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Abstract  

In this study, we propose a mixed integer multi-objective model which allows determining the number 

and typology of surgeries to be scheduled in each OR, day and session of a multiple day planning 

period, in context where each OR session of the planning horizon has already been assigned to a 

specialty, with the (multiple) objective of obtaining a desired: (i) patient due date fulfilment rate, (ii) 

OR utilisation, (iii) bed utilisation, (iv) number of scheduled surgeries. These objectives, reflect 

heterogeneous priorities of different stakeholders of the surgical scheduling process. To address the 

described multi-objective problem, we use a goal programming approach and we show how the 

exploration of the weight space, typical of such approach, can be more efficient if informed by a 

correlation analysis. The results presented in this study are based on real data from the Meyer 

University Children’s Hospital in Florence. 

1 Introduction 

An ever growing number of hospitals considers performance improvement of their operating theatre 

(OT) as a top priority. OT, in fact, drives most of the hospitals’ revenues and costs (Denton et al. 

2007; Cardoen et al. 2010) and its operations are tightly linked with those of other departments. 

Optimising the OT operations requires, first and foremost, addressing the so -called surgical 

scheduling problem. This problem entails the selection of the surgical procedures to be performed in 

a given time horizon, the allocation of time and Operating Room (OR) capacity to those procedures, 

and the sequencing of the procedures within the allocated time (May et al. 2011). 

Because of its complexity, such a problem is usually decomposed in three sub -problems that are 

solved in cascade: (1) the case-mix planning, i.e. the determination, usually on a yearly basis, of the 

total amount of OR time to assign to each surgical specialty, (2) the master surgical scheduling, i.e. 

the determination of the specialty or specialties to assign to each OR, day and session of the planning 

horizon (typically 2 weeks or 1 month), and finally (3) the patients selectio n and sequencing. 



However, in recent studies, decisions characterising surgical scheduling-related problems 

traditionally solved separately, have been successfully integrated. As an example, (Santibáñez et al. 

2007; Banditori et al. 2013; Cappanera et al. 2014; Visintin et al. 2016) show that is viable 

determining jointly the specialty to assign to each session of the planning horizon (decision typical 

of the master surgical scheduling problem) and the number and typology of surgeries to perform in 

each session (decision typical of the patient selection problem). Other authors, instead, develop joint 

models to solve, for example, surgical case scheduling and staff rostering problems (Huele & 

Vanhoucke 2014, Wang et al. 2015, Guo et al. 2016). 

Another distinguishing feature of the surgical scheduling problem is its multi-objective nature. 

Solving this problem, in fact, inherently requires taking into consideration multiple stakeholders such 

as top managers, OR personnel (surgeons, anaesthetists, nurses), bed managers and patients, whose 

priorities are often conflicting (Glauberman & Mintzberg 2001). Hospital top management, for 

example, tends to focus on maximising the number of surgeries scheduled. Scheduling a high number 

of surgeries, in fact, allows increasing the hospital revenues and reducing average patient wait time. 

The maximisation of the scheduled surgeries, however, may lead to peaks in the daily utilisation of 

ORs and beds. This conflicts with the desiderata of OR personnel and bed managers. The OR 

personnel, in fact, expects the OR workload to be evenly balanced across sessions to avoid overtime 

work and the risk associated with excessively busy sessions. Similarly, bed managers, are interested 

in avoiding peaks in the utilisation of beds, since overcrowding can cause risks, schedule disruptions 

and the relocation of patients already hospitalised. Patients, in their turn, want to wait a fair amount 

of time before being treated. This, especially in those countries where the health care system is based 

on the principle of universal coverage and financed by general taxation, has encouraged policy makers 

to set specific targets in terms of Maximum Time Before Treatment (MTBT) and to monitor the due-

date fulfillment rate (see, for example, Ministero della Salute, 2010 and Canadian Association of 

Radiologists, 2013). Matching the patients’ due dates, however may reduce the number of cases that 

is possible to schedule and create problems in term of OR and bed balancing. 



The complex and multi-stakeholder nature of the surgical scheduling problems has encouraged the 

development of multi-objective models (Banditori et al. 2013, Rachuba & Werners 2014, Meskens et 

al. 2013). 

Unfortunately, considering multiple objectives while addressing jointly decisions at multiple levels, 

can result in problems characterised by high computational complexity and, thus, in models that might 

not be solved on real instances. Possible ways to manage such a complexity consist in treating one or 

more of the criteria as constraints, as it happens in (Aringhieri et al. 2015), in reducing the length of 

the planning horizon in which the decisions have to be taken (Ozkarahan 2000), or in trading-off the 

type of decisions to take concurrently and the number of objectives to consider.  

In this study, we adopt this latter approach. Specifically, we address the problem of determining the 

number and typology of surgeries to be scheduled in each OR, day and session of a multiple day 

planning period (i.e. 2 weeks), in context where each session of the planning horizon has already 

been assigned to a specialty, with the (multiple) objective of obtaining a desired: (i) patient due date 

fulfilment rate, (ii) OR utilisation, (iii) bed utilisation, (iv) number of scheduled surgeries. To address 

this problem, we assume that surgical cases in the hospital waiting list are organised into surgery 

groups (Santibáñez et al. 2007; Banditori et al. 2013), i.e., into homogeneous groups of cases 

characterised by the same specialty and by similar expected surgical time (ST) and expected length 

of stay (LoS). Hence, we propose a multi-objective MIP model whose solution indicates, for each OR 

session of the planning horizon, the number of surgeries to perform and the surgery groups these 

surgeries must belong to. It is worth to notice that the hypothesis of assuming specialty -session 

assignment as fixed, while limiting the computational complexity of the model, reflects a managerial 

practice that is shared by many hospitals (Agnetis et al. 2012; Visintin et al. 2016). Working with a 

fixed specialty-session assignment, in fact, allows specialists/surgical teams to know in advance the 

days of the week when they will be needed in the OR, thereby making it easier for them to plan their 

multiple activities within and outside the hospital.  



To address the mentioned multi-objective model, we use a goal programming approach where the 

exploration of the weight space is based on an algorithm taken from the literature (Jones & Tamiz 

2010) and information coming from a correlation analysis, based on the Spearman's rank correlation 

coefficient, are used to limit the combinations of weights to explore thus allowing a gain in efficiency. 

This is consistent with (Jones 2011) who suggests that preferential information may be used to limit 

the search in the weight space.  

This study has thus a threefold aim: 

• Presenting a novel surgical scheduling optimisation model;  

• Presenting an approach where a classical algorithm proposed in the goal programming 

literature to explore the weight space is complemented with a correlation analysis; 

• Showing the results achieved by using the presented model and approach on real data. 

The remainder of the paper is organised as follows: in Section 2, we provide a brief review of the 

literature. In Section 3, we describe, in detail, the optimisation problem addressed. The optimisation 

model is then presented in Section 4. In Section 5, we present the empirical results and in Section 6 

we discuss them. Subsequently, in Section 7, we draw the conclusions and present the study’s 

limitations. 

2 Literature review 

As observed in the Introduction, in addition to advocate the use of joint approaches, the literature 

suggests that the conflicting priorities of the stakeholders make the surgical scheduling problem 

inherently multi-objective (Banditori et al. 2013, Aringhieri & Duma 2015; Duma & Aringhieri 2015) 

and consequently proposes several models and algorithms to address it. In (Adan & Vissers 2002) the 

objective function minimises the deviation of the resources’ utilisation from fixed targets. 

Specifically, the model takes into consideration the ORs, two types of beds, i.e. medium and intensive 

care, and intensive care ward nurses. Guinet & Chaabane (2003) propose a primal-dual heuristic to 



address the problem of assign patients to ORs on a weekly planning horizon. The criteria considered 

are patient satisfaction, measured by number of days patients wait in the hospital, and resource 

efficiency, measured by overtime. Jebali et al. (2006), instead, develop a two-phase integer 

programming-based approach where the first phase addresses the surgery assignment problem with 

the objective of minimising hospitalisation, undertime and overtime costs. At the second phase the 

objective consists in minimising the total overtime cost for ORs and decisions taken in the first phase 

may be possibly reconsidered. Van Oostrum et al. (2008), on their turn, propose a bi-criteria 

optimisation model in which the objective function minimises the OR capacity and levels the bed 

occupation over the planning horizon. In addition to bed levelling, the objective function in (Beliën 

et al. 2009) aims to reduce the number of ORs shared by different surgical specialties and to make 

the schedule as much repetitive as possible. Cardoen et al. (2009), instead, study a multi-objective 

surgical case sequencing problem where the objectives are combined together in a weighted function 

which takes into account how each criterion ranks in the range between the best and the worst values 

it can assume when considered alone on the given patient population. Meskens et al. (2013) address 

the daily multi-objective operating room scheduling where the objectives consist in minimising the 

makespan, minimising overtime hours and maximise affinities among members of the surgical team 

while taking into account their desiderata by means of constraint programming. Rachuba & Werners 

(2014) propose a MIP model in which the objective function considers the patients waiting time, the 

OR overtime and the number of patients that must be deferred to the next planning horizon because 

of lack of capacity. We conclude the section with a brief review of studies that propose goal 

programming approaches for surgical related scheduling problems. As anticipated in the Introduction, 

goal programming is in fact, a widely used methodology to address multi-objective problems. Blake 

& Carter (2002) propose the use of goal-programming for a resource allocation problem arising in a 

health care setting; there, the aim is to support hospital decision makers and physicians to determine 

the mix and the volume of the cases they treat. Ogulata & Erol (2003) address a three-stage surgical 

problem where the stages are: (i) selection of patients, (ii) assignment of patients to surgeon groups, 



and (iii) scheduling of patients in the weekly planning horizon. Goal programming is used in all of 

the three stages and the criteria considered are the utilisation of operating room capacity, patient 

waiting time, and a balanced distribution of workload among surgeon groups. Ozkarahan (2000) uses 

goal programming for the assignment of surgeries to OR in a one-day planning horizon. Block 

scheduling is considered and the total time allocated to each specialty in each day is known in 

advance. Specialties provide their lists of planned surgeries, ordered by urgency, to the personnel in 

charge of scheduling and they may specify the OR they would like to use for each procedure; lists 

may also include extra cases. Target values are given for: (i) time allocated to each specialty, (ii) total 

available time of each OR, (iii) total number of OR preferences made by each specialty, (iv) total 

weight of listed surgeries (to assure that only surgeries with small weights are possibly postponed), 

(v) number of ICU beds available. Alternative functions are also considered to control nurses’ 

dissatisfaction. The problem addressed in (Ozkarahan 2000) is thus similar to the one this study 

focuses on, the main difference being the length of the planning horizon.  

It is worth to observe that the use of correlation analysis - and in particular the use of non-parametric 

coefficient, such as the Spearman’s one - in conjunction with goal programming is not new. However, 

to the best of our knowledge, no studies use a correlation analysis to refine the search in the weight 

space. Instead, correlation analyses are typically used to: measure the correlation between single 

criterion measures and aggregated measures (Garcia et al., 2010); cross-validate common weight sets 

in DEA studies (Makui et al., 2008, Alinezhad & Kiani Mavi, 2009; Lam 2010; Zohrehbandian et al., 

2010); compare alternative preference decomposition procedures (Lam & Choo, 1995). 

In sum, despite efficiency, resource balancing and patients’ priorities are by no means novel 

optimisation criteria used in OR planning and scheduling problems, to the best of our knowledge, no 

model integrates all of them on a multiple-day planning horizon. To address this gap, in this study we 

propose a goal programming model and advocate the use of correlation analysis to take informed 

decisions on how to set the weights in the model’s objective function. 



3 Problem addressed 

In this study we assume that patients in the hospital waiting lists are characterised by four attributes: 

surgery group, priority class (and the associated MTBT), latest due-date (LDD) and earliest 

programmable date (EPD). As pointed out in the Introduction, patients associated with the same 

surgery group are characterised by the same specialty and the same expected ST and LoS. The ST is 

expressed in multiple of 30 minutes (e.g. ST=30, means that the surgeries within the gro up are 

expected to last less than 30’, ST=60 means that they are expected to last from 30 to 60’, etc.) . The 

LoS, instead, is expressed in days. The EPD indicates the day starting from which the patient can be 

scheduled. In general, it can differ from the day when the surgery was prescribed (those patients 

whose EPD precedes the first day of the planning horizon are considered eligible to be scheduled  

from the beginning of the planning horizon). The priority class (A, B, C), indicates the number of 

days within which patient should be scheduled (respectively, 30, 60, 90 days), starting from the EPD. 

Finally, the LDD, is calculated considering the EPD and the assigned priority class (e.g.,  for Class A 

patients, LDD=EPD + 30 days). 

We consider three critical resources, namely ORs, beds, and surgeon teams and we assume that each 

surgery requires the simultaneous availability of all of these resources to be scheduled. ORs are 

considered as interchangeable, i.e. they are not dedicated to specific surgery groups  nor contain 

special equipment. OR time is slotted in sessions lasting half day (morning or afternoon session) or 

the whole day (daily session). Beds are organised in different units. The specific unit where a patient 

is hospitalised after surgery depends on her/his surgery group. Surgeons teams, are associated with 

one surgical specialty. Surgical specialties are assigned to OR sessions a priori by means of an 

allocation grid. Such a grid indicates, for each day of the planning horizon, the specialty assigned to 

each OR and session. We assume that if a specialty is assigned to an OR session, then there will be 

always a surgeon team of that specialty available in that session. Considering these hypotheses, we 



address the problem of determining for each OR session in the planning horizon, the number of cases 

to schedule and the surgery group of each case, with the aim of: 

• scheduling a target number of patients with LDD expiring in the planning horizon; 

• obtaining a target utilisation of the ORs;  

• obtaining a target utilisation of the bed units; 

• scheduling a target number of surgeries. 

4 Model description 

To address the problem presented in the previous section, we formulated a mixed integer goal-

programming model. The model comprises the following sets and parameters: 

S set of surgical specialties 

K set of surgery groups 

O set of ORs 

D set of days in the planning horizon 

D1, ..., De sets of extra time periods outside the planning horizon 

T set of sessions 

B set of bed units 

P set of patients’ priority classes 

I set of criteria 

sodtG  the allocation grid, equal to 1 if surgeries belonging to the specialty s can be 

performed in OR o, on day d, in session t, 0 otherwise 

odtH  available time of OR o on day d, time slot t 

ks  specialty of surgery group k 

k  expected ST of surgery group k 



k  expected LoS after surgery required by group k  

k  expected LoS before surgery required by group k 

bdR  number of beds in unit b available on day d 

kdE  number of cases in surgery group k, whose EPD is on day d 

e  number of time periods preceding and following the planning horizon 

pdL  number of cases of priority p whose LDD is on day d, eDDDdPp  ..., 1  

q̂  target value for the OR utilisation rate 

r̂  target value for the bed utilisation rate 

in̂  target value for the objective i 

pjw  penalty associated with cases of priority p with LDD in jD  not scheduled in the 

planning horizon, ejPp ..1,   

  

iW  weight associated with objective i. 

Let us introduce the decision variables: 

kpodty  number of procedures of surgery group k with priority p assigned to OR o on day d in 

session t 

and the following auxiliary variables: 

bdz  number of beds of type b occupied on day d 

odtq  utilisation rate of OR o, on day d, in session t 

bdr  utilisation rate of beds in unit b on day d 

pju  number of cases with priority p and with LDD in time period 
jD  not scheduled in the 

planning horizon, ejPp ..0,  where j=0 refers to D, i.e. D0=D 



+

odtq  positive deviation of the utilisation rate of OR o, on day d, in session t from the fixed target  

−

odtq  negative deviation of the utilisation rate of OR o, on day d, in session t from the fixed 

target  

+

bdr  positive deviation of the utilisation rate of beds in unit b on day d from the fixed target  

−

bdr  negative deviation of the utilisation rate of beds in unit b on day d from the fixed target  

in  value associated with objective i 

in  deviation (positive or negative) of objective i from the fixed target. 

Since the allocation grid is fixed in input through the parameter 
sodt

G , the surgery groups that can be 

scheduled in a given OR o, on a given day d in the time slot t are restricted to the ones belonging to 

the surgical specialty s for which the parameter sodtG  is equal to 1. For this reason, variables y are 

defined on a subset of the set )( TDOPK  . Specifically, we introduce, for each surgery group k, 

the set Ak that is a collection of triples (o,d,t) indicating, the OR sessions, in which the surgery group 

k can be scheduled. More formally, if ks  denotes the specialty of surgery group k, Ak are defined as 

follows: 

 1,,..),,( == odtsk k
GandTtDdOotstdoA . 

Variables kpodt
y  are thus defined . Given these sets, parameters and 

variables, the model is formulated as follows: 
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Constraints (4.1) assure that for each OR session, the sum of the STs of the scheduled surgeries does 

not exceed the available time. Constraints (4.2) compute the number of utilised beds for each unit and 

for each day of the planning horizon. Constraints (4.3) limit the number of occupied beds. Constraints 

(4.4) and constraints (4.5) compute respectively the daily utilisation of the OR sess ions and of the 

different bed units. Constraints (4.6) assure that the number of scheduled surgeries for each group 

does not exceed the number of cases that are available, depending on the relevant EPDs. Constraints 

(4.7) allow for the respect of the LDDs’ of the patients in the waiting list. Specifically, these covering 

constraints impose that the number of scheduled surgeries of a given priority p should be greater or 

equal than the number of cases in the waiting lists belonging to that priority. If this cannot happen the 

corresponding variable u, which measures the number of not scheduled surgeries of priority p and 



with a LDD falling in the planning horizon D or in some extra time period Dj  with j=1,..,e, assumes 

a value greater than zero. The sum of the u variables is penalised in the objective 1n  according to the 

priority and the tardiness.  

Constraints (4.8) and (4.9) compute positive and negative deviations of OR utilisation from the fixed 

target, for each triple (o,d,t). Constraints (4.10) and (4.11) are their counterparts for the bed unit 

utilisation. Constraints (4.12)-(4.15) compute the values of the four objectives: specifically, constraint 

(4.12) computes the weighted sum of the penalties associated with the missed scheduling of the 

patients with certain LDDs and priorities; constraints (4.13) and (4.14) calculate the sum of the 

deviations from the fixed targets respectively of ORs and bed units; constraint (4.15) computes the 

number of scheduled surgeries. Constraints (4.16)-(4.19) compute, for each objective the positive or 

negative deviation from the fixed target. The remaining constraints define variable domains. The 

weighted sum of the deviations calculated in constraints (4.16)-(4.19) is minimised in the objective 

function (4.25). 

5 Analysis 

5.1 Input data 

The experimental campaign presented in this study is based on real data from the Meyer University 

Children’s Hospital in Florence (hereafter Meyer Hospital). Such an hospital is characterised by: 

• a planning horizon of 2 weeks; 

• 11 surgical specialties; 

• 4 interchangeable ORs dedicated to elective surgeries; 

• 3 bed units, i.e. day surgery, week hospital and ordinary unit. Each unit has a capacity of 14 

beds. Day hospital unit accommodates patients with LoS equal to one day; 

• target daily utilisations of 85% for both OR sessions and bed units; 

• a waiting list organised in approximately 170 surgery groups. 



In this study, we used 30 different waiting lists as input data. These waiting lists were obtained 

sampling the actual hospital waiting list 30 times in a period spanning from January 2014 and 

December 2015. For each list, we clustered cases according with their LDDs. Specifically, we 

identified 4 groups of cases: 

• cases with LDD in D (D0 in model description); 

• cases whose LDD expired in the two weeks preceding D (D1 in model description);  

• cases whose LDD expired before the two weeks preceding D (D2 in model description);  

• cases with LDD expiring after D (De=D3 in model description, i.e. the number e of extra time 

periods is equal to 3). 

The weights wpj in the objective n1 were assigned in a way that prioritises, respectively, cases with 

higher priority and cases belonging to groups with a lower rank (group 1 has the highest priority, 

group 4 the lowest).  

The weights Wi in the objective function, instead, were calculated using the (Jones & Tamiz 2010) 

algorithm. This algorithm allows systematically exploring the weight space and it is based on two 

parameters: Tmax and max_level. The former represents the max number of weights to be varied 

simultaneously, while the latter indicates the level of granularity to use in the exploration of the 

weight space. The exploration of the weight space was performed in two stages: 

• in the first stage, we fixed Tmax=3 and max_level=1 and initialized the algorithm with the 

weights (0.25, 0.25, 0.25, 0.25) thereby obtaining 29 unique weight combinations (see Table 

2). 

• in the second stage, we refined the weight space exploration increasing the max_level 

parameter from 1 to 3, thereby obtaining additional 56 unique weight combinations.  

Finally, the targets for the different objectives were identified involving the hospital’s bed manager, 

OR manager and medical director in an open discussion. After some negotiations these stakeholders 

agreed on the following set of targets: 



• 1n̂ =15%, this target is set in a way that at least 85% of the patients (weighted to take into 

consideration their priority class) with LDD in the planning horizon should be scheduled in 

the planning horizon, 

• 2n̂ =10%, i.e. the mean daily deviations of the OR utilisation from the target (85%) should be 

less than 10% 

• 3n̂ =5%, i.e. the mean daily deviations of the daily BED utilisation from the target (85%) 

should be less than 5% 

• 4n̂ =240 i.e. the number of surgery scheduled should not be smaller than 240  (i.e. negative 

deviations are penalised). 

For each sampled waiting list, we solved the model in correspondence with each combination of 

weights thereby resulting in 2550(=30*85) problem instances. The computational campaign was 

performed on a PC equipped with an Intel iCore 7 @3.40 GHz processor and 32 GB of RAM. We set 

a time limit of 60 seconds for each instance. 

To facilitate the analysis of the results, in Table 1 we report a short description of each objective and 

introduce an intuitive abbreviation that will be used in the remainder of the paper.  

Table 1 Objectives description 

Obj (i) Description Label 

1 scheduling a target number of patients with LDD expiring in the planning horizon oLDD 

2 obtaining a target utilisation of the ORs oOR 

3 obtaining a target utilisation of the BED units oBED 

4 scheduling a target Number of Surgeries oNS 

 

5.2 Results 

This section is organised in two parts. First we show the results achieved applying the model 

presented in the previous section to the Meyer Hospital’s data, using a first batch of 29 weight 

combinations calculated using the Jones & Tamiz (2010)’s algorithm. Then we will refine the 



exploration of the weight space using the results of a correlation analysis in conjunction with the 

mentioned algorithm.  

5.2.1 Exploration of the first batch of weight combinations 

Table 2 shows for each combination of weights c, and for each objective i, the value of the weight Wi 

and the acceptance rate ARi of the model’s solutions. ARi represents the percentage of instances for 

which the model returned a solution meeting the target in̂  (e.g. ARi=100% means that the model 

solution met the target in̂ for all the 30 tested waiting lists). The last column identifies with an asterisk 

a not dominated weight combination (e.g. c=2) or a weight combination dominating the one 

corresponding to the row considered (e.g. c=1 is dominated by c=6). Combination p dominates 

combination q if p is not worse than q on all the criteria but one, and there exists at least one criterion 

for which p is better than q. 

  



Table 2 Combinations of weights and acceptance rates  

c W1 W2 W3 W4 AR1 AR2 AR3 AR4 Dom 

1 0.250 0.250 0.250 0.250 83.3% 93.3% 100.0% 93.3% 6 

2 0.990 0.003 0.003 0.003 90.0% 86.7% 90.0% 83.3% * 

3 0.620 0.127 0.127 0.127 83.3% 90.0% 93.3% 93.3% 6 

4 0.003 0.990 0.003 0.003 76.7% 100.0% 100.0% 83.3% 8 

5 0.127 0.620 0.127 0.127 76.7% 100.0% 100.0% 86.7% 8 

6 0.003 0.003 0.990 0.003 83.3% 96.7% 100.0% 96.7% * 

7 0.127 0.127 0.620 0.127 83.3% 93.3% 100.0% 96.7% 6 

8 0.003 0.003 0.003 0.990 80.0% 100.0% 100.0% 100.0% * 

9 0.127 0.127 0.127 0.620 80.0% 100.0% 100.0% 100.0% * 

10 0.495 0.495 0.005 0.005 86.7% 100.0% 93.3% 80.0% * 

11 0.373 0.373 0.128 0.128 83.3% 100.0% 100.0% 86.7% * 

12 0.495 0.005 0.495 0.005 90.0% 93.3% 100.0% 80.0% * 

13 0.373 0.128 0.373 0.128 80.0% 93.3% 100.0% 83.3% 20 

14 0.495 0.005 0.005 0.495 86.7% 90.0% 90.0% 100.0% 24 

15 0.373 0.128 0.128 0.373 83.3% 96.7% 100.0% 96.7% * 

16 0.005 0.495 0.495 0.005 80.0% 100.0% 100.0% 86.7% 20 

17 0.128 0.373 0.373 0.128 76.7% 100.0% 100.0% 90.0% 8 

18 0.005 0.495 0.005 0.495 76.7% 100.0% 96.7% 100.0% 8 

19 0.128 0.373 0.128 0.373 76.7% 96.7% 100.0% 96.7% 8 

20 0.005 0.005 0.495 0.495 80.0% 100.0% 100.0% 100.0% * 

21 0.128 0.128 0.373 0.373 80.0% 93.3% 100.0% 100.0% 20 

22 0.330 0.330 0.330 0.010 80.0% 93.3% 100.0% 83.3% 11 

23 0.290 0.290 0.290 0.130 80.0% 100.0% 100.0% 80.0% 11 

24 0.330 0.010 0.330 0.330 86.7% 90.0% 100.0% 100.0% * 

25 0.290 0.130 0.290 0.290 83.3% 96.7% 100.0% 90.0% 15 

26 0.010 0.330 0.330 0.330 76.7% 100.0% 100.0% 100.0% 8 

27 0.130 0.290 0.290 0.290 80.0% 96.7% 100.0% 96.7% 6 

28 0.330 0.330 0.010 0.330 86.7% 100.0% 83.3% 100.0% * 

29 0.290 0.290 0.130 0.290 80.0% 96.7% 96.7% 86.7% 25 

 

Looking at Table 2 it is possible to observe that: 

i) There is no combination of weights that allows meeting the target 1n̂  for all the 30 

instances. For the other objectives (i=2,3,4) it is possible to obtain AR=100% respectively 

for 13/29 22/29, 9/29 weight combinations. The mean acceptance rates across 

combinations are M(AR1)=81.7%, M(AR2)=96.4%, M(AR3)=98%, M(AR4)=92.1%. 

Hence, the most challenging objective is oLDD followed by oNS. 



ii) It is possible to find four combinations of weights (i.e. c = 8, 9, 20, 26) that allow 

concurrently meeting the targets for oOR, oBED and oNS ( 2n̂ ,
3n̂ , 4n̂ , respectively) for all 

the 30 instances. 

iii) The relationship between a Wi and ARi is neither linear nor obvious. For example, 

AR4=100%, can be obtained for W4=0.990 (c=8), W4=0.620 (c=9), W4=0.495 (c=20), 

W4=0.330 (c=24,28). 

These simple observations suggest that it is meaningful to study the relationship between one weight 

(Wi) and the corresponding performance (ARi) considering also the impact that the other weights exert 

on that same performance. To better understand the relationship between weights and acceptance 

rates, in the next section, we will perform a correlation analysis. 

5.2.2 Correlation analysis and refinement of the weight space exploration 

To investigate the relationship between weights and acceptance rates it is useful, at first, to look at 

the correlation coefficients ρi,k between Wi and ARk. Since our data violated the parametric 

assumptions, we used a non-parametric statistic, namely, the Spearman's rank correlation coefficient 

(Field et al. 2012, p.223). Such a coefficient allows assessing how well the relationship between two 

variables can be described using a monotonic function even if their relationship is not linear.  The sign 

of the ρi,k indicates the direction of association between Wi and ARk. If ARk tends to increase when Wi 

increases, ρi,k correlation coefficient is positive and vice-versa. The magnitude of ρi,k increases as Wi 

and ARk become closer to being monotone functions of each other. The squared value of the Spearman 

coefficient ρi,k 
2
 represents the proportion of variance in the ranks that two variables share (Field et al. 

2012, p.223). A large value of ρi,k, thus, implies that for those combinations for which Wi is larger 

than its median value, we can expect ARk to be larger than its median value as well. Table 3 reports 

the coefficient ρi,k and the associated p-values. 



Table 3 Spearman’s rank correlation coefficient ρ, 29 combinations of weights 

ρi,k AR1 AR2 AR3 AR4 

W1 0.67** -0.56** -0.48* -0.38* 

W2 -0.55** 0.56** 0.04 -0.30 

W3 -0.03 -0.15 0.57** -0.03 

W4 -0.21 0.15 0.01 0.78** 
not significant p > 0.05, * p < 0.05, ** p < 0.01 

 

From Table 3 emerges a large positive correlation between Wi and ARk for i=k, a large negative 

correlation between W1 and AR2 and between W2 and AR1, and a fairly large negative correlation 

between W1 and AR3, between W1 and AR4. All the other correlations are smaller and not statistically 

significant. In general, Table 3 suggests that since some weighs Wi are negatively correlated with the 

variable ARk for k ≠ i, they may affect the strength of the relationship between Wk and ARk. In statistical 

terms Wi may act as moderator of the relationship between Wk and ARk. To quantify the relationship 

between a given Wi (e.g. W2) on a given ARk (e.g. AR1) while controlling the effects of the other 

weights (e.g. W1, W3, W4) it is necessary to assess the semi-partial correlation between Wi and ARk. In 

general, semi-partial correlation coefficients, allow explaining the variance in (the rank of) one 

particular variable (ARk) from a set of predictor variables (W1, W2, W3, W4). Table 4 reports Spearman’s 

semi-partial correlation coefficient ρsi,k. 

Table 4 Spearman’s rank semi-partial correlation coefficient ρs, 29 combinations of weights 

ρsi,k AR1 AR2 AR3 AR4 

W1 0.59** -0.50** -0.37 -0.41* 

W2 -0.57** 0.50** 0.09 -0.33 

W3 -0.10 -0.16 0.50** 0.01 

W4 -0.30 0.16 0.06 0.69** 
not significant p > 0.05, * p < 0.05, ** p < 0.01  

 

Comparing Table 3 with Table 4, we observe that all the coefficients on the main diagonal of the 

correlation matrix are still significant, but smaller. It implies that the relationship between a weight 

Wi and the corresponding ARi is moderated by the other weights. Interestingly |ρs2,1|>|ρ2,1| meaning 

that the correlation between W2 and AR1 increases (in absolute value) if we rule out the effects of the 



other weights on AR1. Given the significant semi-partial correlation between W1 and AR2, between W2 

and AR1 and between W1 and AR4 it is possible to state that: 

• W1 moderates the relationships between W2 and AR2, and between W4 and AR4; 

• W2 moderates the relationship between W1 and AR1. 

Figure 1 displays, for example, the moderating effect of W2 on the relationship between W1 and AR1. 

In the figure, AR1 is plotted against W1 using different tones of grey to identify the value of W2 

associated with each point. As can be noticed, if W1 is higher than its median (ME(W1)=0.25) also 

AR1 tend to be higher than its median value (ME(AR1)=0.73), in fact ρs1,1=0.59. In addition, for each 

value of W1<0.5 low scores of AR1 correspond to large values of W2, in fact ρs2,1=-0.57. For each 

value of W1>0.5 we have only one possible value of W2, which is obviously smaller than 0.5. 

 

Figure 1 Moderating effect of W2 on the relationship between W1 and AR1 

These observations are useful to proceed in the exploration of the weight space. In fact, a fter the 

exploration of the first 29 combinations, we might be interested in exploring new weight 

combinations to identify solutions characterised by a large value of the most critical performance, i.e. 



AR1. This requires increasing the parameter defining the level of granularity to use in the weight space 

exploration, i.e. maxLevel. In our case, increasing maxLevel from 1 to 3, allows obtaining 56 new 

weight combinations (plus the 29 already explored). 

Exploring additional 56 combinations, however, can be excessively time consuming. In this study, 

we argue that the Spearman's semi-partial rank correlation coefficients ρsi,k can be used to select a 

meaningful subset of these new weight combinations. In fact, given the large positive value of 

ρs1,1(=0.59) and the large negative value of ρs2,1(=-0.57), it is reasonable to expand the exploration of 

the weight space to include only the combinations for which W1>ME(W1) and W2<ME(W2). Applying 

this heuristic selection criterion, indeed, reduces the number combinations to explore of more than 

one third (i.e. from 56 to 16). Table 5 shows, for each of value of AR1 obtained in the exploration of 

the 56 additional weight combinations, the number C of combinations returning that value and the 

number of combinations that would have been excluded or included applying the mentioned selection 

criterion. 

Table 5 Application of the selection criteria 

AR1 C Excluded Included 

76.7% 4 4 0 

80.0% 23 20 3 

83.3% 27 16 11 

86.7% 2 0 2 

Tot  56 40 16 

 

As can be noticed, the proposed selection criterion allows: 

• exploring all the combinations leading to the highest value of AR1; 

• avoiding the exploration of all the combinations leading to the smallest value of AR1; 

• avoiding the exploration of 89% of the combinations leading to value of AR1≤ ME(AR1)=0.8. 

The (new) combinations of weights leading to the best results in terms of AR1 are reported in Table 6. 



Table 6 Newly added combinations of weights leading to the largest value of AR1 

c W1 W2 W3 W4 AR1 AR2 AR3 AR4 d 

30 0.435 0.188 0.188 0.188 86.7% 100.0% 100.0% 93.3% * 

31 0.805 0.065 0.065 0.065 86.7% 90.0% 96.7% 83.3% 30 

 

Looking at Table 6, we can notice that the former combination (c=30) dominates the latter (c=31). In 

addition, combination 31 is not dominated by any of the 85(=29+56) combinations explored (due to 

space limitation the results of the 56 added combinations are not reported here). Unfortunately, none 

of the newly explored combinations returned values of AR1 higher than those obtained in the first 

round of exploration.  

Table 7 shows the values of ρs, calculated using all the 85 combinations of weights. As can be noticed, 

this expanded sample confirms the results coming from the first 29 observations: W2 is negatively 

correlated with AR1, W1 is negatively correlated with AR2, AR3, AR4, and each Wi is positively 

correlated with the corresponding ARi. 

Table 7 Spearman’s rank semi-partial correlation coefficient ρs, 85 combinations of weights 

ρsi,k AR1 AR2 AR3 AR4 
W1 0.43** -0.23* -0.23* -0.31** 

W2 -0.30** 0.34** -0.01 -0.19 

W3 -0.04 -0.02 0.36** 0.00 

W4 -0.17 -0.04 -0.03 0.58** 
not significant p > 0.05, * p < 0.05, ** p < 0.01  

 

6 Discussion 

From the computational results it emerges that the model allows successfully meeting the challenging 

objectives of the Meyer Hospital’s stakeholders. Across 30 instances, most of the weight 

combinations allows obtaining an AR of at least 80% for all the objectives. For oOR, oBED and oNS 

is even possible to concurrently obtain AR=100%. Nonetheless, the results reveal that for certain 

instances oLDD’ target is difficult to meet and that very high values of AR for this objective (e.g. AR1 



=90%) are associated with a lower value of the other ARs (see for example c=2 and c=12 in Table 2). 

This is not surprising. To meet the targets relevant to oOR, oBED and oNS, the model can select 

surgery groups from a wide set of possible alternatives. Instead, to meet the oLDD target, the model 

is obliged to select surgery groups containing surgeries with approaching due-dates. Depending on 

the instance, this may imply selecting surgery groups with large ST and/or LoS. These type of surgery 

groups are more difficult to schedule, and consequently solutions can be characterised by unbalanced 

ORs and/or bed utilisations and/or an unsatisfying throughput. Obviously, the higher the weight 

associated with oLDD, the more such a phenomenon is amplified. 

The trade-offs between objectives, obviously depend on the value chosen for the targets. Lowering 

the target would certainly allow obtaining AR=100% for all objectives. However, in situations were 

targets are challenging, is reasonable to assume that the target associated with oLDD is more complex 

to meet than the others. When this type of trade-off arises, the presented correlation analysis can help 

making sense of the unobvious relationship between the value of the weights and the performance 

obtained. This, in turn, can help performing a time-saving (additional) exploration of the weight space 

with the aim to find better solutions with respect to the critical objective. For example, the described 

trade-off between the AR relevant to oLDD and other ARs is well captured by the coefficients in Table 

4 (and confirmed when the sample is expanded, see Table 7). These coefficients, in fact, demonstrate 

that when the weight assigned to oLDD (W1) is above its median value and the one assigned to another 

objective k (Wk) is below its median value, then the acceptance rate ARk tends to be lower than its 

median value as well. This type of insight can be used to refine the exploration of the weight space. 

In fact, if after a first exploration of the weight space one wants to find better solutions with respect 

to a generic performance Pi, it makes sense to (i) use the Jones & Tamiz (2010)’s algorithm to 

generate new and more fine-grained combinations of weights; (ii) calculate the ρsi,k matrix, and select 

the weights Wk1 and Wk2 that have, respectively, the largest positive and negative correlation with Pi; 

(iii) solve the goal programming model using only those weight combinations for which 

Wk1>ME(Wk1) and Wk2<ME(Wk2). Obviously as any heuristic approach the presented weight selection 



criterion doesn’t guarantee to explore the best possible combinations of weights. However, it certainly 

allows excluding a large number of weight combinations leading to poor solutions, while exploring 

only a limited set of “promising” combinations.  

7 Conclusion and limitation 

In this study, we presented a novel mixed integer goal-programming model which allows determining 

the surgery groups to be scheduled in a multiple day planning period (i.e. 2 weeks), in context where 

each specialty is pre-assigned to specific sessions, with the multiple objective of obtaining a desired: 

(i) patient due date fulfilment rate, (ii) OR utilisation, (iii) bed utilisation, (iv) number of scheduled 

surgeries. An extensive experimental campaign based on real data coming from a leading Italian 

hospital, revealed that the model in most of the cases allows meeting the targets fixed by the hospital’ 

stakeholders. As expected, it also shows that it is not always possible to meet all the targets 

concurrently and suggests a way to perform an information-guided exploration of the weight space 

to find solutions representing a satisfactory trade-off. This study considers hospital features that are 

shared by a large number of the contributions available in the literature. Consequently, both the 

presented model and the following analysis can be of interest for a wide audience of practitioners and 

scholars.  

This study has two main limitations. First, we investigated only one hospital setting. This led us to 

neglect hospital resources (e.g. ICU, electro-medical devices) or objectives that may be highly critical 

in other settings. Second, we have not investigated the scalability of the presented MIP model. As 

such we cannot predict how the model would behave if the planning horizon were extended or if the 

number of ORs and beds increases. These two issues clearly limit the external validity of our findings. 

Future research, thus, should be devoted at performing an extensive computational campaign 

including a large number of randomly generated and/or benchmark instances (i.e. those proposed by 

Leeftink & Hans 2016) and several combinations of target values. 
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