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Given a function f on the unit sphere Sn−1, the Lp

Minkowski problem asks for a convex body K whose Lp

surface area measure has density f with respect to the 
standard (n −1)-Hausdorff measure on Sn−1. In this paper we 
deal with the generalization of this problem which arises in 
the Orlicz-Brunn-Minkowski theory when an Orlicz function 
ϕ substitutes the Lp norm and p is in the range (−n, 0). This 
problem is equivalent to solve the Monge-Ampere equation

ϕ(h) det(∇2h + hI) = f on Sn−1,

where h is the support function of the convex body K.
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1. Introduction

We work in the n-dimensional Euclidean space Rn, n ≥ 2. A convex body K in Rn is 
a compact convex set that has non-empty interior. Given a convex body K, for x ∈ ∂K

we denote by νK(x) ⊂ Sn−1 the family of all unit exterior normal vectors to K at x
(the Gauß map). We can then define the surface area measure SK of K, which is a Borel 
measure on the unit sphere Sn−1 of Rn, as follows: for a Borel set ω ⊂ Sn−1 we set

SK(ω) = Hn−1 (ν−1
K (ω)

)
= Hn−1 ({x ∈ ∂K : νK(x) ∩ ω �= ∅})

(see, e.g., Schneider [38]).
The classical Minkowski problem can be formulated as follows: given a Borel measure 

μ on Sn−1, find a convex body K such that μ = SK . The reader is referred to [38, Chapter 
8] for an exhaustive presentation of this problem and its solution.

Throughout this paper we will consider (either for the classical Minkowski problem or 
for its variants) the case in which μ has a density f with respect to the (n −1)-dimensional 
Hausdorff measure on Sn−1. Under this assumption the Minkowski problem is equivalent 
to solve (in the classic or in the weak sense) a differential equation on the sphere. Namely:

det(∇2h + hI) = f, (1)

where: h is the support function of K, ∇2h is the matrix formed by the second covariant 
derivatives of h with respect to a local orthonormal frame on Sn−1 and I is the identity 
matrix of order (n − 1).

Many different types of variations of the Minkowski problem have been considered 
(we refer for instance to [38, Chapters 8 and 9]). Of particular interest for our purposes 
is the so called Lp version of the problem (see [1–11,14–34,36,37,39–50]). At the origin 
of this new problem there is the replacement of the usual Minkowski addition of convex 
bodies by the p-addition. As an effect, the corresponding differential equation takes the 
form

h1−p det(∇2h + hI) = f, (2)

(see [38, Section 9.2]). The study of the Lp Minkowski problems developed in a significant 
way in the last decades, as a part of the so called Lp Brunn-Minkowski theory, which rep-
resents now a substantial area of Convex Geometry. One of the most interesting aspects 
of this problem is that several threshold values of the parameter p can be identified, e.g.
p = 1, p = 0, p = −n, across which the nature of the problem changes drastically. For 
an account on the literature and on the state of the art of the Lp Minkowski problem 
(especially for the values p < 1) we refer the reader to [1] and [2].

Of particular interest here is the range −n < p < 0. In this case Chou and Wang 
(see [10]) solved the corresponding problem when the measure μ has a density f , and 
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f is bounded and bounded away from zero. This result was slightly generalised by the 
authors in collaboration with Yang in [1], where f is allowed to be in L n

n+p
.

Theorem 1.1 (Chou and Wang; Bianchi, Böröczky, Colesanti and Yang). For n ≥ 1 and 
−n < p < 0, if the non-negative and non-trivial function f is in L n

n+p
(Sn−1) then (2)

has a solution in the Alexandrov sense; namely, f dHn−1 = dSK,p for a convex body 
K ∈ Kn

0 . In addition, if f is invariant under a closed subgroup G of O(n), then K can 
be chosen to be invariant under G.

As a further extension of the Lp Minkowski problem, one may consider its Orlicz ver-
sion. Formally, this problem arises in the context of the Orlicz-Brunn-Minkowski theory 
of convex bodies (see [38, Chapter 9]). In practice, the relevant differential equation is

ϕ(h) det(∇2h + hI) = f,

where ϕ is a suitable Orlicz function. The Lp Minkowski problem is obtained when 
ϕ(t) = t1−p, for t ≥ 0.

When ϕ : (0, ∞) → (0, ∞) is continuous and monotone decreasing, this problem (under 
a symmetry assumption) has been considered by Haberl, Lutwak, Yang, Zhang in [17]. 
Comparing the previous assumptions on ϕ with the Lp case, we see that this corresponds 
to the values p ≥ 1.

We are interested in the case in which the monotonicity assumption is reversed, cor-
responding to the values p < 1. Hence we assume that ϕ : [0, ∞) → R is continuous and 
monotone increasing, having the example ϕ(t) = t1−p, p < 1, as a prototype. To control 
in a more precise form the behaviour of ϕ with that of a power function, we assume that 
there exists p < 1 such that

lim inf
t→0+

ϕ(t)
t1−p

> 0. (3)

Concerning the behaviour of ϕ at ∞ we impose the condition:

∞∫
1

1
ϕ(t) dt < ∞. (4)

The corresponding Minkowski problem in this setting can be called the Orlicz Lp

Minkowski problem. The solution of this problem in the range p ∈ (0, 1) is due to Jian, 
Lu [25]. We also note that Orlicz versions of the so called Lp dual Minkowski problem 
have been considered recently by Gardner, Hug, Weil, Xing, Ye [13], Gardner, Hug, Xing, 
Ye [14], Xing, Ye, Zhu [43] and Xing, Ye [44].

In this paper we focus on the range of values p ∈ (−n, 0). As an extension of the 
results contained in [1], we establish the following existence theorem (note that, as usual 
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in the case of Orlicz versions of Minkowski type problems, we can only provide a solution 
up to a constant factor).

Theorem 1.2. For n ≥ 2, −n < p < 0 and monotone increasing continuous function 
ϕ : [0, ∞) → [0, ∞) satisfying ϕ(0) = 0, and conditions (3) and (4), if the non-negative 
non-trivial function f is in L n

n+p
(Sn−1), then there exists λ > 0 and a convex body 

K ∈ Kn
0 with V (K) = 1 such that

λϕ(h) det(∇2h + hI) = f

holds for h = hK in the Alexandrov sense; namely, λϕ(hK) dSK = f dHn−1. In addition, 
if f is invariant under a closed subgroup G of O(n), then K can be chosen to be invariant 
under G.

We note that the origin may lie on ∂K for the solution K in Theorem 1.2.
We observe that Theorem 1.2 readily yields Theorem 1.1. Indeed if −n < p < 0, 

f ∈ L n
n+p

(Sn−1), f ≥ 0, f �≡ 0 and λh1−p
K dSK = f dHn−1 for K ∈ Kn

0 and λ > 0, then 

h1−p

K̃
dS

K̃
= f dHn−1 for K̃ = λ

1
n−pK.

In Section 3 we sketch the proof of Theorem 1.2 and describe the structure of the 
paper.

2. Notation

The scalar product on Rn is denoted by 〈·, ·〉, and the corresponding Euclidean norm 
is denoted by ‖ · ‖. The k-dimensional Hausdorff measure normalized in such a way that 
it coincides with the Lebesgue measure on Rk is denoted by Hk. The angle (spherical 
distance) of u, v ∈ Sn−1 is denoted by ∠(u, v).

We write Kn
0 (Kn

(0)) to denote the family of convex bodies with o ∈ K (o ∈ intK). 
Given a convex body K, for a Borel set ω ⊂ Sn−1, ν−1

K (ω) is the Borel set of x ∈ ∂K

with νK(x) ∩ω �= ∅. A point x ∈ ∂K is called smooth if νK(x) consists of a unique vector, 
and in this case, we use νK(x) to denote this unique vector, as well. It is well-known 
that Hn−1-almost every x ∈ ∂K is smooth (see, e.g., Schneider [38]); let ∂′K denote the 
family of smooth points of ∂K.

For a convex compact set K in Rn, let hK be its support function:

hK(u) = max{〈x, u〉 : x ∈ K} for u ∈ Rn.

Note that if K ∈ Kn
0 , then hK ≥ 0. If p ∈ R and K ∈ Kn

0 , then the Lp-surface area 
measure is defined by

dSK,p = h1−p
K dSK
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where for p > 1 the right-hand side is assumed to be a finite measure. In particular, if 
p = 1, then SK,p = SK , and if p < 1 and ω ⊂ Sn−1 Borel, then

SK,p(ω) =
∫

ν−1
K (ω)

〈x, νK(x)〉1−pdHn−1(x).

3. Sketch of the proof of Theorem 1.2

To sketch the argument leading to Theorem 1.2, first we consider the case when 
−n < p ≤ −(n − 1) and ϕ(t) = t1−p, and τ1 ≤ f ≤ τ2 for some constants τ2 > τ1 > 0. 
We set ψ(t) = 1/ϕ(t) = tp−1 for t > 0, and define Ψ : (0, ∞) → (0, ∞) by

Ψ(t) =
∞∫
t

ψ(s) ds = −1
p
tp,

which is a strictly convex function.
Given a convex body K in Rn, we set

Φ(K, ξ) =
∫

Sn−1

Ψ(hK−ξ)f dHn−1;

this is a strictly convex function of ξ ∈ intK. As f > τ1 and p ≤ −(n − 1), there is a 
(unique) ξ(K) ∈ intK such that

Φ(K, ξ(K)) = min
ξ∈int K

Φ(K, ξ).

This statement is proved in Proposition 5.2, but the conditions f > τ1 and p ≤ −(n − 1)
are actually used in the preparatory statement Lemma 5.1.

Using p > −n and the Blaschke-Santaló inequality (see Lemma 5.4 and the prepara-
tory statement Lemma 4.3), one verifies that there exists a convex body K0 in Rn with 
V (K0) = 1 maximizing Φ(K, ξ(K)) over all convex bodies K in Rn with V (K) = 1.

Finally a variational argument proves that there exists λ0 > 0 such that f dHn−1 =
λ0ϕ(hK0) dSK0 . A crucial ingredient (see Lemma 6.2) is that, as ψ is C1 and ψ′ < 0, 
Φ(Kt, ξ(Kt)) is a differentiable function of Kt for a suitable variation Kt of K0.

In the general case, when still keeping the condition τ1 ≤ f ≤ τ2 but allowing any ϕ
which satisfies the assumptions of Theorem 1.2, we meet two main obstacles. On the one 
hand, even if ϕ(t) = t1−p but 0 < t < −(n − 1), it may happen that for a convex body 
K in Rn, the infimum of Φ(K, ξ) for ξ ∈ intK is attained when ξ tends to the boundary 
of K. On the other hand, the possible lack of differentiability of ϕ (or equivalently of ψ) 
destroys the variational argument.
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Therefore, we approximate ψ by smooth functions, and also make sure that the ap-
proximating functions are large enough near zero to ensure that the minimum of the 
analogues of Φ(K, ξ) as a function of ξ ∈ intK exists for any convex body K.

Section 4 proves some preparatory statements, Section 5 introduces the suitable ana-
logue of the energy function Φ(K, ξ(K)), and Section 6 provides the variational formula 
for an extremal body for the energy function. We prove Theorem 1.2 if f is bounded and 
bounded away from zero in Section 7, and finally in full strength in Section 8.

4. Some preliminary estimates

In this section, we prove the simple but technical estimates Lemmas 4.1 and 4.3 that 
will be used in various settings during the main argument.

Lemma 4.1. For δ ∈ (0, 1), A, ̃ℵ > 0 and q ∈ (−n, 0), let ψ̃ : (0, ∞) → (0, ∞) satisfy 
that ψ̃(t) ≤ ℵ̃tq−1 for t ∈ (0, δ] and 

∫∞
δ

ψ̃ ≤ A. If t ∈ (0, δ) and ℵ̃0 = max{ ℵ̃
|q| , 

A
δq }, then 

Ψ̃(t) =
∫∞
t

ψ̃ satisfies

Ψ̃(t) ≤ ℵ̃0t
q.

Proof. We observe that if t ∈ (0, δ), then

Ψ̃(t) ≤
δ∫

t

ψ̃(s) ds + A ≤ ℵ̃
δ∫

t

sq−1 ds + A = ℵ̃
|q| (t

q − δq) + A ≤ tq max
{

ℵ̃
|q| ,

A

δq

}
. �

We write Bn to denote the Euclidean unit ball in Rn, and set κn = Hn(Bn). For a 
convex body K in Rn, let σ(K) denote its centroid, which satisfies (see Schneider [38])

−(K − σ(K)) ⊂ n(K − σ(K)). (5)

Next, if o ∈ intK then the polar of K is

K = {x ∈ Rn : 〈x, y〉 ≤ 1 ∀y ∈ K} = {tu : u ∈ Sn−1 and 0 ≤ t ≤ hK(u)−1}.

In particular, the Blaschke-Santaló inequality V (K)V ((K − σ(K))∗) ≤ V (Bn)2 (see 
Schneider [38]) yields that ∫

Sn−1

h−n
K−σ(K)dH

n−1 ≤ nV (Bn)2

V (K) . (6)

As a preparation for the proof of Lemma 4.3, we need the following statement about 
absolutely continuous measures. For t ∈ (0, 1) and v ∈ Sn−1, we consider the spherical 
strip
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Ξ(v, t) = {u ∈ Sn−1 : |〈u, v〉| ≤ t}.

Lemma 4.2. If f ∈ L1(Sn−1) and


f (t) = sup
v∈Sn−1

∫
Ξ(v,t)

|f | dHn−1

for t ∈ (0, 1), then we have limt→0+ 
f (t) = 0.

Proof. We observe that 
f (t) is decreasing, therefore the limit limt→0+ 
f (t) = δ ≥ 0
exists. We suppose that δ > 0, and seek a contradiction.

Let μ be the absolutely continuous measure dμ = |f | dHn−1 on Sn−1. According to the 
definition of 
f , for any k ≥ 2, there exists some vk ∈ Sn−1 such that μ(Ξ(vk, 1k )) ≥ δ/2. 
Let v ∈ Sn−1 be an accumulation point of the sequence {vk}. For any m ≥ 2, there 
exists αm > 0 such that Ξ(u, 1

2m ) ⊂ Ξ(v, 1
m ) if u ∈ Sn−1 and ∠(u, v) ≤ αm. Since for 

any m ≥ 2, there exists some k ≥ 2m such that ∠(vk, v) ≤ αm, we have μ(Ξ(v, 1
m )) ≥

μ(Ξ(vk, 1k )) ≥ δ/2. We deduce that μ(v⊥ ∩ Sn−1) = μ 
(
∩m≥2Ξ(v, 1

m )
)
≥ δ/2, which 

contradicts μ(v⊥ ∩ Sn−1) = 0. �
Lemma 4.3. For δ ∈ (0, 1), ℵ̃ > 0 and q ∈ (−n, 0), let Ψ̃ : (0, ∞) → (0, ∞) be a monotone 
decreasing continuous function such that Ψ̃(t) ≤ ℵ̃tq for t ∈ (0, δ] and limt→∞ Ψ̃(t) = 0, 
and let f̃ be a non-negative function in L n

n+p
(Sn−1). Then for any ζ > 0, there exists 

a Dζ depending on ζ, Ψ̃, δ, ℵ̃, q and f̃ such that if K is a convex body in Rn with 
V (K) = 1 and diamK ≥ Dζ then

∫
Sn−1

(Ψ̃ ◦ hK−σ(K)) f̃ dHn−1 ≤ ζ.

Proof. We may assume that σ(K) = o. Let R = maxx∈K ‖x‖, and let v ∈ Sn−1 such 
that Rv ∈ K. It follows from (5) that −R

n v ∈ K.
Since limt→∞ Ψ̃(t) = 0 and f̃ is in L1(Sn−1) by the Hölder inequality, we can choose 

r ≥ 1 such that

Ψ̃(r)
∫

Sn−1

f̃ dHn−1 <
ζ

2 . (7)

We partition Sn−1 into the two measurable parts

Ξ0 = {u ∈ Sn−1 : hK(u) ≥ r}

Ξ1 = {u ∈ Sn−1 : hK(u) < r}.
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Let us estimate the integrals over Ξ0 and Ξ1. We deduce from (7) that∫
Ξ0

(Ψ̃ ◦ hK) f̃ dHn−1 ≤ ζ

2 . (8)

Next we claim that

Ξ1 ⊂ Ξ
(
v,

nr

R

)
. (9)

For any u ∈ Ξ1, we choose η ∈ {−1, 1} such that 〈u, ηv〉 ≥ 0, thus ηRn v ∈ K yields that 
r > hK(u) ≥ 〈u, ηRn v〉. In turn, we conclude (9). It follows from (9) and Lemma 4.2 that 
for the L1 function f = f̃

n
n+q , we have∫

Ξ1

f̃
n

n+q ≤ 
f

(nr
R

)
. (10)

To estimate the decreasing function Ψ̃ on (0, r), we claim that if t ∈ (0, r) then

Ψ̃(t) ≤ ℵ̃δq
rq

tq. (11)

We recall that r ≥ 1 > δ. In particular, if t ≤ δ, then Ψ̃(t) ≤ ℵ̃tq yields (11). If t ∈ (δ, r), 
then using that Ψ̃ is decreasing, (11) follows from

Ψ̃(t) ≤ Ψ̃(δ) ≤ ℵ̃δq
tq

tq ≤ ℵ̃δq
rq

tq.

Applying first (11), then the Hölder inequality, after that the Blaschke-Santaló in-
equality (6) with V (K) = 1 and finally (10), we deduce that

∫
Ξ1

(Ψ̃ ◦ hK) f̃ dHn−1 ≤ ℵ̃δq
rq

∫
Ξ1

h
−|q|
K f̃ dHn−1

≤ ℵ̃δq
rq

⎛⎝∫
Ξ1

h−n
K dHn−1

⎞⎠
|q|
n
⎛⎝∫

Ξ1

f̃
n

n−|q| dHn−1

⎞⎠
n−|q|

n

≤ ℵ̃δq
rq

(
nV (Bn)2

) |q|
n 
f

(nr
R

)n+q
n

.

Therefore after fixing r ≥ 1 satisfying (7), we may choose R0 > r such that

ℵ̃δq
q

n
|q|
n V (Bn)

2|q|
n 
f

(
nr

)n+q
n

<
ζ

r R0 2
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by Lemma 4.3. In particular, if R ≥ R0, then∫
Ξ1

(Ψ̃ ◦ hK) f̃ dHn−1 ≤ ζ

2 .

Combining this estimate with (8) shows that setting Dζ = 2R0, if diamK ≥ Dζ , then 
R ≥ R0, and hence 

∫
Sn−1(Ψ̃ ◦ hK) f̃ dHn−1 ≤ ζ. �

5. The extremal problem related to Theorem 1.2 when f is bounded and bounded 
away from zero

For 0 < τ1 < τ2, let the real function f on Sn−1 satisfy

τ1 < f(u) < τ2 for u ∈ Sn−1. (12)

In addition, let ϕ : [0, ∞) → [0, ∞) be a continuous monotone increasing function satis-
fying ϕ(0) = 0,

lim inf
t→0+

ϕ(t)
t1−p

> 0 and
∞∫
1

1
ϕ(t) dt < ∞.

It will be more convenient to work with the decreasing function ψ = 1/ϕ : (0, ∞) →
(0, ∞), which has the properties

lim sup
t→0+

ψ(t)
tp−1 , < ∞ (13)

∞∫
1

ψ(t) dt < ∞. (14)

We consider the function Ψ : (0, ∞) → (0, ∞) defined by

Ψ(t) =
∞∫
t

ψ(s) ds,

which readily satisfies

Ψ′ = −ψ, and hence Ψ is convex and strictly monotone decreasing, (15)

lim
t→∞

Ψ(t) = 0. (16)

According to (13), there exist some δ ∈ (0, 1) and ℵ > 1 such that
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ψ(t) < ℵtp−1 for t ∈ (0, δ). (17)

As we pointed out in Section 3, we smoothen ψ using convolution. Let η : R → [0, ∞)
be a non-negative C∞ “approximation of identity” with supp η ⊂ [−1, 0] and 

∫
R η = 1. 

For any ε ∈ (0, 1), we consider the non-negative ηε(t) = 1
εη(

t
ε ) satisfying that 

∫
R ηε = 1, 

supp ηε ⊂ [−ε, 0], and define θε : (0, ∞) → (0, ∞) by

θε(t) =
∫
R

ψ(t− τ)ηε(τ) dτ =
0∫

−ε

ψ(t− τ)ηε(τ) dτ.

As ψ is monotone decreasing and continuous on (0, ∞), the properties of ηε yield

θε(t) ≤ ψ(t) for t > 0 and ε ∈ (0, 1)

θε(t1) ≥ θε(t2) for t2 > t1 > 0 and ε ∈ (0, 1)

θε tends uniformly to ψ on any interval with positive endpoints as ε tends to zero.

Next, for any t0 > 0, the function lt0 on R defined by

lt0(t) =
{

ψ(t) if t ≥ t0
0 if t < t0

is bounded, and hence locally integrable. For the convolution lt0 ∗ ηε, we have that 
(lt0 ∗ ηε)(t) = θε(t) for t > t0 and ε ∈ (0, 1), thus

θε is C1 for each ε ∈ (0, 1).

As it is explained in Section 3, we need to modify ψ in a way such that the new 
function is of order at least t−(n−1) if t > 0 is small. We set

q = min{p,−(n− 1)},

and hence (17) and δ ∈ (0, 1) yields that

θε(t) ≤ ψ(t) < ℵtq−1 for t ∈ (0, δ) and ε ∈ (0, δ). (18)

Next we construct θ̃ε : (0, ∞) → (0, ∞) satisfying

θ̃ε(t) = θε(t) ≤ ψ(t) for t ≥ ε and ε ∈ (0, δ)

θ̃ε(t) ≤ ℵtq−1 for t ∈ (0, δ) and ε ∈ (0, δ)

θ̃ε(t) = ℵtq−1 for t ∈ (0, ε2 ] and ε ∈ (0, δ)

θ̃ε is C1 and is monotone decreasing.
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It follows that

θ̃ε tends uniformly to ψ on any interval with positive endpoints as ε tends to zero.

To construct suitable θ̃ε, first we observe that the conditions above determine θ̃ε outside 
the interval ( ε2 , ε), and θ̃ε(ε) < ℵεq−1. Writing Δ to denote the degree one polynomial 
whose graph is the tangent to the graph of t �→ ℵtq−1 at t = ε/2, we have Δ(t) < ℵtq−1

for t > ε/2 and Δ(ε) < 0. Therefore we can choose t0 ∈ ( ε2 , ε) such that θ̃ε(ε) < Δ(t0) <
ℵεq−1. We define θ̃ε(t) = Δ(t) for t ∈ ( ε2 , t0), and construct θ̃ε on (t0, ε) in a way that 
θ̃ε stays C1 on (0, ∞). It follows from the way θ̃ε is constructed that θ̃ε(t) ≤ ℵtq−1 also 
for t ∈ [ ε2 , ε].

In order to ensure a negative derivative, we consider ψε : (0, ∞) → (0, ∞) defined by

ψε(t) = θ̃ε(t) + ε

1 + t2
(19)

for ε ∈ (0, δ) and t > 0. This C1 function ψε has the following properties:

ψε(t) ≤ ψ(t) + 1
1+t2 for t ≥ ε and ε ∈ (0, δ)

ψ′
ε(t) < 0 for t > 0 and ε ∈ (0, δ)

ψε(t) < 2ℵtq−1 for t ∈ (0, δ) and ε ∈ (0, δ)
ψε(t) > ℵtq−1 for t ∈ (0, ε

2 ) and ε ∈ (0, δ)
ψε tends uniformly to ψ on any interval with positive endpoints as ε tends to zero.

(20)

For ε ∈ (0, δ), we also consider the C2 function Ψε : (0, ∞) → (0, ∞) defined by

Ψε(t) =
∞∫
t

ψε(s) ds,

and hence (20) yields

lim
t→∞

Ψε(t) = 0 (21)

Ψ′
ε = −ψε, thus Ψε is strictly decreasing and strictly convex. (22)

For ε ∈ (0, δ), Lemma 4.1 and (20) imply that setting

A =
∞∫
δ

ψ(t) + 1
1 + t2

dt,

we have
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Ψε(t) ≤ ℵ0t
q for ℵ0 = max{2ℵ

|q| ,
A

δq
} and t ∈ (0, δ). (23)

On the other hand, if ε ∈ (0, δ) and t ∈ (0, ε4 ), then

Ψε(t) ≥
ε/2∫
t

ℵsq−1 ds = ℵ
|q| (t

q − (ε/2)q) ≥ ℵ
|q| (t

q − (2t)q) = ℵ1t
q

for ℵ1 = (1 − 2q)ℵ
|q| > 0. (24)

According to (20), we have limε→0+ ψε(t) = ψ(t) and ψε(t) ≤ ψ(t) + 1
1+t2 for any 

t > 0, therefore Lebesgue’s Dominated Convergence Theorem implies

lim
ε→0+

Ψε(t) = Ψ(t) for any t > 0. (25)

It also follows from (20) that if t ≥ ε, then

Ψε(t) =
∞∫
t

ψε ≤
∞∫
t

ψ(s) + 1
1 + s2 ds ≤ Ψ(t) + π

2 . (26)

For any convex body K and ξ ∈ intK, we consider

Φε(K, ξ) =
∫

Sn−1

(Ψε ◦ hK−ξ)f dHn−1 =
∫

Sn−1

Ψε(hK(u) − 〈ξ, u〉)f(u) dHn−1(u).

Naturally, Φε(K) depends on ψ and f , as well, but we do not signal these dependences.
We equip Kn

0 with the Hausdorff metric, which is the L∞ metric on the space of the 
restrictions of support functions to Sn−1. For v ∈ Sn−1 and α ∈ [0, π2 ], we consider the 
spherical cap

Ω(v, α) = {u ∈ Sn−1 〈u, v〉 ≥ cosα}.

We write π : Rn\{o} → Sn−1 the radial projection:

π(x) = x

‖x‖ .

In particular, if π is restricted to the boundary of a K ∈ Kn
(0), then this map is Lipschitz. 

Another typical application of the radial projection is to consider, for v ∈ Sn−1, the 
composition x �→ π(x + v) as a map v⊥ → Sn−1 where

the Jacobian of x �→ π(x + v) at x ∈ v⊥ is (1 + ‖x‖2)−n/2. (27)
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The following Lemma 5.1 is the statement where we apply directly that ψ is modified 
to be essentially tq if t is very small.

Lemma 5.1. Let ε ∈ (0, δ), and let {Ki} be a sequence of convex bodies tending to a 
convex body K in Rn, and let ξi ∈ intKi such that limi→∞ ξi = x0 ∈ ∂K. Then

lim
i→∞

Φε(Ki, ξi) = ∞.

Proof. We may assume that limi→∞ ξi = x0 = o. Let v ∈ Sn−1 be an exterior normal to 
∂K at o, and choose some R > 0 such that K ⊂ RBn. Therefore we may assume that 
Ki − ξi ⊂ (R + 1)Bn, hKi

(v) < ε/8 and ‖ξi‖ < ε/8 for all ξi, thus hKi−ξi(v) < ε/4 for 
all i.

For any ζ ∈ (0, ε8 ), there exists Iζ such that if i ≥ Iζ , then ‖ξi‖ ≤ ζ/2 and 〈y, v〉 ≤ ζ/2
for all y ∈ Ki, and hence 〈y, v〉 ≤ ζ for all y ∈ Ki − ξi. For i ≥ Iζ , any y ∈ Ki − ξi
can be written in the form y = sv + z where s ≤ ζ and z ∈ v⊥ ∩ (R + 1)Bn, thus if 
∠(v, u) = α ∈ [ζ, π2 ) for u ∈ Sn−1, then we have

hKi−ξi(u) ≤ (R + 1) sinα + ζ cosα ≤ (R + 2)α. (28)

We set β = ε
4(R+2) , and for ζ ∈ (0, β), we define

Ωζ = Ω(v, β)\Ω(v, ζ).

In particular, as Ψε(t) ≥ ℵ1t
q for t ∈ (0, ε4 ) according to (24), if u ∈ Ωζ , then (28) implies

Ψε(hKi−ξi(u)) ≥ γ(∠(v, u))q

for γ = ℵ1(R + 2)q.
The function x �→ π(x + v) maps Bζ = v⊥ ∩

(
(tan β)Bn\(tan ζ)Bn

)
bijectively onto 

Ωζ , while β < 1
8 and (27) yield that the Jacobian of this map is at least 2−n on Bζ .

Since f > τ1 and ∠(v, π(x + v)) ≤ 2x for x ∈ Bζ , if i ≥ Iζ , then

Φε(Ki, ξi) =
∫

Sn−1

Ψε(hKi−ξi(u))f(u) dHn−1(u) ≥
∫
Ωζ

τ1γ(∠(v, u))q dHn−1(u)

≥ τ1γ

2n+|q|

∫
Bζ

‖x‖q dHn−1(x) = (n− 1)κn−1τ1γ

2n+|q|

tan β∫
tan ζ

tq+n−2 dt.

As ζ > 0 is arbitrarily small and q ≤ 1 −n, we conclude that limi→∞ Φε(Ki, ξi) = ∞. �
Now we single out the optimal ξ ∈ intK.
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Proposition 5.2. For ε ∈ (0, δ) and a convex body K in Rn, there exists a unique ξ(K) ∈
intK such that

Φε(K, ξ(K)) = min
ξ∈int K

Φε(K, ξ).

In addition, ξ(K) and Φε(K, ξ(K)) are continuous functions of K, and Φε(K, ξ(K)) is 
translation invariant.

Proof. The first part of this proof, the one regarding the existence of ξ(K) ∈ intK and 
its uniqueness, is very similar to the proof of [1, Proposition 3.2] given by the authors 
and Yang for the Lp Minkowski problem. It is very short and we rewrite it here for 
completeness.

Let ξ1, ξ2 ∈ intK, ξ1 �= ξ2, and let λ ∈ (0, 1). If u ∈ Sn−1\(ξ1 − ξ2)⊥, then 〈u, ξ1〉 �=
〈u, ξ2〉, and hence the strict convexity of Ψε (see (22)) yields that

Ψε(hK(u) − 〈u, λξ1 + (1 − λ)ξ2〉) > λΨε(hK(u) − 〈u, ξ1〉) + (1 − λ)Ψε(hK(u) − 〈u, ξ2〉),

thus Φε(K, ξ) is a strictly convex function of ξ ∈ intK by f > τ1.
Let ξi ∈ intK such that

lim
i→∞

Φε(K, ξi) = inf
ξ∈int K

Φε(K, ξ).

We may assume that limi→∞ ξi = x0 ∈ K, and Lemma 5.1 yields x0 ∈ intK. Since 
Φε(K, ξ) is a strictly convex and continuous function of ξ ∈ intK, x0 is the unique 
minimum point of ξ �→ Φε(K, ξ), which we denote by ξ(K) (not signalling the dependence 
on ε, ψ and f).

Readily ξ(K) is translation equivariant, and Φε(K, ξ(K)) is translation invariant.
For the continuity of ξ(K) and Φε(K, ξ(K)), let us consider a sequence {Ki} of convex 

bodies tending to a convex body K in Rn. We may assume that ξ(Ki) tends to a x0 ∈ K.
For any y ∈ intK, there exists an I such that y ∈ intKi for i ≥ I. Since hKi

tends 
uniformly to hK on Sn−1, we have that

lim sup
i→∞

Φε(Ki, ξ(Ki)) ≤ lim
i→∞
i≥I

Φε(Ki, y) = Φε(K, y).

Again Lemma 5.1 implies that x0 ∈ intK. It follows that hKi−ξi(Ki) tends uniformly to 
hK−x0 , thus

Φε(K,x0) = lim
i→∞

Φε(Ki, ξ(Ki)) ≤ lim
i→∞
i≥I

Φε(Ki, y) = Φε(K, y).

In particular, Φε(K, x0) ≤ Φε(K, y) for any y ∈ intK, thus x0 = ξ(K). In turn, we 
deduce ξ(Ki) tends to ξ(K), and Φε(Ki, ξ(Ki)) tends to Φε(K, ξ(K)). �
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Since ξ �→ Φε(K, ξ) =
∫
Sn−1 Ψε(hK(u) − 〈u, ξ〉)f(u) dHn−1(u) is maximal at ξ(K) ∈

intK and Ψ′
ε = −ψε, we deduce

Corollary 5.3. For ε ∈ (0, δ) and a convex body K in Rn, we have∫
Sn−1

u ψε

(
hK(u) − 〈u, ξ(K)〉

)
f(u) dHn−1(u) = o.

For a closed subgroup G of O(n), we write Kn,G
(0) to denote the family of K ∈ Kn

(0)
invariant under G.

Lemma 5.4. For ε ∈ (0, δ), there exists a Kε ∈ Kn
(0) with V (Kε) = 1 such that

Φε(Kε, ξ(Kε)) ≥ Φε(K, ξ(K)) for any K ∈ Kn
(0) with V (K) = 1.

In addition, if f is invariant under a closed subgroup G of O(n), then Kε can be chosen 
to be invariant under G.

Proof. We choose a sequence Ki ∈ Kn
(0) with V (Ki) = 1 for i ≥ 1 such that

lim
i→∞

Φ(Ki, ξ(Ki)) = sup{Φ(K, ξ(K)) : K ∈ Kn
(0) with V (K) = 1}.

Writing B1 = κ
−1/n
n Bn to denote the unit ball centred at the origin and having volume 

1, we may assume that each Ki satisfies

Φε(Ki, σ(Ki)) ≥ Φε(Ki, ξ(Ki)) ≥ Φε(B1, ξ(B1)). (29)

According to Proposition 5.2, we may also assume that σKi
= o for each Ki.

We deduce from Lemma 4.3, (21), (23) and (29) that there exists some R > 0 such 
that Ki ⊂ RBn for any i ≥ 1. According to the Blaschke selection theorem, we may 
assume that Ki tends to a compact convex set Kε with o ∈ Kε. It follows from the 
continuity of the volume that V (Kε) = 1, and hence intKε �= ∅. We conclude from 
Lemma 5.2 that Φε(Kε, ξ(Kε)) = limi→∞ Φε(Ki, ξ(Ki)).

If f is invariant under a closed subgroup G of O(n), then we apply the same argument 
to convex bodies in Kn,G

(0) instead of Kn
(0). �

Since Φ(5) < Φ(4), (25) yields some δ̃ ∈ (0, δ) such that Ψε(4) ≥ Φ(5) for ε ∈ (0, ̃δ). 
For future reference, the monotonicity of Ψε, diamκ

−1/n
n Bn ≤ 4 and (29) yield that if 

ε ∈ (0, ̃δ), then

Φε(Kε, σ(Kε)) ≥ Φε

(
κ−1/n
n Bn, ξ(κ−1/n

n Bn)
)

≥
∫

Sn−1

Ψε(4)f dHn−1 ≥ Ψ(5)
∫

Sn−1

f dHn−1. (30)
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6. Variational formulae and smoothness of the extremal body when f is bounded and 
bounded away from zero

In this section, again let 0 < τ1 < τ2 and let the real function f on Sn−1 satisfy 
τ1 < f < τ2. In addition, let ϕ be the continuous function of Theorem 1.2, and we use 
the notation developed in Section 5, say ψ : (0, ∞) → (0, ∞) is defined by ψ = 1/ϕ.

Now that we have constructed an extremal body Kε, we want to show that it sat-
isfies the required differential equation in the Alexandrov sense by using a variational 
argument. This section provides the formulae that we will need, and ensure the required 
smoothness of Kε.

Concerning the variation of volume, a key tool is Alexandrov’s Lemma 6.1 (see Lemma 
7.5.3 in [38]). To state this, for any continuous h : Sn−1 → (0, ∞), we define the Alexan-
drov body

[h] = {x ∈ Rn : 〈x, u〉 ≤ h(u) for u ∈ Sn−1}

which is a convex body containing the origin in its interior. Obviously, if K ∈ Kn
(0) then 

K = [hK ].

Lemma 6.1 (Alexandrov). For K ∈ Kn
(0) and a continuous function g : Sn−1 → R, 

K(t) = [hK + tg] satisfies

lim
t→0

V (K(t)) − V (K)
t

=
∫

Sn−1

g(u) dSK(u).

To handle the variation of Φε(K(t), ξ(K(t))) for a family K(t) is a more subtle prob-
lem. The next lemma shows essentially that if we perturb a convex body K in a way 
such that the support function is differentiable as a function of the parameter t for 
Hn−1-almost all u ∈ Sn−1, then ξ(K) changes also in a differentiable way. Lemma 6.2 is 
the point of the proof where we use that ψε is C1 and ψ′

ε < 0.

Lemma 6.2. For ε ∈ (0, δ), let c > 0 and t0 > 0, and let K(t) be a family of convex bodies 
with support function ht for t ∈ [0, t0). Assume that

(i) |ht(u) − h0(u)| ≤ ct for each u ∈ Sn−1 and t ∈ [0, t0),
(ii) limt→0+

ht(u)−h0(u)
t exists for Hn−1-almost all u ∈ Sn−1.

Then limt→0+
ξ(K(t))−ξ(K(0))

t exists.

Proof. We set K = K(0). We may assume that ξ(K) = o, and hence Proposition 5.2
yields that

lim ξ(K(t)) = o.

t→0+
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There exists some R > r > 0 such that r ≤ ht(u) −〈u, ξ(K(t))〉 = hK(t)−ξ(K(t))(u) ≤ R

for u ∈ Sn−1 and t ∈ [0, t0). Since ψε is C1 on [r, R], we can write

ψε(t) − ψε(s) = ψ′
ε(s)(t− s) + η0(s, t)(t− s)

for t, s ∈ [r, R] where limt→s η0(s, t) = 0. Let g(t, u) = ht(u) − hK(u) for u ∈ Sn−1

and t ∈ [0, t0). Since hK(t)−ξ(K(t)) tends uniformly to hK on Sn−1, we deduce that if 
t ∈ [0, t0), then

ψε

(
ht(u) − 〈u, ξ(K(t))〉

)
− ψε(hK(u))

= ψ′
ε(hK(u))

(
g(t, u) − 〈u, ξ(K(t))〉

)
+ e(t, u) (31)

where

|e(t, u)| ≤ η(t)|g(t, u) − 〈u, ξ(Kt)〉| and η(t) = η0(hK(u), ht(u) − 〈u, ξ(K(t))〉).

Note that limt→0+ η(t) = 0 uniformly in u ∈ Sn−1.
In particular, (i) yields that e(t, u) = e1(t, u) + e2(t, u) where

|e1(t, u)| ≤ cη(t)t and |e2(t, u)| ≤ η(t)‖ξ(K(t))‖. (32)

It follows from (31) and from applying Corollary 5.3 to K(t) and K that∫
Sn−1

u
(
ψ′
ε(hK(u))

(
g(t, u) − 〈u, ξ(K(t))〉

)
+ e(t, u)

)
f(u)dHn−1(u) = o,

which can be written as∫
Sn−1

uψ′
ε(hK(u)) g(t, u) f(u)dHn−1(u)

+
∫

Sn−1

u e1(t, u) f(u)dHn−1(u) =
∫

Sn−1

u 〈u, ξ(Kt)〉ψ′
ε(hK(u)) f(u)dHn−1(u)

−
∫

Sn−1

u e2(t, u) f(u)dHn−1(u).

Since ψ′
ε(s) < 0 for all s > 0, the symmetric matrix

A =
∫

Sn−1

u⊗ uψ′
ε(hK(u)) f(u)dHn−1(u)

is negative definite because for any v ∈ Sn−1, we have
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vTAv =
∫

Sn−1

〈u, v〉2 ψ′
ε(hK(u)) f(u) dHn−1(u) < 0.

In addition, A satisfies∫
Sn−1

u 〈u, ξ(Kt)〉ψ′
ε(hK(u)) f(u)dHn−1(u) = Aξ(Kt).

It follows from (32) that if t ≥ 0 is small, then

A−1
∫

Sn−1

u ψ′
ε(hK(u)) g(t, u) f(u)dHn−1(u) + ẽ1(t) = ξ(Kt) − ẽ2(t), (33)

where ‖ẽ1(t)‖ ≤ α1η(t)t and ‖ẽ2(t)‖ ≤ α2η(t)‖ξ(Kt)‖ for constants α1, α2 > 0. Since 
η(t) tends to 0 with t, if t ≥ 0 is small, then ‖ξ(K(t)) − ẽ2(t)‖ ≥ 1

2 ‖ξ(Kt)‖. Adding 
the estimate g(t, u) ≤ ct, we deduce that ‖ξ(K(t))‖ ≤ β t for a constant β > 0, which 
in turn yields that limt→0+

‖ẽi(t)‖
t = 0 and ẽi(0) = 0 for i = 1, 2. Since there exists 

limt→0+
g(t,u)−g(0,u)

t = ∂1g(0, u) for Hn−1 almost all u ∈ Sn−1, and g(t,u)−g(0,u)
t < c for 

all u ∈ Sn−1 and t > 0, we conclude that

d

dt
ξ(K(t))

∣∣∣∣
t=0+

= A−1
∫

Sn−1

u ψ′
ε(hK(u)) ∂1g(0, u) f(u) dHn−1(u). �

Corollary 6.3. Under the conditions of Lemma 6.2, and setting K = K(0), we have

d

dt
Φε(K(t), ξ(K(t)))

∣∣∣∣
t=0+

= −
∫

Sn−1

∂

∂t
hK(t)(u)

∣∣∣∣
t=0+

ψε

(
hK(u) − 〈u, ξ(K)〉

)
f(u) dHn−1(u).

We omit the proof of this result since it is very similar to that of [1, Corollary 3.6], 
given by the authors and Yang for the Lp Minkowski problem, with f(u) dHn−1(u), Ψε, 
−ψε, Lemma 6.2 and Corollary 5.3 replacing respectively dμ(u), ϕε, ϕ′

ε, Lemma 3.5 and 
Corollary 3.3.

Given a family K(t) of convex bodies for t ∈ [0, t0), t0 > 0, to handle the variation 
of Φε(K(t), ξ(K(t))) at K(0) = K via applying Corollary 6.3, we need the property (see 
Lemma 6.2) that there exists c > 0 such that

|hK(t)(u) − hK(u)| ≤ c |t| for any u ∈ Sn−1 and t ∈ [0, t0) (34)

lim
hK(t)(u) − hK(u)

exists for Hn−1 almost all u ∈ Sn−1. (35)

t→0+ t
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However, even if K(t) = [hK + thC ] for K, C ∈ Kn
(0) and for t ∈ (−t0, t0), K must satisfy 

some smoothness assumption in order to ensure that (35) holds also for the two sided 
limits (problems occur say if K is a polytope and C is smooth).

We recall that ∂′K denotes the set of smooth points of ∂K. We say that K is quasi-
smooth if Hn−1(Sn−1\νK(∂′K)) = 0; namely, the set of u ∈ Sn−1 that are exterior 
normals only at singular points has Hn−1-measure zero. The following Lemma 6.4, taken 
from Bianchi, Böröczky, Colesanti, Yang [1], shows that (34) and (35) are satisfied even if 
t ∈ (−t0, t0) at least for K(t) = [hK + thC ] with arbitrary C ∈ Kn

(0) if K is quasi-smooth.

Lemma 6.4. Let K, C ∈ Kn
(0) be such that rC ⊂ K for some r > 0. For t ∈ (−r, r) and 

K(t) = [hK + thC ],

(i) if K ⊂ RC for R > 0, then |hK(t)(u) − hK(u)| ≤ R
r |t| for any u ∈ Sn−1 and 

t ∈ (−r, r);
(ii) if u ∈ Sn−1 is the exterior normal at some smooth point z ∈ ∂K, then

lim
t→0

hK(t)(u) − hK(u)
t

= hC(u).

We will need the condition (35) in the following rather special setting taken from 
Bianchi, Böröczky, Colesanti, Yang [1].

Lemma 6.5. Let K be a convex body with rBn ⊂ intK for r > 0, let ω ⊂ Sn−1 be closed, 
and if t ∈ [0, r), then let

K(t) = [hK − 1ω] = {x ∈ K : 〈x, u〉 ≤ hK(u) − t for every u ∈ ω}.

(i) We have limt→0+
hK(t)(u)−hK(u)

t exists and is non-positive for all u ∈ Sn−1, and 

if u ∈ ω, then even limt→0+
hK(t)(u)−hK(u)

t ≤ −1.
(ii) If SK(ω) = 0, then limt→0+

V (K(t))−V (K)
t = 0.

Proposition 6.6. For ε ∈ (0, δ), Kε is quasi-smooth.

Proof. We suppose that Kε is not quasi-smooth, and seek a contradiction. It follows 
that Hn−1(X) > 0 for X = Sn−1\νKε(∂′Kε), therefore there exists a closed ω ⊂ X such 
that Hn−1(ω) > 0. Since ν−1

Kε(ω) ⊂ ∂Kε\∂′Kε, we deduce that SKε(ω) = 0.
We may assume that ξ(Kε) = o and rBn ⊂ Kε ⊂ RBn for R > r > 0. As in 

Lemma 6.5, if t ∈ [0, r), then we define

K(t) = [hKε − 1ω] = {x ∈ Kε : 〈x, u〉 ≤ hK(u) − t for every u ∈ ω}.

Clearly, K(0) equals Kε. We define α(t) = V (K(t))−1/n, and hence α(0) = 1, and 
Lemma 6.5 (ii) yields that α′(0) = 0.
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We set K̃(t) = α(t)K(t), and hence K̃(0) = Kε and V (K̃(t)) = 1 for all t ∈ [0, r). In 
addition, we consider h(t, u) = hK(t)(u) and h̃(t, u) = h

K̃(t)(u) = α(t)h(t, u) for u ∈ Sn−1

and t ∈ [0, r). Since [hKε−thBn ] ⊂ K(t), Lemma 6.4 (i) yields that |h(t, u) −h(0, u)| ≤ R
r t

for u ∈ Sn−1 and t ∈ [0, r). Hence α′(0) = 0 implies that there exist c > 0 and t0 ∈ (0, r)
such that |h̃(t, u) − h̃(0, u)| ≤ c t for u ∈ Sn−1 and t ∈ [0, t0). Applying α(0) = 1, 
α′(0) = 0 and Lemma 6.5 (i), we deduce that

∂1h̃(0, u) = lim
t→0+

h̃(t, u) − h̃(0, u)
t

= lim
t→0+

h(t, u) − h(0, u)
t

≤ 0 exists for all u ∈ Sn−1,

∂1h̃(0, u) ≤ −1 for all u ∈ ω.

As ψε is positive and monotone decreasing, f > τ1 and Hn−1(ω) > 0, Corollary 6.3
implies that

d

dt
Φε(K̃(t), ξ(K̃(t)))

∣∣∣∣
t=0+

= −
∫

Sn−1

∂1h̃(0, u) · ψε(hK(u)) f(u) dHn−1(u)

≥ −
∫
ω

(−1)ψε(R)τ1 dHn−1(u) > 0.

Therefore Φε(K̃(t), ξ(K̃(t))) > Φε(Kε, ξ(Kε)) for small t > 0. This contradicts the 
definition of Kε and concludes the proof. �

For ε ∈ (0, δ), we define

λε = 1
n

∫
Sn−1

hKε−ξ(Kε) · ψε(hKε−ξ(Kε)) · f dHn−1. (36)

Proposition 6.7. For ε ∈ (0, δ), ψε(hKε−ξ(Kε)) ·f dHn−1 = λε dSKε as measures on Sn−1.

We omit the proof of this result since it is very similar to that of [1, Proposition 
6.1], given by the authors and Yang for the Lp Minkowski problem, with −λε, −ψε, 
Lemma 6.1, Lemma 6.4, Corollary 6.3, and [38] replacing respectively λε, ϕ′

ε, Lemma 5.2, 
Lemma 2.3, Corollary 3.6 and [35].

7. The proof of Theorem 1.2 when f is bounded and bounded away from zero

In this section, again let 0 < τ1 < τ2, let the real function f on Sn−1 satisfy τ1 < f <

τ2, and let ϕ be the continuous function on [0, ∞) of Theorem 1.2. We use the notation 
developed in Section 5, and hence ψ : (0, ∞) → (0, ∞) and ψ = 1/ϕ.

To ensure that a convex body is “fat” enough in Lemma 7.2 and later, the following 
observation is useful:
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Lemma 7.1. If K is a convex body in Rn with V (K) = 1 and K ⊂ σ(K) + RBn for 
R > 0, then

σ(K) + rBn ⊂ K for r = 1
cκn−1

n−3/2 R−(n−1).

Proof. Let z0 + r0B
n be a largest ball in K. According to the Steinhagen theorem [12, 

Theorem 50], there exists v ∈ Sn−1 such that

|〈x− z0, v〉| ≤ c
√
nr0 for x ∈ K,

where c is a positive universal constant. It follows that 1 = V (K) ≤ c
√
nr0κn−1R

n−1, 
thus r0 ≥ 1

cκn−1
n−1/2 R−(n−1). Since σ(K) + r0

n Bn ⊂ K by −(K−σ(K)) ⊂ n(K−σ(K)), 
we may choose r = 1

cκn−1
n−3/2 R−(n−1). �

We recall (compare (36)) that if ε ∈ (0, δ) and ξ(Kε) = o, then λε is defined by

λε = 1
n

∫
Sn−1

hKεψε(hKε)f dHn−1. (37)

Lemma 7.2. There exist R0 > 1, r0 > 0 and λ̃2 > λ̃1 > 0 depending on f, q, ψ, ℵ such 
that if ε ∈ (0, δ0) for δ0 = min{δ̃, r02 } where δ̃ comes from (30), then λ̃1 ≤ λε ≤ λ̃2 and

σ(Kε) + r0B
n ⊂ Kε ⊂ σ(Kε) + R0B

n.

Proof. According to (23), there exists ℵ0 > 0 depending on q, ψ, ℵ such that if ε ∈ (0, δ)
and t ∈ (0, δ), then Ψε(t) ≤ ℵ0t

q. In addition, limt→∞ Ψε(t) = 0 by (21), therefore we 
may apply Lemma 4.3. Since (30) provides the condition∫

Sn−1

Ψε(hKε−σ(Kε))f dHn−1 ≥ Ψ(5)
∫

Sn−1

f dHn−1

for any ε ∈ (0, ̃δ), we deduce from Lemma 4.3 the existence of R0 > 0 such that Kε ⊂
σ(Kε) + R0B

n for any ε ∈ (0, ̃δ). In addition, the existence of r0 independent of ε such 
that σ(Kε) + r0B

n ⊂ Kε follows from Lemma 7.1.
To estimate λε, we assume ξ(Kε) = o. Let wε ∈ Sn−1 and 
ε ≥ 0 be such that σ(Kε) =


εwε, and hence r0wε ∈ Kε. It follows that hKε(u) ≥ r0/2 holds for u ∈ Ω(wε, π3 ), while 
Kε ⊂ 2R0B

n, R0 > 1 and the monotonicity of ψε imply that ψε(hKε(u)) ≥ ψε(2R0) =
ψ(2R0) for all u ∈ Sn−1.

We deduce from (37) that

λε = 1
n

∫
hKεψε(hKε)f dHn−1 ≥ 1

n
· r02 · ψ(2R0) · τ1 · Hn−1

(
Ω
(
wε,

π

3

))
= λ̃1.
Sn−1
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To have a suitable upper bound on λε, we define α ∈ (0, π2 ) with cosα = r0
2R0

, and 
hence

Ω(−wε, α) =
{
u ∈ Sn−1 : 〈u,wε〉 ≤

−r0
2R0

}
.

A key observation is that if u ∈ Sn−1\Ω(−wε, α), then 〈u, wε〉 > − r0
2R0

and 
ε ≤ R0
imply

hKε(u) ≥ 〈u, 
wε + r0u〉 ≥ r0 −
r0
ε
2R0

≥ r0/2,

therefore ε < r0
2 yields

ψε(hKε(u)) ≤ ψε(r0/2) = ψ(r0/2). (38)

Another observation is that Kε ⊂ 2R0B
n implies

hKε(u) < 2R0 for any u ∈ Sn−1. (39)

It follows directly from (38) and (39) that∫
Sn−1\Ω(−wε,α)

hKεψε(hKε)f dHn−1 ≤ (2R0)ψ(r0/2)τ2nκn. (40)

However, if u ∈ Ω(−wε, α), then ψε(hKε(u)) can be arbitrary large as ξ(Kε) can 
be arbitrary close to ∂Kε if ε > 0 is small, and hence we transfer the problem to the 
previous case u ∈ Sn−1\Ω(−wε, α) using Corollary 5.3. First applying 〈u, −wε〉 ≥ r0

2R0

for u ∈ Ω(−wε, α), then Corollary 5.3, and after that 〈u, wε〉 ≤ 1, f ≤ τ2 and (38) implies∫
Ω(−wε,α)

ψε(hKε(u))f(u) dHn−1(u) ≤ 2R0

r0

∫
Ω(−wε,α)

〈u,−wε〉ψε(hKε(u))f(u) dHn−1(u)

= 2R0

r0

∫
Sn−1\Ω(−wε,α)

〈u,wε〉ψε(hKε(u))f(u) dHn−1(u)

≤ 2R0

r0
· ψ

(r0
2

)
τ2nκn.

Now (39) yields ∫
Ω(−wε,α)

hKψε(hK)f dHn−1 ≤ (2R0)2

r0
· ψ

(r0
2

)
τ2nκn,

which estimate combined with (40) leads to λε <
(

(2R0)2
r0

+ 2R0

)
ψ( r02 )τ2nκn. In turn, 

we conclude Lemma 7.2. �
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Now we prove Theorem 1.2 if f is bounded and bounded away from zero.

Theorem 7.3. For 0 < τ1 < τ2, let the real function f on Sn−1 satisfy τ1 < f < τ2, and let 
ϕ : [0, ∞) → [0, ∞) be increasing and continuous satisfying ϕ(0) = 0, lim inft→0+

ϕ(t)
t1−p >

0, and 
∫∞
1

1
ϕ < ∞. Let Ψ(t) =

∫∞
t

1
ϕ . Then there exist λ > 0 and a K ∈ Kn

0 with 
V (K) = 1 such that

f dHn−1 = λϕ(hK) dSK ,

as measures on Sn−1, and∫
Sn−1

Ψ(hK−σ(K))f dHn−1 ≥ Ψ(5)
∫

Sn−1

f dHn−1. (41)

In addition, if f is invariant under a closed subgroup G of O(n), then K can be chosen 
to be invariant under G.

Proof. We assume that ξ(Kε) = o for all ε ∈ (0, δ0) where δ0 ∈ (0, δ] comes from 
Lemma 7.2. Using the constant R0 of Lemma 7.2, we have that

Kε ⊂ 2R0B
n and hKε(u) < 2R0 for any u ∈ Sn−1 and ε ∈ (0, δ0). (42)

We consider the continuous increasing function ϕε : [0, ∞)] → [0, ∞) defined by 
ϕε(0) = 0 and ϕε(t) = 1/ψε(t) for ε ∈ (0, δ). We claim that

ϕε tends uniformly to ϕ on [0, 2R0] as ε > 0 tends to zero. (43)

For any small ζ > 0, there exists δζ > 0 such that ϕ(t) ≤ ζ/2 for t ∈ [0, δζ ]. We deduce 
from (20) that if ε > 0 is small, then |ϕε(t) − ϕ(t)| ≤ ζ/2 for t ∈ [δζ , 2R0]. However ϕε

is monotone increasing, therefore ϕε(t), ϕ(t) ∈ [0, ζ] for t ∈ [0, δζ ], completing the proof 
of (43).

For any ε ∈ (0, δ0), it follows from Lemma 6.7 that ψε(hKε)f dHn−1 = λε dSKε as 
measures on Sn−1. Integrating gϕε(hKε) for any continuous real function g on Sn−1, we 
deduce that

f dHn−1 = λεϕε(hKε) dSKε (44)

as measures on Sn−1.
Since λ̃1 ≤ λε ≤ λ̃2 for some λ̃2 > λ̃1 independent of ε according to Lemma 7.2, (42)

yields the existence of λ > 0, K ∈ Kn
0 with V (K) = 1 and sequence {ε(m)} tending to 

0 such that limm→∞ λε(m) = λ and limm→∞ Kε(m) = K. As hKε(m) tends uniformly to 
hK on Sn−1, we deduce that λε(m)ϕε(m)(hKε(m)) tends uniformly to λϕ(hK) on Sn−1. 
In addition, SKε(m) tends weakly to SK , thus (44) yields
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f dHn−1 = λϕ(hK) dSK .

We note that if f is invariant under a closed subgroup G of O(n), then each Kε can be 
chosen to be invariant under G according to Lemma 5.4, therefore K is invariant under 
G in this case.

To prove (41), if ε ∈ (0, δ0), then (30) provides the condition∫
Sn−1

Ψε(hKε−σ(Kε))f dHn−1 ≥ Ψ(5)
∫

Sn−1

f dHn−1. (45)

Now Lemma 7.2 yields that there exists r0 > 0 such that if ε ∈ (0, δ0), then σ(Kε) +
r0B

n ⊂ Kε where 0 < δ0 ≤ r0
2 . In particular, if u ∈ Sn−1, then hKε−σ(Kε)(u) ≥ r0, and 

hence we deduce from (26) that

Ψε(hKε−σ(Kε)(u)) ≤ Ψ(hKε−σ(Kε)(u)) + π

2 . (46)

Since Kε(m) − σ(Kε(m)) tends to K − σ(K), (25) implies that if u ∈ Sn−1, then

lim
ε→0+

Ψε(hKε−σ(Kε)(u)) = Ψ(hK−σ(K)(u)). (47)

Combining (45), (46) and (47) with Lebesgue’s Dominated Convergence Theorem, we 
conclude (41), and in turn Theorem 7.3. �
8. The proof of Theorem 1.2

Let −n < p < 0, let f be a non-negative non-trivial function in L n
n+p

(Sn−1), and let 
ϕ : [0, ∞) → [0, ∞) be a monotone increasing continuous function satisfying ϕ(0) = 0,

lim inf
t→0+

ϕ(t)
t1−p

> 0 (48)

∞∫
1

1
ϕ(t) dt < ∞. (49)

We associate certain functions to f and ϕ. For any integer m ≥ 2, we define fm on Sn−1

as follows:

fm(u) =

⎧⎪⎨⎪⎩
m if f(u) ≥ m,

f(u) if 1
m < f(u) < m,

1
m if f(u) ≤ 1

m .

In particular, fm ≤ f̃ where the function f̃ : Sn−1 → [0, ∞) in L n
n+p

(Sn−1), and hence 
in L1(Sn−1), is defined by
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f̃(u) =
{

f(u) if f(u) > 1,
1 if f(u) ≤ 1.

As in Section 5, using (49), we define the function

Ψ(t) =
∞∫
t

1
ϕ

for t > 0.

According to (48), there exist some δ ∈ (0, 1) and ℵ > 1 such that

1
ϕ(t) < ℵtp−1 for t ∈ (0, δ). (50)

We deduce from Lemma 4.1 that there exists ℵ0 > 1 depending on ϕ such that

Ψ(t) < ℵ0t
p for t ∈ (0, δ). (51)

For m ≥ 2, Theorem 7.3 yields a λm > 0 and a convex body Km ∈ Kn
0 with ξ(Km) =

o ∈ intKm, V (Km) = 1 such that

λmϕ(hKm
) dSKm

= fm dHn−1 (52)∫
Sn−1

Ψ(hKm−σ(Km))fm dHn−1 ≥ Ψ(5)
∫

Sn−1

fm dHn−1. (53)

In addition, if f is invariant under a closed subgroup G of O(n), then fm is also invariant 
under G, and hence Km can be chosen to be invariant under G.

Since fm ≤ f̃ , and fm converges pointwise to f , Lebesgue’s Dominated Convergence 
theorem yields the existence of m0 > 2 such that if m > m0, then

1
2

∫
Sn−1

f <

∫
Sn−1

fm < 2
∫

Sn−1

f. (54)

In particular, (53) implies∫
Sn−1

Ψ(hKm−σ(Km))f̃ dHn−1 ≥ Ψ(5)
2

∫
Sn−1

f dHn−1. (55)

We deduce from V (Km) = 1, limt→∞ Ψ(t) = 0, (51), (55) and Lemma 4.3 that there 
exists R0 > 0 independent of m such that

Km ⊂ σ(Km) + R0B
n ⊂ 2R0B

n for all m > m0. (56)

Since V (Km) = 1, Lemma 7.1 yields some r0 > 0 independent of m such that
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σ(Km) + r0B
n ⊂ Km for all m > m0. (57)

To estimate λm from below, (56) implies that∫
Sn−1

ϕ(hKm
) dSKm

≤ ϕ(2R0)Hn−1(∂Km) ≤ ϕ(2R0)(2R0)n−1nκn,

and hence it follows from (52) and (54) the existence of λ̃1 > 0 independent of m such 
that

λm =
∫
Sn−1 fm dHn−1∫

Sn−1 ϕ(hKm
) dSKm

≥ λ̃1 for all m > m0. (58)

To have a suitable upper bound on λm for any m > m0, we choose wm ∈ Sn−1 and 

m ≥ 0 such that σ(Km) = 
mwm. We set B#

m = w⊥
m ∩ intBn and consider the relative 

open set

Ξm = (∂Km) ∩
(

mwm + r0B

#
m + (0,∞)wm

)
.

If u is an exterior unit normal at an x ∈ Ξm for m > m0, then x = (
m + s)wm + rv for 
s > 0, r ∈ [0, r0) and v ∈ w⊥

m ∩ Sn−1, and hence 
mwm + rv ∈ Km yields

〈u, (
m + s)wm + rv〉 = hKm
(u) ≥ 〈u, 
mwm + rv〉,

implying that 〈u, wm〉 ≥ 0; or in other words, u ∈ Ω(wm, π2 ). Since the orthogonal 
projection of Ξm onto w⊥

m is B#
m for m > m0, we deduce that

SKm

(
Ω
(
wm,

π

2

))
≥ Hn−1(Ξm) ≥ Hn−1(B#

m) = rn−1
0 κn−1. (59)

On the other hand, if u ∈ Ω(wm, π2 ) for m > m0, then 
mwm + r0u ∈ Km yields

hKm
(u) ≥ 〈u, 
mwm + r0u〉 ≥ r0. (60)

Combining (54), (59) and (60) implies

λm =

∫
Ω(wm,π2 ) fm dHn−1∫

Ω(wm,π2 ) ϕ(hKm
) dSKm

≤
2
∫
Sn−1 f dHn−1

ϕ(r0)rn−1
0 κn−1

= λ̃2 for all m > m0. (61)

Since Km ⊂ 2R0B
n and λ̃1 ≤ λm ≤ λ̃2 for m > m0 by (56), (58) and (61), there 

exists subsequence {Km′} ⊂ {Km} such that Km′ tends to some convex compact set K
and λm′ tends to some λ > 0. As o ∈ Km′ and V (Km′) = 1 for all m′, we have o ∈ K

and V (K) = 1.
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We claim that for any continuous function g : Sn−1 → R, we have∫
Sn−1

gλϕ(hK) dSK =
∫

Sn−1

gf dHn−1. (62)

As ϕ is uniformly continuous on [0, 2R0] and hKm′ tends uniformly to hK on Sn−1, we 
deduce that λm′ϕ(hKm′ ) tends uniformly to λϕ(hK) on Sn−1. Since SKm′ tends weakly 
to SK , we have

lim
m′→∞

∫
Sn−1

gλm′ϕ(hKm′ ) dSKm′ =
∫

Sn−1

gλϕ(hK) dSK .

On the other hand, |gfm| ≤ f̃ ·maxSn−1 |g| for all m ≥ 2, and gfm tends pointwise to gf
as m tends to infinity. Therefore Lebesgue’s Dominated Convergence Theorem implies 
that

lim
m→∞

∫
Sn−1

gfm dHn−1 =
∫

Sn−1

gf dHn−1,

which in turn yields (62) by (52). In turn, we conclude Theorem 1.2 by (62). �
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