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The notion of submatrix avoidance in polyominoes has recently been introduced in [2]
with the aim of extending most of the concepts and properties concerning pattern avoiding
permutations to the setting of polyominoes. In this paper we use submatrix avoidance to
describe families of polyominoes which, in the literature, are usually defined by means of
the geometric constraints of convexity, k-convexity, and directedness. To reach this goal, we
provide an extension of the notion of pattern in a polyomino, by introducing generalized
polyomino patterns. In the second part of the paper, we tackle the same problem in the
context of discrete sets, which can be naturally regarded as binary matrices. In this case,
we consider two types of geometric constraints: convexity and directedness, and we study
how these constraints can be imposed on matrices by using submatrix avoidance.

 2015 Published by Elsevier B.V.

1. Introduction

Among the recently developed approaches to the study of combinatorial structures, one consists in describing them by
means of the presence/absence of patterns. The notion of pattern has been considered in various human activities since
ancient times, and research on patterns in combinatorial structures started with the study of pattern in words that dates
back at least at the beginning of the 20th century with the works of Axel Thue [24,25]. Later, the research on patterns in
combinatorial structures has concerned patterns in permutations [20], while in the last few years the notion of pattern has
been defined and studied in other combinatorial objects such as set partitions [19,23], trees [21].

The work [2] fits into this research line with the introduction and the study of the concept of pattern in polyominoes.
Let us recall that a cell in the plane Z × Z is a unit square, and a polyomino is a finite union of cells that is connected

and has no cut point (i.e. the set of cells has to be connected according to the edge adjacency). Polyominoes are defined up
to translation (see Fig. 1). In this paper we use a quite common representation of discrete sets and polyominoes as binary
matrices, where a 1 (resp. 0) entry stands for the presence (resp. absence) of a cell.

Polyominoes are popular combinatorial objects, introduced by S. Golomb [16], related to problems arising from different
areas of mathematics, such as for instance: tiling problems [4,17], recreational mathematics and games [15].

The main objective of [2] is to extend most of the concepts and properties on pattern avoiding permutations to the
setting of polyominoes. In particular, algebraic tools are employed in order to provide a unified framework to describe and
to handle some known families of polyominoes, by the avoidance of patterns. Therefore, in order to fruitfully present our
paper in Section 2 we recall some definitions and the main results from [2].
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Fig. 1. A polyomino and its representation as a binary picture (or matrix).

This paper originates from [1], presented at the 18th International Conference on Discrete Geometry for Computer Imagery

(2014). The principal purpose of this paper is to extend the studies of [1] and use the notion of submatrix avoidance in
order to describe families of polyominoes defined by means of geometric constraints or combinatorial properties. More
precisely we investigate the problem of representing the geometric constraints of convexity, k-convexity, and directedness in
polyominoes by combining the avoidance of five matrices, denoted by H, V , D, L1, L2 . To reach this goal, we have run across
the following related problems:

i) given a set of patterns M, to study the class of polyominoes avoiding the patterns of M as submatrices, and to give a
characterization of this class in terms of the geometric properties of its elements.

ii) to extend the notion of pattern in a polyomino, by introducing generalized polyomino patterns, in a way that is possible
to describe further families of polyominoes known in the literature. Such a generalization resembles what was done for
pattern avoiding permutations by the introduction of vincular, bivincular patterns [5].

In the second part of the paper we study the same kind of problems in the context of discrete sets, which can be
naturally regarded as binary matrices. In this case, we consider two types of geometric constraints: convexity and direct-

edness, and we study how these constraints can be imposed on matrices by using the avoidance of some of the patterns
H, V , D, L1, L2 used for polyominoes. In the authors’ opinion this research guideline gives a new insight into the study of
discrete sets, in particular it lets us tackle the longstanding problem of describing sets connectedness by using this new
notion of pattern avoidance.

2. Polyomino classes

Throughout all the paper we use the representation of discrete sets (resp. polyominoes) as binary matrices, understanding
that the matrix has a 1 entry if there is a cell of the set (resp. polyomino) in the corresponding position, 0 otherwise. Notice
that in a binary matrix representing a polyomino both the first and the last rows (resp. columns) should contain at least
a 1. In this section we recall some basic definitions and results from [2], which is useful in the rest of the paper.

Definition 1. Let M be the class of matrices. We denote by 4 the usual submatrix order on M, i.e. M ′ 4 M if M ′ may be
obtained from M by deleting any collection of rows and/or columns.

Definition 2. Let 4P be the restriction of the submatrix order 4 on the set of polyominoes P.

This defines the poset (P,4P ) and the pattern order on polyominoes: a polyomino P is a pattern of a polyomino Q

(which we denote P 4P Q ) if the binary picture representing P is a submatrix of the one representing Q . We point out
that the order 4P has already been studied by the name of subpicture order in [8] in which the authors proved that (P,4P )

contains infinite antichains, and it is a graded poset (the rank function being the semi-perimeter of the bounding box of the
polyominoes).

This allows to introduce a natural analogue of permutation classes for polyominoes:

Definition 3. A polyomino class is a set of polyominoes C that is downward closed for 4P : for all polyominoes P and Q , if
P ∈ C and Q 4P P , then Q ∈ C .

We point out that a polyomino class is just an ideal in the poset (P,4P ).
In [2] the authors established that some known families of polyominoes, including convex, column-convex, L-convex,

directed-convex polyominoes, are polyomino classes. On the other side, there are several families of polyominoes, which are
not polyomino classes, such as the family of polyominoes having a square shape or the family of polyominoes having exactly
k > 1 columns.
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Fig. 2. (a) A bargraph; (b) The p-basis of the class of bargraphs.

Similarly to the case of permutations, for any set B of polyominoes, let us denote by Av P (B) the set of all polyominoes
that do not contain any element of B as a pattern. Every such set Av P (B) of polyominoes defined by pattern avoidance is
a polyomino class. Conversely, as for permutation classes, every polyomino class may be characterized in this way [2].

Proposition 4. For every polyomino class C , there is a unique antichain B of polyominoes such that C = Av P (B). The set B consists

of all minimal polyominoes, wrt 4P , that do not belong to C .

We call B the polyomino-basis (or p-basis for short), to distinguish from other kinds of bases. We observe that, denoting
AvM(M) the set of binary matrices that do not have any submatrix in M, we have Av P (M) = AvM(M) ∩P.

On the other side, it is quite natural to describe classes of polyominoes by the avoidance of submatrices, then we
introduce the notion of matrix-basis (or m-basis) of a polyomino class C , which is an antichain M of matrices such that
C = Av P (M). Differently from the p-basis, the m-basis needs not be unique.

We recall from [2] that the p-basis and an m-basis of a polyomino class are related by the following.

Proposition 5. Let C be a polyomino class, and letM be anm-basis of C . Then the p-basis of C consists of all polyominoes that contain

a submatrix inM, and that are minimal (w.r.t. 4P ) for this property.

Example 6 (Bargraphs). A bargraph is a polyomino obtained by juxtaposing a sequence of connected columns of nonzero
height, whose bottom cells lie on the x-axis, see Fig. 2(a). It is clear that bargraphs form a polyomino class. So, by Proposi-
tion 4 they are described by the avoidance of the two polyominoes B1, B2 in Fig. 2(b), which are their p-basis.

Observe that bargraphs can also be described by the avoidance of the matrix M =
[
1
0

]
, which is a m-basis. By Proposi-

tion 5 it turns out that B1 and B2 are the minimal polyominoes containing M .

3. Polyomino constraints determined by submatrix avoidance

Recall from our previous work [1] that “if a family of polyominoes is defined by imposing some kind of geometric
constraints on its elements, then these constraints can be often represented in a natural way by the avoidance of submatrix
patterns”. In this section, we aim at giving a formalization of this statement, by providing a unified setting to describe
some kind of constraints by means of pattern avoidance. More precisely, we are concerned with the following geometric
constraints on polyominoes:

i) convexity: a polyomino is said to be convex if its rows and columns are connected (see Fig. 3(a)). Convex polyominoes
have been extensively investigated in the literature [6,11].

ii) k-convexity: an (internal) path of a polyomino is a sequence of distinct cells (c1, . . . , cn) of the polyomino such that
every two consecutive cells in this sequence are edge-connected; according to the respective positions of the cells ci
and ci+1 , we say that the pair (ci, ci+1) forms a north, south, east or west step in the path. A path is monotone if it uses
steps of only two types. A convex polyomino is k-convex if every pair of its cells can be connected by a monotone path,
with at most k changes of direction [8]. For k = 1 we have L-convex polyominoes, studied by Castiglione and Restivo
[8], where each pair of cells can be connected by means of a path using at most one change of direction (see Fig. 3(d)).
Recently, L-convex polyominoes have been considered from several points of view: in [9,10] the authors solve the main
enumeration problems for L-convex polyominoes. We underline that the characterization of a path in the discrete plane
by means of a sequence of directed steps is equivalent to a restriction of the standard contour encoding of an arbitrary
geometric configuration provided by Freeman in one of his capital works [13].

iii) directedness: a polyomino P is directed when every cell of P can be reached from a distinguished cell (called source)
by a path that uses only north and east steps, called ne-path. A polyomino is directed-convex if it is both directed and
convex. These families of polyominoes were studied and enumerated in [12], and Fig. 3(b) depicts an example of a
directed non-convex polyomino.

Moreover, we deal with the following patterns:
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Fig. 3. (a) A convex polyomino; (b) A directed polyomino; (c) A parallelogram polyomino; (d) A L-convex polyomino.

H =
[
1 0 1

]
V =



1
0
1


 D =

[
1 1
0 1

]
L1 =

[
0 1
1 0

]
L2 =

[
1 0
0 1

]
.

Throughout all the paper, these patterns are referred by using the above notation. Our aim is to study how it is possible
to represent the convexity, k-convexity, and directedness constraints on polyominoes by imposing the avoidance of (some
of) the patterns above. The case of convex polyominoes is perhaps the simplest one, and it was considered in [2].

Proposition 7 (Convex polyominoes). The class of convex polyominoes is described by the avoidance of H and V .

3.1. The family of directed polyominoes

The reader can easily check that the family of directed polyominoes is not a polyomino class as shown in Fig. 3(b). But
if we impose the convexity constraint, then we have a polyomino class:

Proposition 8 (Directed-convex polyominoes). The class DC of directed-convex polyominoes is characterized by the avoidance of the

submatrices H , V and D .

By Proposition 4, directed polyominoes cannot be expressed in terms of submatrix avoidance. In order to overcome this
problem we extend the notion of pattern avoidance introducing the notion of generalized pattern avoidance.

Our extension consists in imposing the adjacency of two columns or rows by introducing special symbols, i.e. verti-
cal/horizontal lines. Let M be a matrix, a vertical line between two columns of M , ci and ci+1 (resp. a horizontal line
between two rows ri and ri+1) means that ci and ci+1 (resp. ri and ri+1) must be adjacent. If the vertical (resp. horizon-
tal) line is external, the column (resp. row) of the pattern must touch the minimal bounding rectangle of the polyomino.
Moreover, we use the ∗ symbol to denote 0 or 1, indifferently.

In the following we prove that directed polyominoes can be described using the notion of pattern avoidance. In the
proofs the notation M(i, j) refers to the entry in row i and column j of the matrix M .

Proposition 9. The class of directed polyominoes is represented as the class of polyominoes avoiding the following patterns:

D =

{
P1 =

[
0 1
∗ 0

]
, P2 =

[
0 1

]
, P3 =

[
1
0

] }

Proof. (⇒) If P is a directed polyomino, then P avoids D. Let us proceed by contradiction assuming that P is a directed
polyomino containing one of the patterns of D. If P contains P1 , then every path running from the source to the entry 1 of
the pattern ends with a s or w step. Indeed, by definition of generalized pattern, the entry 1 in P1 needs be adjacent to the
entries 0 (below and on the left), against the assumption. A similar reasoning holds for the patterns P2 and P3 considering
the first column and the last row of P .

(⇐) If P is a polyomino avoiding D, then P is directed. Let us assume, by contradiction, that P avoids D without being
directed. Let m be the number of rows of P . Since P avoids P2 and P3 , the entry P (m,1) = 1, i.e. there is a cell of P in
position (m,1). Moreover, since P is not directed, there exists a cell P (i1, j1) of P which cannot be reached by a ne-path
starting from P (m,1).

If i1 = m, then we move westwards from P (i1, j1), up to reach P (i1, j2) on the boundary of P . Since there does not
exist a ne-path from P (m,1) to P (i1, j1), then P (i1, j2) 6= P (m,1), so P contains P2 against the assumption, see Fig. 4 (a).
A similar reasoning holds for j1 = 1 and the pattern P3 .

So, let us assume that i1 6= m and j1 6= 1, i.e. P (i1, j1) does not lie in the first column or in the last row of P . Let us
consider a sw-path (i.e., using south and west steps) defined as follows: it moves from P (i1, j1) starting with a west step
(if possible) and changes direction only if it hits the boundary of P , as shown in Fig. 4(b). Let P (i2, j2) be the ending cell of
such path. If P (i2, j2) lies in the last row (resp. first column) of P , then P contains P2 (resp. P3), against the assumption.
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Fig. 4. (a) A non-directed polyomino containing P2; (b) A non-directed polyomino containing P1 .

Fig. 5. (a) A prudent non-convex polyomino; (b) A directed non-prudent polyomino.

Otherwise, since P (i2, j2) is the ending cell of the path, then there are 0 entries below and on the left of P (i2, j2). Hence
P contains one of the two configurations of P1 , against the assumption. ✷

An important polyomino class between directed convex and directed polyominoes is that of prudent polyominoes. Before
defining these objects, let us give some definitions.

Definition 10. Let P be a directed polyomino. Let w(P ) be the boundary word of P , consisting of north, east, south and
west unit steps, and which is obtained by following the boundary of P clockwise starting from the source. Any occurrence
of the factor ne (resp. se) in w(P ) identifies a cell which is called a north (resp. east) corner of P . Moreover, a polyomino
has no holes if the boundary is a simple loop.

Observe that north (resp. east) corners are precisely those corners c of P such that every directed path internal to P

from the source to c ends with a north (resp. east) step.

Definition 11. A directed polyomino P without holes is said to be prudent if every north (resp. east) corner c is the upper-
most (resp. rightmost) cell of P with the same abscissa (resp. ordinate) of c.

Fig. 5(a) shows a prudent polyomino. It is clear that every directed convex polyomino is prudent while, not every directed
polyominoes is prudent (see Fig. 5(b)). In the graphical representation we identify north (resp. east) corners by means of an
up (resp. right) arrow in the corresponding cell.

The name “prudent” is motivated by the fact that in these polyominoes, no east/north corner points the boundary. We
draw attention to the fact that another family of polyominoes, called prudent polygons was considered in [3], but these
objects are not relevant for the scope of this paper, since they do not form a polyomino class.

Proposition 12 (Prudent directed polyominoes). The family PD of prudent directed polyominoes is a polyomino class described by

the avoidance of D .

Proof. (⇐) If P ∈ Av P (D), then P ∈ PD. Assume that P avoids the pattern D . Then, P must contain at least a cell in the
last row, so let c1 be the leftmost cell of this row. Since the first column should contain at least a cell c2 , and D 64P P , c1
and c2 coincide or they lie in the same column. Moreover, in order not to have the pattern D any other cell c′ of P must
be reached from c1 using north and east steps. So P is directed. Furthermore, P has no holes, otherwise trivially it would
contain the pattern



1 1 1
1 0 1
1 1 1


 ,

which contains D . Now we prove that there is no cell of P above every north corner. So, in the matrix representation of P ,
let cN be a 1 entry corresponding to a north corner, which means there are 0 entries above and on the left of this 1, i.e.
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[
∗ 0
0 1

]
. Now, assuming that in P there is at least a cell above cN in the same column, let c′ be the bottommost cell among

these. Since P is directed, there must be a cell on the left of c′ , thus we have the pattern D . The property for east corners
can be proved in a completely analogous way.

(⇒) If P ∈ PD, then P ∈ Av P (D). Proceeding by contradiction, assume that P /∈ Av P (D), P is directed and without holes.
We prove that P /∈ PD. Thus, P contains the pattern D , and let a = 0, b = 1, c = 1, and d = 1 be four cells leading to the
pattern D , arranged as

U =



b . . . c
...

. . .
...

a . . . d


 .

First we prove the following stronger statement:

Claim 1: U contains one of the two generalized patterns:

D1 =

[
1 0 1
0 ∗ 1

]
or D2 =




1 1
∗ 0
0 1




Proof of Claim 1: Since P is directed, one of the two cases must hold:

1. there is a 0 entry between b and c which is connected to a by means of a sequence of 0 entries which are edge- or
vertex-connected;

2. there is a 0 entry between d and c, which is connected to a by means of a sequence of 0 entries which are edge- or
vertex-connected.

It is clear, that, if 1. and 2. do not hold, then a is a cell of a hole contained in P , which is not possible. So let us consider
the two cases separately:

1. Since there is a sequence O of 0 between a and the first row of U , it means there is a submatrix U ′ =

[
1 0
0 ∗

]
of U .

Moreover, by directedness, c is connected to the source by means of a ne-path which lies on the right of O. Due to
this fact, for each pair of adjacent rows in U exists a column of 1 on the right of O. Therefore we clearly have the
pattern D1 . An example of this situation is represented in the matrix below, where the entries forming the pattern D1

are underlined:



b 1 0 0 c

1 1 0 1 1
1 0 1 1 0
a 0 1 0 d




2. Similarly to Case 1., since there is a sequence of 0 between a and the last column of U , using the same arguments we
have the pattern D2 . An example of this situation is represented in the matrix below, where the entries forming the
pattern D2 are underlined:




b 1 0 0 c

0 0 1 1 1
1 1 1 0 0
a 0 0 1 d




Now it is clear that if P contains D1 , then the entry D1(1,1) is an east corner of P , and there is a cell in front of it.
So P /∈ PD. Similarly if P contains D2 , then the entry D2(3,2) is a north corner of P , and there is a cell in front of it. So
P /∈PD as well. ✷

By symmetry, there is an analogous characterization of the class of polyominoes avoiding the pattern D ′ =
[
1 0
1 1

]
. The

avoidance of both submatrices D and D ′ describes a well-known class of polyominoes.

Definition 13. A parallelogram polyomino is a polyomino whose boundary can be decomposed in two paths, the upper and
the lower ones, made of north and east unit steps and meeting only at their starting and final points.

Parallelogram polyominoes (see Fig. 3(d)) are proved to be a polyomino class [2].
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Proposition 14 (Parallelogram polyominoes). Parallelogram polyominoes are characterized by the avoidance of D and D ′ .

It is interesting to observe that the avoidance of D and D ′ imposes convexity. This is due to the fact that if a polyomino
contains H or V as a pattern, then it necessarily contains D or D ′ .

3.2. The family of k-convex polyominoes

In this section we consider the families of k-convex polyominoes, k ≥ 1, and their representability by means of submatrix
avoidance.

L-convex polyominoes The family of L-convex polyominoes forms a polyomino class, as proved in [2].

Proposition 15. L-convex polyominoes are described by the avoidance of the submatrices H , V , L1 , L2 .

We would like to point out that L-convex polyominoes play an important role among polyomino classes. We start by
introducing a different notion of pattern containment, obtained by strengthening the constraints of a polyomino class. In
the rest of the paper, for a matrix M , M̂ denotes its reduction, i.e. the matrix obtained from M by removing possible 0
rows/columns at the extremities of M .

Definition 16. A polyomino class S is said to be a strong polyomino class if for every polyomino P ∈ S , and for every pattern
M 4 P , we have that M̂ is a polyomino in S .

On the other side, the class of bargraphs is not strong, in fact a bargraph may contain the reduced pattern H which is
not a bargraph.

Clearly, every strong polyomino class is a polyomino class. But only few polyomino classes are strong classes: for instance,
rectangles, Ferrers diagrams, stack polyominoes. Compared with the notion of polyomino class, we have the rather surprising
result that there is a maximal strong class, and it is the class of L-convex polyominoes.

Proposition 17. Let S be a class of polyominoes.

i) if S is a strong class then S is contained in the class of L-convex polyominoes;

ii) the class of L-convex polyominoes is a strong class.

Proof.

i) We proceed by contradiction. Suppose that S is not contained in the class of L-convex polyominoes. Then, by Propo-
sition 15 there is a polyomino P ∈ S and a pattern M ∈ {H, V , L1, L2} such that M 4 P . Since M = M̂ , and M is not a
polyomino, then S is not a strong class.

ii) Suppose that the family of L-convex polyominoes is not a strong class. Then, there exists a L-convex polyomino P and
a pattern M 4 P such that M̂ is not a L-convex polyomino. So, we have that both of the following two possibilities are
impossible:
1. M̂ is a polyomino containing one of the four patterns H, V , L1, L2 , which is against hypothesis of P being L-convex.
2. M̂ is not a polyomino. Then, it contains at least two disconnected cells lying on the same row (resp. column), hence

M̂ contains the pattern H (resp. V ) (against our hypothesis). Otherwise, if all rows and columns are connected, the
only possibility to have two disconnected cells is that M̂ contains L1 or L2 (against our hypothesis). ✷

2-convex polyominoes Differently from L-convex polyominoes, 2-convex polyominoes do not form a polyomino class. As a
matter of fact, the 2-convex polyomino in Fig. 6(a) contains the 3-convex polyomino (b) as a pattern, so the class is not
downward closed w.r.t. 4P . Similarly, the set of k-convex polyominoes is not a polyomino class, for k ≥ 2.

In practice, this means that 2-convex polyominoes cannot be described in terms of pattern avoidance. Let us recall some
definitions and results concerning k-convex polyominoes from [7].

Definition 18 (Bounce paths). Let P be a convex polyomino, and b, c be two cells of P , in positions (ib, jb), and (ic, jc),
respectively, with ib ≤ ic and jb ≤ jc . The bounce path ubc (resp. rbc) is the monotone path internal to P starting at b with
a north (resp. east) unit step and ending at c, where each horizontal side has maximal length up to reach ic , and each
vertical side has maximal length up to reach jc (see Fig. 7(a)). Observe that, due to the position of b in P , one of the two
paths may not exist.

If jb > jc , then a bounce path dbc is defined analogously to ubc , changing north with south steps.
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Fig. 6. (a) A 2-convex polyomino P ; (b) A pattern of P that is not a 2-convex polyomino; (c) A generalized pattern, which is not contained in (a), but is
contained in the 3-convex polyomino (non-2-convex) (d).

Lemma 19. Let P be a convex polyomino and let b, c be two cells of P . The minimal number of changes of direction of the bounce paths

joining b to c is less than or equal to the number of changes of direction of any path joining b to c.

Now, we can prove that 2-convex polyominoes is expressed by the avoidance of generalized patterns.

Proposition 20. The class of 2-convex polyominoes is described by the avoidance of the setM of generalized patterns:

[
1 0 1

]



1
0
1







0 ∗ 1
∗ 1 0
1 0 0







0 0 1
0 1 ∗

1 ∗ 0







1 ∗ 0
0 1 ∗

0 0 1







1 0 0
∗ 1 0
0 ∗ 1







1 ∗ 0 0
∗ 1 ∗ 0
0 ∗ 1 ∗

0 0 ∗ 1







0 0 ∗ 1
0 ∗ 1 ∗

∗ 1 ∗ 0
1 ∗ 0 0


 .

Proof. (⇒) If P is a 2-convex polyomino then P avoids M.
Let us proceed by contradiction assuming that P is a 2-convex polyomino containing one of the patterns of M. Clearly, P
cannot contain H and V , by convexity. So, let consider the two patterns:

Z1 =




0 ∗ 1
∗ 1 0
1 0 0


 and Z2 =




0 0 ∗ 1
0 ∗ 1 ∗

∗ 1 ∗ 0
1 ∗ 0 0


 .

Let us assume that P contains Z1 (resp. Z2). We remark the other cases can be obtained by symmetry. It follows that P

contains a submatrix P ′ (resp. P ′′) of the form:

P ′ =

0 ∗ . . . . 1

∗ 1 . . . . 0
. . . . . . .

. . . . . . .

. . . . . . .

1 0 . . . . 0

P ′′ =

0 . . . 0 ∗ . . . 1

. . . . . . . . . .

0 . . . ∗ 1 . . . ∗

∗ . . . 1 ∗ . . . 0
. . . . . . . . . .

1 . . . ∗ 0 . . . 0

,

where 0, 1, and ∗ entries correspond to those of Z1 (resp. Z2), while dots represent a 0 or 1 entry indifferently, provided
that convexity and connectedness constraints are preserved.

Among all polyominoes that contain P ′ (resp. P ′′), those where each ∗ entry is replaced by 1 clearly have minimal
convexity degree, and it is easy to verify that, for each of them, the bounce paths coincide, and the minimal number of
changes of direction in every path connecting the boldface 1 entries of P ′ (resp. P ′′) is three, against our assumption.

(⇐) If P avoids M, then P is a 2-convex polyomino.
Again we proceed by contradiction assuming that P avoids M and it is a 3-convex polyomino, i.e. there exists a couple

of cells of P , indicated by P (i1, j1) and P (i2, j2), such that one of the bounce paths connecting them has three changes of
direction. Let us assume w.l.g. that such bounce path uses only n and e steps, and it starts with a n step, so it holds i1 > i2
and j1 < j2 (the other cases can be treated symmetrically). Furthermore, let the three changes of direction lie in positions
P (i3, j1), P (i3, j3), and P (i2, j3), such that i1 > i3 > i2 , and j1 < j3 < j2 , as depicted in Fig. 7(a).

We consider the leftmost cell P (i2, j4) of P in row i2: by definition of bounce path, it holds j4 ≤ j3 . Since, by assumption,
there are no internal paths running from P (i1, j1) to P (i2, j2) with less than three changes of directions, then it holds
P (i2, j4 − 1) = 0 and P (i1, j4) = 0. A similar reasoning allows us to determine a row i4 such that i4 < i3 , P (i4, j2) = 1,
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Fig. 7. (a) The bounce path ub,c connecting two cells b and c of P ; (b) A submatrix of P containing the bounce path, where the forbidden pattern Z2 is
highlighted.

P (i4 + 1, j2) = 0 and P (i4, j1) = 0. The situation is depicted in Fig. 7(b); we observe that the highlighted entries, i.e. those
cells in the intersections between rows i1 , i3 , and i4 , and columns j4 , j3 , and j2 , as defined, form one of the patterns of
Z2 , against our hypothesis.

We point out that the pattern Z1 , and its rotations, is obtained from the pattern Z2 (or its rotation) replacing appro-
priately ∗ entries. However we have added Z1 , and its rotations to M in order to avoid the 3-convex polyominoes having
three rows or columns. ✷

Let us just observe, referring to Fig. 6, that the pattern (c) is not contained in the 2-convex polyomino (a), but it is
contained in the 3-convex polyomino (d). It is possible to generalize the previous result and to give a characterization of
the class of k-convex polyominoes, with k > 2, using generalized patterns.

In a merely theoretical way one can observe that it should be possible to describe every family of polyominoes F

using an infinite set of generalized patterns: since every polyomino P is uniquely represented by a pattern which has a
vertical/horizontal line for every row/column, then to describe F it suffices to consider the polyominoes avoiding one by
one all polyominoes not in F . In practice, we would like to point out that there are families of polyominoes which cannot
be described by means of a finite set of generalized patterns.

Proposition 21. The family of polyominoes having square shape cannot be described by the avoidance of a finite set of generalized

patterns.

4. Matrix constraints defined by submatrix avoidance

A discrete set can be naturally regarded as a binary matrix. Thus, using the notion of submatrix avoidance, it is possible
to study families of discrete sets which are characterized in terms of pattern avoidance. Let us start by giving some basic
definitions (for simplicity’s sake, we often use the term matrix in place of discrete set, and 1 entry in place of cell).

4.1. Matrix classes

Definition 22. A matrix class is a set of (binary) matrices M that is downward closed for 4: for all matrices M and M ′ , if
M ′ ∈M and M 4 M ′ , then M ∈M.

The reader can check that the following are examples of matrix classes: the set of matrices which contain at most a 0
entry for every row and column; the set of matrices with all 0 entries; the set of matrices with at most k 1 entries. On the
other side, there are also families of matrices which are not matrix classes, such as the family of square matrices, the family
of permutation matrices, the family of matrices which do not have two adjacent 1 entries.

For any set M of matrices, let us denote by AvM(M) the set of all matrices that do not contain any element of M as a
pattern. Every such set AvM(M) of matrices defined by pattern avoidance is a matrix class. Conversely, like for polyomino
classes, every matrix class may be characterized in terms of submatrix avoidance.

The following property resembles Proposition 4. Its proof is rather straightforward, and it follows from the fact that the
poset of matrices is well-founded, i.e. every non-empty subset has minimal elements.

Proposition 23. For every matrix classM, there is a unique antichain B of matrices such thatM= Av P (B). The set B consists of all

minimal matrices that do not belong toM.

Example 24 (Bar matrices). Let M be a binary matrix, and r = (r(1), . . . , r(n)) and r′ = (r′(1), . . . , r′(n)) be two rows of M .
We write that r ⊆ r′ if r(i) = 1 implies r′(i) = 1, for i = 1, . . . ,n. A binary matrix is a bar matrix if any two rows of M are
comparable according to ⊆ (see Fig. 8).
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0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0 1
0 1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1 1
0 1 1 0 1 1 1 1 1




Fig. 8. A bar matrix.

It can easily be proved that the family of bar matrices is a matrix class, and precisely they can be described by the

avoidance of the submatrix B =
[
1
0

]
.

We point out that, as shown in Example 6, imposing the avoidance of B to polyominoes gives the class of bargraphs.
Moreover, an explicit link between bargraphs and bar matrices is that bar matrices can be effectively decomposed as se-
quences of bargraphs separated by columns of 0 entries and with (possible) rows of 0 at the top.

As we did for polyominoes, in this section we study the possibility of representing geometric constraints on matrices by
imposing the avoidance some of the patterns H , V , D , L1 , and L2 , used for polyominoes. In particular, we are now interested
in the connectedness and convexity constraints on matrices, where a binary matrix is said to be convex if every sequence of
1 entries in each row and each column is connected.

On the other side, we try to give a combinatorial/geometrical characterization to classes of matrices defined by the
avoidance of some combination of the same patterns. Again, the case of convex matrices is perhaps the simplest one.

Proposition 25 (Convex matrices). Convex matrices are a matrix class, and they can be described by the avoidance of the submatrices

H and V .

4.2. Unique matrices

According to the vocabulary of Discrete Tomography [18] a discrete set (matrix) is said to be unique if it is uniquely
determined by its horizontal and vertical projections. Ryser’s Theorem [22] provides a characterization of unique matrices,
reformulated as follows:

Proposition 26 (Unique matrices). The family of unique binary matrices is a matrix class and it is described by the avoidance of L1
and L2 .

From the previous proposition follows directly a geometric characterization of unique matrices.

Proposition 27 (Unique matrices). Let M be a binary matrix. The following are equivalent:

i) M is unique;

ii) all rows of M are pairwise comparable;

iii) all columns of M are pairwise comparable.

Fig. 9(a) shows a unique matrix. In this section we study geometric properties of subclasses of unique matrices de-
fined by imposing pattern avoidance. The first class we are going to consider is the class of convex unique matrices
AvM(H, V , L1, L2), showing the following remarkable property.

Proposition 28 (Convex unique matrices). Every convex unique matrix is connected.

Proof. Let M be a convex unique matrix and suppose that it is not connected. So, there exist two 1 entries M(i1, j1) and
M(i2, j2) of M , such that there are no paths connecting them. Let us assume w.l.g. that i1 < i2 and j1 < j2 , and consider the
sequence: s = (M(i1, j1),M(i1, j1 + 1), . . . ,M(i1, j2),M(i1 + 1, j2), . . . ,M(i2, j2)). By hypothesis, at least one of the entries
of s is 0 and since M avoids H and V , then M(i1, j2) has to be one of them. Symmetrically, also M(i2, j1) has to be 0,
against the assumption that M avoids L2 . ✷

As a byproduct of Propositions 15 and 28, we have that reduced convex unique matrices are precisely L-convex poly-
ominoes. An example of a convex unique matrix is given in Fig. 9(b). Moreover, from the proof of the previous proposition
we have that, even removing the H or V pattern, we still have connectedness.

Corollary 29. Every matrix in AvM(V , L1, L2) (resp. AvM(H, L1, L2)) is connected.
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1 1 0 1 1 1 0 0
1 0 0 1 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1
0 0 0 0 1 1 0 0
1 1 0 1 1 1 1 1







0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 0 0
0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0




(a) (b)

Fig. 9. (a) An example of unique matrix; (b) An example of convex unique matrix.

4.3. Other relevant matrix classes

Here we analyze how some other geometric properties are obtained by combining our set of patterns.

Definition 30. Two rows r = (r(1), . . . , r(n)) and r′ = (r′(1), . . . , r′(n)) are said to be half-comparable if there is an index
1 ≤ j ≤ n such that

(r(1), . . . , r( j)) ⊆ (r′(1), . . . , r′( j))

and

(r( j + 1), . . . , r(n)) ⊇ (r′( j + 1), . . . , r′(n)).

If j = n then r ⊆ r′ .

As usual, let ri denote the ith row of a matrix M .

Proposition 31. A matrix M ∈ AvM(L1) if and only if any two rows rh and rk of M , with h > k are pairwise half-comparable.

Proof. Let M be a binary matrix, and rh and rk two of its rows, with h < k.
(⇒) Let us assume that M ∈ AvM(L1), and j be the smallest column index such that M(h, j) = 0 and M(k, j) = 1, if it
exists. Two cases arise: if j does not exist, then rh ⊆ rk; on the other hand, if j exists, then it holds that (rh(1), . . . , rh( j)) ⊇

(rk(1), . . . , rk( j)), and (rh( j + 1), . . . , rh(n)) ⊆ (rk( j + 1), . . . , rk(n)) by the avoidance of the pattern L1 . So, in both cases, rh
and rk are half-comparable.

(⇐) Now we assume that any two rows rh and rk of M , with h < k, are half-comparable. Let j be a column index such
that rh( j) = 0 and rk( j) = 1, if it exists. Again two cases arise: if j does not exist, then rh ⊆ rk , and the two rows avoid

the pattern
[
0
1

]
and, consequently, L1 . Secondly, if j exists, then, by definition, (rh(1), . . . , rh( j)) ⊇ (rk(1), . . . , rk( j)), and

(rh( j + 1), . . . , rh(n)) ⊆ (rk( j + 1), . . . , rk(n)), so the pattern
[
1
0

]
may appear only before column j, and L1 is avoided as

well. ✷

Recall that, given two matrices A and B , their direct sum A ⊕ B produces the matrix

[
A ∅

∅ B

]

Proposition 32. Every matrix in AvM(H, V , L1) is expressed by a direct sum of connected matrices in AvM(L1).

Proposition 33. If M is a matrix in AvM(H, V , D), then M or M ′ (the symmetric of M according to the y-axis) is a direct sum of

matrices Ai , i ≥ 1, such that Âi is a directed-convex polyomino.

At the end of this section we would like to conclude that, in the framework of matrices, the avoidance of the patterns D

(which imposes directedness on polyominoes) and L1 , L2 (which impose uniqueness), when combined with convexity lead
to direct sum of connected sets (see Fig. 10).

5. Further work

In this paper we use the notion of submatrix avoidance in order to describe families of polyominoes and of matrices
defined by means of geometric constraints or combinatorial properties. Concerning this subject, there are several interesting
problems which remain unsolved and should be better investigated. In the sequel we just mention a few of them.
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(a) (b)

Fig. 10. (a) An example of matrix avoiding H , V and L1 . (b) An example of matrix avoiding H , V and D .

Polyominoes as pattern avoiding matrices In the second part of the paper we focused on the problem of obtaining the con-
nectedness of binary matrices by imposing submatrix avoidance. We reached our goal only for special cases where other
constraints are imposed. Therefore, one of the most challenging problems in our research line is clearly the following.

Problem 1. Is there a set M of generalized patterns such that the class of polyominoes can be described by the avoidance
of M?

The previous problem can be regarded as the problem of describing the connectedness of a generic set by submatrix
avoidance. This is still an open problem, and up to the authors’ opinion the answer is likely to be negative.

More on matrix classes There are several examples of matrix classes, defined by imposing the avoidance of some subset
of the patterns {H, V , D, L1, L2} that we have not been able to describe using geometric constraints. Perhaps the most
intriguing is AvM(D).

Matrix classes as two-dimensional languages A matrix class can be regarded as a two-dimensional language on the alphabet
{0,1}. For basic definition of two-dimensional languages we address the reader to [14]. First, it would be interesting to
study some closure properties of these languages wrt to union, intersection and complement. On the other side, one of
the most important families of two-dimensional languages is that of tiling system recognizable languages. We believe it is
worth investigating possible connections between these families of languages and matrix classes.
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