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Global Kneser solutions to nonlinear equations
with indefinite weight

Zuzana Došlá, Mauro Marini and Serena Matucci

Abstract. The paper deals with the nonlinear differential equation(
a(t)Φ(x′)

)′
+ b(t)F (x) = 0, t ∈ [1,∞),

in the case when the weight b has indefinite sign. In particular, the problem of

the existence of the so-called globally positive Kneser solutions, that is solutions

x such that x(t) > 0, x′(t) < 0 on the whole closed interval [1,∞), is considered.

Moreover, conditions assuring that these solutions tend to zero as t → ∞ are

investigated by a Schauder’s half-linearization device jointly with some properties

of the principal solution of an associated half-linear differential equation. The

results cover also the case in which the weight b is a periodic function or it is

unbounded from below.
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1 Introduction

In the paper, we consider the nonlinear differential equation for t ∈ [1,∞)(
a(t)Φ(x′)

)′
+ b(t)F (x) = 0, (1)
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where Φ(u) := |u|α sgnu, α > 0, associated to the boundary conditions

x(1) = c > 0, x(t) > 0 for t ≥ 1, lim
t→∞

x(t) = 0. (2)

Denote by Ψ the inverse function of Φ, that is Ψ(u) := |u|1/α sgnu. We
assume that the functions a, b are continuous functions on [1,∞), a(t) > 0,
and

Ja =

∫ ∞
1

Ψ

(
1

a(t)

)
dt <∞.

Moreover, the nonlinearity F is a continuous function on R such that uF (u) >
0 for u 6= 0 and

lim sup
u→0

F (u)

Φ(u)
<∞. (3)

The BVP (??)-(??) arises in the investigation of radial solutions in a fixed
exterior domain for elliptic equations, see, e.g., [?]. Boundary value problems
(BVPs), associated to equations of type (??), have attracted considerable
attention in the last years, especially when they are examined on unbounded
domains, see [?, ?, ?, ?, ?, ?]. Positive decreasing solutions of (??) are usually
called Kneser solutions and have been investigated by many authors, see,
e.g. [?, ?] and the references therein. Their asymptotic behavior is deeply
studied when the weight b has fixed sign. When b changes sign, the structure
of nonoscillatory solutions is more complicated, due to the possible presence
of the so-called weakly oscillatory solutions, that is nonoscillatory solutions
with changing-sign derivatives, see, e.g., [?, page 1248]. As far as we know, in
this case very few results deal with the existence of Kneser solutions and with
their decay at infinity, see, e.g., [?, ?, ?, ?, ?]. The investigated problem can
be also viewed as an extension to the half-line of recent results on nonlinear
BVPs on a compact interval, see, e.g., [?] or [?] and references therein, when
the weight has indefinite sign or definite sign, respectively. The paper is
motivated also by [?, ?] and completes some results there. More precisely,
in [?] some asymptotic BVPs are studied for (??) when F (u) = |u|β sgnu,
β > 0 and b(t) ≤ 0 and in [?] equations with Sturm-Liouville operator, that
is when α = 1, are considered.

Our main scope is to state sufficient conditions for the existence of Kneser
solutions of (??) subject to the conditions (??). Observe that equation (??)
is a nonlinear perturbation of the equation(

a(t)Φ(x′)
)′

= 0,
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whose solution x satisfying (??) is

x(t) =
c

Ja

∫ ∞
t

Ψ

(
1

a(t)

)
dt.

Our method is based on a fixed point theorem for operators defined in
a Fréchet space by a Schauder’s linearization device, which does not require
the explicit form of the fixed point operator, see [?, Theorem 1.3]. By means
of this approach, the study of the topological properties (compactness and
continuity) of the fixed-point operator, can be quite simplified because, very
often, these properties become an immediate consequence of good a-priori
bounds. These bounds are obtained using some properties of principal solu-
tions of an associated half-linear equation, i.e. equation with F (u) = Φ(u).
In Section 2 some properties of half-linear equations are recalled, and some
new characterizations of the principal solution are established. A discussion
on the assumptions, that are needed for the solvability of the BVP (??)-(??),
is given in the final section, jointly with some examples. We point out that
our existence result covers also the cases in which the weight b is a periodic
function or it is unbounded from below.

We close the Introduction with some notations. For any solution x of
(??), denote by x[1] the quasiderivative of x, i.e. the function

x[1](t) = a(t)Φ(x′(t)). (4)

Further, denote by b+, b−, respectively, the positive and the negative part of b,
i.e., b+(t) = max {b(t), 0} , b−(t) = −min {b(t), 0} . Thus b(t) = b+(t)−b−(t).

2 Half-linear equations

Consider the half-linear equation(
a(t)Φ(y′)

)′
+ β(t)Φ(y) = 0, (5)

where β is a continuous function for t ≥ 1. When (??) is nonoscillatory, the
qualitative behavior of solutions of (??) is often studied via the associated
Riccati equation, that is the equation

w′ + β(t) +R(t, w) = 0, (6)
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where

R(t, w) = α|w|Ψ
(
|w|
a(t)

)
,

see, e.g., [?, Chapter 2.2.]
Recently, the notion of principal solution to (??) has been introduced in

[?, ?, ?] by following the Riccati approach, see, also [?, Section 4.2.]. More
precisely, among all eventually different from zero solutions of (??), there
exists one, say wx, which is continuable to infinity and is minimal in the
sense that any other solution w of (??), which is continuable to infinity,
satisfies wx(t) < w(t) as t→∞. This concept extends to the half-linear case
the well-known notion of principal solution that was introduced in 1936 by
W. Leighton and M. Morse for the linear case, see [?, Chapter XI. 6.].

Using the Sturmian separation theorem, the following comparison result
holds. It is an easy consequence of [?, Theorem 4.2.2] and extends to the
half-linear case a well-known criterion for the linear case, see [?, Corollary
6.5]. We recall the result in the form that will be needed in the sequel.
Consider the half-linear equations(

a(t)Φ(y′)
)′

+ β2(t)Φ(y) = 0, (7)(
a(t)Φ(z′)

)′
+ β1(t)Φ(z) = 0, (8)

where βi i = 1, 2 are continuous on [1,∞) and

β1(t) ≤ β2(t) for t ≥ T ≥ 1. (9)

Lemma 1. [?, Theorem 4.2.2] Let (??) be nonoscillatory. Assume (??) and
denote by y0, z0 the principal solutions of (??) and (??), respectively, such
that y0(t) > 0, z0(t) > 0 for t ≥ T1 ≥ T and z0(T1) = y0(T1). Then we have
for t ≥ T1

0 < z0(t) ≤ y0(t). (10)

In addition, if y′0(t) < 0 on [T1,∞), then

z′0(t) < 0 for t ≥ T1. (11)

Proof. Consider the associated Riccati equations to (??), (??), and denote
by vy, wz their minimal solutions, respectively. Since y0 and z0 are positive
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on [T1,∞), the functions vy, wz exist on [T1,∞). Using [?, Theorem 4.2.2]
we get for t ≥ T1

wz(t) =
z
[1]
0 (t)

Φ(z0(t))
≤ y

[1]
0 (t)

Φ(y0(t))
= vy(t) (12)

or
z′0(t)

z0(t)
≤ y′0(t)

y0(t)
. (13)

Integrating (??) on [T1, t) we get (??). Finally, (??) follows from (??). 2

Lemma ?? requires the positiveness of the principal solution in a a-priori
fixed interval. To this end an important role is played by the disconjugacy
property for (??). We recall that (??) is said to be disconjugate on an interval
I ⊂ [T,∞) if any nontrivial solution of (??) has at most one zero on I. We
refer to [?, Chapters 1.2 and 5.1] for basic properties of disconjugacy. If (??)
is disconjugate on [T,∞), T ≥ 1, then an easy consequence of [?, Theorem
4.2.3.] gives that the principal solution of (??) does not have zeros on (T,∞).

Lemma 2. Equation (??) is disconjugate on [T,∞) if and only if (??) has
the principal solution without zeros on (T,∞).

Proof. Let (??) be disconjugate on [T,∞) and let y0 be the principal
solution of (??). By contradiction, assume that y0 has a zero at some T1 > T.
Denote by y a nonprincipal solution of (??) with a zero point at some t, with
T < t < T1. Thus, by [?, Theorem 4.2.3.], the solution y has also a zero
point on (T1,∞), that is a contradiction with the disconjugacy of (??). The
vice-versa follows from [?, Theorem 1.2.7.]. 2

Nevertheless, disconjugacy cannot be sufficient for the positiveness of the
principal solution on the whole close half-line [T,∞), as it is shown in [?]. A
sufficient condition is given by the following. Consider the equation(

a1(t)Φ(ξ′)
)′

+ β1(t)Φ(ξ) = 0, (14)

where
a1(t) ≤ a(t), β(t) ≤ β1(t) on t ≥ T ≥ 1, (15)

i.e. equation (??) a Sturmian majorant of (??). The following holds.
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Lemma 3. If (??) is disconjugate on [T,∞) and at least one of the inequal-
ities in (??) is strict on an interval of positive measure, then the principal
solution of (??) is positive on the whole closed interval [T,∞).

Proof. Since (??) is disconjugate on [T,∞), equation (??) is disconjugate
too on the same interval. From Lemma ??, equation (??) has the principal
solution y0 without zeros on (T,∞). If y0(T ) = 0, in view of [?, Theorem
4.2.3.] every solution of (??) has a zero point on (T,∞), that is a contradic-
tion. Hence y0(T ) 6= 0 and the assertion follows. 2

We close the section with some necessary and sufficient characterizations
of the principal solution of (??), that are needed in the sequel. Define

Jβ =

∫ ∞
1

|β(t)|Φ
(∫ ∞

t

Ψ

(
1

a(s)

)
ds

)
dt. (16)

Lemma 4. Assume Jβ <∞. Then (??) is nonoscillatory and a solution y0
of (??), y0(t) > 0 for large t, is its principal solution if and only if any of
the following conditions is satisfied.
i1)

lim
t→∞

y0(t)

y(t)
= 0 (17)

for any nontrivial solution y of (??) such that y 6= λy0, λ ∈ R.
i2)

y′0(t) < 0 for large t and lim
t→∞

y0(t) = 0, 0 < lim
t→∞
|y[1]0 (t)| <∞. (18)

i3)
lim
t→∞

y0(t) = 0, β Φ(y0) ∈ L1[1,∞). (19)

Proof. The nonoscillation of (??) follows from [?, Theorem 1]. The charac-
terizations of the principal solution in claims i1) and i2) are in [?, Theorem
4] and [?, Theorem 3], respectively.

Now, let us show that (??) is a necessary and sufficient characterization
of the principal solution of (??). If y0 is the principal solution of (??), then
(??) holds. Thus, from (1 ≤ t1 ≤ t2)

y
[1]
0 (t1)− y[1]0 (t2) =

∫ t2

t1

β(s)Φ(y0(s))ds (20)
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we get β Φ(y0) ∈ L1[1,∞) and so (??) is valid. Conversely, assume (??). By
contradiction, suppose that y0 is not the principal solution of (??) and let y
be the principal solution of (??) such that y(t) > 0 for large t. From (??),

the quasiderivative y
[1]
0 has a finite limit as t tends to infinity. Since y0 is

not the principal solution, from (??) we have limt→∞ y
[1]
0 (t) = 0. Hence, we

obtain

lim
t→∞

y[1](t)

y
[1]
0 (t)

=∞,

and, by the l’Hopital rule we get

lim
t→∞

y(t)

y0(t)
=∞,

which contradicts (??). 2

Observe that the characterization (??), roughly speaking, means that the
principal solution is the ”smallest one” in a neighborhood of infinity.

When β+(t) = max {β(t), 0} is identically zero for any large t, then the
principal solution of (??) can be characterized without assuming Jβ < ∞.
The following result is an easy consequence of [?, Corollary 3.3].

Lemma 5. Assume β+(t) = 0 for t ≥ t1 ≥ 1. Then (??) is nonoscillatory
and a solution y0 of (??), y0(t) > 0 for large t, is its principal solution if and
only if

y′(t) < 0 for large t and lim
t→∞

y0(t) = 0. (21)

Proof. Since β(t) ≤ 0 for any large t, equation (??) is nonoscillatory, see,
e.g., [?, Lemma 4.1.2.]. Define

J1 = lim
T→∞

∫ T

1

Ψ
( 1

a(r)

)
Ψ
(∫ r

1

|β(s)|ds
)
dr,

J2 = lim
T→∞

∫ T

1

Ψ
( 1

a(r)

)
Ψ
(∫ T

r

|β(s)|ds
)
dr,

If J2 =∞, the assertion follows from [?, Corollary 3.3.]. If J2 <∞, we have
for 1 < T1 < T∫ T

1

Ψ
( 1

a(r)

)
Ψ
(∫ T

r

|β(s)|ds
)
dr >

(∫ T1

1

Ψ
( 1

a(r)

))
Ψ

(∫ T

T1

|β(s)|ds
)
dr

)
.
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Thus, since Ja <∞, we obtain

lim
T→∞

∫ T

1

|β(s)|ds <∞,

and so J1 < ∞. Hence, the assertion follows again from [?, Corollary 3.3.].
2

Observe that the characterization (??) can be not true when Jα = ∞.
Indeed, in this case, if J1 =∞ and J2 <∞, then all nontrivial solutions y of
(??), with β+(t) = 0 for t ≥ t1 ≥ 1, verify limt→∞ |y(t)| > 0, see [?, Theorem
4.1.4.].

3 The main result

In this section we prove the existence of solutions for the BVP (??)-(??). The
solvability is based on a general fixed point theorem for operators defined in
a Fréchet space by a Schauder’s linearization device ([?, Theorem 1.4]). In
particular, this result does not require the explicit form of the fixed point
associated operator. Moreover, it seems particularly useful when the BVP is
considered in a noncompact interval. In this case, it permit us to overcome
difficulties which originate from the check of topological properties, like the
compactness, of the fixed point associated operator. Roughly speaking, it
reduces the solvability of the BVP to the existence of a-priori bounds for
solutions of another, possibly nonlinear, BVP. We recall it in the form that
will be used in the following.

Theorem 1. Consider the BVP on [1,∞),

(a(t)Φ(x′))′ + b(t)F (x) = 0, x ∈ S, (22)

where S is a nonempty subset of the Fréchet space C[1,∞) of the continuous
functions defined in [1,∞) endowed with the topology of uniform convergence
on compact subsets of [1,∞). Let G be a continuous function on R2, such
that F (d) = G(d, d) for any d ∈ R. Assume that there exist a nonempty,
closed, convex and bounded subset Ω ⊆ C[1,∞) and a bounded closed subset
S1 ⊆ S ∩ Ω such that for any u ∈ Ω the BVP on [1,∞)

(a(t)Φ(x′))′ + b(t)G(u(t), x(t)) = 0, x ∈ S1 (23)

admits a unique solution. Then the BVP (??) has at least a solution.
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Denote by F̃ the function

F̃ (v) =
F (v)

Φ(v)
on (0,∞). (24)

In view of (??), fixed c > 0, there exists Mc such that

F̃ (v) ≤Mc on [0, c]. (25)

The following holds.

Theorem 2. Let c > 0 be fixed and Mc be given by (??). Consider the
half-linear differential equation (??), where

a1(t) ≤ a(t), β1(t) ≥Mcb+(t) on t ≥ 1, (26)

and at least one of the inequalities in (??) is strict on an interval of posi-
tive measure. Assume that (??) is disconjugate on [1,∞) and its principal
solution ξ0 is positive on (1,∞) and decreasing for any t ≥ 1.

Then, the BVP (??)-(??) has at least one solution x if any of the following
conditions holds.

i1)

lim
T→∞

∫ T

1

|b(t)|Φ
(∫ ∞

t

Ψ

(
1

a(s)

)
ds

)
dt <∞. (27)

i2) There exists t ≥ 1 such that b+(t) = 0 for any t ≥ t.
Moreover, the solution x is decreasing for any t and, if i1) holds, the limit

lim
t→∞

x(t)∫∞
t

Ψ (a−1(s)) ds
(28)

is finite and different from zero.

Proof. Consider the equations(
a(t)Φ(y′)

)′
+Mcb+(t)Φ(y) = 0, (29)(

a(t)Φ(z′
)′ −Mcb−(t)Φ(z) = 0. (30)

Since (??) is disconjugate on [1,∞), from (??) and Lemma ?? we have that
the principal solution y0 of (??) started at y0(1) = c is positive on the whole
interval [1,∞). Moreover, we have limt→∞ y0(t) = 0 as it follows from Lemma
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?? or from Lemma ??, according to i1) or i2) holds. Since the principal
solution of the Sturmian majorant (??) is positive decreasing, in view of
Lemma ?? we have y′0(t) < 0 for any t ≥ 1. Since −Mcb−(t) ≤ 0 ≤Mcb+(t),
equation (??) is a Sturmian majorant for (??). Thus (??) is disconjugate
on [1,∞) too and its principal solution z0, z0(1) = c, is positive for t ≥ 1.
Using the comparison result stated in Lemma ??, we get on [1,∞)

0 < z0(t) ≤ y0(t), z′0(t) < 0, lim
t→∞

z0(t) = 0.

Case i1). Now, assume (??). Let Ω and S be the subsets of the Fréchet
space C[1,∞) given by

Ω = {u ∈ C[1,∞), z0(t) ≤ u(t) ≤ y0(t)} , (31)

S =
{
x ∈ C[1,∞), x(1) = c, x(t) > 0, lim

t→∞
x(t) = 0, b Φ(x) ∈ L1[1,∞)

}
.

Notice that Ω ⊂ S. Indeed, if (??) holds, from (??) a positive constant My

exists such that

y0(t) ≤My

∫ ∞
t

Ψ

(
1

a(s)

)
ds, t ≥ 1. (32)

Thus, we have for every u ∈ Ω∫ ∞
1

|b(t)|Φ(u(t)) dt ≤
∫ ∞
1

|b(t)|Φ(y0(t)) dt

≤ Φ(My)

∫ ∞
1

|b(t)|Φ
(∫ ∞

t

Ψ

(
1

a(s)

)
ds

)
dt <∞.

Hence, taking into account that z0(1) = y0(1) = c, and limt→∞ y0(t) = 0, we
obtain Ω ⊂ S. For any u ∈ Ω, consider the half-linear equation

(a(t)Φ(x′)′ + b(t)F̃ (u(t))Φ(x) = 0, (33)

where F̃ is given in (??). In view of Lemma ??, for any u ∈ Ω, equation
(??) has a unique solution xu ∈ S, which is the principal solution. In view
of (??), equations (??) and (??) are a Sturmiam majorant and a Sturmian
minorant for (??), respectively. Thus, using again the comparison result in
Lemma ??, we obtain on [1,∞)

0 < z0(t) ≤ xu(t) ≤ y0(t), (34)
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i.e., xu ∈ Ω. By applying Theorem ??, with S1 = Ω ∩ S = Ω, we get the
existence of a solution x0 of (??) on [1,∞) belonging to the set Ω∩S. Clearly
x0 satisfies all the conditions in (??). Moreover, since x0 is the principal
solution of (??) for u = x0, from Lemma ?? we get

−∞ < lim
t→∞

x
[1]
0 (t) < 0,

and, using the l’Hopital rule, we obtain that the limit (??) is finite and
different from zero.

Case i2). Assume that t ≥ 1 exists such that b+(t) = 0 for any t ≥ t. Let Ω
be the subset of C[1,∞) given by (??). As before, for any u ∈ Ω, equation
(??) has a unique principal solution xu. In view of Lemma ??, we have
xu ∈ S2, where

S2 =
{
x ∈ C[1,∞), x(1) = c, x(t) > 0, lim

t→∞
x(t) = 0

}
,

and, clearly, if x is a solution of (??) and x ∈ S2, then x is the principal
solution. A similar argument to the one given in case i1) gives (??) and so
Ω ⊆ S2. From Theorem ??, with S1 = Ω ∩ S2 = Ω, there exists a solution
x0 of (??) on [1,∞). Since x0 is also principal solution of (??) with u = x0,
and limt→∞ y0(t) = 0, in view of (??) the solution x0 satisfies the boundary
conditions (??). 2

As follows from the proof of Theorem ??, when (??) holds, then (??) has
a positive solution x such that limt→∞ x(t) = 0, −∞ < limt→∞ x

[1](t) < 0.
The following result illustrates, in some sense, the necessity of assumption
(??) for obtaining solutions with this kind of asymptotic growth at infinity.

Theorem 3. If there exist a solution x of (??) which is not identically zero
for large t and

lim
t→∞

x(t) = lim
t→∞

x[1](t) = 0, (35)

then

lim
T→∞

∫ T

1

|b(t)|Φ
(∫ ∞

t

Ψ
(
a−1(s)

)
ds

)
dt =∞. (36)

Proof. By contradiction, assume (??). By (??) there exists M > 0 such that
for u ∈ [−1, 1]

|F (u)| ≤M |Φ(u)|.
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Choose t0 large so that∫ ∞
t0

|b(s)|Φ
(∫ ∞

s

Ψ
(
a−1(r)

)
dr

)
ds < (2M)−1. (37)

Without loss of generality, suppose |x(t)| ≤ 1 on [t0,∞). From (??) we get
for t ≥ t0

|x[1](t)| ≤
∫ ∞
t

|b(s)||F (x(s))|ds ≤M

∫ ∞
t

|b(s)|Φ(|x(s)|)ds. (38)

Since |x[1]| is bounded for t ≥ t0 and (??) holds, there exists a point T of
maximum, t0 ≤ T ≤ ∞, that is

max
t≥t0
|x[1](t)| = |x[1](T )|. (39)

Since x is not identically zero for large t we have |x[1](T )| > 0. Moreover,
integrating (??) we get

|x(t)| ≤
∫ ∞
t

Ψ
(
a−1(r)

)
Ψ(|x[1](r)|)dr.

Hence, from (??), (??) and (??) we have

|x[1](t)| ≤M

∫ ∞
t

|b(s)|Φ
(∫ ∞

s

Ψ
(
a−1(r)

)
Ψ(|x[1](r)|)dr

)
ds ≤

≤M |x[1](T )|
∫ ∞
t0

|b(s)|Φ
(∫ ∞

s

Ψ
(
a−1(r)

)
dr

)
ds ≤ |x

[1](T )|
2

which gives a contradiction for t = T . 2

Observe that in Theorem ?? the monotonicity of the solution x for large
t, is not required. Hence, if (??) has a (nontrivial) oscillatory solution x
which satisfies (??), then (??) is valid.

4 Concluding remarks

Theorem ?? requires that there exists a Sturmian majorant of the half-linear
equation (??) satisfying suitable properties.
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A prototype of an equation which satisfies these properties can be easily
obtained from the well-known Euler equation

(
|h′|p−1 sgnh′

)′
+

(
p− 1

p

)p
t−p|h| sgnh = 0, (40)

where p > 1. It is well-known, see, e.g., [?, page 146], that the function

h0(t) = t(p−1)/p

is the principal solution of equation (??). Using the transformation y(t) =
|h′(t)|p−1 sgnh′(t) and setting α = (p− 1)−1, we obtain the half-linear equa-
tion (

t1+αΦ(y′)
)′

+

(
1

1 + α

)1+α

Φ(y) = 0. (41)

From [?, Theorem 4.2.4.], the function

y0(t) =

(
1

1 + α

)1/α

t−1/(1+α)

is the principal solution of (??). Moreover, y0 is positive decreasing on the
closed interval [1,∞) and so (??) is disconjugate on the same interval. Then
the following holds.

Lemma 6. Consider equation (??), with Φ(u) = |u|α sgnu. Assume that

a(t) ≥ t1+α, Mcb+(t) ≤
(

1

1 + α

)1+α

, t ∈ [1,∞), (42)

where Mc is given in (??) and at least one of the inequalities in (??) is
strict on an interval of positive measure. Then equation (??) has a Sturmian
majorant whose principal solution is positive decreasing on [1,∞).

From here and Theorem ?? we get

Corollary 1. Let c > 0 be fixed and Mc be given by (??). Assume that
(??) holds and at least one of the inequalities in (??) is strict on an interval
of positive measure. If (??) holds or b+(t) = 0 for large t, then the BVP
(??)-(??) has a Kneser solution.
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Our result is illustrated by the following examples.

Example 1. Consider the equation(
a(t)(x′)3

)′
+ b(t) F (x) = 0, t ≥ 1, (43)

where
a(t) = 1 + t4, b(t) = 16−2 exp (1− t) cos t (44)

and F (u) = |u|β sgnu, β > 3. Let c ∈ (0, 1] be fixed. Then Mc = cβ ≤ 1 and
for t ≥ 1

Mcb+(t) ≤ 16−2 exp (1− t) ≤ 16−2.

Moreover, the condition (??) is valid. In view of Corollary ??, equation (??)
has a Kneser solution x satisfying (??) for any c ∈ (0, 1], and by Theorem ??

lim
t→∞

x(t)∫∞
t
a−1/3(s) ds

= `x, 0 < `x <∞.

Example 2. Consider the equation(
t2|x′|1/2 sgnx′

)′
+ b(t) F (x) = 0, t ≥ 1, (45)

where

b(t) =

√
2

27
( (1− sgn(t− 10)) sin t− | sin t|)

and F (u) = u. For any c ∈ (0, 1] fixed, we have Mc = c ≤ 1 and for t ≥ 1 it
holds

Mcb+(t) ≤ 2

√
2

27
.

Moreover, b(t) ≤ 0 for t ≥ 10. Thus by Corollary ??, equation (??) has a
Kneser solution x satisfying (??) for any c ∈ (0, 1].

Remark. When b+(t) = 0 for any t ≥ t and (??) holds, then Theorem
?? gives the existence of a positive solution x of (??) such that the limit
(??) is finite and different from zero. When (??) does not hold, then the
precise asymptotic behavior of decaying solutions of (??) is, in general, a hard
problem. Some results in this direction can be obtained via a comparison
criterion in [?]. Another powerful tool for obtaining a precise asymptotic
analysis of positive decaying solutions is based on the framework of regular
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variation in the sense of Karamata, see the book [?]. In particular, we refer to
[?, ?] and [?, Theorem 3.3.], in which the generalized Thomas-Fermi equation
is considered.

Open problem. A closer examination of the argument in the proof of
Theorem ?? shows that a necessary and sufficient characterization of the
principal solution to the half-linear equation (??) plays a crucial role. When
(??) holds, this property is given by Lemma ??-i3). Moreover, when b+(t) = 0
for large t, the additional condition (??) is unnecessary, because in this case
a necessary and sufficient characterization of the principal solution is given
in Lemma ??. If b+ 6≡ 0 in any neighborhood of infinity, then (??) can have
positive solutions with changing-sign derivatives and the characterizations
of principal solutions given in Lemma ?? can fail. Thus the following open
problem arises: when b does not have fixed sign, is Theorem ?? valid without
the assumption (??)?
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