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Abstract: The development of approaches to determine the spatial variability of nitrogen (N) into
coffee leaves is essential to increase productivity and reduce production costs and environmental
impacts associated with excessive N applications. Thus, this study aimed to assess the potential
of the Random Forest (RF) machine learning method applied to vegetation indices (VI) obtained
from Remotely Piloted Aircraft (RPA) images to measure the N content in coffee plants. A total of
10 VI were obtained from multispectral images by a camera attached to a rotary-wing RPA. The RGB
orthomosaic was used to determine sampling points at the crop area, which were ranked by N levels
in the plants as deficient, critical, or sufficient. The chemical analysis of N content in the coffee leaves,
as well as the VI values in sample points, were used as input parameters for the image training and
its classification by the RF. The suggested model has shown global accuracy and a kappa coefficient
of up to 0.91 and 0.86, respectively. The best results were achieved using the Green Normalized
Difference Vegetation (GNDVI) and Green Optimized Soil Adjusted Vegetation Index (GOSAVI). In
addition, the model enabled the evaluation of the spatial distribution of N in the coffee trees, as well
as quantification of N deficiency in the crop for the whole area. The GNDVI and GOSAVI allowed the
verification that 22% of the entire crop area had plants with N deficiency symptoms, which would
result in a reduction of 78% in the amount of N applied by the producer.

Keywords: machine learning; vegetation indices; unmanned aerial vehicle; nitrogen management;
RGB camera

1. Introduction

To succeed in coffee production, good fertility of the soil, along with an intense fertility
care program is necessary [1]. Without the proper assessment of soil fertility, nutritional
deficiencies will affect the survival and productivity of coffee plants [2,3]. Among the
essential nutrients that are necessary for coffee crops, nitrogen (N) is considered the one
that limits the development and productivity of the coffee [4]. The adequate administration
of N promotes an increase of pairs of leaves and branches per node in the plants, which is
immediately related to coffee [3]. Additionally, the N determines the plant settlement and
root development, influencing numerous aspects of the plant’s health [5].

Meanwhile, the proper management of N in coffee crops is still a challenging task for
most producers. Cases of both excessive and deficient N application are problems in coffee
production [6]. Excessive application of nitrogen fertilizers is a common practice among
small and big producers, being the main cause of low-efficiency fertilization, reducing the
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quality of the production and lowering the profit for farmers [7,8]. Furthermore, the excess
of N can cause susceptibility for plague attacks on the plants [9,10]. Environmental damage
has been reported in the literature caused by leaching and volatilization of excessive N.
In contrast, N deficiency causes fall of leaves, fewer leafy plants, smaller sized fruits, and
drying in branches [11,12].

Consequently, to achieve satisfactory levels of N in coffee plants, producers apply
nitrogen fertilizers based on a calendar or samples occasionally collected from soil and
leaves for laboratory analysis [5,6]. In extreme cases of nutrient deficiency, symptoms
like the yellowing of leaves start to show and are used for reactive decision-making [5,13].
However, these methods are impractical in large areas, requiring a lot of human resources,
materials, sample collection, laboratory testing, and data processing [14,15]. Additionally,
only a few plants are randomly sampled, making it possible that it does not represent
the spatial variability properly across the crops [16]. In the long term, these methods are
not suitable for balancing the nitrogen need of the coffee plants, resulting in an unstable
production with productiveness deficits [5].

As an alternative to those methods, remote sensing technologies have been used
to estimate nitrogen content in coffee plants. For example, [5] used vegetation indices
obtained from Sentinel-2 MultiSpectral Instrument (MSI) images and machine learning to
model the leaf nitrogen content in coffee bushes. The results have shown precision up to
R2 = 0.78. The study performed by [8] obtained precision up to R2 = 0.81 while estimating
nitrogen levels in coffee plants for different growing stages and field conditions. However,
these studies have not explored the potential of Remotely Piloted Aircraft combined with
machine learning techniques.

In the past few years, remote sensing based on Remotely Piloted Aircraft (RPA) has
rapidly developed, due to its low cost, operation facility, and wide field of view [17,18].
With a nondestructive approach, data from remote sensing obtained using multispectral im-
ages from RPAs is commonly used to monitor nitrogen content in vegetation [19–22]. Still,
due to the amount of data that is generated, remote sensing combined with high-resolution
images requires a robust technique, such as methods of machine learning [23]. These
methodologies, when applied to agriculture, achieve advantages, like the ability to solve
nonlinear problems using datasets from various sources [24–26] and discover information
hidden on the data [27]. There are still few studies in the literature contemplating RPA,
management of nitrogen fertilizers, and machine learning [23,28–30]. For coffee produc-
tion, [31] study used RGB-based vegetation indices from RPA images with Random Forest
to monitor the nitrogen status of the plants. However, the models developed in the study
were not capable of explaining and predicting the spatial variability of the nitrogen in the
coffee plants. Therefore, a solution to these unsatisfactory results is possibly to explore
vegetation indices from multispectral images.

Thus, based on the hypothesis that the learning method Random Forest applied to
vegetation indices obtained from RPAs can contribute to the more efficient management of
the nitrogen content in coffee crops, the objectives of this study were (i) to map the spatial
variability of the nitrogen content in the coffee plantations, (ii) quantify the deficiency of
nitrogen in coffee plants, and (iii) determine the most efficient vegetation index to predict
N content in coffee plants using the Random Forest (RF) machine learning method.

2. Materials and Methods

The methodology proposed in this study is briefly explained in Figure 1. In the first
step, multispectral images of the study area were acquired by a multispectral camera
coupled to an RPA. These images were processed, creating the orthomosaics, to then later
calculate the vegetation indices. In the second step, the RGB mosaic composition was
used to define sampling points in the study area, used for analyzing the chemical content
of N in the coffee leaves. Finally, in the third step, values of the vegetation indices and
chemical analysis of N in the leaves in each sample point were used as input parameters to
calibrate the algorithm Random Forest and classify the images in three N content categories.
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The accuracy of the classification was measured by the overall accuracy metrics, kappa
coefficient, receiver operating characteristic (ROC) curve, and area under the curve (UAC).
The methodology is further detailed in the following topics.

Figure 1. Workflow used in the methodology of this study.

2.1. Study Site

The study was carried out in a field located in the commercial farm Bom Jardim, in
the city of Santo Antonio do Amparo, state of Minas Gerais, Brazil, geographic coordinates
21◦01′09.69”S and 44◦55′45.03”W, and the average altitude of 935 m. This plantation
occupies an area of 1.5 ha cultivating coffee plants (Coffea arabica L.), Catucai Amarelo
2SL cultivar aging 3 years old, spaced by 3.5 m from centerlines, and 0.5 m plant to plant,
adding 5700 plants ha−1 (Figure 2).

Figure 2. The geographic location of the study area. MG is the State of Minas Gerais, Brazil.

According to the Köppen–Geiser climate classification, the region has a Cwa climate,
humid subtropical, with hot and humid summers and cold and dry winters, with an annual
average air temperature of 19.8 ◦C and average annual total rainfall of 1670 mm [32]. The
climatic data [33] of the study area from the period of the analysis is shown in Table 1.
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Table 1. Climatic data of the region on 10 December 2018. City of Santo Antônio do Amparo,
MG, Brazil.

Temp (◦C) RH (%) Pressure
(kPa)

WS
(m.s−1)

Max Temp
(◦C)

Min Temp
(◦C) RFE (mm)

19.73 73.31 91.6 1.51 25.6 13.28 0
Temp is temperature; RH is relative humidity; WS is wind speed; Max Temp is maximum temperature; Min Temp
is minimum temperature; RFE is rainfall.

2.2. RPA Image Acquisition and Preprocessing

The images were captured using a commercial RPA 3DR Solo (3D Robotics, Berkeley,
CA, USA), with four engines (quadcopter), powered by the automatic pilot system 3DR
Pixhawk 2 and flight controller APM:Copter. A multispectral camera Parrot Sequoia with
a focal distance fixed at 4.0 mm was coupled to the RPA. This camera has an RGB sensor
with 16 megapixels resolution (4608 × 3456) and four extra sensors with 1.5 megapixels
resolution (1280 × 960) in the spectral bands of green (550 nm BP 40), red (660 nm BP40),
red-edge (735 nm BP 10), and near-infrared (790 nm BP 40). This camera is designed to
map and monitor vegetation; it includes an upward-facing sunshine sensor, which allows
the radiometric calibration of those 4 multispectral bands during image collection. The
software Mission Planner from a complete ground station, open-source for RPA automatic
piloting systems, was used to plan the flight mission. The flight altitude was fixed at 60 m
above ground, and the flight speed was an average of 3 m s−1. The images were captured
every 1 s with a spatial resolution of 2.07 cm and overlapping the frontal position of 80%
and lateral position of 75%.

The image processing was made using the software Agisoft PhotoScan® Professional,
version 1.2.4 (Agisoft LLC, St. Petersburg, Russia). This software works in a three-step
workflow. The first step was the alignment of the images by identifying corresponding
resources. For executing the alignment of the image, the software calculates the parameters
that orient the internal and external camera, including the radial nonlinear distortion. For
this study, this task was executed with a high precision set. The results of this step are
positions of the camera matching each image, representing the parameters for internal
calibration, and the 3D coordinates of the sparse cloud of points in the terrain. In the second
step, the sparse cloud is georeferenced in a local coordinates system (WGS 84—UTM Zone
23S), and the densified cloud of points is obtained using the heightfield method, which is
based on paired depth map computation, resulting in a detailed 3D model. The third step
applies a texture to the mesh obtained previously, generating the orthomosaic. This way,
orthomosaics were created for each spectral band (green, red, red-edge, and near-infrared).

To minimize the effects of other targets in the spectral response of the coffee plants,
such as soil and weeds, the mosaics were differentiated in the software eCognition version
9.0.1 (eCognition Developer, Munich, Germany). Two distinct classes were visually defined:
coffee plants and noncoffee plants. From that, the classes were manually sorted for the
orthomosaics of each spectral band.

2.3. Determining Leaf Nitrogen

Leaf nitrogen analyzes were performed on 10 December 2018. After obtaining the
orthomosaics, the nitrogen level in the leaves of the coffee plants was visually evaluated,
defining three distinct regions as deficient, critical, and sufficient N content (Figure 3). For
that, we used the orthomosaic of the RGB composition (red, green, and blue) that allows
a better perception than the human eye of vegetation. Thus, 10 targeted sampling points
were chosen, with 2 sampling points for regions with N content in the plants considered
sufficient, 4 points for regions of critical level, and 4 points for deficient regions (Figure 2).



Remote Sens. 2021, 13, 1471 5 of 15

Figure 3. Description of the classes of nitrogen level in the coffee leaves identified through RGB (red,
green, and blue) composition in the orthomosaic images, to select sampling points in each level.

Each sample point was composed of 5 plants, 1 central plant and 2 plants oriented
north-south from the central plant. From every plant, 3 leaves were collected from both
sides of the planting line in three different canopy heights, totalizing 30 leaves collected
for each sample point. After the collection, the leaves were sent to the laboratory of leaf
analysis in the University of Lavras to quantify the nitrogen content using the Kjeldahl
method. This method has been widely applied to determine nitrogen content, especially
in the analysis of plant tissues. The Kjeldahl procedure involves three steps—destruction,
distillation, and titration [8]. The leaf diagnosis for mature coffee plants proposed by [34]
was used to classify the nitrogen content in the leaves as N-deficient (<2.5%), N-critical (2.5
to 3.0%), and N-sufficient (3.0 to 3.5%).

2.4. Vegetation Indices

The vegetation indices (Table 2) were chosen based on their capability to determine
the nitrogen content in the coffee crops from remote sensing data [5,7,8].

2.5. Random Forest (RF) Classification

The Random Forest (RF) algorithm was used for classifying the N content in the
leaves of the coffee plants from the vegetation indices proposed in this study (Table 2). The
modeling was created in R [45], using the R Random Forest package [46]. For the training
of the algorithm, the values of the vegetation indexes in the pixels referring to each of
the 5 plants of each sampling point were used with the results of the chemical analysis
of the N content in the leaves of the coffee plants of these sampling points. RF is one of
the most successful classifiers based on learning strategies. The algorithm consists of a
collection of three-based classifiers {h (x, Θk), k = 1, . . . }, where x is the input vector and
{Θk} are the random vectors distributed identically and independently [47]. Each decision
tree was constructed using a bootstrap deterministic algorithm, allowing the remaining
data points to validate and issue a unitary vote to the most popular class. The RF uses
the procedure of initialization with replacement to increase the diversity of the classifying
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trees, which allocated pixels to one class, according to the maximum number of votes in
the collection [48].

Table 2. Vegetation indices of multispectral images obtained using Remotely Piloted Aircraft (RPA).

Vegetation Indices Equation Reference

GNDVI (Green Normalized Difference Vegetation Index) ρnir−ρgreen
ρnir+ρgreen

[35]

GOSAVI (Green Optimal Soil Adjusted Vegetation Index) (1 + 0.16)
ρnir−ρgreen

ρnir+ρgreen+0.16
[36]

NDVI (Normalized Difference Vegetation Index) ρnir−ρred
ρnir+ρred

[37]

SAVI (Soil Adjusted Difference Vegetation Index) (1+L) ρnir−ρred
ρnir+ρred+L

[38]

MTCI (MERIS Terrestrial Chlorophyll Index) ρnir− ρedge
ρedge− ρred

[39]

NDRE (Normalized Difference Red Edge) ρnir−ρedge
ρnir+ρedge

[40]

EXR (Excessive Red) 1.44 ∗ ρred − ρgreen [41]
MPRI (Modified Photochemical Reflectance Index) ρgreen−ρred

ρgreen+ρred
[42]

GRRI (Green–Red Ratio Index) ρgreen
ρred

[43]

NDI (Normalized Different Index) ρgreen−ρred
ρgreen+ρred+0.01

[44]

ρblue: reflectance in the blue band; ρgreen: reflectance in the green band; ρred: reflectance in the red band; ρnir: reflectance in the near-infrared
band; ρedge: reflectance in the red-edge band.

To execute the RF for classifying images, two parameters must be defined: the number
of trees (ntree), and the number of predictors concerning the maximization of the model
(mtry) [49,50]. In this study, the ntree was set to 1000 trees, while the mtry was set to equal
to the square root of the total number of input resources.

2.6. Accuracy Assessment

To validate the results of the RF classification, a crossed validation approach was
used 10 times [51]. This involved the random division of the reference objects in 10 joints
of datasets, each one including around 15% of data from each class. In the steps of the
assessment, the RF was tuned with 85% of the reference data and then applied to the other
15% left (that were the validation joint of data). This step was repeated ten times. In the
end, the results were aggregated to one confusion matrix. The classification performance
was assessed based on common statistical measures [52], derived from the confusion
matrix. The select statistical measures included the overall accuracy (Equation (1)), kappa
coefficient (Equation (2)), receiver operating characteristic (ROC curve), and area under the
curve (UAC). The ROC curve was obtained by plotting a graph of sensitivity (true positive
rate) versus specificity (false positive rate), and UAC was estimated using the method
proposed by [53].

Overall Accuracy =
∑

q
i=1 nii

n
× 100% (1)

Kappa Coefficient =
n ∑

q
i=1 nii −∑

q
i=1 ni +n+i

n2 −∑
q
i=1 ni+n+i

×100% (2)

where q is the number of classes, n represents the total number of considered pixels,
nii are the diagonal elements of the confusion matrix, ni+ represents the marginal sum
of the rows in the confusion matrix, and n+i is the marginal sum of the columns in the
confusion matrix.

3. Results and Discussion
3.1. Nitrogen Content in Coffee Leaves

First, as described in the Material and Methods section, one flight was performed in
the area; then, from the RGB images, the orthomosaic was generated, which allowed the
identification and establishment of the leaves sampling points. The results of the statistical
descriptive analyses of the chemical analysis of nitrogen content in coffee leaves are shown
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in Table 3. The areas in the crops with N levels considered sufficient, critical, and deficient
are denoted with values within the nutritional scale established by [34]. However, as can
be seen in Figure 2, regions with a critical level of N presented plants with a considerable
amount of yellowish leaves, which is a symptom of nutritional deficiency. This may have
occurred because the plants in this region had leaves with a medium nitrogen content
(2.69%), with the content value close to the level considered nutritionally deficient (<2.5%).

Table 3. Results of the descriptive statistics of the chemical analysis of N content in plants located in
the sampling points, considered as N-sufficient, -critical and -deficient.

Nitrogen Levels
%

Min Max Mean SD

Sufficient 3.00 3.11 3.05 0.08
Critical 2.51 2.85 2.69 0.18

Deficient 2.13 2.44 2.31 0.13
Min is minimum; Max is maximum; SD is the standard deviation.

The high-resolution images captured using RPA showed great potential in differen-
tiating samples to evaluate the nitrogen content in the coffee leaves. According to [13],
changes in the nutritional status of the plants have a direct impact on the canopy color
of the coffee plantation. The color of leaves deficient in nitrogen is lighter, causing the
color of the canopy to be green–yellowish, whereas leaves with sufficient nitrogen content
reflect energy more intensely in the green wavelength than in the red wavelength. In
contrast, leaves with N deficiency reflect energy intensely both in the green and in the red
wavelengths, resulting in leaves with a yellow coloration [8,13].

3.2. Overall Accuracy and Kappa Performance

The results of the overall accuracy and the kappa coefficient of the images classi-
fied by RF from vegetation indices are shown in Figure 4. In general, the classification
has presented a high performance in assessing the nitrogen content of the leaves in cof-
fee plants: values of accuracy and kappa coefficient were from 0.78 to 0.91 and 0.46 to
0.86, respectively.

Figure 4. Overall accuracy and kappa coefficient for image classification through Random Forest (RF) from vegetation indices.

It was possible to notice that vegetation indices that use a combination of the near-
infrared band with bands in the visible spectral region presented better results. Between
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those indices, the Green Normalized Difference Vegetation (GNDVI) and the Green Op-
timized Soil Adjusted Vegetation Index (GOSAVI) obtained the greatest values. These
results are associated with the larger predominance of plants with sufficient N content in
the crops and, consequently, higher chlorophyll content in the leaves. According to [54,55],
the reflectance in the green band is greatly affected by the variations in the chlorophyll
content, when compared to the red band reflectance. Thus, the spectral indices based on
the near-infrared and green bands have proved more sensitive to changes in chlorophyll
content than the indices with near-infrared and red bands [56,57]. The GNDVI and GOSAVI
have also been reported by other authors as more suitable indices to evaluate N status
in vegetation. Similarly to this study, [29] used an approach based on RF and vegetation
indices from RPA images to describe the variation of plant N uptake (PNU), and N nutrition
index (NNI) for rice crops in the northwest lowlands of China. The results, resembling
this study, presented GOSAVI and GNDVI indices as having better performances. In [22],
they applied the RF model to vegetation indices obtained from three sensors (RGB, color
infrared, and multispectral), coupled to an RPA, for determining the N status in the rice
crops, finding the GNDVI to have the better results. Therefore, the results of this study
align with the literature and recent research.

For the Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll
Index (MTCI) and Normalized Difference Red Edge (NDRE) indices, the bandwidth of the
red-edge band that is 4 times smaller than the green and red bands may have contributed
to the worst performances among the indices that use the combination of the near-infrared
band with visible bands. As demonstrated by [5], the width of the red-edge band can
make indices less sensitive to the vegetation characteristics. However, better results were
expected from them, since the relation between near-infrared and red-edge spectral bands
with the N content in the plants is well established in the literature [5,6,22].

For the indices Excessive Red (EXR), Modified Photochemical Reflectance Index
(MPRI), Green–Red Ratio Index (GRRI), and Normalized Different Index (NDI) that use
only visible spectral bands, the results had inferior performances. The possible explanation
for that is the lack of radiometric correction for RGB images, letting fewer alterations in
the lighting conditions influence the precision of the color reproduction [58,59]. However,
even with those indices showing worse performances, when compared to indices that
combine near-infrared bands to visible bands, their results still express the potential for the
application of RGB cameras. These types of cameras can be a viable alternative to evaluate
the N status in plants, especially for medium and smaller farmers. RGB cameras are easy
to operate and accessible for most researchers. Furthermore, the RGB images can be used
right after downloading from the memory card, without preprocessing, for example, for
band registry, and to process images, various sophisticated commercial platforms are now
available, such as Agisoft Photoscan and Pix4D.

Regarding the RGB indices, the results obtained by this study diverge from the
reported by [31]. The Random Forest models based on RGB indices from RPA that were
developed by the authors did not succeed in evaluating and predicting the N content of the
coffee plants. This may have occurred because the Parot Sequoia camera that was used in
the present study presents superior techniques, compared to the RGB camera used by [31],
for example, when calibrating the radiometric individual bands. Additionally, the focus of
the sampling points in this study may have been crucial for more effective training samples
and clearer results.

3.3. ROC Curve and AUC

Regarding the analysis of the image classification using the ROC curve and AUC,
in general, all the vegetation indices presented excellent performances for assessing the
nitrogen content in coffee plants (Figure 5).
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Figure 5. Receiver operating characteristic (ROC) curve and area under the curve (AUC) for image
classification through RF from vegetation indices.

It was possible to observe all vegetation indices approximate to the point (0, 100%)
in the ROC curve. According to [60], to rate a model as optimum, its analysis has to be
as close as possible to the point (0, 100%). Moreover, [61] describes the ROC curve as a
description of the relative compensation between benefits (true positives) and costs (false
positives) of a classification. Thus, a point located in the upper left corner means a greater
number of positive and negative examples were classified correctly, consequently creating
a lower cost to the classification.

For the AUC, the values were from 0.817 to 0.934, where greater values came from
the indices that combined near-infrared band to visible bands, matching what happened
with overall accuracy and kappa coefficient. According to [62], the closer the AUC gets to
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1, the better the overall test performance, meaning the AUC= 1 test is the perfectly accurate
result. For the approach in this study, the indices GNDVI and GOSAVI had the greatest
performances, while the indices MPRI, GRRI, and NDI presented the worse performances.

3.4. Mapping and Quantifying N Spatial Distribution in Coffee Leaves

Predictive maps for nitrogen spatial distribution in coffee leaves and quantification
in the percentage of those maps, obtained from the classification of images using RF from
vegetation indices data, are shown in Figure 6, Figure 7 and Table 4, respectively.

Figure 6. Predictive maps of the N content spatial distribution in coffee leaves, obtained from the
classification of images using RF from vegetation indices Green Normalized Difference Vegeta-
tion (GNDVI), Green Optimized Soil Adjusted Vegetation Index (GOSAVI), Normalized Difference
Vegetation Index (NDVI), Soil Adjusted Difference Vegetation Index (SAVI), Medium Resolution
Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI), and Normalized Difference Red
Edge (NDRE).
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Figure 7. Predictive maps of the N content spatial distribution in coffee leaves, obtained from
the classification of images using RF from vegetation indices Excessive Red (EXR), Green–Red
Ratio Index (GRRI), Modified Photochemical Reflectance Index (MPRI), and Normalized Different
Index (NDI).

Table 4. Percentage (%) of areas in the coffee plantation that had N content sufficient, critical, and
deficient, according to the appraisal maps of the N content spatial distribution in coffee leaves,
presented from the best performance to the worst performance.

Vegetation
Indices

Area (%)

Sufficient Critical Deficient Total

GNDVI 26 52 22 100
GOSAVI 26 52 22 100

NDVI 23 46 31 100
SAVI 23 46 31 100
MTCI 31 47 22 100
NDRE 31 46 22 100
EXR 25 45 31 100

MPRI 21 42 37 100
GRRI 21 41 38 100
NDI 21 41 38 100

GNDVI and GOSAVI indices had the best performances (Figure 6), presenting the
best class definition. These maps had the largest area at the N-critical level (52%) and the
smallest area for deficient N levels (22%). According to these maps, the plants in the central
region of the crops showed a greater N deficiency. Similar to these indices, NDVI and
SAVI maps indicated greater N deficiency in the central region of the crops, although they
also indicated a large number of N-deficient plants in the western region, evinced by the
9% increase in the N-deficient areas, when compared to the GNDVI and GOSAVI maps.
Regarding the MTCI and NDRE indices (Figure 6), they both presented the same percentage
of N-deficient areas as the GNDVI and the GOSAVI, but they overestimated areas with
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sufficient N content (31%). Additionally, in these maps, the area with N deficiency extended
from the central region to the eastern region of the plantation. The indices that had worse
performances were MPRI, GRRI, and NDI (Figure 7). They overestimated the percentage of
N-deficient areas and underestimated areas with sufficient N levels (21%) as well as areas
with critical N levels (41%). The maps for these indices showed mixed classes, especially
between critical and deficient levels of nitrogen, showing deficiency in practically all
regions of the crops.

These results confirmed the possibility of managing nitrogen locally using images
obtained from RPA. Knowing the spatial distribution of areas with N deficiency becomes
essential for managing nitrogen properly in the plantation. Overestimating or underesti-
mating areas with N deficiency can increase production costs, reduce productivity, and
cause environmental damage. In this context, the methodology proposed by this study,
especially for GNDVI and GOSAVI indices, can promote a 78% reduction in nitrogen
fertilizer treatments in the studied area, when compared to the conventional management
and application methods. For this, applying fertilizers would be recommended only for
plants showing N deficiency, which means 22% of the total area, unlike the conventional
application of fertilizer, where producers apply it to the entire area of the plantation.

Based on information previously published by [34,63], it is possible to illustrate how
the methodology proposed in this study could prove economically relevant to monitor
the N status in coffee plantations. The data used in the simulation were as follows: study
area: 1.5 ha; ammonium nitrate price for 50 Kg: $15.00; average amount of N applied by
coffee producers: 300 kg ha−1 per year; N concentration in ammonium nitrate: 33%; total
ammonium nitrate applied by coffee producers: 833 kg ha−1 per year; and reduction of the
demand for N observed in this study, considering results from the GNDVI and GOSAVI
indices: 78%.

To that end, the calculation of the total price per hectare of N was 833 kg ha−1

per year × $15.00 (50 Kg) = $249.90 kg ha−1. Considering the 1.5 ha plantation area, it
would have a cost of $374.85 per year for nitrogen fertilization. When considering the actual
demand for N for this coffee field, which, in this study, would reduce by 78% of the total,
the coffee producer cost could be reduced to $374.85× 0.22 = $82.47 per year. In conclusion,
the coffee producer could save $292.38 during the year with nitrogen fertilization. This was
possible, considering the use of N only for plants that showed deficiency. This example is
hypothetical. However, it shows the application and importance of carrying out properly
the monitoring of N status in coffee plantations, which is especially relevant to minimize
the use of N and reduce the costs of nitrogen fertilization, as well as its impacts.

In this study, the learning method of the RF algorithm applied to the vegetation
indices from images obtained using a multispectral camera coupled to an RPA was used to
evaluate the N content in a coffee plantation. The results proved that this methodology
could be used to diagnose the nitrogen status in coffee plants and also orient producers on
how to do the application of nitrogen fertilizers at a variable rate. However, other local
conditions, such as density, canopy cover, age, species of plant, and spacing can reduce
the accuracy of the model suggested. From this, to deal with the problem complexity, a
systemic approach that simulates and predicts the impact of applying N fertilizers over
space and time, affecting the cultivation yield, is necessary. To validate this relation, more
studies using different conditions and plants are needed. In addition, the use of RPAs with
greater flight autonomy and different multispectral cameras with better resolution can
improve the model efficiency, as well as the size of the monitored area. To administer N
fertilizers at a variable rate, the process used in the practical application needs to develop
into management zones, pixel-based, and plant-based, to make easy the reduction and
viable the application for producers.

4. Conclusions

The results of this study showed that the machine learning method Random Forest,
applied to vegetation indices from multispectral images obtained by RPA, offers a very
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promising approach to map and quantify nitrogen status in a coffee plantation and also
indicates the possibility to apply fertilizers in a localized manner. The proposed model
allowed the assessment of the N spatial distribution in the coffee leaves and the quantifi-
cation of area presenting N deficiency. The model also indicated that the most efficient
vegetation indices to evaluate the nitrogen status in coffee plants were GNDVI and GOSAVI.
Additionally, the application of the methodology proposed in this study can contribute to a
more rational management of N in the crops.
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