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ABSTRACT

The enrichment of coronal loops and the slow solar wind with elements that have low First Ionisation

Potential, known as the FIP effect, has often been interpreted as the tracer of a common origin. A

current explanation for this FIP fractionation rests on the influence of ponderomotive forces and

turbulent mixing acting at the top of the chromosphere. The implied wave transport and turbulence

mechanisms are also key to wave-driven coronal heating and solar wind acceleration models. This work

makes use of a shell turbulence model run on open and closed magnetic field lines of the solar corona

to investigate with a unified approach the influence of magnetic topology, turbulence amplitude and

dissipation on the FIP fractionation. We try in particular to assess whether there is a clear distinction

between the FIP effect on closed and open field regions.

Keywords: turbulence, slow wind, FIP effect, transition region

1. INTRODUCTION

The First Ionization Potential (FIP) effect is an en-

richment of heavy elements with low-FIP such as Fe,

Si and Mg compared with photospheric abundances. It

was initially measured in the solar wind and Solar En-

ergetic Particles (SEPs) and later inferred from spectro-

scopic observations of the corona (see Meyer 1985a,b;

Bochsler et al. 1986; Gloeckler & Geiss 1989; Feldman

1992, and references therein). The FIP bias, i.e. the ra-

tio of coronal to photospheric abundances, is moreover

mass independent. This means that processes below the

transition region are strongly affecting the hydrostatic

balance of the partially ionized chromosphere. Early on,

explanations of the FIP effect involved diffusion, flows

or some sort of turbulent mixing in the chromosphere to

prevent any gravitational settling (see, e.g. Marsch et al.

1995; Schwadron et al. 1999).

Schwadron et al. (1999) favored the hypothesis of tur-

bulent wave heating in the chromosphere as a way to

both prevent a mass-dependant fractionation and to

obtain a low-FIP bias. Later on, Laming (2004) pro-

posed the ponderomotive acceleration, i.e. the time av-

eraged gradient of magnetic fluctuations, as the origin

of the FIP effect. The ponderomotive acceleration has

this advantage that it may change sign and could ex-

plain the inverse FIP effect observed in low-mass stars

(Wood & Linsky 2010; Laming 2015). Both processes

rely on Alfvén waves propagating parallel and anti-

parallel to the magnetic field, to trigger a turbulent cas-

cade through non-linear interactions and heating. These

wave populations naturally arise in coronal loops, where

footpoints motions excite the loop on both ends, but

they are also expected in the open solar wind where re-

flection on large scale gradients (Velli et al. 1989; Zhou &

Matthaeus 1989) or compressible instabilities (Tenerani

& Velli 2013; Shoda et al. 2018b; Réville et al. 2018) cre-

ate an sunward component from a purely anti-sunward

wave packet.

The Ulysses spacecraft have shown clear composition

differences between the fast and the slow wind compo-

nents, the slow wind showing FIP biases close to the

one observed in coronal loops (Geiss et al. 1995). Af-

ter all, decades of observations (Belcher & Davis 1971;

Tu & Marsch 1995; Bruno & Carbone 2013) and mod-

eling of fluctuations in the solar wind have now brought

compelling evidence that turbulence is likely to be a

fundamental ingredient of coronal heating and solar

wind acceleration (see, e.g., Verdini & Velli 2007; Perez

& Chandran 2013; Shoda et al. 2018b; Réville et al.
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2020b). Perturbations, or waves are also essential to pro-

vide the additional acceleration giving birth to the fast

wind (≥ 600 km/s), through the ponderomotive force

(Alazraki & Couturier 1971; Belcher 1971; Jacques 1977;

Leer et al. 1982). The low-FIP bias of the slow wind is

often understood as the proof that the it originates in

coronal loops, through exchange and magnetic reconfig-

uration (or reconnection) in the low corona (see, e.g.,

Antiochos et al. 2012). Yet, if turbulence is both re-

sponsible for the solar wind acceleration and the FIP

effect, can we rule out a scenario where FIP fractiona-

tion occurs in purely open regions?

We investigate this question using a coupled modelling

approach. First, we extract unidimensional profiles of

open solar wind flux tubes and coronal loops using a

multi-dimensional MHD code (Réville et al. 2020b). We

then use the Shell-Atm code (Buchlin & Velli 2007;

Verdini et al. 2009) to compute the propagation, cas-

cade and dissipation of purely transverse perturbations

of velocity and magnetic field along these profiles. We

perform a parameter study where we vary the geom-

etry, the initial perturbation amplitude and the initial

injection scale, and discuss their effect on the turbulence

properties in the chromosphere and transition region.

We estimate the resulting FIP biases with an analytical

fractionation model.

2. BACKGROUND WIND AND TRANSITION

REGION PROFILES

In this section, we describe the global MHD simulation

used to extract the different wind profiles later input

in our turbulence model. The code itself is a global

MHD solver based on PLUTO (Mignone et al. 2007)

and our current implementation is described in details

in Réville et al. (2020b) and Réville et al. (2020a). The

main purpose of the global simulation is to provide a

realistic structure of the transition region, which plays

an essential part in the present work. We rely on a single

run, of a dipolar solar field of 5 G, which is typical of

solar minimum configurations (see, e.g., DeRosa et al.

2012), and a uniform coronal heating prescribed with

the following function:

Qh = Fh/H

(
R�

r

)2

exp

(
−r −R�

H

)
, (1)

where H = 1R�, and Fh = 105 erg.cm−2s−1. The value

of Fh corresponds to the global energy output of the

solar wind.

The result of the simulation is shown in Figure 1. The

left panel is a zoom on the transition region as a func-

tion of height and latitude. Contrarily with previous

studies (Réville et al. 2020b,a), whose inner boundary

Figure 1. Plasma temperature obtained with the global
MHD model. On the left panel, we show the temperature
profile as a function of latitude and height. The white line
shows the contour T = 105 K, characterizing the location of
the transition region. Blue lines and orange lines are open
field lines (referred as CH for coronal holes), green and red
lines are coronal loops (referred as LO). They are almost
perfectly radial at this scale. On the right panel, we show
an extended view of the solution and integrated field lines in
the meridional plane up to 5R�. The black line on the right
is the Alfvén surface.

was located at the base of the corona, we start the sim-

ulation at the photosphere with a temperature of 6000

K. We initialize the simulation from a one dimensional

profile of the solar atmosphere obtained with the 1D ver-

sion of the code described in Réville et al. (2018) and

the boundary conditions are identical to Réville et al.

(2020b). We use a spherical grid with a radial reso-

lution that goes from 3 × 10−5R� to 0.3R� from the

photosphere to 20 R�. There are 544 points in the ra-

dial and 512 in the latitudinal direction. The location

of the transition region (TR) varies with the latitude

and the temperature profiles. It is relatively constant

in coronal holes at around 1.003R�, i.e. 2000 km above

the photosphere. The minimum height corresponds to

the highest coronal temperatures at the very edge of the

helmet streamer. The height of the TR then increases

within the core of the streamer up to 1.007R�, accord-

ingly with lower coronal temperatures. These lower tem-

peratures are likely due to increased density that result

in increased cooling inside the loop (radiative losses are

proportional to the squared density in the model, see

Réville et al. 2020b). This structure has already been

described in the work of Lionello et al. (2001) using a

similar heating function.

The shock capturing ability of PLUTO, based on Rie-

mann solvers, is essential to describe strong density and
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temperature gradients defining the transition region.

Réville et al. (2020b) have developed an additional mod-

ule to propagate Alfvén waves in the corona. Yet, since

this module is based on a Wentzel-Krimers-Brillouin ap-

proximation, it is not suited for a precise description of

the transition region. To further study the role of turbu-

lence in the composition of the solar wind, we thus rely

on the Shell-Atm code, which solves the non-linear

incompressible Alfvén wave equations on given profiles

along magnetic fields lines, neglecting magneto-acoustic

modes. We extracted four different solar wind profiles

from our 2.5D simulation, shown in Figure 1. In the fol-

lowing section, we describe the Shell-Atm simulations

made from these profiles.

3. SHELL TURBULENCE MODEL

Shell-Atm is a low dimension fluid turbulence code

based on the shell technique (see Giuliani & Carbone

1998; Nigro et al. 2004), that can model coronal loops

(Nigro et al. 2004; Buchlin & Velli 2007) and open so-

lar wind solutions (Verdini et al. 2009). As fixed back-

ground profiles of flow speed, density and temperature,

we use the four profiles extracted from our global MHD

simulation. They are shown in Figure 2. Cases identified

with CH correspond to open field regions in Figure 1.

The CH1 profile is well in the coronal hole of the north-

ern hemisphere in the fast wind region. CH2 is located

close to the streamer and thus in the slow wind region

of the simulation. LO cases are coronal loops, the LO1

case being at the open/close boundary with the mini-

mum height of the transition region and LO2 being the

smallest loop, well inside the helmet streamer.

Shell-Atm solves the reduced (incompressible) evo-

lution of Alfvénic fluctuations, i.e. two coupled equa-

tions for the evolution of the parallel and anti-parallel

wave populations. The transverse components of the

fluctuations are discretized in the spectral space, start-

ing from a scale k0, and then into 21 other shells at

scales kn = 2nk0. We define z±n = δvn ∓ δbn/
√
µ0ρ the

Elsässer perturbations at scale λn = λ02−n. The equa-

tions controlling the transport and dissipation of the z±

fields are described in details in Buchlin & Velli (2007);

Verdini et al. (2009). Non-linear interactions are oper-

ated in triads following the model of Giuliani & Car-

bone (1998). Dissipation in Shell-Atm is obtained via

explicit resistivity and viscosity. We set the magnetic

Prandtl number ν/η to unity and the Lundquist num-

ber S = LvA/η lies between 106 in the chromosphere

and 108 in the corona. We write the heating per unit

mass created by the cascade :

Qν/ρ =
1

2

∑
n

νk2
n(|z+

n |2 + |z−n |2). (2)

Figure 2. Profiles of the Alfvén speed, flow speed (in dashed
lines) and temperature for the four field lines extracted from
the simulation, along the curvilinear abscissa s. For loops,
we only show one side up to the apex. These profiles will be
the source of the amplification and reflection (particularly
in open regions) of perturbations, the latter leading to the
creation of counter-propagating perturbations. Non-linear
interactions between counter-propagating waves create the
cascade and the dissipation at small scales.

Transverse motions’ amplitude δv� is forced at the

base of the domain in the chromosphere over three shells,

starting at the scale k3 = 8k0. The forcing uses random
fluctuation phases that are reset over a correlation time

T∗ (see Buchlin & Velli 2007). This is akin to setting

a parallel frequency for the Alfvénic perturbations. T∗
is chosen around a few hundreds seconds to follow ob-

servations of transverse motions in the corona (see the

review of Nakariakov & Verwichte 2005).

We chose to maintain the amplitude δv� at the lower

boundary, around 100 km above the photosphere, and on

both boundaries for coronal loops configurations, using

the following condition:

z±n (t) = 2δv� − z∓n (t). (3)

This makes the inner boundary condition partially re-

flective, with a reflection coefficient being a function of

time and of the balance of inward and outward wave

populations. Imposing a fully reflecting inner bound-
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ary conditions leads indeed to an increase of the base

velocity perturbations up to unrealistic values.

Next, we define

F± =
1

4
ρ(v ± vA)

∑
n

[z±n |2, (4)

the energy flux of the perturbations at any given location

in the domain. For both coronal holes and loops cases,

we have the total energy injected per second and surface

unit at a given time

Etot =FinA0 − FoutA1, (5)

= (F+
0 + F−

0 )A0 − (F+
1 + F−

1 )A1, (6)

where the subscripts 0 and 1 denote the bottom and top

of the computational domain respectively. In a statis-

tical steady state, we expect to have the losses in the

volume compensating for the input energy, i.e.:

〈Etot〉 ∼ 〈Hν〉+ 〈W 〉, (7)

where

Hν =

∫
QνAexp ds, (8)

is the integrated turbulent heating in the domain and

W is the work of the force exerted by the perturbations

on the solar wind flow:

W =

∫
ρ (u · aw)Aexp ds. (9)

The component of the ponderomotive acceleration aw
along field lines can be written (Litwin & Rosner 1998;

Laming 2004, 2009, 2012; Dahlburg et al. 2016):

aw,s =
∂

∂s

[
〈δE2〉
2|B|2

]
, (10)

where 〈δE〉 is the time averaged electric field due to the

perturbations. Equation (10) also assumes that the ion

cyclotron frequency is much larger than the wave fre-

quency, which easily verified in the inner heliosphere for

typical Alfvén wave spectra and makes the force mass

independent. In the remainder of the text, we will re-

fer to equation (10) by ponderomotive force (per unit

mass and unit volume), or ponderomotive acceleration

indifferently.

As we consider one dimensional profile, we use the

normalized area Aexp, which is unity at the base of all

flux tubes, and we write equation (7) in erg.cm−2.s−1.

Table 1 sums up all simulations made with the shell

model for this work. For each profile geometry, we ex-

plore three sets of turbulence parameters referred as

Table 1. Parameters and outputs for the Shell-Atm sim-
ulations

Cases δv� T∗ (s) L0
inj 〈Hν〉 〈W 〉

(km/s) (s) (km) (105 cgs) (105 cgs)

CH1 A 7 600 35000 0.84 0.49

CH2 A 7 600 35000 1.8 1.0

LO1 A 7 600 35000 20 -

LO2 A 7 600 35000 10 -

CH1 B 10 600 35000 3.1 1.6

CH2 B 10 600 35000 4.6 2.9

LO1 B 10 600 35000 26 -

LO2 B 10 600 35000 21 -

CH1 C 3 600 3500 1.2 0.081

CH2 C 3 600 3500 1.2 0.092

LO1 C 3 600 3500 2.6 -

LO2 C 3 600 3500 2.3 -

cases A, B and C. In general, we chose the input pa-

rameters to create a turbulent heating close to what is

observed in the (open) solar wind and as such used in the

MHD described in section 2. We find that a transverse

perturbation of δv� = 7 km/s yields heating rate close

to 105 erg.cm−2.s−1 — the minimum value to power the

solar wind — in both coronal holes, which defines our

reference set of turbulent inputs: cases A. Cases B use a

higher forcing amplitude δv = 10 km/s, which logically

results in a higher heating rate. Both cases A and B

have the same injection scale L0
inj = 35000 km, which

is the largest scale introduced in the system and cor-

responds to the size of supergranules. Cases C are set

with a injection scale ten times lower, close to the size of

granules. To get the heating in the coronal holes at the

right order of magnitude, we had to decrease the input

velocity perturbations to δv� = 3 km/s. All cases have
the same correlation time T∗ = 600 s.

In Figure 3, we show some properties of the solutions

of the shell model runs A for δv� = 7 km/s, T? = 600 s,

and L0
inj = 2π/(8k0) = 35000 km. As the transverse

perturbations are forced over three shells, the actual

rms amplitude of the forcing is δv∗ =
√

3× δv2
� ∼ 12

km/s. These parameters are close to the one used in

Verdini et al. (2019) for a typical coronal hole solu-

tion. The results shown in Figure 3 and in Table 1 are

obtained with a time average of the solution between

150000 and 200000 seconds, which represents around ten

Alfvén crossing times for the coronal holes profiles and

more for the coronal loops. All simulations have reached

a pseudo-steady state during the period. The top panel

shows the outward and inward rms fluctuations z± as a

function of the curvilinear abscissa s along the profile.
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Figure 3. Overview of shell simulations A with the same input parameters on the four geometries of coronal holes and loops.
The top panel shows the time averaged rms fluctuations z±. For coronal loop cases, the curvilinear abscissa s is normalized
by L the length of the loop and both boundaries are shown in log scale. The middle panel shows the heating obtained by
dissipation at small scales Qν in black and compares it with a phenomenological form Qp. The last panel gives the spectra of
the fluctuations (+ in plain lines, − in dashed lines) at various distances of the Sun. For open regions simulations, the blue,
orange, green and red lines corresponds to r = 1.001, 1.01, 2.5 and 10R� respectively. For coronal loops, the blue and orange
remain the same, while the green lines are the spectra at the apex of the loop.

For coronal loops, we show s/L in a logit scale, where

L is the total length of the loop, to emphasize the be-

haviour in the chromosphere and the transition region

at both boundaries.

In coronal holes simulations, one striking feature is the

regime difference between a mostly balanced turbulence

(z+ ∼ z−) below the transition region and an imbal-

anced turbulence beyond. This can be seen also in the

bottom panel of Figure 3, where the inward and out-

ward spectra E±(kn) = (z±n )2 are very comparable at

s = 1.001R� (in blue), with a cascade covering four or-

ders of magnitude and a spectral slope close to the usual

Kolmogorov index −5/3. Higher in the corona, the out-

ward wave dominates clearly while keeping a−5/3 slope,

while the inward component has a flatter spectrum with

slope close to −1. In coronal loops, both populations

are everywhere well represented and spectra seems per-

haps closer to −1 slopes. In the middle panel of Figure

3, we show the dissipation profile computed by the shell

model. The plain black line is the true heating, while

the grey line corresponds to the so-called phenomeno-

logical heating, a proxy often used in large scale fluid

models (see, e.g. Dmitruk et al. 2002; Verdini & Velli

2007; Chandran & Hollweg 2009; Shoda et al. 2018a;

Réville et al. 2020b). It can be written:

Qp/ρ =
1

2

|z+|2|z−|+ |z+||z−|2

2L0
inj

. (11)

As said earlier, the total heating obtained in coronal

holes solution Hν is close to the input energy of the

global MHD simulations, itself chosen to provide enough

power in the solar wind (see Table 1). Nevertheless, the

total heating increases as we go from a typical polar

coronal hole, to a slow denser wind around the streamer

and to coronal loops. This is expected, and increased

heating in the low corona is one explanation for the

denser slower wind, which originates somewhere close

to the loops. Interestingly, we see that the phenomeno-
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Figure 4. Ponderomotive acceleration for all cases of Table
1 in the chromosphere and transition region. Top panel cor-
responds to cases A, middle panel to cases B, with a higher
input δv�, and bottom panel to cases C, with a lower am-
plitude and higher injection scale. The Sun’s gravity pull is
shown in black. The colored dots indicates the position of the
transition region in the profiles. They are usually associated
with a peak in the ponderomotive acceleration.

logical heating is in general an overestimation of the

true heating in the shell model (as already noted in Ver-

dini et al. 2019), except around the transition region.

It does, however, seems to be a reasonable estimate in

imbalanced turbulence region, i.e. in the open coronal

wind regions.

The properties of cases B are very similar to the one

of cases A, only with larger wave amplitudes and larger

heating rates. For cases C, the wave amplitude is logi-

cally smaller, and the cascade extent is also shorter as

we remain with a fixed value of the viscosity/resistivity

ν = η = 1011 cm2.s−1. In all cases, the dissipation starts

to be significant for kn > 104R−1
�

4. PONDEROMOTIVE FORCE AND FIP

FRACTIONATION

The main objective of this work is to compare the

effect of the turbulence properties on the FIP fraction-

ation for different background configurations. Among

the key parameter of the current FIP models is the pon-

deromotive force, or the wave pressure exerted by the

perturbations on the background flow. Figure 4 shows

the ponderomotive force obtained in all Table 1 cases,

close to the inner boundary, in the chromosphere and

transition region. Let us first study the cases A of Ta-

ble 1, shown in Figure 4 in the top panel. The profile of

aw,s has in all cases a similar shape, with a slow decrease

and a peak located around the transition region. The

TR peak, which is responsible for most of the FIP frac-

tionation in the model that follows, has an interesting

ordering. The LO2 profile, has usually the highest aver-

aged ponderomotive acceleration and a higher peak, but

the maximum of the LO1 is usually of the order of the

coronal holes configuration peaks. Moreover, it seems

that the amplitude of the peak is a growing function of

the height of the TR.

For cases B, we observe for the ponderomotive accel-

eration essentially a shift up of all the curves, conserving

the hierarchy of the previous cases as a function of the

geometry. For most cases A and B, the strength of the

ponderomotive force is higher than the opposing gravity

of the Sun, around ∼ 2× 104 cm.s−2, shown in black in

Figure 4. The amplitude of the ponderomotive force is

thus significant, especially at the transition region and

Alfvén waves can have an influence on the coronal abun-

dances. For cases C, however, the first striking feature is

the net decrease of the ponderomotive acceleration be-

low the Sun’s gravity pull. This means that although the

turbulent heating is perfectly compatible with what is

necessary to power the solar wind (compare especially

case CH1 A with CH1 C), this set of parameter will

likely not create a low-FIP bias through the pondero-

motive acceleration. In these last cases, the turbulence

injection scale is 10 times smaller, i.e. the size of large

granules. The initial amplitude is logically lower as the

injection is made later in the cascade, which can explain

the lower gradient of magnetic fluctuations.

We now compute the FIP fractionation created by the

ponderomotive force in our models. We use for this the

derivation of Laming (2009), that read:

ρcor
j

ρchr
j

= exp

(∫ zcor

zchr

ξjaw,sνeff

νj,iv2
j

dz

)
. (12)

Here, ρj is the density of a given species j, ξj the ion-

ization fraction and

νeff =
νj,iνj,n

ξjνj,n + (1− ξj)νj,i
, (13)

where νj,i and νj,n are the collision frequencies of the

species j with ions and neutrals respectively. We use
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Figure 5. FIP biases according to equation (12) in the cases
A (top panel), B (middle panel) and C (bottom panel) for
usual minor ions. The integration is made between zchr =
700 km and zchr = 7000km above the solar surface. The
turbulent velocity entering equation (12) vT = 15 km/s is
constant.

the formulation of Schwadron et al. (1999) and Marsch

et al. (1995) for the collision frequencies. The ioniza-

tion fraction ξj of each heavy ion is computed through
an interpolation of Saha equilibria (Saha 1920, 1921)

for T . 104 K and the CHIANTI database and the

ChiantiPy interface (Dere et al. 1997) for T & 104 K.

Finally, v2
j = c2s,j+v2

T is the (quadratic) sum of the ther-

mal speed and of a mass independent turbulent velocity

vT , which represent a wave turbulence heating and is

essential to avoid a mass dependant fractionation (see

Schwadron et al. 1999).

Figure 5 shows the resulting FIP biases obtained with

equation (12) and a constant vT = 15 km/s. We repre-

sent the minor ion density ratio between the low corona

(7000 km above the photosphere) and the chromosphere

(700 km above the photosphere), taking the Oxygen as

a reference. The top and middle panel of Figure 5 shows

a clear low-FIP bias in cases A and B. Elements Fe, Mg,

and Si, show bias up to a factor 10 or more compared

Figure 6. Same as Figure 5 but using vT as in equation
(14).

with Oxygen, in the red case, i.e. the smallest coronal

loop. The profile of the FIP bias follows the hierarchy

of the ponderomotive force amplitude shown in Figure

4. For CH1 and LO1 cases, the low-FIP bias is weak

and roughly similar, while it is generally higher for the

CH2 configuration. Finally, as intuited, cases C do not

show any clear FIP biases. This is a direct result of the

much weaker ponderomotive force obtained with these

simulation parameters, and the heavy ion densities are

the same in coronal holes and coronal loops.

In Figure 6, we repeat the same exercise, but choosing

a turbulent velocity

vT =

√ ∑
kn>kν

δv2
n. (14)

We only sum the shell components for kn > kν =

104R−1
� , where dissipation is significant. The average

amplitude of vT is around 8 km/s for cases A, 12 km/s

for cases B, and 5 km/s for cases C. The choice of vT is

crucial to get FIP bias comparable with observations. It

needs to be large enough to avoid the gravitational set-

tling, and thus the mass dependence of the abundances

in the corona. However, if vT is too large, it will kill
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the low-FIP bias. The low-FIP bias of cases A is thus

slightly enhanced, because the average turbulent veloc-

ity given by equation (14) is lower than the value used

in Figure 5. The FIP bias of case B is quenched and

cases C start to show enrichment in low-FIP elements.

Moreover, the hierarchy between the different magnetic

configurations is much less visible in Figure 6. CH2 cases

have for instance, properties very similar to LO1 cases.

This shows that a very careful treatment of the turbu-

lence is important to build FIP fractionation models.

5. DISCUSSION

In this work, we have combined several models and

tools to assess the efficiency of the Alfvénic turbulence

in enriching abundances of low-FIP elements in the low

corona. First, we used a global MHD model to get real-

istic profiles of the Alfvén speed and velocity gradients

in both coronal holes and coronal loops, starting from

the low chromosphere. They are indeed fundamental in

the amplification, reflection and non linear interaction

of propagating Alfvén waves. Then, we took advantage

of the Shell-Atm code to compute the interaction be-

tween counter-propagating Alfvén waves, the turbulent

cascade and the dissipation. Our approach certainly

lacks self-consistency, as, for instance, the heating ob-

tained with the shell model is significantly larger in coro-

nal loops than in coronal holes (at least for cases A and

B), while the MHD simulation has a much more ho-

mogeneous heating. It is, however, the first time that

both coronal loops and coronal holes are treated with a

shell turbulence model. This model solves the fully non-

linear incompressible Alfvén wave equations, including

the cascading process and the frequency dependant re-

flections and interactions of Alfvén wave populations.

This is an improvement in comparison with analytical

non-WKB approach of previous works (see Laming 2004,

2009, 2012). Moreover, the dissipation is treated phys-

ically at very high Lundquist numbers, which cannot

be achieved in direct numerical simulations (see, e.g.,

Dahlburg et al. 2016).

A few comments on the applicability of incompress-

ible MHD to this problem are in order. Reduced MHD

equations are derived assuming small gradients in the

guide field (or even constant B0, see Strauss 1976; Zank

& Matthaeus 1992, 1993; Oughton et al. 2017) as well

as in the density, conditions that are not verified in the

upper chromosphere and the transition region. The ex-

cluded nonlinear couplings in the parallel and perpen-

dicular directions (essentially compressible interactions)

are responsible for the coupling of Alfvén waves to slow

and fast magneto-acoustic modes, leading to steepen-

ing, shock formation and dissipation of slow magneto-

acoustic modes and fast modes, and the refraction of

the latter downwards back to the chromosphere for large

perpendicular wavenumbers. The parametric decay in-

stability (PDI), involving compressible processes, is also

excluded. The latter plays a role in the formation of

the turbulent spectrum and the balance of inward and

outward Alfvén wave population, but is effective most

in the lower beta regions higher up in the corona (see

Tenerani & Velli 2013; Shoda et al. 2018b; Réville et al.

2018). As noted in Verdini et al. (2019); Shoda et al.

(2019), density fluctuations created by the PDI increase

the inward Alfvén waves amplitude and eventually in-

crease the turbulent heating in the open wind regions.

Wave steepening, shocks and mode conversion, which

do create a cascade in the direction parallel to the mag-

netic field, have typical spectra ∝ k−2 and are thus likely

to be a secondary dissipation channel in comparison with

the dissipation in the perpendicular plane, with spectra

close to the Kolmogorov and Iroshnikov-Kraichnan phe-

nomenology (see Figure 3). Alfvén wave coupling with

magneto-acoustic modes may accelerate the perpendic-

ular cascade, but because we run the simulation until a

pseudo steady-state is reached, this is likely not a strong

limitation of our approach. Numerous other modelers

have made similar approximations to our own, as for

example the studies by van Ballegooijen et al. (2011);

Perez & Chandran (2013); van Ballegooijen & Asgari-

Targhi (2016, 2017); Chandran & Perez (2019). This

study has no intention to be exhaustive, but we do ex-

amine a significant input parameter space in order to

extract meaningful insights on the problem.

Our study shows that, assuming that turbulence is

the dominant factor in the coronal heating and solar

wind acceleration, a ponderomotive force can appear in

the chromosphere and the transition region, and can be

strong enough to create a low-FIP bias. This depends

however on the turbulence parameters. Injecting energy

at the scales of super granules provide the wave am-

plitude necessary for a low-FIP bias comparable with

observations (see, e.g. Feldman 1992). The force is re-

lated to the a amplification of the waves in the corona

and the strong gradient that appears at the transition

region. Nevertheless, if the energy is injected at the

scale of granules, the resulting ponderomotive accelera-

tion seems too weak to explain the observations. Recent

works have debated of the right injection scale parame-

ters (van Ballegooijen & Asgari-Targhi 2017; Chandran

& Perez 2019), and the amplitude of the ponderomotive

force could be a way of constraining solar wind turbu-

lence models.

A second result of this study is that the low-FIP bias

is not exclusive to coronal loops. Interestingly, we ob-
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tain significant low-FIP bias for open field configurations

along the streamer (CH2). We also have usually little

FIP bias for the LO1 loop, i.e. the loop at the very edge

of the helmet streamer. This result might seem in op-

position with previous works, such as the one of Laming

(2004, 2015). Their result is indeed the consequence of

resonant Alfvén waves in the loops, likely triggered by

reconnection, which amplify significantly the pondero-

motive acceleration. Injecting transverse motions from

the inner boundary, we do not observe such resonances,

and further studies are needed to compare the relative

importance of different triggers. We do show however

that resonances are not needed to obtain a low-FIP bias

in coronal loops and open slow wind regions. This study

thus questions, anyhow, the necessity of interchange re-

connection to explain the composition of the slow solar

wind.

Finally, it is important to stress that our modelling of

the solar chromosphere is very simple. We assume, fol-

lowing Laming (2004, 2009) and writing equation (12),

that proton drag, collisions and turbulent mixing, are

exactly compensating for the Sun’s gravity pull in the

chromosphere. The actual balance of all these processes

remains very hard to estimate. Shocks and compress-

ible fluctuations are also believed to be significant in

the chromosphere and even in the transition region (see

Carlsson et al. 2019, for a recent review) and are not ac-

counted for in the shell simulations. Ongoing works are

dedicated to build a compressible kinetic-fluid model, in-

cluding heavy ions populations with various charge state

and their interactions with protons and waves.

6. ACKNOWLEDGEMENT

This research was funded by the ERC SLOW SOURCE

project (SLOW SOURCE - DLV-819189). We thank M.

Laming for very useful discussions. Numerical computa-

tions were performed using GENCI grants A0080410133

and A0070410293. This study has made use of the

NASA Astrophysics Data System.

REFERENCES

Alazraki, G., & Couturier, P. 1971, Astronomy and

Astrophysics, 13, 380

Antiochos, S. K., Linker, J. A., Lionello, R., et al. 2012,

SSRv, 172, 169

Belcher, J. W. 1971, ApJ, 168, 509

Belcher, J. W., & Davis, Jr., L. 1971, J. Geophys. Res., 76,

3534

Bochsler, P., Geiss, J., & Kunz, S. 1986, SoPh, 103, 177

Bruno, R., & Carbone, V. 2013, Living Reviews in Solar

Physics, 10, 2

Buchlin, E., & Velli, M. 2007, ApJ, 662, 701

Carlsson, M., De Pontieu, B., & Hansteen, V. H. 2019,

ARA&A, 57, 189

Chandran, B. D. G., & Hollweg, J. V. 2009, The

Astrophysical Journal, 707, 1659

Chandran, B. D. G., & Perez, J. C. 2019, Journal of

Plasma Physics, 85, 905850409

Dahlburg, R. B., Laming, J. M., Taylor, B. D., &

Obenschain, K. 2016, ApJ, 831, 160

Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi,

B. C., & Young, P. R. 1997, A&AS, 125

DeRosa, M. L., Brun, A. S., & Hoeksema, J. T. 2012, ApJ,

757, 96

Dmitruk, P., Matthaeus, W. H., Milano, L. J., et al. 2002,

ApJ, 575, 571

Feldman, U. 1992, PhyS, 46, 202

Geiss, J., Gloeckler, G., & von Steiger, R. 1995, SSRv, 72,

49

Giuliani, P., & Carbone, V. 1998, in eprint

arXiv:chao-dyn/9807032

Gloeckler, G., & Geiss, J. 1989, in American Institute of

Physics Conference Series, Vol. 183, Cosmic Abundances

of Matter, ed. C. J. Waddington, 49

Jacques, S. A. 1977, ApJ, 215, 942

Laming, J. M. 2004, ApJ, 614, 1063

—. 2009, ApJ, 695, 954

—. 2012, ApJ, 744, 115

—. 2015, Living Reviews in Solar Physics, 12, 2

Leer, E., Holzer, T. E., & Fla, T. 1982, SSRv, 33, 161

Lionello, R., Linker, J. A., & Mikić, Z. 2001, ApJ, 546, 542
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