
42

Meta-Learning to Improve Unsupervised Intrusion
Detection in Cyber-Physical Systems

TOMMASO ZOPPI, MOHAMAD GHARIB, MUHAMMAD ATIF, and

ANDREA BONDAVALLI, Dept. of Mathematics and Informatics, University of Florence, Florence - Italy

Artificial Intelligence (AI)-based classifiers rely on Machine Learning (ML) algorithms to provide func-
tionalities that system architects are often willing to integrate into critical Cyber-Physical Systems (CPSs).
However, such algorithms may misclassify observations, with potential detrimental effects on the system it-
self or on the health of people and of the environment. In addition, CPSs may be subject to threats that
were not previously known, motivating the need for building Intrusion Detectors (IDs) that can effec-
tively deal with zero-day attacks. Different studies were directed to compare misclassifications of various
algorithms to identify the most suitable one for a given system. Unfortunately, even the most suitable algo-
rithm may still show an unsatisfactory number of misclassifications when system requirements are strict.
A possible solution may rely on the adoption of meta-learners, which build ensembles of base-learners to
reduce misclassifications and that are widely used for supervised learning. Meta-learners have the potential
to reduce misclassifications with respect to non-meta learners: however, misleading base-learners may let the
meta-learner leaning towards misclassifications and therefore their behavior needs to be carefully assessed
through empirical evaluation. To such extent, in this paper we investigate, expand, empirically evaluate, and
discuss meta-learning approaches that rely on ensembles of unsupervised algorithms to detect (zero-day)
intrusions in CPSs. Our experimental comparison is conducted by means of public datasets belonging to net-
work intrusion detection and biometric authentication systems, which are common IDSs for CPSs. Overall,
we selected 21 datasets, 15 unsupervised algorithms and 9 different meta-learning approaches. Results allow
discussing the applicability and suitability of meta-learning for unsupervised anomaly detection, comparing
metric scores achieved by base algorithms and meta-learners. Analyses and discussion end up showing how
the adoption of meta-learners significantly reduces misclassifications when detecting (zero-day) intrusions
in CPSs.

CCS Concepts: • Security and privacy → Intrusion/anomaly detection and malware mitigation; •
Computer systems organization → Dependable and fault-tolerant systems and networks; Embedded

and cyber-physical systems;

Additional Key Words and Phrases: Critical systems, intrusion detection, machine learning, meta-learning,
security, reliability

This work has been partially supported by the REGIONE TOSCANA POR FESR 2014-2020 SISTER and by the H2020
programme under the Marie Sklodowska-Curie grant agreement 823788 (ADVANCE) projects. Portions of the research in
this paper use the CASIA-FingerprintV5 collected by the Chinese Academy of Sciences’ Institute of Automation (CASIA).
Authors’ Address: T. Zoppi, M. Gharib, M. Atif, and A. Bondavalli, Dept. of Mathematics and Informatics, University of Flo-
rence, Viale Morgagni 65, 50142 - Florence - Italy; emails: {tommaso.zoppi, mohamad.gharib, muhammad.atif, bondavalli}@
unifi.it.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
2378-962X/2021/09-ART42 $15.00
https://doi.org/10.1145/3467470

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3467470

42:2 T. Zoppi et al.

ACM Reference format:

Tommaso Zoppi, Mohamad Gharib, Muhammad Atif, and Andrea Bondavalli. 2021. Meta-Learning to Improve
Unsupervised Intrusion Detection in Cyber-Physical Systems. ACM Trans. Cyber-Phys. Syst. 5, 4, Article 42
(September 2021), 27 pages.
https://doi.org/10.1145/3467470

1 INTRODUCTION

Nowadays the paradigm of Cyber-Physical Systems (CPSs) guides the definition and design
of hardware-software systems whose functionalities are partially controlled or monitored by
computer-based sub-systems. According to [52], “in cyber-physical systems, physical and software
components are deeply intertwined, able to operate on different spatial and temporal scales, exhibit
multiple and distinct behavioural modalities, and interact with each other in ways that change with
context”. In particular, CPSs might deliver critical functionalities, whose malfunction may lead to
fatalities, severe injuries, or major damages to the environment: As a result, they must be conceptu-
alized, designed, and implemented to ensure that appropriate safety and/or security requirements
are met [13].

Intrusion Detection in CPSs. Amongst those requirements, CPSs may be subject to (cy-
ber)attacks. The U.S.A. Committee on National Security Systems Glossary [12] defines cyberse-
curity as “prevention of damage to, protection of, and restoration of computers, electronic communi-
cations systems, electronic communications services, wire communication, and electronic communi-
cation, including information contained therein, to ensure its availability, integrity, authentication,
confidentiality, and nonrepudiation”. In the last decade, cyber-threats had a constantly growing im-
pact as pointed out by technical reports [28, 29]. Consequently, Intrusion Detection Systems

(IDSs) [6, 7] are becoming common building blocks when designing CPSs, to detect potential
threats and trigger modules that are able to block or mitigate the adverse effects of cyber-threats.
IDSs collect and analyze data from networks and systems indicators to detect malicious or unau-
thorized activities, based on the hypothesis that an ongoing attack has distinguishable effects on
such indicators.

To detect intrusions, IDSs may adopt Artificial Intelligence (AI) mechanisms as signature-
based algorithms [8], which search for predefined patterns (or signatures) in the monitored data in
order to detect an ongoing attack that matches one or more signatures. Signature-based approaches
are ideal when detecting known attacks [5, 6, 7]; on the other hand, they exhibit weaknesses in de-
tecting slight variations of known attacks or brand new zero-day attacks [10], calling for a prompt
update to add the signature of the novel threat. Unfortunately, this is a major weakness as CPSs
may evolve during their operational life, exposing their interfaces to multiple threats that cannot
be entirely defined at design time.

Dealing with Unknowns: Anomaly Detectors. This intrinsic aspect of CPSs calls for mech-
anisms that efficiently deal with unknown threats (zero-day attacks [10, 11]) as anomaly detectors.
Differently from signature-based approaches, which rely on the knowledge of threats, anomaly
detectors characterize the normal (expected) behavior of the system. Then, they use this knowl-
edge to find patterns in data that do not conform to the expected behavior of a system (or a network)
[1]: these patterns are called anomalies. Anomaly-based IDS are built on the assumption that on-
going attacks will generate observable anomalies in the features we gather from the system and
the network [7] through monitoring activities. Supervised anomaly detectors which may be based
on neural networks [89], decision trees [8], or gradient boosting [90] show excellent detection
capabilities when dealing with known attacks. Instead, unsupervised algorithms also fit the detec-
tion of unknown attacks [5, 3] as they do not rely on labels in training data. However, detection

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

https://doi.org/10.1145/3467470

Meta-Learning to Improve Unsupervised Intrusion Detection 42:3

efficacy of anomaly-based detectors depends on their ability in precisely characterizing the system
expected behavior [9]: as a consequence, they usually generate a higher number of false alarms
than signature-based methods [5, 11].

The Role of Meta-Learning. Different anomaly detection algorithms usually exhibit [11] dif-
ferent rates of missed (False Negatives, FNs) and wrong (False Positives, FPs) detections and
consequently result in different detection capabilities. Although most of such algorithms have a
generic, context-independent formulation, they are often more effective to detect specific attacks
on specific systems or applications [84]. Therefore, studies such as [2, 3, 4] focus on the compari-
son of different (unsupervised) algorithms for anomaly detection in different CPSs. In most of the
cases, even the most promising algorithm still shows a number of misclassifications (either FPs or
FNs, or both), which might not satisfy the requirements of a critical system. Indeed, several studies
concluded that meta-learners such as Bagging (e.g., Random Forests [14], Isolation Forests [76]),
or Boosting [15] may result in a lower number of misclassifications, especially within supervised
learning. However, a combination of learners does not always result in improved capabilities: some
misleading learners may let the meta-learner lean towards a misclassification, with cascading ef-
fects with respect to the whole system.

Paper Aim. This paper systematically instantiates various meta-learning approaches through en-
sembles of unsupervised base-learners, discussing how the adoption of a specific meta-learning ap-
proach may help in significantly reducing the number of misclassifications with respect to non-meta
unsupervised algorithms. We first expand on specific meta-learners and on their suitability to de-
tect (zero-day) attacks in CPSs and then we proceed to an experimental campaign to compare
different approaches. Baseline data is selected among publicly available datasets that report on
network intrusion detectors and biometric authentication systems, which are usually employed
to enhance security in CPSs. Unsupervised algorithms selected for this study will be used both
as non-meta learners and as base-level learners of meta-learning approaches to deal with the de-
tection of unknown threats or zero-day attacks. Overall, we selected 21 datasets, 15 unsupervised
algorithms and 9 different meta-learning approaches that we instantiate by considering the un-
supervised algorithms above as base-learners. Results allow comparing metric scores achieved by
both meta and non-meta learners on each dataset. We observe how meta-learning reduces misclas-
sifications, consequently improving metric scores, in 20 out of the 21 datasets we used in this study.
In addition, we discuss the impact of the choice of base-learners for those meta-learners which rely
on multiple algorithms such as Stacking (Generalization), Cascading, Delegating, (Weighted) Vot-
ing, and Cascade Generalization. Finally, we provide conclusive statements about the advantages
of adopting meta-learners to improve intrusion detection in CPSs.

Paper Structure. The paper continues as follows. Section 2 describes the state-of-the-art and
the terminology to explain meta-learners. Section 3 expands on the suitability and the potential
improvements following the adoption of meta-learners to build IDSs. A methodology for empirical
evaluation of meta-learners is described in Section 4, and generates results that are presented and
then discussed in Section 5. Section 6 concludes the paper.

2 META-LEARNERS TO COMBINE CLASSIFIERS

2.1 Meta-Learning: Definition and Purpose

Several definitions of meta-learning have been proposed in the literature [24, 25]; in this paper, we
adopt the following definition [25]: “Meta-learning is the study of principled methods that exploit
meta-knowledge to obtain efficient models and solutions by adapting machine learning and data min-
ing processes”. Consequently, a meta-learner is a learning module that uses knowledge acquired
during base-learning episodes, i.e., meta-knowledge, to improve classification capabilities. More
specifically [26], a base-learning process starts feeding dataset (given) features into one or more

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

42:4 T. Zoppi et al.

learning algorithms to derive one or more models to be used for classification at a first stage. Re-
sults of base-learners partially build meta-data that is provided alongside with other features to
the meta-layer, which provides the classification result of the whole meta-learner.

2.2 Meta-Features

As a result, the potential improvement of a meta-learner with respect to a base-learner is related to
the quality of meta-data, or rather meta-features that describe attributes of both dataset and base-
learners [25, 26, 24]. Meta-features have been classified into five separate groups [24] as follows:

• Simple or given features: dataset features that can be normalized to provide data that suits
the learner.

• Statistical features: they describe the statistical properties of a dataset e.g., the number of
data points or features, the Kurtosis and Skewness indices, and correlation between inde-
pendent features.

• Information-theoretic features, which explicitly calculate the entropy of simple features, to
obtain quantitative estimations of their relevance in terms of information gain.

• Landmark features define regions of the dataset where a base-learner fits the best. These
regions can be used to partition the input space mapping regions to the learner that is the
most adequate to process such data.

• Finally, model-based meta-features are derived from the models produced after training by
the learning algorithms e.g., the number of vectors in SVMs, nodes and leaves when a de-
cision tree is induced, or the number of rules when a rule-based learner is employed.

2.3 Meta-Learning Approaches

Regardless of the possible ways to generate meta-features, different features may be more suited to
describe specific domains. Amongst all these domains, we focus on techniques for model combina-
tion [25], where the meta-learner can either play as (i) an adjudicator, with a meta-layer that com-
bines individual results from different classifiers at base-layer (e.g., Stacking), (ii) averaging results
of base-learners that are created according to specific criteria as Bagging or (Weighted) Voting,
or (iii) relying on more sophisticated instantiations of both base and meta-layer e.g., Cascading,
Boosting. With the aid of Figure 1, the remainder of this section highlights bagging, boosting, Stack-
ing (Generalization), cascade (generalization), delegating, arbitrating and (weighted) voting, which
build the pool of possible meta-learners for model combination according to our literature review.

2.3.1 Bagging. Bagging combines base-learners of the same type by submitting bootstrap repli-
cas of the training set [16]. The unified result of the ensemble is derived by majority voting the
individual results of base-learners. Individual learners execute the same algorithm, but are fed with
different training subsets created through random sampling with replacement i.e., bootstrap sam-
pling. Consequently, Bagging embeds pseudo-independent learners: since subsets are taken from
the same training set, classifiers built on these training sets might not give independent outputs.

2.3.2 Boosting. Boosting builds ensembles of weak learners. Overall capabilities of a weak
learner are only slightly better than random guessing: the underlying idea of boosting is to or-
chestrate several weak learners to build a strong meta-learner [17]. Each weak learner is trained
hierarchically to discriminate more complex regions in the feature space. Initially, Boosting trains
a single (weak) classifier and assigns the same weight to all data. The weight of a data point in
the training set defines its probability of being selected for training: intuitively, the trickier the
classification of a data point, the higher the weight. As a result, subsequent weak learners tend to
be trained by using hard-to-classify data points, which have high weight. The process ends either

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

Meta-Learning to Improve Unsupervised Intrusion Detection 42:5

Fig. 1. Meta-Learning schemes, showing source dataset (eventually partitioned into subsets Si or derived

datasets Di), algorithms Ai, and the models Mi they learn, for Bagging, Boosting, Stacking (Generalization),

Cascade (Generalization), Delegating and Voting.

if (i) a fixed number of iterations is achieved, or (ii) the total weight of “hard” data points exceeds
a threshold [25]. Similarly to bagging, the meta-level output is obtained through majority voting
of the outputs of individual weak learners.

2.3.3 Stacking (Generalization). Stacking [18] relies upon different algorithms, trained with the
exact same training set, as base-learners. Their outputs become model-based meta-features, which
are fed to another independent classifier, the meta-layer classifier, to deliver a unified result. In this
paper, we differentiate between (i) stacking, where the meta-dataset is only composed of model-
based features, and (ii) stacking generalization, where also simple (dataset) features are added to
the meta-dataset. Differently from bagging and boosting, the final output is not obtained through
majority voting: the independent classifier combines individual results according to a general (and
possibly non-linear) function. A new unknown data point is first processed by base-learners in
parallel to create the meta-data, which is then provided to the meta-layer classifier to produce the
stacking result.

2.3.4 Cascading. The Cascading schema, proposed in [19], stems from boosting by employing
heterogeneous learners in order to increase the system complexity. Initially, all instances have

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

42:6 T. Zoppi et al.

the same weight, and therefore the initial dataset distribution is uniform. A first model is created
through the first base-level algorithm. According to the confidence of the first learner, all instances
are reweighted. Then, other base-level (weak) learners are sequentially trained from the same
dataset, with the distribution of the weights determined by the previous learner, until a threshold
is reached. During validation, a data point is sequentially sent through the sequence of classifiers.
The first classifier who is confident enough produces the output of the cascading meta-learner.

2.3.5 Cascade Generalization. Cascading generalization [20] performs a sequential composi-
tion of heterogeneous classifiers. Instead of a parallel use of classifiers as in Stacking, Cascade
Generalization sequentially applies classifiers such that the i-th classifier is a meta-level classifier
for the previous learner. The inputs of the i-th classifier consist of simple features and i-1 model-
based features that represent the outputs of the previous learners. In other words, each classifier of
the sequence is both a base-learner and a meta-learner. A new data point is progressively extended
as meta-instance as it collects all meta-data produced in each level of the sequence. The unified
meta-result of cascade generalization is the output of the last learner.

2.3.6 Delegating. Delegating [21] is similar to Cascade Generalization as it employs a sequence
of heterogeneous classifiers which are meant to be exercised sequentially for each data point.
However, Delegating uses a more cautious approach: if a classifier is not confident enough about
its result, the final decision is delegated to the next classifier. The process of Delegating ends when
a fixed number of delegation steps is reached, or if a classifier is confident enough about its result.

2.3.7 (Weighted) Voting. Voters count opinions coming from different independent sources, and
provide the final decision based on a linear aggregation (sum) of individual responses. It has been
widely used in N-version programming [30] to aggregate results that are independently generated
by multiple functionally equivalent programs that are built upon the same initial specifications.
Voters decide on a k out of N (kooN) rule as follows: when at least k out of N replicas (k ≤ N)
agree on a result, the result is chosen as the result of the ensemble. Common configurations are
majority voting (k ≥ N/2), and overall agreement, where k = N. For binary decisions, voting has
been extended to a weighted formulation that gives a positive outcome of the ensemble if and only
if the cumulative weight of all individuals that give a positive result reaches or exceeds a given
threshold of cumulative weights [31].

2.3.8 Arbitrating. The underlying idea of Arbitrating is that different learners map different ar-
eas of expertise in which they perform better classifications i.e., with a higher confidence [22]. The
area of confidence of each classifier is described by a referee, typically a decision tree. Differently
from delegating, all classifiers are trained in parallel on the same, initial dataset. When a data point
needs to be classified, all learners are exercised to provide their output and related confidence. Dif-
ferent referees may suit this approach. For example, in [22] a referee is induced for each individual
component classifier; then, each referee assigns a confidence value to its corresponding classifier,
letting the learner with the highest confidence to make the final classification. In [23], a binary
tree of arbiters, called arbiter tree, is generated with the classifiers at the leaves level. When an
unknown instance is classified by the arbiter tree, predictions propagate upwards from the leaves
(base-learners) to the root, with arbitration taking place at each intermediate level.

2.4 Weak Learners as Base-Learners

Overall, we can notice that different meta-learners orchestrate ensembles of base-learners in many
different ways, and often rely (i.e., Boosting, Cascading) on weak learners [17] to build a strong
meta-learner that aims at improving detection capabilities of non-meta learners. Therefore, we

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

Meta-Learning to Improve Unsupervised Intrusion Detection 42:7

should be able – when needed – to configure algorithms that act as base-learners as weak classi-
fiers through adequate parameters combinations. This allows to instantiate the same base-learner
as weak learner to suit specific meta-learners, while others may prefer relying on strong base-
learners. For example, Decision Trees build strong learners without constraints on the depth of
the tree and the number of branches, but may become weak learners when limiting their maxi-
mum depth with a small value. The same goes for many unsupervised algorithms as clustering
[70] or neighbor-based [66] algorithms, which may act as weak learners when accounting for a
few clusters / neighbors and using small training datasets.

Unfortunately, not all the unsupervised algorithms that have been proposed in the literature can
be instantiated as weak learners. For instance, deep learners are considered very strong individual
learners: they use Convolutional Neural Networks (CNN) in combination with different rep-
resentation learning techniques, although they can also include propositional formulas or latent
variables organized layer-wise in deep generative models such as the nodes in deep belief networks
[93], Auto-Encoders [92] and deep Boltzmann machines [91]. Training phase may be either built
from scratch, requiring massive computational power and many data, or adopt transfer learning
[94], which allows to customize an existing general-purpose network to the specific domain or
system. In both cases, the resulting deep neural network is by definition “deep”, with many hidden
layers and interconnections, and does not fit at all the purpose of weak learners. Therefore, those
algorithms cannot be always instantiated as base-learners, limiting their usage as building blocks
of meta-learners.

2.5 Related Works on Meta-Learning for IDSs

Various meta-learners were occasionally used in the literature for Intrusion Detection. In [53],
the authors used both a combination of output coming from different Random Trees and Voting
as meta-learning algorithms. Their results showed that the ensemble of random trees had lower
accuracy than the Bayesian network used as a comparison, while voting had comparable scores,
i.e., Bayesian reached 99.32% of accuracy, while voting reached 99.82%. Instead, Tama et al. [54]
describe the construction of two-layer classifiers as rotation forest and bagging; the results of the
base-level were aggregated through a majority voting scheme. By using the NSL-KDD and UNSW-
NB15 datasets, they achieved an accuracy of 85.8%, a precision of 88%, a sensitivity of 86.8%, and
a False positive rate of 11.7%. These scores show a lower overall number of misclassification with
respect to algorithms such as Support Vector Machines (SVM) or Decision Trees.

The Stacking generalization ensemble has been used in [55] to perform anomaly detection in the
NSL-KDD dataset, achieving noticeably high accuracy of 97%, and F1 score of 98% outperforming
the performance of any base classifiers. Similarly, a stacking system using kNN, Logistic Regression
and Random Forests as base learners, and SVM as meta-learner was proven [58] to be useful in
UNSW-NB15 and UGR16 datasets, achieving very competitive scores concerning related works on
the same datasets.

Multiple meta-learning techniques were investigated in [56], where the authors instantiated
Stacking, Voting, Boosting and Bagging and compared them to a Multi-layer perceptron, kNN and
Decision Tree by using data from UCI repository. Results show that Bagging achieved the highest
metric scores compared to other meta-learners, e.g., an accuracy of 99.97%, a False Positive rate
of 0.00018%, while other meta-learners resulted in scores comparable with respect to non-meta
algorithms, without highlighting any noticeable improvements.

Lastly, Alaba et al. [57] considered the old KDDCup99 and NSL-KDD dataset and proposed a
stacking ensemble-based strategy relying on Naïve Bayes, Random Forest and C.45 as base clas-
sifiers, with SVM managing the meta-layer. The training of the SVM classifier performed on the

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

42:8 T. Zoppi et al.

output probabilities of the base classifiers. The study concludes that the scores achieved by stack-
ing, with an accuracy and a precision reaching 99.5% constituted a significant improvement with
respect to other meta-learners as Bagging and Boosting, which achieved an accuracy below 84%.

3 SUITABILITY OF META-LEARNING FOR INTRUSION DETECTION

We discuss here the main characteristics of meta-learning approaches in the previous section to
understand if they could be successfully applied as IDSs. We start discussing their individual as-
pects, starting with a categorization based on heterogeneity, and proceeding with meta-features,
usage of confidence and applicability to data streams, ending up summarizing the suitability of
meta-learning systems to intrusion detectors.

3.1 Categorization of Model-Combiners

To summarize and wrap-up the digression on the existing meta-learning techniques for combining
models, we partition such methods into three categories depending on the base-level learners they
rely upon.

• Single Classifier (SC): Bagging, Boosting. These meta-learners build ensembles of base-
learners that rely on the same homogeneous algorithm, but are trained with different por-
tions or feature sets that are extracted from the training dataset.

• Multiple Classifiers (MC): Stacking (Generalization), Voting (Weighted). These meta-
learners use heterogeneous classifiers to build base-level learners. The way they aggregate
individual results of base-learners into the meta-result does not depend on the order of
base-level learners.

• Multiple Classifiers with Ordering (MCO): Cascading (Generalization), Delegating.
These meta-learners produce the final result depending on subsequent operations that in-
volve heterogeneous base-level classifiers. Results are collected sequentially from each base-
level learner, and therefore the ordering may impact the final outcome of the technique.

With respect to Arbitrating, it is worth noting that the way the referee is implemented heavily im-
pacts the realization of this meta-learner. If the referee is a counter, this approach degenerates into
voting, while using a separate independent classifier may let arbitrating to overlap with stacking.
To such extent, we disregard considering it further, as the usage of a sub-optimal function may
lead this meta-learner to perform poorly, limiting their role in our comparison study.

3.2 Usage of Meta-Features

Meta-features are usually associated with typical issues that may appear and impact their ap-
plicability or usability [25]. Main concerns and limitations to the usage of meta-features are:
(i) the discriminative power of meta-features, (ii) their number, which should be controlled as
meta-learning is very sensitive to the curse of dimensionality [26], and, finally, (iii) the computa-
tion complexity to calculate meta-features. For intrusion detection, this translates into two practi-
cal implications. First, the base-level should not be composed by a very wide range of base-learners,
to limit the number of meta-features that are being generated. Approaches such as stacking that
may consider as meta-features both base-learners results and dataset features (i.e., stacking gen-
eralization), may escalate into a number of meta-features that the meta-learner could not process
efficiently. A similar constraint should be put on cascade generalization, to limit the generation of
additional meta-features i.e., one for each step of the process.

Nevertheless, base-learners should employ solid algorithms to raise the discriminative power of
the meta-features they generate, and should not require too much time for training: algorithms as

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

Meta-Learning to Improve Unsupervised Intrusion Detection 42:9

ABOD [65], which show cubic complexity for training, should not take part to the base-level of a
meta-learner.

3.3 Heterogeneity and Diversity of Base-Learners

Differently from SC meta-learners as Bagging and Boosting, MC(O) meta-learners relying on het-
erogeneous classifiers to be used as base-learners heavily depend on how these classifiers interact
together. Intuitively, if an intrusion is not detected by any of the base-learners, no matter how we
combine their individual results it would not be possible to identify it by just ensembling independent
classifiers. More in detail, it would not be possible at all with (weighted) voting, delegating and
cascading (Generalization), while stacking offers a few – albeit very limited – opportunities. In
particular, Stacking relies on the numeric scores that are provided by classifiers, before a decision
function is applied to convert the numeric score into boolean. Small fluctuations of these scores
may not be enough to let individual base-level classifiers to detect the data point as anomalous,
but the meta-level classifier used in stacking may have room to identify the intrusion.

Nevertheless, it is acknowledged that base-level classifiers should be diverse [31]. This helps
avoid common-mode failures [13], which translate in avoiding misclassifications of the same data
point by multiple and potentially independent classifiers. In our context, it is very easy to select a
group of two or more different classifiers. However, many classifiers – despite being different – are
hardly diverse as they rely on the same intrinsic mechanisms e.g., k-nearest neighbor search is used
by many algorithms either as a main mechanism or to lower computational complexity. There-
fore, instantiating MC(O) meta-learners require choosing a set of base-learners that are diverse
enough.

3.4 Applicability to Data Streams

Another important dimension of our problem is the suitability of meta-learners to analyse stream-
ing data. Usually, IDSs monitor network and system features e.g., bytes sent/received, packets, at
runtime, and they are meant to provide answers promptly. As a result, meta-learners that sequen-
tially execute base-learners, or rely on algorithms with high computational complexity required to
decide on a single data point, should be used cautiously when dealing with data streams. It turns
out evident how meta-learners such as Cascade Generalization, Delegating and Arbitrating may
take too much time to decide on a data point at runtime, given the sequential execution of the
base-learners. However, this negative aspect may be mitigated by using a reduced set of learners.

3.5 Confidence of Classification

Binary classifiers are meant to classify a data point either as expected or anomalous, i.e., pointing to
an attack. However, in some cases they may not be confident enough whether a data point belongs
to one of the two classes. Forcing algorithms to answer also if they are not sufficiently confident
may let the critical system incur major problems. Therefore, recent studies such as [27] point to
mechanisms and metrics that wrap the binary decision, converting it into a ternary {yes, no, not
sure}, and re-modulating the confusion matrix accordingly. In a nutshell, classifiers should answer
either “yes” or “no” if and only if they are confident enough. Otherwise, the system may activate
back-up strategies, i.e., calling the administrator or switching off some interfaces to temporary
move to a safe state.

Meta-learners as Delegating and, to a lesser extent, Arbitrating (through the referee), intrinsi-
cally rely on the “confidence” of classifiers, and therefore are meant to answer only when they
are confident enough. Moreover, Boosting and Cascading employ the idea of confidence during
training, to trigger new iterations that generate additional weak learners.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

42:10 T. Zoppi et al.

Table 1. Suitability of Meta-Learners to Intrusion Detectors

Meta-Learner Category (Meta)Features
Classifiers
Diversity

Suitability to
Data Streams

Confidence Usage

Bagging SC Simple � Widespread

Boosting SC Simple Widespread

Stacking MC Model-Based � � Uncommon

Stacking
Generalization

MC Simple, Model-
Based

� � Uncommon

Cascading MCO � � Uncommon

Cascade
Generalization

MCO � � Rare

Delegating MCO Simple � � Rare

Voting MC Model-Based � � Common

Weighted Voting MC Model-Based,
Statistical

� � Uncommon

The tick mark denotes the perfect capability of a meta-learner. Other cases point to sub-optimal capabilities.

3.6 Meta-Learners for IDSs

Summarizing, most of the meta-learners in this paper have the potential to improve the detection
capabilities of IDSs, under adequate constraints. We pointed out relevant characteristics in Table 1,
which wraps up on the discussion we carried out in this section and puts the basis for experimental
evaluation in the rest of the paper. Bagging in its pure formulation does not allow a diversity of
classifiers used as base-learners, but relies on sampling to create different learners. Cascade Gen-
eralization, Delegating,and Arbitrating are able to provide results that intrinsically revolve around
their confidence. Boosting and Cascading are promising despite time-consuming training phases,
while Stacking has the most flexibility out of the possible approaches, and can find applicability
when implementations of heterogeneous algorithms are available. All meta-learners in the table
could find usability, given that the number of base-learners does not exceed a (reasonably low)
limit, for performance constraints.

4 METHODOLOGY TO EXERCISE EXPERIMENTS

To substantiate and elaborate on how and when different meta-learning approaches may improve
intrusion detection capabilities, we planned and executed an experimental campaign as follows:

We collect public datasets that contain data concerning attacks related to security aspects that
embrace critical systems. In particular, we refer to data related to network intrusion detection and
biometric authentication.

Then, we review the literature to identify unsupervised algorithms that are suitable for anomaly
detection. The chosen algorithms will be used both individually and as base-learners of meta-
learning strategies.

After, we apply each (meta-)algorithm to each dataset, collecting metric scores. These metrics
describe detection capabilities of (meta-)algorithms on each dataset, accounting for misclassifica-
tion and allowing for discussion of results.

Once the experiments have been executed, experimental data should allow exploring (i) detec-
tion capabilities of (meta-)algorithms across all datasets, (ii) impact of the choice of base-learners
on detection capabilities of MC(O) meta-learners, and (iii) comparison of meta-learners with re-
spect to unsupervised (non-meta) algorithms, plus an overall comparison of all algorithms consid-
ered in this study.

Different inputs are needed to execute our experimental campaign. First, Section 4.1 reports
on publicly available attack datasets that contain data relevant to CPSs. Section 4.2 describes the

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

Meta-Learning to Improve Unsupervised Intrusion Detection 42:11

Table 2. Datasets Used in this Study

Domain Dataset
Attacks

Simple (Given) Features % Attacks
(Evaluation)

Ref
Name Year Initial Numeric Ordinal

IDS Netflow_IDS 2015 3 11 5 5 11.3 [39]

IDS AndMal17 2017 4 85 80 77 15.5 [41]

IDS CICIDS17 2017 5 85 80 77 79.7 [38]

IDS CICIDS18 2018 6 85 80 77 26.2 [38]

IDS CIDDS 2015 4 16 7 5 14.4 [36]

IDS CTU13 2013 1 16 8 6 0.4 [40]

IDS ISCX12 2012 4 16 6 4 43.5 [34]

IDS NGDIS-DS 2015 7 9 4 3 5.3 [39]

IDS NSLKDD 2009 4 42 37 37 40.7 [35]

IDS UGR16 2016 5 13 7 4 3.3 [42]

IDS UNSW-NB15 2015 8 45 39 38 6.5 [37]

Bio Fingerprint n.a. 4 images 15 12 9.2 [43]

Bio Face 2017 4 30 30 30 8.7 [51]

Bio Keystroke Tappy 2017 4 8 4 3 9.5 [45]

Bio HRV(SWELL) 2014 4 66 65 64 10 [46]

Bio HRV(WESAD) 2018 4 62 62 62 9.9 [47]

Bio Human Gait 2019 4 70 42 37 8.8 [49]

Bio EDA(SWELL) 2014 4 54 52 52 10.1 [46]

Bio EDA(WESAD) 2018 4 95 49 44 7.8 [47]

Bio Voice 2018 4 21 20 20 10.3 [50]

Bio Hand Gesture Kinect 2015 4 95 95 94 8.5 [48]

We report on the domain, name and release year. We then report on the categories of attacks they contain, with details on
features and % of attacks in the portion we used for evaluation (training goes unsupervised – no label needed albeit it is
often provided).

metrics that will be used to evaluate detection capabilities of algorithms on the datasets above.
Then, we briefly introduce unsupervised anomaly detection algorithms in Section 4.3, leaving
Section 4.4 to expand on meta-learners. Further details on the implementation of the experimen-
tal campaign are summarized in Section 4.5, which completes the digression on the experimental
campaign and makes room for discussions in the rest of the paper.

4.1 Publicly Available Datasets

We report below on the public datasets that we used in our study. Note that we focused on two
different intrusion detection domains: Network attacks and threats to Biometric authentication pro-
cesses: both domains are related to security, albeit they have (slightly) different characteristics.
Table 2 summarizes the 21 datasets involved in this study, reporting domain, name, year, number
of attacks, % of attacks and reference, as well as an insight on the number of available features (both
textual and numeric), showing also the subset of ordinal features (i.e., numeric, not categorical)
that can be used by algorithms.

Network Intrusion Detection. Starting from recent surveys and taxonomies that expand on
datasets for intrusion detection such as Hindy et al. [85], Khraisat et al. [86], Ring et al. [33], and
by querying online portals1,2 we selected datasets with the following characteristics: (i) published

1Intelligence and Security Informatics Datasets, https://www.azsecure-data.org/other-data.html.
2UNB – Canadian Institute for CyberSecurity, https://www.unb.ca/cic/datasets/index.html.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

https://www.azsecure-data.org/other-data.html
https://www.unb.ca/cic/datasets/index.html

42:12 T. Zoppi et al.

recently, (ii) labeled (at least partially), and (iii) contain attacks in the ENISA [32] top 10, to en-
sure they report on relevant attack data. Our selection process resulted in the following datasets
NSL-KDD (2009) [35], CTU-13 (2011) [40], ISCX12 (2012) [34], UNSW-NB15 (2015) [37], UGR16
(2016) [42], NGIDS-DS (2017), Netflow-IDS (2017) [39], AndMal17 (2017) [41], CIDDS001 (2017)
[36], CICIDS17 (2017) [38], and CICIDS18 (2018) [38].

Biometric Authentication. We focused on datasets containing textual information rather than
images or audio tracks as they require a custom transformation into textual features. The only
exception has been the fingerprints dataset [43], where we processed the images by using state-
of-the-art feature extractors [44]. This research process, conducted by two people independently,
identified 10 datasets related to 8 different biometric characteristics. The datasets pertain to dif-
ferent biometric characteristics, namely: Fingerprint (CASIA dataset [43]), Voice [50], Face [51],
Heart Rate Variability (SWELL [46] and WESAD [47] datasets), Electro Dermal Activity (SWELL
[46], WESAD [47]), Human Gait (activity recognition [49]), Keystroke (Tappy, [45]), and Hand
Gesture (Kinect LeapMotion [48]).

While most of these datasets report on relevant numberss of features and data about each bio-
metric system, none of the datasets above contains data collected when the system was under
attack. To such extent, we injected attacks by mutating or inserting some data points of datasets
according to four categories of attacks we derived starting from surveys [79], [80], [81]. The attack
model and the injection process are described in Annex A.

4.2 Metrics for Evaluation

The effectiveness of anomaly detectors is usually assessed using correct classifications (true pos-

itives TP, true negatives TN) and misclassifications (false negatives FN, false positives FP),
which build the so-called confusion matrix. As in [59], [60], aggregated metrics as Precision, Re-

call (or Coverage), False Positive Rate (FPR), Accuracy (ACC), FScore-β (Fβ), F-Measure

(F1), Area Under ROC Curve (AUC) and Matthews Coefficient (MCC) are used in different
studies, depending on the domain. FP-inclined metrics such as Precision, FPR and F-Score (with β
< 1), are relevant when the number of false alarms needs to be as low as possible e.g., to increase
usability, while Recall and F-Score (with β > 1) are more relevant in those systems where FNs may
constitute severe threats e.g., safety-critical systems, which also need domain-specific metrics [27].

For the sake of generality and ease of comparison with other studies, in this study we mainly
report on widely used metrics that weight FPs and FNs as equally undesired, i.e., F-Measure, Ac-
curacy and MCC. However, with unbalanced datasets, i.e., if a file reports on many attacks data
and a few normal data, some of the metrics above can be misleading [61], since they either (i) do
not consider all the four classes of the confusion matrix, i.e., F1, FScore-β , or (ii) consider all the
classes without weighting the size of trues and falses, i.e., Accuracy. To such an extent, this paper
primarily focuses on MCC, which does not suffer from the weaknesses mentioned above [87], [88].

4.3 Unsupervised Algorithms and Base-Learners

We chose a set of unsupervised anomaly detection algorithms to perform intrusion detection on
the selected datasets. To provide a broad picture about detecting attacks in different datasets, we
selected a pool of algorithms that are as heterogeneous as possible. To such an extent, we refer to
algorithms’ families from [1], which were used also in other studies [2–4]: clustering, neural net-
works, density-based, neighbor-based, statistical, and classification. Then, we selected algorithms
belonging to as many families as we could, disregarding algorithms with high computational com-
plexity, e.g., ABOD [65], as this study already builds on meta-learning, which naturally requires
more computing and memory resources. Out of available algorithms, we selected a mixture of 15
as follows:

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

Meta-Learning to Improve Unsupervised Intrusion Detection 42:13

• One algorithm per Family: One-Class SVM (classification family) [67], K-Means (cluster-
ing) [78], kNN (neighbor, unsupervised variant) [75], HBOS (statistical) [64], SOM (neural-
network) [69].

• Algorithms that belong to many families: Neighbors identification is employed to reduce
noise and computational complexity in the angle-based FastABOD [65], and in the density-
based LOF [74] and COF [72]. Interesting mixtures of clustering and density-based families
allow devising DBSCAN [73] and LDCOF [71], which builds a density-based anomaly de-
tector on top of a clustering procedure.

• Others such as Isolation Forests [76], Stochastic Outlier Selection (SOS) [77], G-Means [70],
ODIN [66], Sparse Density Observers (SDO) [68] to complete this selection of unsupervised
algorithms for binary classification.

In addition, we looked for public frameworks that allow running unsupervised algorithms on
datasets. After examining different options, we chose RELOAD [62], an open-source tool that
wraps unsupervised algorithms from ELKI3 and WEKA,4 and adds more implementations of un-
supervised algorithms. The tool also implements grid searches to find adequate values to assign
to algorithms’ parameters.

4.4 Meta-Learners

Our study embraces all nine meta-learning strategies in Table 1 to have a broader picture of the
capabilities of meta-learners when dealing with intrusions. Different setups are needed, depending
on their characteristics.

Before going through setups for SC, MC and MCO categories, we remark here that we would
need a study to test all the possible sets of base-level classifiers to identify the optimal set of base-
learners. However, finding the optimal or more diverse set of classifiers, or the set where they have a
good synergy, is a separate task that takes an amount of time and resources that is potentially unlim-
ited. For example, the reader can think about all the possible combinations (or even permutations,
with MCO) of size in the range [2, 15] that can be created with our 15 unsupervised classifiers. To
such extent, in this study we arbitrarily sampled four different groups of classifiers to be used as
base-level learners as described in the MC subsection below.

SC Meta-Learners. Bagging and Boosting meta-learners are built upon each of the 15 algo-
rithms by using different parameters combinations. More in detail, they are instantiated with {10,
20, 50} learners and exercised independently. More specifically, for each algorithm alg, we will in-
stantiate Bagging(alg, 10), Bagging(alg, 20), Bagging(alg, 50) and Boosting(alg, 10), Boosting(alg, 20),
Boosting(alg, 50).

MC Meta-Learners. (Weighted) Voting and Stacking (Generalization) rely on multiple het-
erogeneous base-learners to build meta-features for the meta-level, which is realized either as
counter for (Weighted) Voting or as another learner for Stacking (Generalization). The choice of
base-learners has for sure a relevant impact on the behavior of the learner. For this study, we se-
lected four unordered sets of base-learners as follows. We chose the 3 unsupervised algorithms
which show the higher average MCC (G1 - first group), the higher average Accuracy (G2 - sec-
ond group) and the higher average Recall (G3 - third group) in our experiments. Moreover, we
chose an additional fourth group G4 which includes 7 algorithms - one algorithm for each family
– namely {SVM, HBOS, G-Means, SDO, ODIN, SOM, FastABOD}. G4 was selected to guarantee
diversity of families of classifiers, while groups G1 – G3 were selected depending on the results

3ELKI Project - https://elki-project.github.io/.
4Weka 3: Data Mining Software in Java - www.cs.waikato.ac.nz/∼ml/weka/.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

https://elki-project.github.io/
www.cs.waikato.ac.nz/protect $elax sim $ml/weka/

42:14 T. Zoppi et al.

Fig. 2. Building blocks of the experimental setup and methodology used in this paper.

of the experimental campaign as “good on average” algorithms that potentially could build a set
of base-learners with good synergy for a good meta-learning process. Discussion on the impact of
the choice of the groups will be expanded later in the paper.

MCO Meta-Learners. Delegating, Cascading, and Cascade Generalization differ from MC
learners as ordering of base-learners matter. As a result, we will generate different permutations
starting from the sets of algorithms G1 – G4. When choosing 3 bae learners {alg1, alg2, alg3} as
in G1, G2, G3, we will instantiate each meta-learner 3 times by sorting algorithms as follows:
<alg1, alg2, alg3>, < alg2, alg3, alg1>, <alg3, alg1, alg2>. When using 7 algorithms (G4), we will
instantiate each meta-learner 7 times by rotating the algorithms similarly to the example above:
<alg1, alg2, alg3, alg4, alg5, alg6, alg7>, <alg2, alg3, alg4, alg5, alg6, alg7, alg1>. . . In addition
to instantiating each MCO learner with each of the permutations of base-learners above, each
algorithm has its own parameters as the confidence threshold to build the final score. As RELOAD
outputs algorithms confidence as a number between 0 (no confidence) to 1 (maximum confidence),
we alternatively use {0.90, 0.95, 0.99} as minimum confidence to stop the process. For example,
when instantiating delegating with a set of three algorithms, 9 instances are created as follows:
Delegating (<alg1, alg2, alg3>, 0.90), Delegating (<alg1, alg2, alg3>, 0.95), Delegating (<alg1, alg2,
alg3>, 0.99), Delegating (<alg2, alg3, alg1>, 0.90), Delegating (<alg2, alg3, alg1>, 0.95), Delegating
(<alg2, alg3, alg1>, 0.99), Delegating (<alg3, alg1, alg2>, 0.90), Delegating (<alg3, alg1, alg2>, 0.95),
Delegating (<alg3, alg1, alg2>, 0.99).

4.5 Experiments Setup and Execution

We describe here the experimental setup for our study with the aid of Figure 2.
Datasets/Tool Download. We downloaded the datasets in Section 4.1 from their repositories

shaping them as CSV files, performing attack injection for datasets related to biometric authenti-
cation. Then, we downloaded the latest release of RELOAD, setting up connectors to datasets.

Metric Setup. We adopted MCC as the target metric: while this metric is used by RELOAD to
find optimal parameters values of algorithms, metrics other than MCC (see Section 4.2) are still
reported as output and will be discussed in the rest of the paper.

Feature Selection. According to literature studies, out of the feature selection strategies made
available by RELOAD, we chose Information Gain [63], to extract the n most relevant features out
of each dataset. Since several datasets have just a few ordinal features (see NGDIS-DS and Keystroke
Tappy in Table 2), we set n = 3.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

Meta-Learning to Improve Unsupervised Intrusion Detection 42:15

Cross-Validation (K-Fold). We proceeded with a 10-fold sampling of the training set as widely
suggested in the literature.

Choice of Algorithms Parameters. Besides G-Means, which does not rely on parameters, we
tried different combinations of parameters for each algorithm through grid searches. Grid searches
were automatically managed by RELOAD, which selects the combination of parameters that allows
obtaining the best MCC score in a small portion of dataset (not overlapping with the evaluation
set), which was used for testing. More in detail, k for kNN-based algorithms, samples s to and trees
t building iForest, number hist of histograms in HBOS and observers obs of SDO were chosen in
the set {1, 2, 3, 5, 10, 20, 50, 100, 200}. Other algorithms have specific parameters: one-class SVM
may be created either with {linear, quadratic, cubic, radial basis function} kernels and nu – which
impacts the number of support vectors to be created – in {0.01, 0.02, 0.05, 0.1, 0.2}. In addition to
obs, SDO needs also a q ϵ {0.05, 0.1, 0.2, 0.5} thresholds that the algorithm uses to derive “closest”
observers. Lastly, DBSCAN clustering uses a combination of the minimum number of data points
in a cluster pts ϵ {1, 2, 3, 5, 10} and eps ϵ {100, 200, 500, 1000}, which defines the radius of the cluster
around each data point.

Unsupervised Base-Learners. We completed the setup of RELOAD by submitting a list of
unsupervised algorithms that may also be used as base-learners in meta-learning experiments. As
described in Section 4.3, we employed the following 15 algorithms: One-Class SVM, K-Means, kNN,
HBOS, SOM, FastABOD, LOF, COF, DBSCAN, LDCOF, Isolation Forests, SOS, G-Means, ODIN, and
SDO. Grid searches to select optimal values of parameters will use a subset of the parameters in
the previous paragraph to instantiate weak base-learners, as motivated in Section 2.4. For example,
k for kNN-based algorithms, samples s to and trees t building iForest, number hist of histograms
in HBOS and observers obs of SDO were chosen in the set {1, 2, 3, 5, 10} for (weak) base-learning.

Experiments Execution. Once all the parameters mentioned above were set, we ran the exper-
imental campaigns including all the datasets and (meta-)algorithms considered in this study. The
experiments were executed on a server equipped with Intel Core i7-6700 with four 3.40GHz cores,
24GB of RAM and 1TB of user storage. Overall, executing the experiments required approximately
30 days of 24H execution.

Experiments Execution – Unsupervised Algorithms. We executed all the 15 algorithms
on all the 21 datasets, obtaining a total of 315 triples <algorithm, dataset, metric_values_on_
validation> for unsupervised algorithms.

Experiments Execution – Unsupervised Meta-Learners. Moreover, we repeated meta-
learning analyses on the same twenty-one datasets, with additional 900 Bagging and Boosting
experiments, 80 for each MC, and 960 each for MCO meta-learner, obtaining a grand total of 5,585
confusion matrixes (and sets of metric scores) to be presented and discussed in the next sections. As
described in Section 4.4, we conducted experiments using nine different meta-learning approaches
by using (when necessary) four groups of base-learners.

All the metric scores and files that we used to collect and summarize values are publicly available
at [82].

5 RESULTS AND DISCUSSION

This section is devoted to the presentation, discussion and analysis of the results. We start in
Section 5.1 by commenting on metric scores achieved by non-meta algorithms, which also helped
choosing groups of base-learners G1 – G4 for MC and MCO meta-learners as described in Sec-
tion 4.4. The impact of the choice of base-learners on the detection capabilities of MC and MCO
meta-learners is debated in Section 5.2. Ultimately, Section 5.3 steps into a deep comparison of the
results of meta-learners with respect to non-meta algorithms, commenting on metric scores and
highlighting relevant differences.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

42:16 T. Zoppi et al.

Fig. 3 Bar chart showing the highest MCC for each dataset. Algorithm(s) that reach the highest score are

shown as labels on top of the chart.

Table 3. Unsupervised (Non-meta) Algorithms that Reach Maximum MCC for Each Dataset in this Study

Domain Dataset Algorithm(s) Parameter(s) FPR P R ACC F1 F2 MCC

Bio EDA(SWELL) SDO obs = 50, q = 0.1 0.009 0.827 0.401 0.93 0.54 0.45 0.55

Bio EDA(WESAD) ODIN k = 100 0.014 0.833 0.833 0.97 0.83 0.83 0.82

Bio Face DBSCAN pts = 1, eps = 100 0.004 0.765 0.149 0.92 0.25 0.18 0.32

Bio Fingerprint DBSCAN pts = 1, eps = 100 0.000 1.000 0.508 0.99 0.67 0.56 0.71

Bio Hand_Gesture FastABOD k = 5 0.004 0.917 0.478 0.95 0.63 0.53 0.64

Bio HRV(SWELL) FastABOD k = 5 0.004 0.946 0.700 0.97 0.80 0.74 0.80

Bio HRV(WESAD) ODIN k = 50 0.004 0.938 0.606 0.96 0.74 0.65 0.73

Bio Human Gait SVM ker. RBF, nu = 0.02 0.000 1.000 0.756 0.99 0.86 0.79 0.87

Bio Keystroke HBOS hist = 50 0.007 0.786 0.232 0.92 0.36 0.27 0.40

Bio Voice iForest t = 20, s = 50 0.011 0.839 0.495 0.94 0.62 0.54 0.62

IDS AndMal17 ODIN k = 5 0.796 0.181 0.958 0.32 0.30 0.51 0.15

IDS CICIDS17 iForest t = 10, s = 20 0.010 0.997 0.962 0.97 0.98 0.97 0.91

IDS CICIDS18 HBOS hist = 100 0.060 0.855 1.000 0.96 0.92 0.97 0.90

IDS CIDDS kNN / SVM k = 5 / ker. RBF, nu = 0.02 0.041 0.802 0.997 0.96 0.89 0.95 0.88

IDS CTU13 FastABOD k = 5 0.269 0.012 0.793 0.73 0.02 0.06 0.08

IDS ISCX12 iForest t = 5, s = 50 0.010 0.987 0.974 0.98 0.98 0.98 0.97

IDS Netflow-IDS SVM ker. RBF, nu = 0.1 0.015 0.876 0.863 0.97 0.87 0.87 0.85

IDS NGDIS-DS COF k = 20 0.127 0.253 0.759 0.87 0.38 0.54 0.39

IDS NSLKDD SVM ker. Cubic, nu = 0.02 0.055 0.890 0.642 0.82 0.75 0.68 0.63

IDS UGR16 SDO obs = 50, q = 0.1 0.033 0.290 0.398 0.95 0.34 0.37 0.31

IDS UNSW-NB15 HBOS hist = 50 0.006 0.807 0.340 0.95 0.48 0.38 0.51

5.1 Detection Capabilities of Unsupervised Algorithms

We begin the analysis with a discussion of the unsupervised algorithms that show the best MCC
score for each dataset, commenting also on metric scores other than MCC. We show metric scores
for each dataset in Figure 3 and Table 3: while Figure 3 shows bars for MCC scores as well as the
algorithm(s) that reach that maximum score, Table 3 reports on FPR, P, R, ACC, F1, F2 and MCC
achieved by the best algorithm on each dataset, alongside with their parameters values.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

Meta-Learning to Improve Unsupervised Intrusion Detection 42:17

At a first glance, Figure 3 shows how the number of misclassifications – measured through MCC
score – may vary a lot when considering different datasets. Even the best algorithm in AndMal17
and CTU13 datasets achieved very bad MCC scores, meaning that the number of misclassifications
was really high and that unsupervised algorithms were not able to provide actionable support to
intrusion detection. Instead, in 8 out of the 21 datasets, it was possible to find an algorithm that
reached or exceeded an MCC of 0.8. While these scores are still far from the optimum (absolute
MCC peaks at 1), they point to a reasonably low number of misclassifications, considering that
such algorithms learn the normal behavior of the system without considering any label in training
data. In particular, Isolation Forests in CICIDS17 and HBOS in CICIDS18 datasets reached an MCC
of 0.9. With the aid of Table 3 (12th and 13th rows) we can see how these MCC values correspond
to Accuracy values of 0.97 and 0.96, meaning that respectively 3% and 4% of data points are being
misclassified by the two algorithms above. For these two datasets, it is also interesting to note how
those misclassifications are distributed: HBOS on CICIDS18 dataset shows only FPs (see perfect
Recall = 1 in Table 3), while the vast majority of misclassifications of Isolation Forests in CICIDS17
are FNs: Precision and FPR values are very low and close to the optimum (1 for Precision, 0 for
FPR).

A similar analysis can be conducted for all the datasets considered in this study. However we
want to highlight here the following general observations.

• It is not possible to find an algorithm that always classifies correctly each data point for any
of the 21 datasets. In fact, the MCC score of the best algorithm never reaches the desirable
1 value. As a result, for each dataset there is room for improvement as no perfect intrusion
detection strategy was found by using unsupervised algorithms.

• Only SVM on Human Gait and DBSCAN on Fingerprint datasets do not raise FPs (see Pre-
cision = 1 and FPR = 0 in Table 3), while zero FNs were achieved only by HBOS in the
CICIDS18 dataset. It is possible to conclude that unsupervised algorithms do not lean to-
wards minimizing either FPs or FNs. However, it is possible to note that for datasets in the
domain of biometric authentication FNs are usually higher than FPs (Precision is more fre-
quently higher than Recall in Table 3 for Bio datasets), while for network IDs datasets the
trend is swapped, with higher Recall values than Precision counterparts.

• There is no algorithm that is the optimal choice in the majority of the datasets, and that could
have been chosen as the best candidate when performing unsupervised intrusion detection.
Some algorithms as FastABOD and SVM appear quite frequently (respectively in 24% and
19% of the datasets), but there is no clear evidence of algorithms being the preferred choice
for a relevant number of datasets. Instead, we can observe how LDCOF, LOF, K-Means
and G-Means never appear as preferred choices. Lastly, it is worth noticing that for some
datasets there is more than one algorithm that allows reaching the best MCC. This may
happen as some algorithms produce the same number of misclassifications even if they rely
on different actions to decide on anomalies.

The three aspects above highlight how unsupervised algorithms – as expected – are able to
derive a normal behavior from an unlabelled dataset at a cost of a quite high number of misclas-
sifications. Therefore, we continue our analysis to see if meta-learners can help in reducing their
gap with respect to perfect (i.e., no misclassifications at all) detection capabilities.

5.2 On the Choice of Base-Learners in MC(O) Meta-Learners

Before starting the discussion on the potential improvements of meta-learners with respect to
unsupervised algorithms, we debate here on the impact of the choice of base-learners for MC
and MCO meta-learners. As already described in Section 4.4, within our experimental campaign

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

42:18 T. Zoppi et al.

Fig. 4. Impact on the choice of groups G1-G4 on detection capabilities of algorithms. Bars are higher the

higher the % of datasets in which a given group maximises the MCC achieved by a meta-learner.

we repeated the experiments involving MC and MCO meta-learners by using G1 – G4 groups of
base-learners that were selected according to different rules.

G1. Three Algorithms that resulted in a higher average MCC in Table 3: SVM (Classification
family), ODIN (Neighbor-based), FastABOD (Angle/Neighbor-based).

G2. Three Algorithms that resulted in a higher average Accuracy in our experiments: SDO (Den-
sity family), DBSCAN (Clustering), SVM (Classification).

G3. Three Algorithms that resulted in a higher average Recall in our experiments: G-Means
(Clustering family), FastABOD (Angle/Neighbor-based), COF (Density/Neighbor-based).

G4. Seven Algorithms, one for each family: SVM (Classification family), ODIN (Neighbor-
based), FastABOD (Angle/Neighbor-based), SDO (Density), DBSCAN (Clustering), SOM
(Neural Networks), HBOS (Statistical). When more classifiers for a given family were avail-
able, we chose the ones that had fewer semantic overlaps with other families. For exam-
ple, we selected SDO as density-based representative instead of LOF or COF, which pair a
nearest-neighbor search with density measures.

We expect a different number of misclassifications by meta-learners when G1-G4 groups are
alternatively used to build base-level learners. To show the differences, Figure 4 reports a bar
chart with 4 data series (one for each group G1 – G4) and seven partitions, one for each MC(O)
meta-learner. The higher the bars, the higher the number of datasets in which that group let a
specific meta-learner result in the highest MCC out of the four. Note that the sum of a set of 4 bars
for a meta-learner usually sums up to more than 100% as it happens that more than one group
maximizes the MCC reached by a meta-learner on a dataset; they result in the same score, and are
both considered as groups that maximize MCC.

The graph shows quite clearly that G3 (GMeans, FastABOD, COF) did not help as much as
other groups in raising metric scores achieved by meta-learners. FastABOD and COF partially
belong to the neighbor-based family: as a result, they may incur in the same misclassifications
once the intrusion is not detected by their engine, which relies on Euclidean distance from neigh-
bors. The same goes for G1, which includes two neighbor-based algorithms; however, G1 leads to

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

Meta-Learning to Improve Unsupervised Intrusion Detection 42:19

higher MCC than G3 for all meta-learners but weighted voting. In fact, pattern-filled blue bars in
Figure 4 are usually higher than green-bordered bars that represent G3. It turns out that looking
only at different families to select base-learners is not enough. Instead, it is more likely that SVM
(G1) has a better synergy with both or either ODIN and FastABOD than what GMeans (G3) has
with both COF and FastABOD. As an additional remark, we observe how G2 algorithms belong to
completely separate families with no overlaps, but indeed this group is never the preferred choice
over G1.

The last observation is dedicated to G4, which is the only group that includes seven algorithms
belonging to different families. It is worth mentioning that this group allowed reaching the highest
MCC scores (or highest %, as reported in Figure 4 – see purple-striped bars) for five out of the seven
MC(O) meta-learners. Therefore, in the next section, we will consider results obtained by using
group G4 as base-learners for MC(O) meta-learners, as they seem to benefit the most from this
group of base-learners.

Wrapping up this analysis, we can conclude that - as expected - the choice of base-learners im-
pacts the detection capabilities of MC(O) meta-learners. However, our results show that selecting
classifiers belonging to different families does not guarantee that the resulting set will provide
base-level learners with good synergy. Indeed, we foresee that selecting classifiers belonging the
same family leads to less-diverse base learners, which does not help the meta-learner in reducing
misclassifications. However, to derive conclusive results, we will prepare a separate work that we
will be describing at the end of the paper as a possible follow-up of this paper.

5.3 Comparing Meta-Learners and Unsupervised Algorithms

To complete our analysis, in Table 4 we report the metric scores achieved by both unsupervised
(non-meta) algorithms and meta learners that reach the highest MCC on each dataset. This allows
understanding if adopting meta-learners may help in reducing misclassifications and consequently
improving metric scores. The table reports on the same metrics as Table 3: instead, here we report
two rows for each dataset, with metric scores related to unsupervised (non-meta) algorithms, and
meta-learners. Albeit data for non-meta algorithms is repeated from Table 3, we duplicated them
for ease of comparison with meta-learners.

For each dataset, we can observe that the MCC are obtained by the optimal meta-learner(s) is
higher than the MCC of the optimal unsupervised algorithm for all datasets but AndMal17, which
still represents a challenging situation where neither unsupervised algorithms nor meta-learners
were able to satisfactorily detect anomalies due to intrusions. More in detail, meta-learners allow
perfect classification in the Fingerprint dataset, with almost perfect MCC of 0.999 also for the
CICIDS18 dataset. These improvements are remarkable as they significantly reduce – if not avoid
all – misclassifications in these two datasets, providing a solid answer to the detection of intrusions
that rely on unsupervised base-learners.

In addition, more than one meta-learner reaches perfect classification scores in the Fingerprint
dataset, namely Cascading, and Boosting with the following setups: (i) kNN algorithm and 10 weak
learners, (ii) ODIN with 10, (iii) SDO with 10 and (iv) K-Means with 10. While the tie between kNN
and ODIN is somewhat expected as ODIN builds upon kNN, it is surprising to observe how building
Boosting with algorithms belonging to different families as kNN (neighbor), SDO (density) and K-
Means (clustering) allows reaching the same –perfect – scores.

Moreover, Table 4 allows elaborating on FPs and FNs, which are indirectly measured through
FPR, P, and R (but still directly available at [82], though not shown here for brevity). Zero FPs
were achieved by meta-learners in 9 out of the 21 datasets, while only in Fingerprint and Human Gait
datasets meta-learners were able to completely avoid FNs . This marks a significant improvement
with respect to unsupervised algorithms, which we can expand in detail through Table 5. This last

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

42:20 T. Zoppi et al.

Table 4. Non-meta and Meta Learners that Reach the Maximum MCC for Each Dataset

Dataset Meta / Unsupervised (non-meta) Algorithm(s) FPR P R ACC F1 F2 MCC

EDA(SWELL) SDO 0.009 0.827 0.401 0.93 0.54 0.45 0.547

EDA(SWELL) Boosting(FastABOD, 20) 0.000 1.000 0.569 0.96 0.73 0.62 0.737

EDA(WESAD) ODIN 0.014 0.833 0.833 0.97 0.83 0.83 0.819

EDA(WESAD) Voting, Weighted Voting, Bagging(FastABOD, 10) 0.000 1.000 0.833 0.99 0.91 0.86 0.907

Face DBSCAN 0.004 0.765 0.149 0.92 0.25 0.18 0.316

Face Stacking, Stacking Generalization 0.000 1.000 0.218 0.93 0.36 0.26 0.451

Fingerprint DBSCAN 0.000 1.000 0.508 0.99 0.67 0.56 0.709

Fingerprint Boosting*, Cascading 0.000 1.000 1.000 1.00 1.00 1.00 1.000

Hand_Gesture FastABOD 0.004 0.917 0.478 0.95 0.63 0.53 0.643

Hand_Gesture Boosting(COF, 20) 0.008 0.857 0.522 0.95 0.65 0.57 0.647

HRV(SWELL) FastABOD 0.004 0.946 0.700 0.97 0.80 0.74 0.797

HRV(SWELL) Voting, Weighted Voting 0.000 1.000 0.670 0.97 0.80 0.72 0.804

HRV(WESAD) ODIN 0.004 0.938 0.606 0.96 0.74 0.65 0.734

HRV(WESAD) Boosting(COF, 50) 0.000 1.000 0.606 0.96 0.75 0.66 0.762

Human Gait SVM 0.000 1.000 0.756 0.99 0.86 0.79 0.867

Human Gait Boosting(FastABOD, 10) 0.003 0.882 1.000 1.00 0.94 0.97 0.938

Keystroke HBOS 0.007 0.786 0.232 0.92 0.36 0.27 0.400

Keystroke Bagging(HBOS), Boosting*, Cascading, Cascade Generalization 0.000 1.000 0.495 0.95 0.66 0.55 0.685

Voice Isolation Forest 0.011 0.839 0.495 0.94 0.62 0.54 0.616

Voice Cascade Generalization 0.017 0.816 0.653 0.95 0.73 0.68 0.703

AndMal17 ODIN 0.796 0.181 0.958 0.32 0.30 0.51 0.154

AndMal17 Bagging(SDO, 20) 0.126 0.236 0.213 0.77 0.22 0.22 0.091

CICIDS17 Isolation Forest 0.010 0.997 0.962 0.97 0.98 0.97 0.908

CICIDS17 Bagging(COF, 10) 0.015 0.996 0.974 0.98 0.98 0.98 0.930

CICIDS18 HBOS 0.060 0.855 1.000 0.96 0.92 0.97 0.896

CICIDS18 Boosting(KMeans, 10) 0.000 1.000 0.999 1.00 1.00 1.00 0.999

CIDDS kNN, SVM 0.041 0.802 0.997 0.96 0.89 0.95 0.875

CIDDS Bagging(DBSCAN, 50) 0.041 0.803 0.997 0.96 0.89 0.95 0.876

CTU13 FASTABOD 0.269 0.012 0.793 0.73 0.02 0.06 0.076

CTU13 Boosting(LOF, 10) 0.000 0.500 0.034 1.00 0.06 0.04 0.131

ISCX12 Isolation Forest 0.010 0.987 0.974 0.98 0.98 0.98 0.966

ISCX12 Boosting*, Cascading, Cascade Generalization 0.000 1.000 0.974 0.99 0.99 0.98 0.977

Netflow-IDS SVM 0.015 0.876 0.863 0.97 0.87 0.87 0.853

Netflow-IDS Stacking 0.018 0.869 0.939 0.98 0.90 0.92 0.890

NGDIS-DS COF 0.127 0.253 0.759 0.87 0.38 0.54 0.387

NGDIS-DS Boosting(ODIN, 10) 0.002 0.948 0.729 0.98 0.82 0.76 0.824

NSLKDD SVM 0.055 0.890 0.642 0.82 0.75 0.68 0.633

NSLKDD Cascading(thr=0.99) 0.040 0.915 0.627 0.82 0.74 0.67 0.643

UGR16 SDO 0.033 0.290 0.398 0.95 0.34 0.37 0.314

UGR16 Bagging*, Boosting*, Cascading, Cascade Generalization 0.001 0.956 0.377 0.98 0.54 0.43 0.593

UNSW-NB15 HBOS 0.006 0.807 0.340 0.95 0.48 0.38 0.505

UNSW-NB15 Cascade Generalization 0.005 0.856 0.421 0.96 0.56 0.47 0.583

We report the dataset name, the classifier, and metrics as FPR, Precision, Recall, Accuracy, F-Measure(F1), F2, and
MCC. * next to meta-learners indicates that different parameter combinations of this meta-learner allow to reach
the same score.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

Meta-Learning to Improve Unsupervised Intrusion Detection 42:21

Table 5. Differences of MCC Achieved By Each Meta-learner on Each Dataset, with

Differences with Respect to the MCC Achieved by Unsupervised (Non-meta) Algorithms

D
om

ai
n

Dataset M
C

C
U

n
su

p
er

vi
se

d
A

lg
or

it
h

m

B
ag

gi
n

g

B
oo

st
in

g

V
ot

in
g

W
ei

gh
te

d
V

ot
in

g

St
ac

ki
n

g

St
ac

ki
n

g
G

en
er

al
iz

at
io

n

D
el

eg
at

in
g

C
as

ca
di

n
g

C
as

ca
de

G
en

er
al

iz
at

io
n

#M
et

a
B

et
te

r
T

h
an

U
n

su
p

er
vi

se
d

Bio EDA(SWELL) 0.55 0.18 0.19 0.11 0.14 0.03 0.03 0.12 0.11 8

Bio EDA(WESAD) 0.82 0.09 0.09 0.09 0.01 0.07 5

Bio Face 0.32 0.13 0.13 0.03 3

Bio Fingerprint 0.71 0.29 0.29 0.23 3

Bio Hand Gesture 0.64 0.003 1

Bio HRV(SWELL) 0.80 0.01 0.01 2

Bio HRV(WESAD) 0.73 0.03 0.02 0.02 3

Bio Human Gait 0.88 0.06 1

Bio Keystroke 0.40 0.29 0.29 0.25 0.25 0.01 0.29 0.29 7

Bio Voice 0.62 0.04 0.04 0.04 0.04 0.09 5

IDS AndMal17 0.15 0

IDS CICIDS17 0.91 0.02 0.01 2

IDS CICIDS18 0.90 0.08 0.10 0.08 0.07 0.09 0.09 6

IDS CIDDS 0.88 0.002 1

IDS CTU13 0.08 0.05 0.01 0.03 3

IDS ISCX12 0.97 0.001 0.01 0.01 0.01 4

IDS Netflow_IDS 0.85 0.01 0.04 2

IDS NGDIS-DS 0.39 0.19 0.44 0.15 0.24 0.12 0.13 0.15 7

IDS NSLKDD 0.63 0.003 0.002 0.01 3

IDS UGR16 0.31 0.28 0.28 0.27 0.27 0.28 0.28 6

IDS UNSW-NB15 0.51 0.04 0.07 0.02 0.01 0.08 5

Times Meta Better Than Unsupervised 11 14 7 8 4 4 6 12 11

Times Meta Better Overall 5 11 2 2 2 1 0 5 5

Blank cells show combinations where a meta-learner did not improve scores. Bold underlined cells highlight optimal
classifier(s) for each dataset.

table shows – for each dataset – the absolute improvements of MCC in adopting a given meta-
learner with respect to unsupervised algorithms. The centre of the table reports either (i) blank
cells, meaning that the meta-learner did not improve MCC with respect to the most performing
unsupervised algorithm in that dataset, (ii) a positive number which scores the improvement in
adopting meta-learning on that dataset, or (iii) a positive bold-font number, which points to the
highest MCC obtained for that dataset amongst all the (meta)algorithms we exercised in our ex-
perimental campaign.

On the bottom of the table, we also report on the number of times in which a given meta-learner
reaches higher MCC than unsupervised algorithms (intuitively, the number of non-blank cells in
the column), and the number of times in which the meta-learner is the preferred choice amongst
all the 21 datasets considered in this study.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

42:22 T. Zoppi et al.

This last datum shows how Boosting outperforms base algorithms and other meta-learners in
11 out of the 21 datasets. In other words, we can conclude that in the 52% of the cases, adopt-
ing Boosting allows reaching the highest MCC scores, consequently minimizing misclassifications.
Other meta-learners are not even close to these numbers, considering that Bagging, Cascading
and Cascade Generalization, which are still viable choices, are preferred only in fewer than half of
Boosting’s cases. Note that the numbers in the last row of Table 5 sum up more than 21 as when
more meta-learners show the same (highest) MCC, they are counted twice to achieve that number.

Regarding relative improvements in the second last row of Table 5, Boosting outperforms un-
supervised algorithms in 14 out of 21 datasets, closely followed by both Cascading (12), Bagging
(11) and Cascade Generalization (11 as well). Other meta-learners may be preferred in specific
cases, but do not show noticeable overall capabilities being only slightly better than unsupervised
algorithms.

The last – but not least – comment relates to the absolute improvement of MCC that follows the
adoption of meta-learners. For datasets such as HRV(SWELL) and Hand Gesture, Table 5 shows a
very limited improvement of MCC (0.80 to 0.81, 0.640 to 0.643) that may not be enough to motivate
the adoption of more complex techniques such as meta-learners as they only marginally reduce
misclassifications. However, small variations as the 0.01 for ISCX12 raise an already high MCC of
0.97 to 0.98, which is more valuable than the same improvement starting from lower MCC scores
(e.g., from 0.48 to 0.49) and may sufficiently motivate the adoption of meta-learning.

6 CONCLUDING REMARKS

To conclude the paper we report here on (i) potential limits to the applicability and validity of our
results, a (ii) our main findings, and (iii) future implications and follow-ups of this study.

6.1 Limits to the Applicability and Validity of our Results

We report here possible limitations to the validity and the applicability of our study. These are
not to be intended as showstoppers when interpreting the conclusions of this paper. Instead, they
should be considered as boundaries or implications which may limit the validity of this study in
specific scenarios.

Parameters’ Tuning. Finding the optimal values of algorithms’ parameters is a substantial
process that requires sensitive analyses and is directly linked with the target system. When using
many datasets and many algorithms, it is unfeasible to conduct sensitivity analyses directed to
find the optimal combination of parameters e.g., the k in kNN that maximizes a given metric for a
given dataset. To automatize this process, RELOAD and similar tools enable grid searches, which
try different parameters combinations and choose the one that seems beneficial for the algorithm
according to a quick test executed on a part of the training set which is indeed labelled. Here
labels are not used for training, but only to select parameters. However, the optimal combination
of parameters for a given algorithm in a given system may not be included in those grid searches
and therefore algorithms will not perform optimally.

Usage of Public Data/Tools. The heterogeneity of data sources, their potential lack of docu-
mentation and the different strategies authors used to collect data may limit the understandability
of data. In addition, such datasets are not under our control: therefore, possible actions as chang-
ing the way data is generated by considering more features to improve detection scores are out
of consideration e.g., in NGDIS dataset, we are forced to stick with just three (see Table 2) ordi-
nal numeric features. Indeed, the usage of public data and public tools allows reproducibility and
guarantees relying on proven-in-use data.

Comparison with Supervised Variants. The paper explicitly focuses on unsupervised algo-
rithms, as the detection of zero-day attacks (or slightly different variants of existing attacks) is a

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

Meta-Learning to Improve Unsupervised Intrusion Detection 42:23

very important and challenging feature which is getting more and more desired in current systems
which are complex, dynamic, and evolve rapidly. However, unsupervised algorithms usually show
weaker detection capabilities with respect to supervised algorithms in detecting known attacks. As
a result, supervised algorithms - even meta-learners e.g., ADABoost [83], which builds boosting on
a (supervised) decision tree, or Random Forests (Bagging with, again, decision trees [14]) – should
be preferred when dealing with known attacks, but should indeed be used together with unsupervised
(meta)classifiers that cover against unexpected and unplanned zero-day attacks.

6.2 Lessons Learned

Before discussing possible follow ups, we summarize the main findings of this paper below.

• Analysis of unsupervised algorithms showed that it was not possible to find an algorithm
that clearly outperforms others in the 21 datasets considered in this study. This would have
been a huge result, but was indeed unexpected as datasets have different characteristics and
different algorithms may better suit specific datasets.

• Instead, in Section 5.2 we started focusing on MC(O) meta-learners by running experiments
with different groups of base-learners. We found that selecting classifiers belonging to dif-
ferent families does not guarantee that the resulting set will describe base-level classifiers
with good synergy. While groups of base-learners with similar characteristics showed poor
results, not all the groups with “diverse” algorithms as base-learners showed promising re-
sults.

• These analyses escalated in Section 5.3 into a deep comparison of metric scores achieved
by unsupervised algorithms with respect to metric scores obtained by meta-learners. The
MCC score obtained by meta-learners is higher than the MCC of unsupervised algorithms for
20/21 datasets, meaning that meta-learners guarantee less misclassification in almost all
cases – and no misclassification at all for one dataset. Boosting outperforms unsupervised
algorithms and other meta-learners in 11/21 datasets, consequently minimizing misclassi-
fications.

6.3 Future Works

A first follow up of this work may consist in estimating if and how the increased complexity
of meta-learners burdens hardware-software systems, potentially exhausting their resources and
preventing a timely detection of malicious activities.

Moreover, to adequately evaluate the detection capabilities of MC and MCO meta-learners there
is the need to conduct a separate and very extensive studies about the combinations (for MC) or
permutations (for MCO, where ordering matters) of unsupervised algorithms used as base-learners
that maximizes metric scores across all datasets, expanding the preliminary analysis presented in
Section 5.2.

References

[1] V. Chandola, A. Banerjee, V. Kumar. 2009. Anomaly detection: A survey. ACM Computing Surveys (CSUR) 41, 3 (2009),
15.

[2] M. Goldstein and S. Uchida. 2016. A comparative evaluation of unsupervised anomaly detection algorithms for mul-
tivariate data. PloS one 11, 4 (2016), e0152173.

[3] K. Leung and C. Leckie. 2005. Unsupervised anomaly detection in network intrusion detection using clusters. In
Proceedings of the Twenty-eighth Australasian conference on Computer Science-Volume 38. Australian Computer Society,
Inc., 333–342.

[4] T. Zoppi, A. Ceccarelli, T. Capecchi, and A. Bondavalli. 2021. Unsupervised anomaly detectors to detect intrusions in
the current threat landscape. ACM/IMS Transactions on Data Science 2, 2 (2021), 1–26.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

42:24 T. Zoppi et al.

[5] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava. 2003. A comparative study of anomaly detection schemes
in network intrusion detection. In Proceedings of the 2003 SIAM International Conference on Data Mining. Society for
Industrial and Applied Mathematics, 25–36.

[6] L. D’hooge, T. Wauters, B. Volckaert, and F. De Turck. 2019. In-depth comparative evaluation of supervised machine
learning approaches for detection of cybersecurity threats. In Proc. 4th Int. Conf. Internet Things, Big Data Secur.

(IoTBDS) 1, (2019), 125–136.
[7] P. S. Kenkre, A. Pai, and L. Colaco. 2015. Real time intrusion detection and prevention system. In Proceedings of the 3rd

International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Springer, Cham,
405–411.

[8] C. Kruegel and T. Toth. 2003. Using decision trees to improve signature-based intrusion detection. In International

Workshop on Recent Advances in Intrusion Detection. Springer, Berlin, 173–191.
[9] T. Zoppi, A. Ceccarelli, and A. Bondavalli. 2016. Context-awareness to improve anomaly detection in dynamic service

oriented architectures. In International Conference on Computer Safety, Reliability, and Security. Springer, Cham, 145–
158.

[10] L. Bilge and T. Dumitraş. 2012. Before we knew it: An empirical study of zero-day attacks in the real world. In
Proceedings of the 2012 ACM Conference on Computer and Communications Security. ACM, 833–844.

[11] Casas Pedro, Johan Mazel, and Philippe Owezarski. 2012. Unsupervised network intrusion detection systems: Detect-
ing the unknown without knowledge. Computer Communications 35, 7 (2012), 772–783.

[12] Committee on National Security Systems - CNSSI No. 4009 “Committee on National Security Systems (CNSS) Glos-
sary”, April 2015.

[13] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. 2004. Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable and Secure Computing 1, 1 (2004), 11–33.

[14] L. Breiman. 2001. Random forests. Machine Learning 45, 1 (2001), 5–32.
[15] Y. Freund and R. E. Schapire. 1996. Experiments with a new boosting algorithm. In icml 96, (1996), 148–156.
[16] L. Breiman. 1996. Bagging predictors. Machine Learning 26, 2 (1996), 123–140.
[17] R. E. Schapire. 1990. The strength of weak learnability. Machine Learning 5, (1990), 197–227. https://doi.org/10.1007/

BF00116037
[18] Wolpert David. 1992. Stacked generalization. Neural Networks 5 (1992), 241–259. 10.1016/S0893-6080(05)80023-1
[19] E. Alpaydin and C. Kaynak. 1998. Cascading classifiers. Kybernetika 34 (1998), 369–374.
[20] J. Gama and Brazdil P. Cascade generalization. Machine Learning 41, 3 (2000), 315–343.
[21] C. Ferri, P. Flach, and J. Hernandez-Orallo. 2004. Delegating classifiers. In Proceedings of the Twenty-first International

Conference on Machine Learning, (ICML’04), 289–296.
[22] Ortega Julio, Koppel Moshe, and Argamon Shlomo. 2001. Arbitrating among competing classifiers using learned

referees. Knowledge and Information Systems 3 (2001), 470–490. 10.1007/PL00011679
[23] P. Chan and S. Stolfo. 1993. Toward parallel and distributed learning by metalearning. In Working Notes of the AAAI-93

Workshop on Knowledge Discovery in Databases. 227–240.
[24] Lemke Christiane, Budka Marcin, and Gabrys Bogdan. 2013. Metalearning: A survey of trends and technologies.

Artificial Intelligence Review. DOI:https://doi.org/10.1007/s10462-013-9406-y
[25] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta. 2009. Metalearning: Applications to data mining. Springer,

Berlin.
[26] J. Vanschoren. 2010. Understanding machine learning performance with experiment databases. PhD thesis, Arenberg

Doctoral School of Science, Engineering & Technology, Katholieke Universiteit Leuven.
[27] M. Gharib and A. Bondavalli. 2019. On the evaluation measures for machine learning algorithms for safety-critical

systems. In 2019 15th European Dependable Computing Conference (EDCC). IEEE, 141–144.
[28] Check Point Research. 2019. Cyber Attack Trend: 2019 Mid-Year Report, vol. 1, 2019.
[29] ENISA. 2018. Threat Landscape Report 7, 2018.
[30] Chen Liming and Algirdas Avizienis. 1978. N-version programming: A fault-tolerance approach to reliability of soft-

ware operation. Proc. 8th IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-8). 1. 1978.
[31] Nordmann Lars and Hoang Pham. 2018. Weighted voting systems. IEEE Transactions on Reliability 48, 1 (1999), 42–49.
[32] ENISA. 2018. Threat landscape report 7, 2018.
[33] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho. 2019. A survey of network-based intrusion detection

data sets. Computers & Security.
[34] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A Ghorbani. 2012. Toward developing a systematic approach to

generate benchmark datasets for intrusion detection. Computers & Security 31, 3 (2012), 357–374.
[35] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. 2009. A detailed analysis of the KDD CUP 99 data

set. In Computational Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE Symposium on. IEEE,
1–6.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

https://doi.org/10.1007/BF00116037
https://doi.org/10.1007/BF00116037
https://10.1016/S0893-6080(05)80023-1
https://10.1007/PL00011679
https://doi.org/10.1007/s10462-013-9406-y 10.1007/s10462-013-9406-y

Meta-Learning to Improve Unsupervised Intrusion Detection 42:25

[36] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho. 2017. Flow-based benchmark data sets for intrusion
detection. In Proceedings of the 16th European Conference on Cyber Warfare and Security. ACPI, 361–369.

[37] Nour Moustafa and Jill Slay. 2015. UNSW-NB15: A comprehensive data set for network intrusion detection systems
(UNSW-NB15 network data set). In Military Communications and Information Systems Conference (MilCIS) 2015. IEEE,
1–6.

[38] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. 2018. Toward generating a new intrusion detection dataset and
intrusion traffic characterization. In ICISSP, 108–116.

[39] W. Haider, J. Hu, J. Slay, B. P. Turnbull, and Y. Xie. 2017. Generating realistic intrusion detection system dataset based
on fuzzy qualitative modeling. Journal of Network and Computer Applications 87 (2017), 185–192.

[40] S. Garcia, M. Grill, J. Stiborek, and A. Zunino. 2014. An empirical comparison of botnet detection methods. Computers

& Security 45, (2014), 100–123.
[41] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani. 2018. Toward developing a systematic approach to gen-

erate benchmark android malware datasets and classification. In 2018 International Carnahan Conference on Security

Technology (ICCST). IEEE, 1–7.
[42] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. García-Teodoro, and R. Theron. 2018. UGR ‘16: A new dataset

for the evaluation of cyclostationarity-based network IDSs. Computers & Security 73 (2018), 411–424.
[43] BIT – Biometrics Ideal Test, CASIA-FingerprintV5. Retrieved on 15 December, 2020 from http://biometrics.idealtest.

org/
[44] MathWorks - FingerPrint Matching: A simple approach, https://it.mathworks.com/matlabcentral/fileexchange/44369

-fingerprint-matching-a-simple-approach (online), accessed: 2019-11-20
[45] Warwick R. Adams. 2017. High-accuracy detection of early parkinson’s disease using multiple characteristics of finger

movement while typing. PloS one 12, 11 (2017), e0188226.
[46] S. Koldijk, M. Sappelli, S. Verberne, M. Neerincx, and W. Kraaij. 2014. The SWELL knowledge work dataset for stress

and user modeling research. To appear in: Proceedings of the 16th ACM International Conference on Multimodal Inter-

action (ICMI 2014) (Istanbul, Turkey, 12–16 November 2014)
[47] Philip Schmidt, Attila Reiss, Robert Duerichen, Claus Marberger, Kristof Van Laerhoven. 2018. Introducing WESAD,

a multimodal dataset for wearable stress and affect detection. ICMI 2018, Boulder, USA, 2018
[48] A. Memo, L. Minto, and P. Zanuttigh. 2015. Exploiting Silhouette Descriptors and Synthetic Data for Hand Gesture

Recognition. STAG: Smart Tools & Apps for Graphics, 2015
[49] A. Vajdi, M. R. Zaghian, S. Farahmand, E. Rastegar, K. Maroofi, S. Jia, and A. Bayat. 2019. Human gait database for

normal walk collected by smart phone accelerometer. arXiv preprint arXiv:1905.03109.
[50] Kaggle - Voice Recognition, Jeganathan Kolappan. https://www.kaggle.com/jeganathan/voice-recognition (online),

accessed: 2019-11-20
[51] Kaggle - Face Images with Marked Landmark Points, Omri Goldstein. https://www.kaggle.com/drgilermo/face-

images-with-marked-landmark-points (online), accessed: 2019-11-20
[52] National Science Foundation, “Cyber-Physical Systems (CPS) - nsf20563”, April 2020
[53] Y. Wang, Y. Shen, and G. Zhang. 2016. Research on intrusion detection model using ensemble learning methods. In

2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS). IEEE, 422–425.
[54] B. A. Tama, M. Comuzzi, and K. H. Rhee. 2019. TSE-IDS: A two-stage classifier ensemble for intelligent anomaly-based

intrusion detection system. IEEE Access 7 (2019), 94497–94507.
[55] O. Oriola. 2020. A stacked generalization ensemble approach for improved intrusion detection. International Journal

of Computer Science and Information Security (IJCSIS) 18 (2020), 5.
[56] I. P. Possebon, A. S. Silva, L. Z. Granville, A. Schaeffer-Filho, and A. Marnerides. 2019. Improved network traffic

classification using ensemble learning. In 2019 IEEE Symposium on Computers and Communications (ISCC). IEEE, 1–6.
[57] A. Alaba, S. Maitanmi, and O. Ajayi. 2019. An ensemble of classification techniques for intrusion detection systems.

International Journal of Computer Science and Information Security (IJCSIS) 17, 11 (2019)
[58] S. Rajagopal, P. P. Kundapur, and K. S. Hareesha. 2020. A stacking ensemble for network intrusion detection using

heterogeneous datasets. Security and Communication Networks, 2020.
[59] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B. Micenko-va, E. Schubert, I. Assent, and M. E. Houle. 2016. On

the evaluation of outlier detection: Measures, datasets, and an empirical study. In Lernen, Wissen, Daten, Analysen

2016. CEUR work-shop proceedings, 2016.
[60] D. M. Powers. 2011. Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correla-

tion, 2011
[61] D. Chicco and G. Jurman. 2020. The advantages of the Matthews correlation coefficient (MCC) over F1 score and

accuracy in binary classification evaluation. BMC Genomics 21, 1 (2020), 6.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

http://biometrics.idealtest.org/
http://biometrics.idealtest.org/
https://it.mathworks.com/matlabcentral/fileexchange/44369-fingerprint-matching-a-simple-approach
https://it.mathworks.com/matlabcentral/fileexchange/44369-fingerprint-matching-a-simple-approach
https://www.kaggle.com/jeganathan/voice-recognition
https://www.kaggle.com/drgilermo/face-images-with-marked-landmark-points
https://www.kaggle.com/drgilermo/face-images-with-marked-landmark-points

42:26 T. Zoppi et al.

[62] T. Zoppi, A. Ceccarelli, and A. Bondavalli. 2019. Evaluation of anomaly detection algorithms made easy with RELOAD.
In Proceedings of the 30th Int. Symposium on Soft-ware Reliability Engineering (ISSRE). IEEE, 446–455. DOI:https://doi.
org/10.1109/ISSRE.2019.00051

[63] B. Azhagusundari and Antony Selvadoss Thanamani. 2013. Feature selection based on information gain. International

Journal of Innovative Technology and Exploring Engineering (IJITEE) 2, 2 (2013), 18–21.
[64] Goldstein Markus and Andreas Dengel. 2012. Histogram-based outlier score (hbos): A fast unsupervised anomaly

detection algorithm. KI-2012: Poster /Demo Track (2012), 59–63.
[65] H-P. Kriegel and A. Zimek. Angle-based outlier detection in high-dimensional data. Proc. of the 14th ACM SIGKDD

Int. Conf. on Knowledge Discovery Data Mining; ‘08. 444–452.
[66] V. Hautamaki, I. Karkkainen, and P. Franti. 2004. Outlier detection using k-nearest neighbour graph. Pattern Recog-

nition. ICPR 2004. Proceedings of the 17th Int. Conference on Vol. 3. IEEE, 430-433.
[67] M. Amer, M. Goldstein, and S. Abdennadher. 2013. Enhancing one-class support vector machines for unsupervised

anomaly detection. In Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description. ACM, 2013,
8–15.

[68] Vázquez Félix Iglesias, Tanja Zseby, and Arthur Zimek. 2018. Outlier detection based on low density models. 2018

IEEE Int. Conference on Data Mining Workshops (ICDMW). IEEE, 2018.
[69] T. Kohonen. 1997. Exploration of very large databases by self-organizing maps. In Proc. of Int. Conference on Neural

Networks (ICNN’97), Vol. 1. IEEE, PL1–PL6.
[70] G. Hamerly and C. Elkan. 2004. Learning the k in k-means. In Advances in Neural Information Processing Systems.

281–288.
[71] Mennatallah Amer and Markus Goldstein. 2012. Nearest-neighbor and clustering based anomaly detection algorithms

for rapidminer. In Proceedings of the 3rd RapidMiner Community Meeting and Conference (RCOMM 2012).
[72] Jian Tang, Zhixiang Chen, Ada Wai-Chee Fu, and David W Cheung. 2002. Enhancing effectiveness of outlier detec-

tions for low density patterns. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 535–548.
[73] Martin Ester, Han-peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algorithm for discovering clusters in

large spatial databases with noise. 2nd Int. Conference on Knowledge Discovery and Data Mining (KDD-96).
[74] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander. 2000. LOF: Identifying density-based local outliers. In ACM

Sigmod Record, Vol. 29. ACM, 93–104.
[75] M. Radovanović, A. Nanopoulos, and M. Ivanović. 2014. Reverse nearest neighbors in unsupervised distance-based

outlier detection. IEEE Transactions on Knowledge and Data Engineering 27, 5 (2014), 1369–1382.
[76] F. T. Liu, K. M. Ting, and Z. H. Zhou. 2008. Isolation forest. In 2008 8th IEEE Int. Conference on Data Mining. IEEE,

413–422.
[77] J. H. M. Janssens, F. Huszar, E. O. Postma, and H. J. van den Herik. 2012. Stochastic outlier selection. Technical Report

TiCC TR 2012-001, Tilburg University, Tilburg Center for Cognition and Communication, Tilburg, The Netherlands.
[78] J. A. Hartigan and M. A. Wong. 1979. Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical

Society. Series C, 28, 1 (1979), 100–108.
[79] Stan Z. Li. 2009. Encyclopedia of biometrics: I-Z. Vol. 2. Springer Science & Business Media, 2009.
[80] Roberts Chris. 2007. Biometric attack vectors and defences. Computers & Security 26, 1 (2007), 14–25.
[81] W. Dahea and H. S. Fadewar. 2018. Multimodal biometric system: A review. International Journal of Research in

Advanced Engineering and Technology 4, 1 (2018), 25–31.
[82] Archive of full metric scores (online). Retrieved on 15 December, 2020 from https://drive.google.com/file/d/

1D3M9tLxtG9yvG689LbAONykjBz3XXHJ8/view?usp=sharing
[83] Robert E. Schapire. 2013. Explaining adaboost. Empirical inference. Springer, Berlin, 37–52.
[84] T. Zoppi, A. Ceccarelli, L. Salani, and A. Bondavalli. 2020. On the educated selection of unsupervised algorithms via

attacks and anomaly classes. Journal of Information Security and Applications 52, 102474.
[85] Hindy Hanan et al. 2018. A taxonomy and survey of intrusion detection system design techniques, network threats

and datasets. arXiv preprint arXiv:1806.03517 (2018).
[86] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman. 2019. Survey of intrusion detection systems: Techniques,

datasets and challenges. Cybersecurity 2, 1 (2019), 20.
[87] S. Boughorbel, F. Jarray, and M. El-Anbari. 2017. Optimal classifier for imbalanced data using Matthews correlation

coefficient metric. PloS One 12, 6 (2017), e0177678.
[88] Q. Zhu. 2020. On the performance of Matthews correlation coefficient (MCC) for imbalanced dataset. Pattern Recog-

nition Letters.
[89] M. Lopez-Martin, B. Carro, and A. Sanchez-Esguevillas. 2020. IoT type-of-traffic forecasting method based on gradient

boosting neural networks. Future Generation Computer Systems 105, 331–345.
[90] A. Bansal and S. Kaur. 2018. Extreme gradient boosting based tuning for classification in intrusion detection systems.

In International Conference on Advances in Computing and Data Sciences. Springer, Singapore, 372–380.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

https://doi.org/10.1109/ISSRE.2019.00051
https://doi.org/10.1109/ISSRE.2019.00051
https://drive.google.com/file/d/1D3M9tLxtG9yvG689LbAONykjBz3XXHJ8/view?usp$=$sharing
https://drive.google.com/file/d/1D3M9tLxtG9yvG689LbAONykjBz3XXHJ8/view?usp$=$sharing

Meta-Learning to Improve Unsupervised Intrusion Detection 42:27

[91] M. Z. Alom and T. M. Taha. 2017. Network intrusion detection for cyber security using unsupervised deep learning
approaches. 2017 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH, 2017, 63–69. DOI:https:
//doi.org/10.1109/NAECON.2017.8268746

[92] Zavrak Sultan and Murat İskefiyeli. 2020. Anomaly-based intrusion detection from network flow features using vari-
ational autoencoder. IEEE Access 8 (2020), 108346–108358.

[93] Y. Zhang, P. Li, and X. Wang. 2019. Intrusion detection for IoT based on improved genetic algorithm and deep belief
network. IEEE Access 7, 31711–31722.

[94] L. Torrey and J. Shavlik. 2010. Transfer learning. In Handbook of Research on Machine Learning Applications and

Trends: Algorithms, Methods, and Techniques. IGI global, 242–264.

Received August 2020; revised December 2020; accepted May 2021

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 42. Publication date: September 2021.

https://doi.org/10.1109/NAECON.2017.8268746
https://doi.org/10.1109/NAECON.2017.8268746

