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ABSTRACT: The “pancarcinoma” Tn antigen (αGalNAc-O-Ser/Thr) is a tumor-associated carbohydrate antigen (TACA) overex-
pressed on the surface of cancer cells and suitable target for anti-cancer vaccines. However, TACAs commonly show weak immu-
nogenicity, low in vivo stability and poor bioavailability. To address these issues, the development of physiologically stable TACA 
synthetic mimetics and novel nanocarriers for multivalent display are object of intense research. Nanomaterials represent suitable 
scaffolds to multimerize antigens, but absence of toxicity, easy functionalization and capability to incorporate biomolecules are 
compulsory characteristics for vaccine nanocarriers. Here, we report on the conjugation of a synthetic Tn-antigen mimetic to bio-
compatible and water-dispersible dextran-based single-chain nanoparticles (DXT-SCPNs). In vitro stimulation of PBMCs and anal-
ysis of interleukins production indicated a specific innate immune modulation mediated by the multivalent presentation of the Tn 
mimetic at the nanoparticle surface. These preliminary results pave the way for the development of Tn-mimetic clusters on biocom-
patible DXT-SCPN for TACA-based vaccines. 

Mucins are high molecular weight extracellular proteins, heav-
ily glycosylated with complex oligosaccharides. Mucin-type 
oligosaccharides are involved in specific interactions and re-
ceptors binding; therefore, the O-glycosyl pattern is crucial for 
mucin structure and biological functions like cell growth, ad-
hesion, invasion and immune surveillance.1 Among the differ-
ent types of O-glycosides, which contribute to form antigens 
in aberrantly over- or hypo-glycosylated mucins, the most 
common tumor-associated carbohydrate antigens (TACAs) are 
α-Tn, Thomsen-Friedenreich (TF), sialyl Tn and sialyl TF.1,2 

α-Tn antigen (Tn) is expressed at high levels, i.e. between 
70% and 90%, in different cancers tumors (colon, lung, blad-
der, cervix, ovary, stomach, and prostate), whereas little or no 
expression has been observed in a broad range of healthy adult 
tissues.3,4,5 Some Tn-based vaccines have produced excellent 
results in animal models and several clinical trials in humans 
have been published.6,7,8 Nonetheless, the Tn-based vaccines 
currently under development have raised several criticisms: a) 
the enzymatic instability of the native Tn antigen in vivo 
which reduces the vaccine bioavailability, b) the presentation 
of the Tn sugar moiety, due to the nature of the native glyco-
sidic linkage, is dramatically influenced by the supporting 
peptide/scaffold, strongly reducing the antigenic effect of the 
vaccine, and c) high density of Tn residues is often required 
for antibody recognition.9 With this in mind, we recently syn-
thesized a promising immunostimulant Tn-antigen mimetic, 
resistant to enzymatic degradation and structurally blocked in 
the suitable conformation for a correct recognition by the im-
mune system.10 

 TACAs are poorly immunogenic antigens and cannot be 
presented to T cells for T cell responses (T cell-independent 
type II antigens).11 Consequently, the class switch from IgM to 
IgG and the recall memory response, are not generated. A suc-
cessful strategy to overcome these limiting aspects consists in 
coupling carbohydrates onto immunogenic protein carriers 
(conjugate vaccines).11,12 A key parameter to be considered 
when using carbohydrates in molecular recognition events, 
including vaccine development, is their natural multivalent 
display, which can be artificially obtained by coupling carbo-
hydrate antigens to multivalent scaffolds, such as nanomateri-
als.13,14,15 For example, Tn-antigen glycopolymers were able to 
generate immune response in vivo.16 In addition, nanomateri-
als-based antigen delivery systems can provide an adjuvant 
activity, inducing activation and maturation of antigen present-
ing cells.17 Integration of multiple functions in the same 
nanosystem, which includes the opportunity to modulate the 
innate immune response and stimulate adaptive immunity, is 
in fact a key aspect and strength point in favor of the devel-
opment of nanoparticle-based vaccines.2, 17b Recently, we re-
ported that superparamagnetic iron oxide nanoparticles loaded 
with a mimetic of the Tn antigen were able to induce macro-
phage effector functions, eliciting gene expression and protein 
release of the TNF-α.18 Capitalizing on these promising re-
sults but keeping in mind the major concerns affecting the use 
of metal nanoparticles as delivery systems in vivo,19,20 we 
turned our interest to biocompatible/biodegradable soft-matter 
based nanosystems as an alternative. In this regard, single-
chain polymer nanoparticles (SCPNs)21,22 have great potential 
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as biomaterial nanocarriers due to their soft matter characteris-
tics, their small and controllable size and the potential mimick-
ing behavior towards proteins.23 SCPNs can be prepared by 
controlled collapse of single polymer chains into folded nano-
particles through intra-chain cross-linking.24 However, only 
few examples of bioconjugated SCPNs for potential applica-
tion in intracellular delivery,25 imaging,26 and controlled drug 
delivery27,28 have been reported. In addition, most of these 
SCPN-based nanosystems are based on synthetic polymers 
which are usually prepared in organic solvents and through 
experimental conditions difficult to translate to clinic. In an 
effort to have in hand water-dispersible and biocompatible 
SCPNs based on readily available and easily functionalized 
polymers, the synthesis and functionalization of dextran-based 
single-chain polymer nanoparticles (DXT-SCPNs) has been 
recently reported.29 DXT-SCPNs have been designed in such a 
way that chemical reactive functional groups (like carboxylic 
acids) can be easily integrated to allow further incorporation 
of (bio)molecules of interest.29 In the present study, we aimed 
at using DXT-SCPNs as nanocarriers to mimic the expression 
of Tn antigen on cancer cells (Figure 1) by multimerization of 
the Tn mimetic 5 (see Scheme 1), stable in vivo and immuno-
genic. The immunomodulation properties of this new glyco-
syl-nanosystem were studied. 

 The synthesis of the Tn mimetic 5 is described in Scheme 
1. Briefly, compound 1a35 was coupled with the fluorinated 
spacer 2 and the acetyl derivative 3 obtained (63%) was trans-
formed into 4 (> 90%) after removal of the acetyl protecting 
groups (see SI). The NBoc-protecting group of 4 was removed 
in acidic conditions (TFA) immediately before performing the 
reaction with the nanoparticles (see below). The spacer 2 has 
been chosen for the presence of the perfluorinated aromatic 
ring which allowed to take advantage of 19F as internal NMR 
probes for the monitoring of the loading of the nanoparticles 
with the Tn-mimetic and for the estimation of the amount of 
Tn antigen loaded by UV spectroscopy (see SI). 

 

 

Scheme 1. Synthesis of the Tn-antigen mimetic 5. 

 DXT-SCPNs functionalized with mercaptopropionic acid 
(MPA) were prepared as described29 but without isolating the 
intermediate in a novel “one-batch” protocol (Scheme 2). 
Briefly, a dextran-methacrylate derivative (DXT-MA) with 
52% degree of substitution (MA groups per repeating glucose 
unit) was reacted with the homobifunctional cross-linker 3,6-
dioxa-1,8-octane-dithiol in aqueous media. After 5 hours, in 
situ addition of MPA allowed for the incorporation of carbox-
ylic groups into the DXT-SCPN (see SI). These nanoparticles 
showed a number-average diameter of 12 nm as measured by 
transmission electron microscopy (TEM) over 100 nanoparti-
cles and a hydrodynamic diameter of 16 nm (Z-average) as 
measured by dynamic light scattering (DLS) (Figures S8-S10). 
Tn mimetic-loaded dextran-based single-chain polymeric na-
noparticles (Tn-DXT-SCPNs) were obtained by covalent cou-
pling (Scheme 2) of the Tn mimetic amino-derivative 5 (gen-
erated by treating 4 with TFA and used without further purifi-
cation) with DXT-SCPNs, whose carboxylic acid moieties 
were pre-activated with EDC coupling agent. After purifica-
tion by dialysis against deionized water, the Tn-DXT-SCPNs 
were freeze-dried. Of note, compound 5 is not soluble in wa-
ter, while the corresponding Tn-DXT-SCPNs could be easily 
redispersed in aqueous buffer (PBS, pH 7.4) or saline without 
flocculation.  

Figure 1. Outline of the “multimerization” strategy to develop 
single-chain polymer nanoparticle-based mimetics of aberrant 
expression of α-Tn antigen on cancer cells. 

 As anticipated, the host response and tolerance to nanopar-
ticles depend on their interactions with the innate immune sys-
tem, thus it is of key importance to know how nanoparticles 
are perceived by immune cells of the in-born immunity sys-
tem.30 To prove in vitro the biomimetic properties of the Tn 
mimetic loaded onto DXT-SCPNs, we stimulated human pe-
ripheral blood mononuclear cells (PBMC) aiming at triggering 
similar innate immune responses as the natural Tn clusters. It 
has been reported that mucins secreted from colon cancer cells 
are able to induce the secretion of interleukin 6 (IL-6) in pe-
ripheral blood monocytes.31 In addition, the macrophage ga-
lactose-type C-type lectin receptor (MGL), having a specifici-
ty for terminal/linked GalNAc residues (including the Tn anti-
gen)32,33 has been described as a key lectin involved in the sig-
naling cascade and toll-like receptors (TLR) cross-talk on hu-
man antigen-presenting cells.34 We thus investigated whether 
DXT-SCPNs functionalized with the Tn-antigen mimetic 5 
(Tn-DXT-SCPNs) are able to enhance the TLR-2-mediated 
IL-6 and IL-10 secretion in human PBMC triggering a specific 
cross-talk between Tn-receptors (such as MGL) and TLR. 
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are displayed on nanocarriers such as dendrimers, liposomes,38 
and gold nanoparticles.16 Hence, Tn mimetic-loaded dextran-
based nanoparticles prepared in this work were used to stimu-
late human PBMC in vitro. 

Before performing the innate immunity experiments, the 
nanoparticles were preliminary assessed for possible endotox-
in contamination using reporter human embryonic kidney 
(HEK-293) cell lines expressing TLR-2 or TLR-4 receptors. 
The nanoparticles did not trigger TLR-2 or TLR-4 stimulation 
proving the absence of detectable endotoxins (Figure S19). 
This is an essential pre-requisite to avoid misleading interpre-
tation of the in vitro results, as endotoxins are known to pro-
mote different chemokines secretion. 

Human PBMC isolated from healthy donors (n=3) were 
stimulated for 24 hours or 4 days with Tn-DXT-SCPNs (DXT-
SCPNs were used as control. Tn-DXT-SCPNs were able to 
trigger the secretion of IL-6 in a similar way as the positive 
control LPS (Figure 3A) while non-functionalized particles 
induced no IL-6 secretion. It means that only Tn-DXT-SCPNs 
are able to stimulate the innate system eliciting the production 
of IL-6 as already demonstrated for mucin glycoproteins.31 
Recently, it was reported that the induction of MGL signaling 
(a CLR that recognizes the Tn antigen) elicits a TLR-2-
mediated response and enhances the secretion of different in-
terleukins.34 Thus, we checked whether Tn-DXT-SCPNs could 
raise a similar series of innate immune responses, leading to a 
cross-talk between TLR-2 and CLR. As described in Figure 
3B, PBMC co-stimulated with Tn-DXT-SCPNs and the syn-
thetic triacylated lipopeptide Pam3CSK4 (TLR-2 ligand) trig-
gered higher amount of IL-6 compared to PBMC treated with 
Pam3CSK4. Additionally, a similar cross-talk was observed 
with PBMC co-stimulated with LPS (TLR-4 ligand) and Tn-
DXT-SCPNs showing an enhancement of IL-6 secretion. 
These data showed that the biocompatible Tn-DXT_SCPNs do 
mimic in vitro the behavior of naturally-occurring Tn clusters 
eliciting similar innate immune responses.34 

Scheme 2. “One-batch” preparation of dextran-based single 
chain nanoparticles (DXT-SCPNs) and further functionaliza-
tion with the Tn-antigen mimetic 5. 

DLS measurements showed an increase of the hydrodynam-
ic diameter (Z-average ~70 nm, Figure 2a) with respect to the 
starting DXT-SCPNs (Z-average ~16nm, Figure S8). The in-
crease in diameter could indicate slight aggregation, but the 
aggregates remain in the nanometer range. TEM micrographs 
indicated an average diameter of 42 nm in the dry state 
(Errore. L'origine riferimento non è stata trovata.b). 1H 
NMR of Tn-DXT-SCPNs showed a diagnostic signal at 5.75 
ppm corresponding to the anomeric proton of the galactose 
moiety of the Tn mimetic (Figure S11), indicating a successful 
coupling. The 19F NMR spectra confirmed the loading of the 
fluorinated mimetic on the surface of the DXT-SCPNs (Figure 
S16). The loading of Tn mimetic 5, estimated by UV spectra 
(absorption at 280 nm), was 23 wt%, which corresponds to 
~10 Tn units/nanoparticle. 

Figure 3. IL-6 analysis by ELISA on human PBMC stimulat-
ed with DXT-SCPN and Tn-DXT-SCPN. SEB (Staphylococcus 
aureus Enterotoxin B Superantigen) was used as positive con-
trol. Significant differences between DXT-SCPNs and Tn-
DXT-SCPNs were calculated showing p < 0.01. 

 
Figure 2. Characterization of Tn-DXT-SCPNs: a) DLS (NaCl 
1 mM, 25 ºC); b) TEM micrograph after uranyl staining. 

Dextran has been employed in several biomedical applica-
tions due to aqueous solubility, biodegradability, biocompati-
bility, wide availability, ease of functionalization and PEG-
like non-fouling properties.36 The absence of toxicity in vitro 
of both nanoparticles was tested with HeLa cells in a standard 
MTS assay. In agreement with previous results,29 after 48h, 
none of the tested concentrations significantly reduced cells 
viability when compared with non-treated cells (Figures S17 
and S18, see SI for details).  

 The cross talk between Tn-antigen receptors and TLR-2 
was also studied by measuring the secretion of IL-10 (Figure 
4A). Tn-DXT-SCPNs enhances the TLR-2-mediated IL-10 
secretion, a phenomenon previously reported for human mon-
ocyte-derived dendritic cells.34 DXT-SCPNs used as control, 
did not up-regulate the IL-10 secretion, as observed for the 
medium (Figure 4A). In addition, to study the autologous T-
cells secretion of IFN-γ, PBMC were stimulated for longer 
period (4 days). As reported in Figure 4B, Tn-DXT-SCPNs 
were capable of stimulating the secretion of IFN-γ after 4 days 
of incubation. Conversely, non-functionalized particles did not 
induce any stimulation of IFN-γ (Figure 4B). These results 

The Tn antigen is a highly specific human TACA and the 
Tn glycosylation of glycoproteins is able to modulate both B 
and T cell immunology.37 It is also well known the enhanced 
antigenicity of carbohydrate-related cancer antigens when they 
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clearly demonstrated the potentials of Tn-DXT-SCPN in acti-
vating T-cell in vitro (Figure 4B). 
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Biocompatible and water-dispersible dextran-based single-chain nanoparticles (DXT-SCPNs) present a structurally rigid a-
Tn antigen mimetic and enhance TLR-2-mediated IL-6 and IL-10 secretion in human peripheral blood mononuclear cells. 
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