exactly this: it
akes a regular expression which is used to match attribute names and
t also lets us specify (through the parameter invertSelection)
f the matched attributes need to be removed or kept. Executing this
 p

12
filter with the regex and invertS-
election = True we can remove all attributes whose name contains
characters other than white spaces, apostrophes, hyphens or letters.
Please note that we choose to keep hyphenation marks since they are
commonly used in some languages (English included) for compound
words; similarly the apostrophes were kept because they are used to
indicate the omission of letters or numbers.

The final dataset (shown in Fig. 11) contains 4323 attributes; in the
picture, each row represents a document, each column represents an 𝑛-
ram and each cell represents the term frequency of a certain sub-string
n a given document.

Please note that this dataset can only really be used to explore the
ata we are working with and get a more complete idea of the available
nformation. Indeed, if we apply the StringToWordVector filter in
he Preprocess panel as we have just done, the features are com-
uted starting from every document in the collection. However when,
t classification time, we choose either 10 fold cross-validation or hold-
ut as our validation schema, some of the documents are used as a test
et. Thus, the model’s features are chosen starting from both training
nd test set: this is a kind of bias and may result in an excessively
ptimistic evaluation. Moreover, if we want to use a completely new
ataset as a test set, we cannot apply the StringToWordVector
ilter independently to train and test set. Indeed, this would result in
wo datasets with different attributes and WEKA would not start the
lassification process, instead showing an error. Thus, what we need is
way to build the features starting from the training set and then reuse

hem to vectorize the test documents.
To solve both the previous problems, we can apply the filter at

lassification time. In WEKA, this can be done using a particular classi-
ier called FilteredClassifier. This algorithm is part of the meta
earners natively implemented in WEKA and takes as parameters both
he filter to apply during the categorization and the algorithm used to

erform it. Note that we can only pass a single filter to this learner, but



D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033

i

Fig. 10. Dataset attributes after applying StringToWordVector.
Fig. 11. Final dataset with each 𝑛-gram frequency.
we need to apply both StringToWordVector and RemoveByName,
n this order. The solution for this problem comes again from WEKA

itself, which provides a particular filter called MultiFilter, that
simply takes a list of filters and applies them sequentially.

Table 5 shows the results achieved by each of the tested algo-
rithms, according to some of the most common evaluation metrics.
Immediately we notice that all our models get excellent recall and
precision values, with NaiveBayesMultinomial (NBM in the re-
sults’ table), Random Forest (in the table RF) and SMO that get the
13
maximum possible value for both metrics. Such results imply that the
tested classifiers do not produce many false positive nor many false
negatives: thus, they are extremely capable of separating the instances
of each class label from the others. As we would expect from such
good values in recall and precision, all our models generally perform
much better than a random classifier, as testified by the high kappa
statistic and AUC. The Experimenter’s significance test results with
respect to NBM and with a significance level of 0.05 are shown in
Table 5 as specific symbols next the scores: a (*) means that the



D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033

R
c
n
t
S
R
a
t
t
F
r

5

f
W
t
a
t
a
t

F
p
m
T
t
t
o
T
T
F
t
n
a
u
a
r
r
r
o
s

e
t

t
F

r
t
d
d
a
f
i
i
f
i
¬
t
b
t
p
J
t
s
t
t
a
t
t
O
f
w
a
t
A
o
a
(

Table 5
Results of the 𝑛-grams experiment.

Classifiers Evaluation metrics

% Correct Precision Recall F-measure K Statistic AUC

NBM 100.00 1.00 1.00 1.00 1.00 1.00
J48 95.44 (*) 0.97 (*) 0.95 (*) 0.95 (*) 0.94 (*) 0.97 (*)
IB1 96.24 (*) 0.97 (*) 0.96 (*) 0.96 (*) 0.95 (*) 0.98 (*)
IB3 95.97 (*) 0.97 (*) 0.96 (*) 0.96 (*) 0.95 (*) 0.99
IB5 96.62 (*) 0.98 (*) 0.97 (*) 0.97 (*) 0.96 (*) 0.99
SMO 100.00 1.00 1.00 1.00 1.00 1.00
RF 100.00 1.00 1.00 1.00 1.00 1.00

score is significantly worse than that of Naive Bayes on this problem,
while a (v) means that the score is significantly better. If there is no
symbol, then there is no statistical difference between the current score
and that of Naive Bayes. Note that the NaiveBayesMultinomial
algorithm was chosen as the test base because of its simplicity and
extremely good results on our problem. As we can see, NBM, SMO and
F get significantly better scores than every other classifier for each
lassification metric apart form the area under the ROC curve, where k-
earest neighbors with 𝑘 = 3 and 𝑘 = 5 both get 0.99, which is still less
han the 1.00 scored by the three best classifiers, but not statistically so.
ince Naive Bayes is faster, simpler and performs as well as the SMO and
F, it is probably the classifier we would choose if we were designing
real system. Lastly, to verify that said NBM model can really identify

he language of a generic document, we test it on the Leipzig set using
he Explorer, and get a 99.667% of correctly classified instances, an
-measure score of 0.997 and very high values for both precision and
ecall (about 0.997).

.2. The common words approach

Again, the first thing we need to do is to extract the single words
rom our document collection. In WEKA, this can be done using the
ordTokenizer, a tool which is accessible through the settings of

he filter StringToWordVector. More precisely, this tokenizer takes
string of characters called delimiters according to which it splits the

exts into words; in our case, since we want to remove punctuation
nd quotation marks but also parenthesis and numbers, the string is
he following:

As concerning the other parameters of the StringToWordVector
filter, we decided to limit the number of words per language to 2700
(wordsToKeep = 2700 and doNotOperateOnPerClassBasis =
alse). Note that this value was not randomly chosen: indeed, a
revious work showed that each language has between 900 and 2700
ost common words (Grefenstette, 1995). We also set lowercase-
okens = True as not to have mixed character cases. Since we want

o extract the most common words, we also choose to compute each
erm’s overall frequency in a document instead of only its presence
r absence, thus setting TFTransform and outputWordCounts to
rue. Note that without the logarithmic transformation applied by the
FTransform option, we would have gotten decidedly worse results.
inally, as already anticipated, we choose to repeat this experiment
wo times, first keeping and then removing the stopwords. Please
ote that since the most common words in a language are typically
rticles, prepositions and pronouns – that is, the same terms which are
sually considered stopwords – we expect the second model to have
much worse performance than the first one. Moreover, there is a

eal possibility that this second model will only be able to correctly
ecognize the language in documents which contain cake recipes, thus
esulting almost useless. Therefore, the model is not meant to be good
r realistic, but just to illustrate how WEKA can be used to execute the

topwords removal preprocessing step, even on a multilingual dataset. n

14
Table 6
Results of the common words experiment.

Classifiers Evaluation metrics

% Correct Precision Recall F-measure K Statistic AUC

NBM 100.00 1.00 1.00 1.00 1.00 1.00
J48 93.92 (*) 0.96 (*) 0.94 (*) 0.94 (*) 0.93 (*) 0.96 (*)
IB1 55.63 (*) 0.90 (*) 0.56 (*) 0.67 (*) 0.48 (*) 0.74 (*)
IB3 49.86 (*) 0.91 (*) 0.50 (*) 0.66 (*) 0.41 (*) 0.82 (*)
IB5 50.65 (*) 0.89 (*) 0.51 (*) 0.60 (*) 0.42 (*) 0.86 (*)
SMO 99.89 1.00 1.00 1.00 1.00 1.00
RF 100.00 1.00 1.00 1.00 1.00 1.00

5.2.1. Classification without stopwords removal
After applying StringToWordVector with the parameters we

just specified, we get a dataset composed of 186 instances and 4785
attributes. Notice that the number of attributes is relatively small:
we set the maximum number of terms per language to 2700, so we
expected something along the lines of 16200 (6 times 2700) attributes;
but we got only about a fourth of that. The reason for this can be found
in how we built the training set: we used at most 40 texts per language
and they all talk about cakes, thus they use a lot of the same words.
That makes the overall vocabulary size for our dataset of only about
5000 terms.

Examining this new collection using the Edit option in the Ex-
plorer’s Preprocess panel, we get the table shown in Fig. 12. Here,
very row represents a document and every column represents a word;
he cells contain the frequency of each term in each document.

As we already saw for the 𝑛-grams approach, using this dataset for
he classification could cause a bias; once again we need to use WEKA’s
ilteredClassifier.

Table 6 shows the results obtained in the Experimenter with
espect to the same evaluation metrics described in Section 4.7. Note
hat the lazy learners (IB1, IB3 and IB5) seem to have a lot of
ifficulties with this task, while NaiveBayesMultinomial, Ran-
omForest and SMO remain the more effective classifiers. In fact,
ll the k-nearest neighbors models get a low accuracy score (ranging
rom about 55% to 49.86%) and also a small recall value. Precision
s however always around 0.90. This implies that the three algorithms
n question produce many false negatives but only a small amount of
alse positives, therefore – when predicting the class label for a new
nstance 𝑖 of class 𝐶𝑖 – the models tend misclassify 𝑖 as being of class
𝐶𝑖; the opposite error is less frequent. Note that the F-measure, being
he harmonic mean between precision and recall, is heavily influenced
y the classifiers’ low recall score and is thus quite small itself. Finally,
he low kappa statistic that these algorithms achieve means that they
erform little better than a random classifier. With respect to IBk,
48 gets significantly better results; however, the manual inspection of

he computed scores and the ensuing analysis of the Experimenter’s
ignificance test tell us that its performance is still sensibly lower than
hat of the other three models. Finally, the results of WEKA’s statistical
est with significance level of 0.05 and NaiveBayesMultinomial
s the test base are shown in Table 6 as (*) and (v) symbols next to
he various scores. As we can see, the performances of SMO and RF on
his task are not statistically different from those of the Bayesian model.
ur algorithm of choice for the final model is NBM, as it is simpler and

aster than the other two, but still gets exceptionally good results. Since
e know that our initial collection only contains a very small part of
ll the words present in each language, it is very important to verify
hat our model can really identify the language of a generic document.
gain, this is done using the Explorer to test the Naive Bayes model
n the Leipzig set, resulting in a 96% of correctly classified instances
nd an F-measure score of 0.96, with high precision and high recall
both of about 0.96).

Consider for a moment a situation in which the previous test is

ot as successful. In such a case we might want to investigate the



D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033

r
A
b
h
y
m

5

c
t
e
s
f
s
F
o
o

t
s
o
i
e

Fig. 12. Final dataset with each word frequency.
f
T
t
i

possibility of getting better results on the Leipzig test using any of
the other classifiers. Of course, we could check such a thing from
the Explorer, manually executing each algorithm after having set
its parameters. But that would soon become tedious, especially if we
need to compare a large number of different algorithms with different
configuration settings. Moreover, the Explorer does not really let
us compare each model’s results, not with the same effectiveness of
the Experimenter. Unfortunately, setting up an external test set
is an option which is only available in said interface’s Advanced
mode, where we would need to choose the training set and then select
ExplicitTestsetResultProducer as the Result Generator.
In the generator’s configuration options we should then choose the
directory and the name of the test set. Finally, in the Generator
properties, we select Enabled and choose the classification algo-
ithms through SplitEvaluator. Note that the Experimenter in
dvanced mode is more complicated to setup; in this regard, it could
e useful to know that this interface preserves every parameter you
ave already set when you switch from Simple to Advanced; thus
ou could first set up the dataset(s) and the classifier(s) in Simple
ode, which is far easier to use.

.2.2. Classification with stopwords removal
For this second model, we first need to create a list of stopwords,

ontaining the most common words for each of the languages in our
raining set. We can download six different lists of stopwords (one for
ach language) from here https://sites.google.com/site/kevinbouge/
topwords-lists and then simply concatenate them together in a single
ile. To use this list of stopwords in WEKA we need to set the parameter
topwordsHandler of StringToWordVector to WordsFrom-
ile. Then we just set its stopwords parameter so that it points to
ur file. Note that, to work properly, this tool needs the file to have
ne word per line.

We can now apply the filter to our data, making sure to keep
he same configuration used in the paragraph above, a part from the
topwordsHandler. The new dataset we end up with is composed
f 186 instances and 4084 attributes and, as we can see in Fig. 13,
s very similar to the one obtained for the previous model, with the
xception of some words like a, afin and ainsi. Note that they are all
french prepositions or adverbs.

15
Table 7
Results of the common words experiment, once the stopwords were removed.

Classifiers Evaluation metrics

% Correct Precision Recall F-measure K Statistic AUC

NBM 100.00 1.00 1.00 1.00 1.00 1.00
J48 94.67 (*) 0.96 (*) 0.95 (*) 0.95 (*) 0.94 (*) 0.98 (*)
IB1 44.35 (*) NaN 0.44 (*) NaN 0.35 (*) 0.68 (*)
IB3 40.51 (*) NaN 0.41 (*) NaN 0.30 (*) 0.76 (*)
IB5 46.23 (*) NaN 0.46 (*) NaN 0.37 (*) 0.81 (*)
SMO 99.25 0.99 0.99 0.99 0.99 1.00
RF 100.00 1.00 1.00 1.00 1.00 1.00

As we know, this dataset can only be used to better understand
our data: to make sure our classification is not biased, the String-
ToWordVector filter needs to be applied directly during the catego-
rization using the meta learner FilteredClassifier. The results
of such and experiment are shown in Table 7.

The first thing we notice is that there are some 𝑁𝑎𝑁 values, which
are scores that the Experimenter could not compute. Recall that,
as we stated in Section 4.7, the precision is computed as the rate of
the true positives over everything that has been classified as positive
and that the results we show in the table are the weighted average
of this value computed for each class label. Thus, the 𝑁𝑎𝑁 precision
values obtained by the lazy learners (IB1, IB3, IB5) are probably
due to the fact that, for at least one class label 𝐶𝑖 both the true and
the false positive rate were zero. This made the precision impossible
to compute for label 𝐶𝑖 and, therefore, the Experimenter could not
return the weighted average. Seeing that the F-measure is computed
as the harmonic mean between precision and recall, this also explains
the 𝑁𝑎𝑁 values obtained by the IBk models for this score. Note that
our intuition can be confirmed by using the Explorer to run 10-
old cross-validation on each of the three models and looking at the
P and FP values that this interface’s output panel shows for each of
he class labels. Executing this check for IB1, for example, shows that
t cannot properly classify the Spanish recipes, getting 𝑇𝑃 = 0.0 and
𝐹𝑃 = 0.0 for this class. Regarding the other algorithms’ performance,
the results of WEKA’s statistical test with significance level of 0.05 with
respect to the Naive Bayes model as the test base are again shown in
the table as (*) or (v) next to the computed scores. As we can see, J48

https://sites.google.com/site/kevinbouge/stopwords-lists
https://sites.google.com/site/kevinbouge/stopwords-lists
https://sites.google.com/site/kevinbouge/stopwords-lists


D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033

=
a

o
f

o

Fig. 13. Final dataset with each word frequency.
gets significantly lower results than NBM for each of the six evaluation
metrics considered, while the results of SMO and RF do not show any
statistically relevant difference from them. Once again, amongst these
three models, our choice falls on the Naive Bayes algorithm, which is
less computationally expensive, simpler and still gets optimal results.
We would now like to be sure that it can get similar accuracy even
on data that does not relate to cake recipes. However, when we test
the model on the Leipzig set, we get only 36% correctly classified
instances and an F-measure of about 0.34 with low precision score
(0.52) and even lower recall value (0.36). That is to be expected,
since two documents which talk about completely different things will
likely not have many words in common, a part from articles, adverbs,
prepositions and pronouns, that are exactly the stopwords we removed.

5.2.3. Clustering
As we already explained, among the various distance metrics WEKA

offers for its clustering algorithms, the cosine similarity is not present.
However, this measure is particularly well suited for high dimen-
sional sparse data such as our document vectors and its behavior can
be obtained by using the Euclidean distance on word vectors that
have been normalized to unit length. This can be achieved by setting
the normalizeDocLength parameter to Normalize all data
in the StringToWordVector filter. For what concerns the other
parameters, we used the same already employed for the classifica-
tion (wordsToKeep = 2700, doNotOperateOnPerClassBasis
False, lowercaseTokens = True, outputWordCounts= True

nd as
tokenizer), except for the TFTransorm parameter which we preferred
to set to False, thus using raw 𝑡𝑓 weights. Moreover, in a first ex-
periment we used stopwordsHandler=Null and then, in a second
ne, stopwordsHandler=WordsFromFile, specifying the same
ile used in Section 5.2.2.

After this preprocessing phase, starting from the Cluster panel
f Explorer, we used the 𝑘-means clustering algorithm and various

types of hierarchical clustering, using Classes to clusters eval-
uation as cluster mode, in order to have the number of instances
incorrectly classified. For what concerns 𝑘-means, we set numClus-
ters = 6 and left the other default parameters after setting the
dontNormalize option relative to the Euclidean distance to True,
since we already made a vector normalization to unit length. As for
16
hierarchical clustering, we used various link type strategies, num-
Clusters = 6 and dontNormalize = True for the Eucledian
distance.

Without stopwords removal, the 𝑘-means algorithm was able to
correctly recognize the language of all documents, that is, the al-
gorithm clustered incorrectly 0% instances. The same happened for
hierarchical clustering by using different link strategies, such as single,
average and complete. With stopwords removal, 𝑘-means had worse
performance than before. Since the algorithm depends on the choice
of initial centroids, we tried different seed values for the random
generation of centroids and different initialization methods (seed and
InizializationMethod parameters) and finally obtained the best
result with 𝑘-means++ as initialization method, corresponding to a
number of incorrectly instances equal to 15%. With hierarchical clus-
tering and average link strategy, we obtained again a 0% of incorrectly
clustered instances; with single and complete strategies we obtained
an error percentage of 21% and 1%, respectively. For instance, Fig. 14
represents the dendogram which corresponds to the execution of the
algorithm with the average link strategy and with stopwords removal,
which gave an error of 0%; the figure clearly shows the 6 groups, each
corresponding to a different language.

We underline that to obtain the whole dendogram, the hierarchi-
cal clustering algorithm must also be run with numClusters = 1;
moreover, if we want the leaves of the tree to be labeled, for example
with the reference to the language of each document, an attribute of
type string containing the label must be added to the data set. To
this purpose, you can use the Copy filter to copy the class attribute
and then convert it to a string with the NominalToString filter.
Finally, note that these experiments were done by using Explorer
since Experimenter has little functionalities for clustering.

6. A second case study: recipe type classification

For this second case study we choose to keep dealing with recipe
instructions. Thus, we propose a simple classification task which aims
to recognize what kind of dish a certain recipe is about. Specifically,
we used the Python library recipe-scrapers to extract almost
50 recipes each for the following categories: cakes, salads, pasta and
noodles and stews. Note that, in this case, the recipes are all written in
English and they all have less than 500 words. Table 8 shows an extract
from our dataset, available at https://github.com/mwritescode/text-
categorization-with-WEKA.

https://github.com/mwritescode/text-categorization-with-WEKA
https://github.com/mwritescode/text-categorization-with-WEKA
https://github.com/mwritescode/text-categorization-with-WEKA


D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033

T
S

Fig. 14. The dendogram corresponding to average link strategy with stopwords removal.
s
a
t
u

t
S
l
p
c
t
o
b
p
S

c
=
c
c
p

a
s
p
w

able 8
ome of the instances in our second dataset, with the respective classes.
Recipe Class

Beat egg whites until they form stiff peaks, and then add cream of
tartar, vanilla extract, and almond extract. Sift together flour, sugar,
and salt. Repeat five times. Gently . . .

Cakes

Preheat the oven to 350 degrees F (175 degrees C). Lightly grease a
2-quart baking dish. In a large pot of salted water, lightly boil the
macaroni for about 5 min until half-cooked. Whisk the egg and
milk together in a large cup. Add . . .

Pasta and
Noodles

In a medium bowl, combine avocados, onion, bell pepper, tomato,
cilantro and lime juice. Gently toss until evenly coated. Season with
salt and pepper.

Salads

Bring a large pot of water to a boil; add potatoes and carrot.
Return mixture to a boil and add eggs; cook until potatoes are
tender, 20 to 30 min. Drain and slightly cool mixture. Chop
potatoes and carrot; peel and chop eggs. Mix . . .

Salads

Preheat oven to 350 degrees F (175 degrees C). Lightly grease and
flour one 9 × 13 inch cake pan. Beat vegetable oil and eggs until
foamy. Add the sugar, flour, ground cinnamon . . .

Cakes

Preheat oven to 250 degrees F (120 degrees C). Stir beef, potatoes,
tomato-vegetable juice cocktail, carrots, celery, onion, tapioca,
sugar, salt, and pepper together in a roasting pan; cover. Bake in
preheated oven until beef and potatoes are tender, about 5 h.

Stews

6.1. The framework

For this second experiment we choose to adopt a Bag of Words
approach and use Boolean weights for our feature vectors, as the
vocabulary size is really small. We also choose to remove the stopwords
and – since the texts in this collection are monolingual – to make use
of stemming as to reduce morphological variations of the same term to
a single base form. For some text categorization tasks, this can greatly
increase a classifier performance; in this case, however, we are focusing
on showing how this step can be executed in WEKA, rather than on
how much it will or will not improve the classification. Lastly, we
choose not to normalize the document lengths to one as all the texts
in our collection have similar sizes. A complete overview of how this
experiment was structured can be found in Fig. 15.

The models that we trained on the preprocessed dataset are exactly
those already described in Section 5 and, again, we evaluated them
using ten rounds of 10 fold cross-validation each.

6.2. Setup and experiment

Like always when we are dealing with textual data, we first need to

convert it in a more structured format. As we have already seen, WEKA

17
lets us extract features from raw text and apply all of the preprocessing
steps we illustrated in Section 2.1, using the filter StringToWord-
Vector. Thus, once again, the first thing we need to do is to find a
configuration for this filter which is appropriate for the task at hand.

We are going to use the WordTokenizer to create word vectors
tarting form the entire documents; since we aim at removing punctu-
tion marks, parenthesis, numbers and quotation marks, but we want
o keep hyphens and apostrophes, the string of delimiters we choose to
se is:

We would also like to remove articles, prepositions and pronouns,
which are hardly useful in any categorization task a part from language
identification. Note that WEKA has got an integrated stopword list
for the English language, which is called Rainbow. Regarding the
stemming procedure, WEKA supports both the Lovins and the Porter
stemmer, but we will concentrate on the second one, as it is the most
widely used. To employ it in our system we need to set stemmer
= SnwoballStemmer in the configuration options for String-
ToWordVector. Note that Snowball is the name given by Porter
himself to a framework, which he designed, for the implementation
of stemming algorithms in other languages. The SnowballStem-
mer class in WEKA only works if we first install the relative package
(called snowball-stemmers) using the Package manager. After
he installation is complete, if we access the configuration options of
nowballStemmer we now see a parameter that lets us specify which

anguage we need to stem: the complete list of the languages sup-
orted can be found here https://weka.sourceforge.io/doc.dev/weka/
ore/stemmers/SnowballStemmer.html. Note that there are two op-
ions for the English language, porter and english; experimenting
n our dataset we found out that using the second one results in
etter performances. Thus, to summarize, when we are choosing the
arameters for StringToWordVector we need to set stemmer =
nowballStemmer and then specify the option english.

As regarding the other parameters for StringToWordVector we
hoose to keep a maximum of 1000 words per class (wordsToKeep
1000 and doNotOperateOnPerClassBasis = False). We also

hoose to set lowercaseTokens = True as not to have any mixed
haracter cases and to set TFTransorm and OutputWordCount
arameters are set to False, thus using binary term weights.

If we try to apply the filter with this configuration we get only 851
ttributes, which is decidedly less than the 4000 we expected; as we
aw for the common words approach of the language identification
roblem, this is due to the small number of documents in the collection
e started from and to the very limited range of different words that

https://weka.sourceforge.io/doc.dev/weka/core/stemmers/SnowballStemmer.html
https://weka.sourceforge.io/doc.dev/weka/core/stemmers/SnowballStemmer.html
https://weka.sourceforge.io/doc.dev/weka/core/stemmers/SnowballStemmer.html


D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033

a
–
s
B
N
t
i
l

7

g
a
i
d
p
a

Fig. 15. Recipe type classification experiment framework.
w
t

Table 9
Results of the dishes classification experiment.

Classifiers Evaluation metrics

% Correct Precision Recall F-measure K Statistic AUC

NBM 95.28 0.96 0.95 0.95 0.94 1.00
J48 84.61 (*) 0.86 (*) 0.85 (*) 0.84 (*) 0.79 (*) 0.92 (*)
IB1 85.65 (*) 0.88 (*) 0.86 (*) 0.86 (*) 0.81 (*) 0.93 (*)
IB3 89.58 (*) 0.91 (*) 0.90 (*) 0.89 (*) 0.86 (*) 0.98 (*)
IB5 88.95 (*) 0.91 (*) 0.89 (*) 0.89 (*) 0.85 (*) 0.98 (*)
SMO 93.89 0.95 0.94 0.94 0.92 0.98 (*)
RF 92.47 0.94 0.92 0.92 0.90 0.99

are commonly used in recipe instructions. We now use the Experi-
menter together with WEKA’s FilteredClassifier to apply the
filter at run time, while training and evaluating five classifiers on our
training set. The results obtained by each algorithm according to the
six evaluation metrics described in Section 4.7 are shown in Table 9.
As we can see, all the models have a moderately high performance:
precision and recall values never drop below 0.85, meaning that not a
lot of classification errors are made — neither in terms of false positives
nor in terms of false negatives. At the same time, the high AUC scores
and a kappa statistic that only drops below 0.80 for the decision tree,
indicate a capacity of correctly classifying instances well above that of
a random classifier. As we have stated before, the Experimenter is
also able to output the results of a statistical significance test, for which
we can choose both the base algorithm and the significance level. We
choose NBM as the test base, seeing as it is a simple and computationally
efficient model that, despite the simplistic assumptions on which it is
based, often yields very good results in text classification tasks; we also
set the significance level to 0.05. The results of such a test are shown in
Table 9 by means of the symbols (*) and (v) next to the various scores.
As previously mentioned, (*) means that the score is significantly lower
than that of Naive Bayes, while (v) means that it is significantly better.
This statistical test lets us assert that both J48 and the lazy learners
yield significantly worse results with respect to Naive Bayes, while SMO
nd RF’s performances differ from those of NBM by an amount that is
in general – not statistically relevant. Note however that the AUC

core of SMO does appear to be significantly lower with respect to Naive
ayes’ AUC. Taking these considerations into account we can say that
BM, SMO and RF are the best models, amongst those that we have

ested, for our task. Note that the Naive Bayes multinomial algorithm
s extremely simple and fast to compute but gets results which are at
east as good as the other two models, if not better.

. Conclusions

In order to highlight the potential of WEKA to carry out a text cate-
orization task, in this work two case studies have been examined and
nalyzed from different points of view. The first case study is presented
n Section 5 and concerns the problem of language identification. The
ataset has been processed using different approaches. In Section 5.1, in
articular, 𝑛-grams are extracted from documents and neither stemmer

lgorithms nor a list of stopwords have been used. In Section 5.2, it

18
as decided to use an approach based on common words and to use
he word tokenization algorithm made available by WEKA. Also in this

case a stemmer was not used, since WEKA only provides monolingual
implementations of this preprocessing step, however the experiment
was conducted in two different ways, that is with and without stop-
words. In all cases, the vector of terms found in the preprocessing
phase was then analyzed with some of the most common supervised
classification algorithms made available by WEKA. The classification
models were evaluated with a 10 fold cross-validation technique and
also using a separate test set. Finally, in Section 5.2.3, with reference to
the approach with common words, unsupervised learning algorithms,
in particular partitional and hierarchical clustering, were also used; this
required a normalization of the instances so that they all had the same
unit length.

The second case study is presented in Section 6, and corresponds
to a simple classification task. In this case we used a tokenization
algorithm, a list of stopwords that WEKA makes available for the English
language and also a stemmer algorithm. The term vector analysis was
then carried out with classification methods.

With these examples, we have described various scenarios for the
different preprocessing steps summarized in Section 2 and have shown
how it is possible to build supervised learning models for text catego-
rization, using WEKA as the only tool.

CRediT authorship contribution statement

Donatella Merlini: Supervision, Conceptualization, Methodology,
Writing - review & editing. Martina Rossini: Conceptualization,
Methodology, Software, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors of this paper wish to thank the anonymous referees for
their useful comments and suggestions.

References

Aggarwal, C. C. (2014). Data classification: Algorithms and applications. Chapman and
Hall/CRC.

Aha, D., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms. Machine
Learning, 6, 37–66. http://dx.doi.org/10.1007/BF00153759.

Aly, W., & Kelleny, H. A. (2014). Adaptation of cuckoo search for documents clustering.
International Journal of Computer Applications, 86(1), 4–10.

Arthur, D., & Vassilvitskii, S. (2007). k-means++: the advantages of carefull seeding.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms
(pp. 1027–1035).

Balbi, S. (2010). Beyond the curse of multidimensionality: high dimensional clustering
in text mining. Italian Journal of Applied Statistics, 22, 53–63.

Bijalwan, V., Kumar, V., Kumari, P., & Pascual, J. (2014). KNN based machine learning
approach for text and document mining. International Journal of Database Theory
and Application, 7(1), 61–70.

http://refhub.elsevier.com/S2666-8270(21)00014-1/sb1
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb1
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb1
http://dx.doi.org/10.1007/BF00153759
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb3
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb3
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb3
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb5
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb5
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb5
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb6
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb6
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb6
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb6
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb6


D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033

C

C

C

D

D

D

D

F

F

G

G

G

G

G

G

H

H

J

J

J

K

K

K

K

L

L

L

L

L

M

M

M

M

M

N

N

P

P

Q

R

S

S

S

S

S

S

T

T

T

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32, https://link.
springer.com/article/10.1023/A:1010933404324.

avnar, W. B., & Trenkle, J. M. (1994). N-gram-based text categorization. In Proceedings
of 3rd annual symposium on document analysis and information retrieval.

hurch, K. W. (2016). Word2vec. Natural Language Engineering, 23(1), 155–162. http:
//dx.doi.org/10.1017/S1351324916000334.

orley, C., & Mihalcea, R. (2005). Measuring the semantic similarity of texts. In
Proceedings of the ACL workshop on empirical modeling of semantic equivalence and
entailment (pp. 13–18).

an, L., Lihua, L., & Zhaoxin, Z. (2013). Research of text categorization on WEKA. In
Proceedings of the 2013 Third International Conference on Intelligent System Design and
Engineering Applications (pp. 1129–1131). http://dx.doi.org/10.1109/ISDEA.2012.
266.

ebole, F., & Sebastiani, F. (2004). Supervised term weighting for automated text
categorization. In Studies in fuzziness and soft computing: Vol. 138, (pp. 81–97).
Berlin, Heidelberg: Springer, http://dx.doi.org/10.1007/978-3-540-45219-5_7.

elany, S. J., Buckley, M., & Greene, D. (2012). SMS spam filtering: Methods and data.
Expert Systems with Applications, 39(10), 9899–9908. http://dx.doi.org/10.1016/j.
eswa.2012.02.053.

har, A., Mukherjee, H., Dash, N. S., & Roy, K. (2020). Text categorization: past and
present. Artificial Intelligence Review, http://dx.doi.org/10.1007/s10462-020-09919-
1.

orman, G. (2003). An extensive empirical study of feature selection metrics for text
classification. Journal of Machine Learning Research, 3, 1289–1305.

ung, B., Wang, M., & Ester, K. (2005). Hierarchical document clustering. In J. Wang
(Ed.), Encyclopedia of data warehousing and mining (pp. 555–559). London: IGI
Global, http://dx.doi.org/10.4018/9781591405573.ch105.

aikwad, B. U., & Halkarnikar, P. P. (2014). Random forest technique for E-
mail classification. International Journal of Scientific & Engineering Research, 5(3),
145–152.

ali, N., Mariescu-Istodor, R., Hostettler, D., & Fränti, P. (2019). Framework for
syntactic string similarity measures. Expert Systems with Applications, 129, 169–185.
http://dx.doi.org/10.1016/j.eswa.2019.03.048.

oldhahn, D., Eckart, T., & Quasthoff, U. (2012). Building large monolingual dictionar-
ies at the Leipzig Corpora Collection: from 100 to 200 languages. In Proceedings of
the 8th international conference on language resources and evaluation (pp. 759–765).
Istanbul, Turkey.

refenstette, G. (1995). Comparing two language identification schemes. In Proceedings
of the 3rd international conference on statistical analysis of textual data (pp. 263–268).
Rome, Italy.

ünal, S., S, S. E., Gülmezoğlu, M. B., & Gerek, O. N. (2006). On feature extraction for
spam E-mail detection. In B. Gunsel, A. K. Jain, A. M. Tekalp, & B. Sankur (Eds.),
Multimedia content representation, classification and security, vol. 4105 (pp. 635–642).
Berlin, Heidelberg: Springer, http://dx.doi.org/10.1007/11848035_84.

upta, V., & Lehal, G. S. (2009). A survey of text mining techniques and applications.
Journal of Emerging Technologies in Web Intelligence, 1(1), 60–76.

all, M., E., F., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The
WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11,
10–18. http://dx.doi.org/10.1145/1656274.1656278.

meidi, I., Al-Ayyoub, M., Abdulla, N. A., Almodawar, A. A., Abooraig, R., &
Mahyoub, N. A. (2014). Automatic Arabic text categorization: A comprehensive
comparative study. Journal of Information Science, 41(1), http://dx.doi.org/10.1177/
0165551514558172.

i, L., Cheng, X., Kang, L., Li, D., Li, D., & Wang, Y. (2012). A SVM-based text
classification system for knowledge organization method of crop cultivation.
IFIP Advances in Information and Communication Technology, 368(AICT PART 1),
318–324. http://dx.doi.org/10.1007/978-3-642-27281-3_38.

ivani, A. G. (2011). A comparative study of stemming algorithms. International Journal
of Computer Technology and Application, 2(6), 1930–1938.

oachims, T. (1998). Text categorization with support vector machines: learning with
many relevant features. In Proceedings of the European conference on machine learning
(pp. 137–142). http://dx.doi.org/10.1007/BFb0026683.

annan, S., & Gurusamy, V. (2014). Preprocessing techniques for text mining.
International Journal of Computer Science & Communication Networks, 5(1), 7–16.

ao, A., & Poteet, S. R. (2007). Overview. In A. Kao, & S. R. Poteet (Eds.), Natural
language processing and text mining. London: Springer, http://dx.doi.org/10.1007/
978-1-84628-754-1_1.

aur, J., & Buttar, P. K. (2018). A systematic review on stopword removal algorithms.
International Journal on Future Revolution in Computer Science & Communication
Engineering, 4(4), 207–210.

onkol, M., & Konopík, M. (2014). Named entity recognition for highly inflectional
languages: Effects of various lemmatization and stemming approaches. In P. Sojka,
A. Horák, I. Kopec̆ek, & K. Pala (Eds.), Text, speech and dialogue. TSD 2014, vol.
8655 (pp. 267–274). Springer, http://dx.doi.org/10.1007/978-3-319-10816-2_33.

adani, D. J., & Desai, P. N. (2020). Stopword identification and removal techniques
on TC and IR applications: A survey. In 6th international conference on advanced
computing and communication systems (pp. 466–472). http://dx.doi.org/10.1109/
ICACCS48705.2020.9074166.
19
am, W., & Ho, C. (1998). Using a generalized instance set for automatic text
categorization. In Proceedings of the 21st annual international ACM SIGIR conference
on research and development in information retrieval (pp. 18–89). http://dx.doi.org/
10.1145/290941.290961.

eskovec, J., Rajaraman, A., & Ullman, J. D. (2020). Mining of massive datasets (3rd
ed.). Cambridge University Press.

hazmir, S., El Moudden, I., & Kobbane, A. (2017). Feature extraction based on
principal component analysis for text categorization. In 2017 international conference
on performance evaluation and modeling in wired and wireless networks (PEMWN) (pp.
1–6). http://dx.doi.org/10.23919/PEMWN.2017.8308030.

uo, X. (2021). Efficient english text classification using selected machine learning
techniques. Alexandria Engineering Journal, 60(3), 3401–3409. http://dx.doi.org/10.
1016/j.aej.2021.02.009.

aalej, W., & Nabil, H. (2015). Bug report, feature request, or simply praise? On
automatically classifying app reviews. In 2015 IEEE 23rd international requirements
engineering conference, RE 2015 - Proceedings (pp. 116–125). http://dx.doi.org/10.
1109/RE.2015.7320414.

acQueen, J. B. (1967). Some methods for classification and analysis of multivariate
observations. In Proceedings of 5-th berkeley symposium on mathematical statistics and
probability (pp. 281–297). University of California Press.

aks, I., & Vossen, P. (2012). A lexicon model for deep sentiment analysis and opinion
mining applications. Decision Support Systems, 53(4), 680–688. http://dx.doi.org/10.
1016/j.dss.2012.05.025.

anning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval.
Cambridge University Press.

Mccallum, A., & Nigam, K. (1998). A comparison of event models for naive bayes
text classification. In: Learning for text categorization: Papers from the 1998 AAAI
workshop (pp. 41–48).

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances in Neural
Information Processing Systems, 3111–3119.

Misuraca, M., & Spano, M. (2020). Unsupervised analytic strategies to explore large
document collections. In D. F. Iezzi, D. Mayaffre, & M. Misuraca (Eds.), Text
Analytics. JADT 2018, vol. 8655 (pp. 17–28). Springer, http://dx.doi.org/10.1007/
978-3-030-52680-1_2.

ollas, I., Chrysopoulou, Z., Karlos, S., & Tsoumakas, G. (2020). ETHOS: an online
hate speech detection dataset. https://arxiv.org/abs/2006.08328.

adeau, D., & Sekine, S. (2007). A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30, http://dx.doi.org/10.1075/li.30.1.03nad.

igam, K., Mccallum, A., & Thrun, T. (1998). Learning to classify text from labeled
and unlabeled documents. In Proceedings of the 15th national/ 10th conference on
Artificial intelligence/ Innovative applications of artificial intelligence (pp. 792–799).

awar, P. Y., & Gawande, S. H. (2012). A comparative study on different types of
approaches to text categorization. International Journal of Machine Learning and
Computing, 2(4), 423–426.

latt, J. (1998). Fast training of support vector machines using sequential minimal
optimization. In B. Schoelkopf, C. Burges, & A. Smola (Eds.), Advances in kernel
methods - Support vector learning. MIT Press, https://www.microsoft.com/en-
us/research/publication/fast-training-of-support-vector-machines-using-sequential-
minimal-optimization/.

uinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann Publishers.

ossini, M. (2020). Analisi di comuni tecniche di text classification con WEKA. Tesi di
laurea in Informatica (relatore D. Merlini). Italia: Università di Firenze.

alton, G., & Buckley, C. (1987). Term-weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5), 513–523.

alton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing.
Communications of the ACM, 18(11), 613–620.

hah, F. P., & Patel, V. (2016). A review on feature selection and feature extraction
for text classification. In Proceedings of the 2016 IEEE International conference on
wireless communications, signal processing and networking (pp. 2264–2268). http:
//dx.doi.org/10.1109/WiSPNET.2016.7566545.

ingh, J., Singh, G., & Singh, R. (2017). Optimization of sentiment analysis using
machine learning classifiers. Human-centric Computing and Information Sciences, 7(1),
http://dx.doi.org/10.1186/s13673-017-0116-3.

ingh, V. K., Tiwari, N., & Garg, S. (2011). Document clustering using K-means,
heuristic K-means and fuzzy C-means. In International conference on computational
intelligence and communication networks (pp. 297–301). http://dx.doi.org/10.1109/
CICN.2011.62.

ong, F., Liu, S., & Yang, J. (2005). A comparative study on text representation
schemes in text categorization. Pattern Analysis and Applications, 8(1–2), 199–209.
http://dx.doi.org/10.1007/s10044-005-0256-3.

an, P. N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining.
Addison-Wesley.

askin, Z., & Al, U. (2018). A content-based citation analysis study based on text
categorization. Scientometrics, 114, 335–357. http://dx.doi.org/10.1007/s11192-
017-2560-2.

rstenjak, B., Mikac, S., & Donko, D. (2014). KNN With TF-IDF based framework for text
categorization. Procedia Engineering, 69, 1356–1364. http://dx.doi.org/10.1016/j.
proeng.2014.03.129.

https://link.springer.com/article/10.1023/A:1010933404324
https://link.springer.com/article/10.1023/A:1010933404324
https://link.springer.com/article/10.1023/A:1010933404324
http://dx.doi.org/10.1017/S1351324916000334
http://dx.doi.org/10.1017/S1351324916000334
http://dx.doi.org/10.1017/S1351324916000334
http://dx.doi.org/10.1109/ISDEA.2012.266
http://dx.doi.org/10.1109/ISDEA.2012.266
http://dx.doi.org/10.1109/ISDEA.2012.266
http://dx.doi.org/10.1007/978-3-540-45219-5_7
http://dx.doi.org/10.1016/j.eswa.2012.02.053
http://dx.doi.org/10.1016/j.eswa.2012.02.053
http://dx.doi.org/10.1016/j.eswa.2012.02.053
http://dx.doi.org/10.1007/s10462-020-09919-1
http://dx.doi.org/10.1007/s10462-020-09919-1
http://dx.doi.org/10.1007/s10462-020-09919-1
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb15
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb15
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb15
http://dx.doi.org/10.4018/9781591405573.ch105
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb17
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb17
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb17
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb17
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb17
http://dx.doi.org/10.1016/j.eswa.2019.03.048
http://dx.doi.org/10.1007/11848035_84
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb22
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb22
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb22
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1177/0165551514558172
http://dx.doi.org/10.1177/0165551514558172
http://dx.doi.org/10.1177/0165551514558172
http://dx.doi.org/10.1007/978-3-642-27281-3_38
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb26
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb26
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb26
http://dx.doi.org/10.1007/BFb0026683
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb28
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb28
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb28
http://dx.doi.org/10.1007/978-1-84628-754-1_1
http://dx.doi.org/10.1007/978-1-84628-754-1_1
http://dx.doi.org/10.1007/978-1-84628-754-1_1
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb30
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb30
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb30
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb30
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb30
http://dx.doi.org/10.1007/978-3-319-10816-2_33
http://dx.doi.org/10.1109/ICACCS48705.2020.9074166
http://dx.doi.org/10.1109/ICACCS48705.2020.9074166
http://dx.doi.org/10.1109/ICACCS48705.2020.9074166
http://dx.doi.org/10.1145/290941.290961
http://dx.doi.org/10.1145/290941.290961
http://dx.doi.org/10.1145/290941.290961
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb34
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb34
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb34
http://dx.doi.org/10.23919/PEMWN.2017.8308030
http://dx.doi.org/10.1016/j.aej.2021.02.009
http://dx.doi.org/10.1016/j.aej.2021.02.009
http://dx.doi.org/10.1016/j.aej.2021.02.009
http://dx.doi.org/10.1109/RE.2015.7320414
http://dx.doi.org/10.1109/RE.2015.7320414
http://dx.doi.org/10.1109/RE.2015.7320414
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb38
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb38
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb38
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb38
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb38
http://dx.doi.org/10.1016/j.dss.2012.05.025
http://dx.doi.org/10.1016/j.dss.2012.05.025
http://dx.doi.org/10.1016/j.dss.2012.05.025
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb40
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb40
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb40
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb42
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb42
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb42
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb42
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb42
http://dx.doi.org/10.1007/978-3-030-52680-1_2
http://dx.doi.org/10.1007/978-3-030-52680-1_2
http://dx.doi.org/10.1007/978-3-030-52680-1_2
https://arxiv.org/abs/2006.08328
http://dx.doi.org/10.1075/li.30.1.03nad
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb47
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb47
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb47
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb47
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb47
https://www.microsoft.com/en-us/research/publication/fast-training-of-support-vector-machines-using-sequential-minimal-optimization/
https://www.microsoft.com/en-us/research/publication/fast-training-of-support-vector-machines-using-sequential-minimal-optimization/
https://www.microsoft.com/en-us/research/publication/fast-training-of-support-vector-machines-using-sequential-minimal-optimization/
https://www.microsoft.com/en-us/research/publication/fast-training-of-support-vector-machines-using-sequential-minimal-optimization/
https://www.microsoft.com/en-us/research/publication/fast-training-of-support-vector-machines-using-sequential-minimal-optimization/
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb49
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb49
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb49
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb50
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb50
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb50
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb51
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb51
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb51
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb52
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb52
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb52
http://dx.doi.org/10.1109/WiSPNET.2016.7566545
http://dx.doi.org/10.1109/WiSPNET.2016.7566545
http://dx.doi.org/10.1109/WiSPNET.2016.7566545
http://dx.doi.org/10.1186/s13673-017-0116-3
http://dx.doi.org/10.1109/CICN.2011.62
http://dx.doi.org/10.1109/CICN.2011.62
http://dx.doi.org/10.1109/CICN.2011.62
http://dx.doi.org/10.1007/s10044-005-0256-3
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb57
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb57
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb57
http://dx.doi.org/10.1007/s11192-017-2560-2
http://dx.doi.org/10.1007/s11192-017-2560-2
http://dx.doi.org/10.1007/s11192-017-2560-2
http://dx.doi.org/10.1016/j.proeng.2014.03.129
http://dx.doi.org/10.1016/j.proeng.2014.03.129
http://dx.doi.org/10.1016/j.proeng.2014.03.129


D. Merlini and M. Rossini Machine Learning with Applications 4 (2021) 100033
Usman, M., Ayub, S., Shafique, Z., & Malik, K. (2016). Urdu text classification using
majority voting. International Journal of Advanced Computer Science and Applications,
7(8), 1–10.

Uğuz, H. (2011). A two-stage feature selection method for text categorization by
using information gain, principal component analysis and genetic algorithm.
Knowledge-Based Systems, 24(7), 1024–1032. http://dx.doi.org/10.1016/j.knosys.
2011.04.014.

Uysal, A. K., & Gunal, S. (2014). The impact of preprocessing on text classification.
Information Processing and Management, 50(1), 104–112. http://dx.doi.org/10.1016/
j.ipm.2013.08.006.

Vapnik, V., & Chervonenkis, A. (1964). A note on one class of perceptrons. Automation
and Remote Control, 25.

Witten, I. H. (2004). Text mining. In M. P. Singh (Ed.), The practical handbook of internet
computing. Chapman and Hall/CRC.

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: Practical machine learning
tools and techniques (3rd ed.). Morgan Kaufmann.

Yiming, Y., & Pedersen, J. (1997). A comparative study on feature selection in text
categorization. In Proceedings of the Fourteenth international conference on machine
learning (pp. 412–420).
20
Zhang, H., & Li, D. (2008). Naïve Bayes text classifier. In 2007 IEEE international
conference on granular computing (p. 708). http://dx.doi.org/10.1109/grc.2007.40.

Further reading

https://corpora.uni-leipzig.de/en. (Accessed 8 February 2021).
https://github.com/mwritescode/text-categorization-with-WEKA. (Accessed 8 February

2021).
https://sites.google.com/site/kevinbouge/stopwords-lists. (Accessed 8 February 2021).
https://waikato.github.io/weka-wiki/documentation/. (Accessed 8 February 2021).
https://weka.sourceforge.io/doc.dev/weka/core/stemmers/SnowballStemmer.html.

(Accessed 8 February 2021).
https://www.cs.waikato.ac.nz/ml/weka/. (Accessed 8 February 2021).
https://www.futurelearn.com/courses/more-data-mining-with-weka. (Accessed 8

February 2021).

http://refhub.elsevier.com/S2666-8270(21)00014-1/sb60
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb60
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb60
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb60
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb60
http://dx.doi.org/10.1016/j.knosys.2011.04.014
http://dx.doi.org/10.1016/j.knosys.2011.04.014
http://dx.doi.org/10.1016/j.knosys.2011.04.014
http://dx.doi.org/10.1016/j.ipm.2013.08.006
http://dx.doi.org/10.1016/j.ipm.2013.08.006
http://dx.doi.org/10.1016/j.ipm.2013.08.006
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb63
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb63
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb63
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb64
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb64
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb64
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb65
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb65
http://refhub.elsevier.com/S2666-8270(21)00014-1/sb65
http://dx.doi.org/10.1109/grc.2007.40
https://corpora.uni-leipzig.de/en
https://github.com/mwritescode/text-categorization-with-WEKA
https://sites.google.com/site/kevinbouge/stopwords-lists
https://waikato.github.io/weka-wiki/documentation/
https://weka.sourceforge.io/doc.dev/weka/core/stemmers/SnowballStemmer.html
https://www.cs.waikato.ac.nz/ml/weka/
https://www.futurelearn.com/courses/more-data-mining-with-weka

	Text categorization with WEKA: A survey
	Introduction
	Basic methodology for text categorization
	Preprocessing techniques
	Tokenization
	Stemming and lemmatization
	Stopwords removal

	Feature extraction
	Feature selection

	Preprocessing in WEKA 
	Supervised and unsupervised classification
	Bayesian methods
	Decision tree models
	Instance based learning
	Support vector machines
	Random forest
	Clustering
	Evaluation metrics for classification

	A first case study: language identification
	The dataset
	The framework for classification
	The framework for clustering
	The n-gram approach
	The common words approach
	Classification without stopwords removal
	Classification with stopwords removal
	Clustering


	A second case study: recipe type classification
	The framework
	Setup and experiment

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References
	Further reading


