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2LE2I, Université de Bourgogne, BP 47 870, 21078 Dijon Cedex, France

Email: vvajnov@u-bourgogne.fr

Received 19 January 2014

A cross-bifix-free set of words is a set in which no prefix of any length of any word is the

suffix of any other word in the set. A construction of cross-bifix-free sets has recently

been proposed in (Chee et al. 2013) within a constant factor of optimality. We propose a

trace partitioned Gray code for these cross-bifix-free sets and a CAT algorithm

generating it.

1. Introduction

A cross-bifix-free set of words is a set where, given any two words over an alphabet,

possibly the same, any prefix of the first one is not a suffix of the second one and

vice versa. Cross-bifix-free sets are involved in the study of distributed sequences for

frame synchronization (de Lind van Wijngaarden and Willink 2000). The problem of

determining such sets is also related to several other scientific applications, for instance

in pattern matching (Crochemore et al. 2007) and automata theory (Berstel et al. 2009).

Fixed the cardinality q of the alphabet and the length n of the words, a matter is

the construction of a cross-bifix-free set with the cardinality as large as possible. An

interesting method has been proposed in Bajic (2007) for words over a binary alphabet.

In a recent paper (Chee et al. 2013) the authors revisit the construction of Bajic (2007)

and generalize it obtaining cross-bifix-free sets of words with greater cardinality over an

alphabet of arbitrary size. They also show that their cross-bifix-free sets have a cardinality

close to the maximum possible; and to our knowledge this is the best result in literature

about the size of cross-bifix-free sets.

It is worth to mention that an intermediate step between the original method (Bajic

2007) and its generalization (Chee et al. 2013) has been proposed by Bilotta et al. (2012):

it is constituted by a different construction of binary cross-bifix-free sets based on lattice

paths which allows to obtain greater cardinality if compared to the ones in Bajic (2007).

Once a class of objects is defined, in our case words, often it could be useful to list

or generate them according to a particular criterion. A special way to do this is their
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generation in a way such that any two consecutive words differ as little as possible, i.e.,

in Gray code order (Gray 1953). In the case the objects are words, as in our, we can

specialize the concept of Gray code saying that it is an infinite set of word-lists with

unbounded word-length such that the Hamming distance between any two adjacent words

is bounded independently of the word-length (Walsh 2003) (the Hamming distance is the

number of positions in which the two successive words differ (Hamming 1950)). Gray

codes find useful applications in circuit testing, signal encoding, data compression, teleg-

raphy, error correction in digital communication and others. They are also widely studied

in the context of combinatorial objects as: permutations (Johnson 1963), Motzkin and

Schröder words (Vajnovszki(2) 2001), derangements (Baril and Vajnovszki 2004), invo-

lutions (Walsh 2001), compositions, combinations, set-partitions (Ruskey 1993; Sagan

2010), and so on.

In this work we propose a Gray code for the cross-bifix-free set S
(k)
n,q (Chee et al. 2013).

It is formed by length n words over the q-ary alphabet A = {0, 1, . . . , q − 1} containing

a particular sub-word avoiding k consecutive 0’s (for more details see the next section).

First we propose a Gray code for S
(k)
n,2 over the binary alphabet {0, 1}, then we expand

each binary word to the alphabet A. The expansion of a binary word α is obtained

replacing all the 1’s with the symbols of A different from 0 producing a set of words with

the same trace α. The Gray code we get is trace partitioned in the sense that all the

words with the same trace are consecutive.

2. Definitions and tools

Let n ≥ 3, q ≥ 2 and 1 ≤ k ≤ n − 2. The cross-bifix-free set S
(k)
n,q is the set of all length

n words s1s2 · · · sn over the alphabet {0, . . . , q − 1} satisfying:

— s1 = . . . = sk = 0;

— sk+1 6= 0;

— sn 6= 0;

— the subword sk+2 . . . sn−1 does not contain k consecutive 0’s.

Throughout this paper we are going to use several standard notations which are typical

in the framework of sets and lists of words. For the sake of clearness we summarize the

ones used here.

For a set of words L over an alphabet A we denote by L an ordered list for L, and

— L denotes the list obtained by covering L in reverse order;

— if L′ is another list, then L ◦ L′ is the concatenation of the two lists, obtained by

appending the words of L′ after those of L;

— first(L) and last(L) are the first and the last word of L, respectively;

— if u is a word in A∗, then u ·L (resp. L·u) is a new list where each word has the form

uω (resp. ωu) where ω is any word of L;

— if u is a word in A∗, then |u| is its length, and un = uuu . . . u
︸ ︷︷ ︸

n

.
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For our purpose we need a Gray code list for the set of words of a certain length over

the (q − 1)-ary alphabet {1, 2, . . . , q − 1}, q ≥ 3. An obvious generalization of the Binary

Reflected Gray Code (Gray 1953) to the alphabet {1, 2, . . . , q − 1} is the list Gn,q for the

set of words {1, 2, . . . , q− 1}n defined by Er and Williamson (Er 1984; Williamson 1985)

where is also shown that it is a Gray code with Hamming distance 1. The authors defined

this list as:

Gn,q =







λ if n = 0,

1 · Gn−1,q ◦ 2 · Gn−1,q ◦ · · · ◦ (q − 1) · G′
n−1,q if n > 0,

(1)

where G′
n−1,q is Gn−1,q or Gn−1,q according on whether q is even or odd. The reader can

easily verify the following proposition.

Proposition 2.1. For q ≥ 3,

— first(Gn,q) = 1n;

— last(Gn,q) = (q − 1)1n−1 if q is odd, and (q − 1)n if q is even.

Now we are going to present another tool we need in the paper. If β is a binary word of

length n such that |β|1 = t (the number of 1’s in β), we define the expansion of β, denoted

by ǫ(β), as the list of (q − 1)t words, where the i-th word is obtained by replacing the t

1’s of β by the t symbols (read from left to right) of the i-th word in Gt,q. For example,

if q = 3 and β = 01011 (the trace), then G3,3 = (111, 112, 122, 121, 221, 222, 212, 211) and

ǫ(β) = (01011, 01012, 01022, 01021, 02021, 02022, 02012, 02011). Notice that in particular

first(ǫ(β)) = β and all the words of ǫ(β) have the same trace.

We observe that ǫ(β) is the list obtained from Gt,q inserting some 0’s, each time in the

same positions. Since Gt,q is a Gray code and the insertions of the 0’s does not change

the Hamming distance between two successive word of ǫ(β) (which is 1), the following

proposition holds.

Proposition 2.2. For any q ≥ 3 and binary word β, the list ǫ(β) is a Gray code.

3. Trace partitioned Gray code for S
(k)
n,q

Our construction of a Gray code for the set S
(k)
n,q of cross-bifix-free words is based on two

other lists:

— F
(k)
n , a Gray code for the set of binary words of length n avoiding k consecutive 0’s,

and

— H
(k)
n,q, a Gray code for the set of q-ary words of length n which begin and end by a

non zero value and avoiding k consecutive 0’s. In particular, H
(k)
n,2 = 1 · F

(k)
n−2 · 1.

Finally, we will define the Gray code list S
(k)
n,q for the set S

(k)
n,q as 0k · H

(k)
n−k,q.
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3.1. The list F
(k)
n

Let Cn be the list of binary words defined as:

Cn =







λ if n = 0,

1 · Cn−1 ◦ 0 · Cn−1 if n ≥ 1,

(2)

with λ the empty word. The list Cn is a Gray code for the set {0, 1}n and it is a slight

modification of the original Binary Reflected Gray Code list defined in Gray (1953).

By the definition of Cn given in relation (2), we have for n ≥ 1,

— last(Cn) = 0 · last(Cn−1) = 0n;

— first(Cn) = 1 · first(Cn−1) = 1 · last(Cn−1) = 10n−1.

Let now define the list F
(k)
n of length n binary words as:

F (k)
n =







Cn if 0 ≤ n < k,

1 · F
(k)
n−1 ◦ 01 · F

(k)
n−2 ◦ 001 · F

(k)
n−3 ◦ · · · ◦ 0k−11 · F

(k)
n−k if n ≥ k.

(3)

For k ≥ 2 and n ≥ 0, F
(k)
n is a list for the set of length n binary words with no

k consecutive 0’s, and Proposition 3.2 says that it is a Gray code (actually, F
(k)
n is a

adaptation of a similar list defined earlier (Vajnovszki(1) 2001)).

It is easy to see that the number of binary words in F
(k)
n is given by f

(k)
n , the well

known k-Fibonacci integer sequence defined by:

f (k)
n =







2n if 0 ≤ n < k,

f
(k)
n−1 + f

(k)
n−2 + · · · + f

(k)
n−k, if n ≥ k,

and the words in F
(k)
n are said k-generalized Fibonacci words. For example, the list F

(3)
3

for the length 3 binary words avoiding 3 consecutive 0’s is

F
(3)
3 = (100, 101, 111, 110, 010, 011, 001).

Proposition 3.1.

— first(F
(k)
n ) is the length n prefix of the infinite periodic word (10k−11)(10k−11) . . .;

— last(F
(k)
n ) is the length n prefix of the infinite periodic word (0k−111)(0k−111) . . ..

Proof. For the first point, if 1 ≤ n < k, then first(F
(k)
n ) = first(Cn) = 10n−1; and if

n = k, then first(F
(k)
n ) = 1 ·first(F

(k)
n−1) = 1 · last(Cn−1) = 10k−1, and the statement holds

in both cases.

Now, if n > k, by the definition of F
(k)
n we have

first(F (k)
n ) = 1 · first(F

(k)
n−1)

= 1 · last(F
(k)
n−1)

= 10k−11 · last(F
(k)
n−k−1)
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= 10k−11 · first(F
(k)
n−k−1),

and recursion on n completes the proof.

For the second point, if 1 ≤ n < k, then last(F
(k)
n ) = last(Cn) = 0n; and if n = k, then

last(F
(k)
n ) = 0k−11, and the statement holds in both cases.

Now, if n > k, we have

last(F (k)
n ) = 0k−11 · last(F

(k)
n−k)

= 0k−11 · first(F
(k)
n−k),

and by the first point of the present proposition, recursion on n completes the proof.

Proposition 3.2. The list F
(k)
n is a Gray code where two consecutive strings differ in a

single position.

Proof. It is enough to prove that there is a ‘smooth’ transition between any two con-

secutive lists in the definition of F
(k)
n given in relation (3), that is, for any ℓ, 1 ≤ ℓ ≤ k−1,

the words

α = 0ℓ−11 · last(F
(k)
n−ℓ) = 0ℓ−11 · first(F

(k)
n−ℓ)

and

β = 0ℓ1 · first(F
(k)
n−ℓ−1) = 0ℓ1 · last(F

(k)
n−ℓ−1)

differ in a single position. By Proposition 3.1,

α = 0ℓ−11α′

and

β = 0ℓ1β′

with α′ and β′ appropriate length prefixes of (10k−11)(10k−11) . . . and (0k−111)(0k−111) . . .,

and so α and β differ only in position ℓ.

As a by-product of the proof of the previous proposition we have the following remark

which is critical in algorithm process used for the generating algorithm in Section 4.2.

Remark 1. If α = a1a2 . . . an and β = b1b2 . . . bn are two successive words in F
(k)
n which

differ in position ℓ, then either ℓ = n or aℓ+1 = bℓ+1 = 1.

3.2. The list H
(k)
n,q

Let H
(k)
n,q be the list defined by:

H(k)
n,q = ǫ(α1) ◦ ǫ(α2) ◦ ǫ(α3) ◦ ǫ(α4) ◦ · · · ◦ ǫ′(α

f
(k)
n−2

) (4)

with αi = 1φi1 and φi is the i-th binary word in the list F
(k)
n−2, and ǫ′(α

f
(k)
n−2

) is ǫ(α
f
(k)
n−2

)

or ǫ(α
f
(k)
n−2

) according on whether f
(k)
n−2 is odd or even.
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Clearly, H
(k)
n,q is a list for the set of q-ary words of length n which begin and end by a

non zero value, and with no k consecutive 0’s. In particular, H
(k)
n,2 = 1 · F

(k)
n−2 · 1.

Proposition 3.3. The list H
(k)
n,q is a Gray code.

Proof. From Proposition 2.2 it follows that consecutive words in each list ǫ(αi) and

ǫ(αi) differ in a single position (and by +1 or −1 in this position). To prove the statement

it is enough to show that, for two consecutive binary words φi and φi+1 in F
(k)
n−2, both

pair of words

— last(ǫ(1φi1)) and first(ǫ(1φi+11)) = last(ǫ(1φi+11)), and

— last(ǫ(1φi1)) = first(ǫ(1φi1)) and first(ǫ(1φi+11))

differ in a single position.

In the first case, by Proposition 2.1, the first symbols of last(ǫ(1φi1)) and of last(ǫ(1φi+11))

are both (q − 1), and the other symbols are either 1 if q is odd, or (q − 1) if q is even;

and since φi and φi+1 differ in a single position, the result holds.

In the second case, first(ǫ(1φi1)) = 1φi1 and first(ǫ(1φi+11)) = 1φi+11, and again the

result holds.

3.3. The list S
(k)
n,q

Now we define the list S
(k)
n,q as

S(k)
n,q = 0k · H

(k)
n−k,q,

and clearly, S
(k)
n,q is a list for the set of cross-bifix-free words S

(k)
n,q. In particular,

S
(k)
n,2 = 0k1 · F

(k)
n−k−2 · 1,

for example, the set S
(3)
8,2 of length 8 binary cross-bifix-free words which begin by 000 is

S
(3)
8,2 = 0001 · F

(3)
3 · 1 =

= (00011001, 00011011, 00011111, 00011101, 00010101, 00010111, 00010011).

A consequence of Proposition 3.3 is the next proposition.

Proposition 3.4. The list S
(k)
n,q is a Gray code.

For the sake of clearness, we illustrate the previous construction for the Gray code list

S
(3)
8,3 on the alphabet A = {0, 1, 2}. We have:

G3,3 = (111, 112, 122, 121, 221, 222, 212, 211);

G4,3 = (1111, 1112, 1122, 1121, 1221, 1222, 1212, 1211, 2211, 2212, 2222,

2221, 2121, 2122, 2112, 2111);

G5,3 = (11111, . . . , 12111, 22111, . . . , 21111);
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and

S
(3)
8,3 = (00011001, 00011002, 00012002, 00012001, 00022001, 00022002,

00021002, 00021001, 00021011, . . . , 00011011, 00011111, . . .

. . . , 00021111, 00021101, . . . , 00011101, 00010101, 00010102,

00010202, 00010201, 00020201, 00020202, 00020102, 00020101,

00020111, . . . , 00010111, 00010011, 00010012, 00010022,

00010021, 00020021, 00020022, 00020012, 00020011).

4. Algorithmic considerations

In this section we give a generating algorithm for binary words in the list F
(k)
n and

an algorithm expanding binary words; then, combining them, we obtain a generating

algorithm for the list H
(k)
n,q, and finally prepending 0k to each word in H

(k)
n−k,q the list

S
(k)
n,q is obtained. The given algorithms are shown to be efficient.

The list F
(k)
n defined in (3) has not a straightforward algorithmic implementation, and

now we explain how F
(k)
n can be defined recursively as the concatenation of at most two

lists, then we will give a generating algorithm for it. Let F
(k)
n (u), 0 ≤ u ≤ k − 1, be the

sublist of F
(k)
n formed by strings beginning by at most u 0’s. By the definition of F

(k)
n ,

it follows that F
(k)
n = F

(k)
n (k − 1), and

F (k)
n (0) = 1 · F

(k)
n−1

= 1 · F
(k)
n−1(k − 1),

and for u > 0,

F (k)
n (u) = 1 · F

(k)
n−1 ◦ 01 · F

(k)
n−2 ◦ · · · ◦ 0u1 · F

(k)
n−u−1

= 1 · F
(k)
n−1 ◦ 0 · (1 · F

(k)
n−2 ◦ · · · ◦ 0u−11 · F

(k)
n−u−1)

= 1 · F
(k)
n−1 ◦ 0 · F

(k)
n−1(u − 1).

By the above considerations we have the following proposition.

Proposition 4.1. Let k ≥ 2, 0 ≤ u ≤ k − 1, and F
(k)
n (u) be the list defined as:

F (k)
n (u) =







λ if n = 0,

1 · F
(k)
n−1(k − 1) if n > 0 and u = 0,

1 · F
(k)
n−1(k − 1) ◦ 0 · F

(k)
n−1(u − 1) if n, u > 0.

(5)

Then F
(k)
n (k − 1) is the list F

(k)
n defined by relation (3).

Now we explain how the relation (5) defining the list F
(k)
n (u) can be implemented in

a generating algorithm. It is easy to check that F
(k)
n = F

(k)
n (k − 1) has the following
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properties: for α = a1a2 . . . an and β = b1b2 . . . bn two consecutive binary words in F
(k)
n ,

there is a p such that

— ai = bi for all i, 1 ≤ i ≤ n, except bp = 1 − ap,

— 0k−1 can not be a suffix of a1a2 . . . ap−1 = b1b2 . . . bp−1,

— the sublist of F
(k)
n formed by the strings with the prefix b1b2 . . . bp is b1b2 . . . bp · L,

where L is F
(k)
n−p(u− 1) or F

(k)
n−p(u − 1) according to the prefix b1b2 . . . bp has an even

or odd number of 1’s, and u is equal to k minus the length of the maximal 0 suffix of

b1b2 . . . bp.

Let us consider procedure gen fib in Figure 1 where process switches the value of

b[pos] (that is, b[pos] := 1 − b[pos]), and prints the obtained binary string b. By the

above remarks and relation (5) in Proposition 4.1 it follows that after the initialization

of b by the first string in F
(k)
m (given in Proposition 3.1) and printing it out, the call of

gen fib(1,k−1,0) produces the list F
(k)
m . Moreover, as we will show below, for m = n−1

and after the appropriate initialization of b = b1b2 . . . bn the call of gen fib(k+2,k−1,0)

produces the list 0k1 · F
(k)
n−k−2 · 1 = S

(k)
n,2.

Procedure gen fib is an efficient generating procedure. Indeed, each recursive call

induced by gen fib is either

— a terminal call (which does not produce other calls), or

— a call producing two recursive calls, or

— a call producing one recursive call, which in turn is in one of the previous two cases.

By ‘CAT’ principle in (Ruskey book) it follows that procedure gen fib runs in constant

amortised time.

procedure gen fib(pos,u,dir)

global b,k,m;

if pos ≤ m

then if u = 0

then gen fib(pos + 1,k − 1,1 − dir);

else if dir = 0

then gen fib(pos + 1,k − 1,1);

process(pos);

gen fib(pos + 1,u − 1,0);

else gen fib(pos + 1,u − 1,1);

process(pos);

gen fib(pos + 1,k − 1,0);

end if

end if

end if

end procedure.

Fig. 1. Algorithm producing the list F
(k)
n or S

(k)
n,q, according to the initial values of m, b

and the definition of process procedure.
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4.1. Generating S
(k)
n,2

After the initialization of b1b2 . . . bn by 0k1 · first(F
(k)
n−k−2) · 1, with first(F

(k)
n−k−2) given in

Proposition 3.1, and printing it out, the call of gen fib(k + 2,k − 1,0) where

— m = n − 1, and

— procedure process called by gen fib switches the value of b[pos] (that is, b[pos] :=

1 − b[pos]) and prints b

produces, in constant amortized time, the list 0k1 · F
(k)
n−k−2 · 1 = 0k · H

(k)
n−k,2 which is, as

mentioned before, the list S
(k)
n,2.

4.2. Generating S
(k)
n,q, q > 2

Before discussing the expansion algorithm expand needed to produce the list S
(k)
n,q when

q > 2 we show that gen tuple procedure in Figure 2, on which expand is based, is an

efficient generating algorithm for the list Gn,q defined in relation (1). Procedure gen tuple

is a ‘naive’ odometer principle based algorithm, see again (Ruskey book), and we have

the next proposition.

Proposition 4.2. After the initialization of v by 11 · · ·1, the first word in Gn,q, and di

by 1, for 1 ≤ i ≤ n, procedure gen tuple produces the list Gn,q in constant amortized

time.

Proof. The total amount of computation of gen tuple is proportional to the number

of times the statement i := i − 1 is performed in the inner while loop; and for a given

q and n let denote by cn this number. So, the average complexity (per generated word)

of gen tuple is cn

qn . Clearly, c1 = q − 1 and cn = (q − 1) · n + q · cn−1, and a simple

recursion shows that cn = q · qn−1
q−1 − n and finally the average complexity of gen tuple

is cn

qn ≤ q
q−1 .

procedure gen tuple

global v,d,n;

output v;

do i := n;

while i ≥ 1 and

(v[i] = q − 1 and d[i] = 1 or v[i] = 1 and d[i] = −1)

d[i] := −d[i];

i := i − 1;

end while

if i ≥ 1 then v[i] := v[i] + d[i]; output v; end if

while i ≥ 1

end procedure.

Fig. 2. Odometer algorithm producing the list Gn,q .
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Now we adapt algorithm gen tuple in order to obtain procedure expand producing the

expansion of a words; and like gen tuple, procedure expand has a constant average time

complexity. More precisely, for a words b = b1b2 . . . bn in {0, 1, . . . , q}n, with bℓ+1, bn 6= 0

let b′ denote the trace of bℓ+1bℓ+2 . . . bn, that is, the word obtained from bℓ+1bℓ+2 . . . bn

by replacing each non-zero value by 1, and b′′ that obtained by erasing each 0 letter in

bℓ+1bℓ+2 . . . bn. Procedure expand produces the list:

— b1b2 . . . bℓ · ǫ(b
′) if the initial value of b is such that b′′ is the first word in G|b′′|,q, or

— b1b2 . . . bℓ · ǫ(b′) if the initial value of b is such that b′′ is the last word in G|b′′|,q.

The initial value of dℓ+1, dℓ+2, . . . , dn are given by: if bi = 1, then di = 1; and if bi = q−1,

then di = −1; otherwise di is not defined. In order to access in constant time from a

position i in the current word b, with bi 6= 0, to the previous one, additional data

structures are used. The array prec is defined by: if bi 6= 0, then preci = j, where j is the

rightmost position in b, at the left of i and with bj 6= 0; and for convenience preci = 0 if

i is the leftmost non-zero position in b.

procedure expand

global b,d,ℓ,n,prec;

output v;

do i := n;

while i ≥ ℓ + 1 and

(b[i] = q − 1 and d[i] = 1 or b[i] = 1 and d[i] = −1)

d[i] := −d[i];

i := prec[i];

end while

if i ≥ ℓ + 1 then b[i] := b[i] + d[i]; output b; end if

while i ≥ ℓ + 1

end procedure.

Fig. 3. Algorithm expanding a word b and mimicking procedure gen tuple.

Now we explain procedure process; it calls expand and we will show that when gen fib

in turn calls procedure process in Figure 4, then it produces the list S
(k)
n,q , with q > 2.

The parameter pos of process is given by the corresponding call of gen fib, and it gives

the position in the current word b1b2 . . . bn in S
(k)
n,q where bpos changes from a non-zero

value to 0, or vice versa. By Remark 1 and the definition of the list S
(k)
n,q from H

(k)
n−k,q,

and so from F
(k)
n−k−2,q, it follows that bpos+1 6= 0. Procedure process, sets bpos to 0 if

previously bpos 6= 0; and sets bpos to bpos+1 if previously bpos = 0, which according to

Proposition 2.1, Remark 1 and the definition of the expansion operation is the new value

of bpos. In order to access in constant time from a non-zero position in the array b to the

previous one, process uses array prec of procedure expand and array succ, defined as:

succi = j, with j the leftmost position in b, at the right of i and with bj 6= 0, and succi

is not defined if i is the rightmost non-zero position. In addition, procedure process

updates both arrays prec and succ.
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procedure process(pos)

global b,d,succ,prec;

if b[pos] = 0

then a := prec[pos + 1]; succ[a] := pos; succ[pos] := pos + 1;

prec[pos] := a; prec[pos + 1] := pos;

b[pos] := b[pos + 1];

d[pos] := d[pos + 1];

else a := prec[pos]; z := succ[pos];

prec[z] := a; succ[a] := z;

b[pos] := 0;

expand;

end procedure.

Fig. 4. Procedure process called by gen fib in order to generate the list S
(k)
n,q.

For given q > 2, k ≥ 2 and n ≥ k + 2, after the initialization of b1b2 . . . bn by 0k1 ·

first(F
(k)
n−k−2) · 1, as for generating S

(k)
n,2, the call of gen fib(k + 2,k − 1,0) where

— m = n − 1, and
— procedure process is that in Figure 4, and
— procedure expand that in Figure 3, with ℓ = k + 1

produces, in constant amortized time, the list S
(k)
n,q .

5. Conclusion and further works

The cross-bifix-free sets S
(k)
n,q (Chee et al. 2013) have the cardinality close to the optimum.

They are constituted by particular words s1s2 . . . sn of length n over a q-ary alphabet.

Each word has the form 0ksk+1sk+2 . . . sn where sk+1 and sn are different from 0 and

sk+1sk+2 . . . sn−1 does not contain k consecutive 0’s. We have provided a Gray code for

S
(k)
n,q by defining a Gray code for the words sk+1sk+2 . . . sn and then prepending the prefix

0k to them. Moreover, an efficient generating algorithm for the obtained Gray code is

given. We note that this Gray code is trace partitioned in the sense that all the words

with the same trace are consecutive. To this aim we used a Gray code for restricted

binary strings (Vajnovszki(1) 2001), opportunely replacing the bits 1 with the symbols

of the alphabet different from 0.

A future investigation could be the definition of a Gray code which is prefix partitioned,

where all the words with the same prefix are consecutive. Actually, the definition of the

sets S
(k)
n,q shows that it is sufficient to define a prefix partitioned Gray code for the

subwords sk+1sk+2 . . . sn.

An interesting question arising when one deals with a Gray code L on a set is the

possibility to define it in such a way that the Hamming distance between last(L) and

first(L) is 1 (circular Gray code). Usually it is not so easy to have a circular Gray code,

unless the elements of the set are not subject to constraints; in our case it is worth to

study if the ground-set we are dealing with (which is a cross-bifix free set) allows to find

a circular Gray code.
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