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Abstract

We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor 

α) in 118,816 subjects from three international consortia. We found evidence for at least five 

independent causal variants, each associated with different phenotype sets, including estrogen 

receptor (ER+ or ER−) and human ERBB2 (HER2+ or HER2−) tumor subtypes, mammographic 

density and tumor grade. The best candidate causal variants for ER− tumors lie in four separate 

enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, 

whereas the risk alleles of the strongest candidates for the remaining independent causal variant 

disrupt a silencer element and putatively increase ESR1 and RMND1 expression.
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SNPs at 6q25.1 have been reported to be associated with breast cancer susceptibility in 

genome-wide association studies (GWAS) in women of Chinese1 and European2 ancestry. 

Subsequent analyses have demonstrated that SNPs in the same region are associated with 

breast cancer risk for BRCA1 mutation carriers3 and mammographic density4, a strong 

breast cancer risk factor. Thus far, however, attempts to identify the candidate causal 

variant(s) underlying the associations have been inconclusive3,5,6. Here we report fine-scale 

mapping and comprehensive analysis of the genotype-phenotype associations in this region, 

using dense genotyping and imputed data from the custom-designed iCOGS array, in 

118,816 subjects from three consortia: the Breast Cancer Association Consortium (BCAC), 

the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA) and the 

Markers of Density Consortium (MODE). We additionally demonstrate, through functional 

analyses, the likely modes of action of the strongest candidate causal variants.

 RESULTS

 Genetic epidemiological studies

We successfully genotyped 902 SNPs across a 1-Mb region containing ESR1 in 50 case-

control studies from populations of European (89,050 participants) and Asian (12,893 

participants) ancestry in BCAC, together with 15,252 BRCA1 mutation carriers in CIMBA. 

Mammographic density measures were available for 6,979 women from the BCAC studies 

and an additional 1,621 women from the MODE Consortium, who had also been genotyped 

using the iCOGS array. Subsequently, the genotypes of additional variants with minor allele 

frequency (MAF) >2% were imputed in all European-ancestry participants, using data from 

the 1000 Genomes Project as a reference. In total, data from 3,872 genotyped or imputed 

(imputation info score >0.3) SNPs were analyzed. Results for all SNPs associated with 

overall breast cancer risk (P < 1 × 10−4) are presented in Supplementary Table 1. Manhattan 

plots of the associations of these 3,872 SNPs with the main phenotypes are shown in Figure 

1.

 Conditional analyses

All genotyped and imputed SNPs displaying evidence of association with overall breast 

cancer risk in women of European ancestry (P < 1 × 10−4) were initially included in forward 

stepwise logistic regression models for ER− and ER+ breast tumor risk. The most 

parsimonious models (Online Methods) included four SNPs for ER− breast cancer and four 

SNPs for ER+ breast cancer, with three SNPs being common to both models. In each model, 

all selected SNPs fell into a subset of five bins of correlated SNPs (r2 >0.8). Stepwise 

regression models were independently fitted to breast cancer risk in the CIMBA BRCA1 
mutation carriers and to mammographic density (measured as mammographic dense area; 

see the Online Methods for full details). For the BRCA1 mutation carriers and for 

mammographic dense areas, the SNPs in the best fitting models also fell within a subset of 

the five originally defined bins. For further analyses, we selected the directly genotyped SNP 

that was most significantly associated with the predominant phenotype for that bin. 

Regression analyses were repeated using just these five SNPs, with each representing an 

independent signal7. Results are presented in Table 1. Additionally, in the BCAC studies, we 
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were able to examine SNP associations with risks of HER2 (HER2+ and HER2−) and 

progesterone receptor (PR+ and PR−) tumor subtypes and with tumor grade at diagnosis. 

There were weak but detectable correlations between the representative SNPs for signals 1–

4 (Table 1 and Supplementary Table 2). We therefore modeled the associations with each 

SNP conditional on the other four; these conditional risk estimates and significance levels 

are also presented in Table 1. At conditional significance levels of P < 1 × 10−3, four of the 

lead SNPs (signals 1, 2, 4 and 5) were independently associated with risk of developing ER− 

breast cancer (Table 1). Another, partially overlapping, set of four SNPs (signals 1–3 and 5) 

was associated with ER+ tumor risk (Table 2 and Supplementary Table 3), and another 

subset of SNPs (signals 1–4) was associated with breast cancer risk in BRCA1 mutation 

carriers (Table 1). The per-allele odds ratios were higher for ER− than for ER+ disease for 

three lead SNPs (signals 1, 2 and 5), whereas representative SNPs for signal 3 displayed 

smaller effects of similar magnitude on risk for ER− and ER+ tumors. Mammographic dense 

area was associated with representative SNPs from signal 2 and less strongly with those 

from signal 1 (Table 1). We additionally carried out a meta-analysis of the SNP associations 

with breast cancer risk for CIMBA BRCA1 mutation carriers and risk of ER− tumors in 

BCAC. We anticipated that this analysis would increase statistical power to detect ER− risk 

signals, and, indeed, it did strengthen the evidence for association of SNPs representing 

signals 1–4 but not signal 5, which showed no association with breast cancer risk in BRCA1 
mutation carriers (Table 1).

 Tumor subtype and grade analyses

We next explored the associations of each signal with specific tumor subtype combinations 

and with tumor grade (Fig. 1f, Table 2 and Supplementary Tables 3–5). The representative 

SNPs at two signals (3 and 5) were strongly associated with high-grade disease, after 

adjusting for ER status (P < 1 × 10−3; Table 2 (bottom line) and Supplementary Table 5). 

Among ER− tumors, three signals (1, 2 and 4) were associated with triple-negative 

(ER−PR−HER2−) and high-grade tumors, as well as the rarer ER−PR−HER2+ subtype, with 

similar odds ratios (Table 2 and Supplementary Tables 3 and 5). However, signal 5 was more 

strongly associated with ER−PR−HER2+ disease (odds ratio (OR) = 1.24, 95% confidence 

interval (CI) = 1.12–1.37; P = 2.4 × 10−5; Table 2) than with the triple-negative subtype (OR 

= 1.08, 95% CI = 1.01–1.15; P = 0.016; Table 2, case-only P = 0.021; Supplementary Table 

5), consistent with the lack of association for breast cancer in BRCA1 mutation carriers, in 

whom tumors are predominantly triple negative8.

 Haplotype analysis

We next explored the combined effects of the same five signal-representative genotyped 

SNPs (Supplementary Table 6). Haplotype-specific effects were consistent with additive 

effects of the individual signal-representative SNPs. In particular, haplotype 22221 (all 

minor alleles except for signal 5; frequency = 0.005) was associated with the largest 

increased risks of both ER+ (OR = 1.38, 95% CI = 1.11–1.71; P = 3.3 × 10−3) and ER− (OR 

= 2.34, 95% CI = 1.76–3.10; P = 3.5 × 10−9) tumors; this group includes the triple-negative 

(ER−PR−HER2−) tumor subtype (detected via the meta-analysis of BCAC subjects with ER− 

tumors and CIMBA BRCA1 mutation carriers; P = 8 × 10−10). Haplotype 22111 (frequency 

= 0.02) was associated with the highest risk of HER2+ tumors (OR = 1.5, 95% CI = 1.21–
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1.87; P = 3 × 10−4) and with mammographic dense area (β coefficient = 0.45, 95% CI = 0.20 

to 0.69; P = 3 × 10−4).

 Associations in Asian-ancestry studies

We examined the associations of the five signal-representative SNPs in the nine Asian-

ancestry studies in BCAC (Supplementary Table 7). All five displayed allelic associations in 

the same direction as in Europeans, with overlapping confidence intervals, consistent with 

the hypothesis that the same candidate causal variants determine risk in both populations.

 Determining the candidate SNPs within each signal

To identify the potential causal variants to be taken forward for functional analysis, we 

determined the most significant SNP association within each signal and then calculated the 

likelihood ratio of every other SNP relative to that SNP. We assumed that SNPs with a 

likelihood of <1:100 (ref. 9) in comparison with the most significant SNP for each signal 

could be excluded from consideration as potentially causative variants. On the basis of the 

assumption that, within a given signal, the same variant(s) would be driving all observed 

phenotype associations, we derived the list of most likely causal SNPs for each signal. We 

used the results from one of two analyses to define the list of potentially causal SNPs for 

each signal: the meta-analysis of BCAC subjects with ER− disease and CIMBA BRCA1 
mutation carriers for signals 1, 2 and 4, which were most strongly associated in this analysis, 

and overall breast cancer risk in BCAC for signals 3 and 5. These lists of unexcluded 

variants are presented in Table 3 and are highlighted in Supplementary Table 1.

In signal 1, the most strongly associated variant was rs2046210 (the original Asian GWAS 

hit1,10), with nine other variants (likelihood ratios <100:1, r2 ≥0.89 with rs2046210; 

spanning 151,935,539–151,954,127) remaining as strong causal candidates. In signal 2, the 

best causal candidate was SNP rs12173570, with two other candidates remaining (likelihood 

ratios <100:1, r2 ≥0.75 with rs12173570; spanning 151,955,914–151,958,815). The 

European GWAS SNP, rs3757318l (ref. 2), is most strongly correlated with rs12173570 (r2 

>0.45). In signal 3, the best causal candidate was rs851984, with three other candidates 

remaining (likelihood ratios <100:1, r2 = 0.99; in two ESR1 introns spanning 152,020,390–

152,024,985). In signal 4, the top candidate was rs9918437, and two other candidates 

spanned another segment of an ESR1 intron at 152,055,978–152,072,718 (approximately 30 

kb telomeric of signal 3; likelihood ratios <100:1, r2 > 0.81 with rs9918437). In signal 5, the 

strongest candidate causal SNP was rs2747652 (also the representative SNP for signal 5 in 

Table 1), and there were five other candidates (likelihood ratios <100:1, r2 >0.97 with 

rs2747652; spanning 152,432,902–152,440,522) in the intergenic region between ESR1 and 

SYNE1. Across the five signals, we were able to exclude all but 26 of the original 3,872 

variants from being potentially causal.

 Local gene expression analyses

We used four techniques to assess associations between candidate causal variants (or 

available proxy SNPs) in the five signals and local gene expression. (i) ER protein 

expression, measured by immunohis-tochemistry in normal breast tissue samples from 150 

postmenopausal donors, identified a significant correlation of the risk alleles of signal 1 
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SNPs with reduced ER levels (Fig. 2a and Supplementary Figs. 1 and 2). (ii) ESR1 
expression in breast tumors and adjacent normal breast tissue from the Molecular Taxonomy 

of Breast Cancer International Consortium (METABRIC) study was compared relative to 

signal-representative SNP allele (Fig. 2b and Supplementary Table 8). In patients with ER− 

tumors, risk allele carriers had lower median ESR1 expression in normal, tumor-adjacent 

tissue than homozygotes for the protective allele at signals 1, 4 and 5, although none of the 

differences were statistically significant. By contrast, in patients with ER+ tumors, risk allele 

carriers had higher median ESR1 expression in normal, tumor-adjacent tissue than 

homozygotes for the protective allele at signals 1, 3 and 5. (iii) Allele-specific expression 

(ASE) analysis, using RNA sequencing (RNA-seq) data from breast tumor samples and SNP 

array genotype data from The Cancer Genome Atlas (TCGA)11, showed allelic imbalances 

in ESR1 expression among heterozygotes for proxy SNPs in signals 1–3 (Fig. 2c and 

Supplementary Table 9). Similar imbalances in CCDC170 expression were detected among 

heterozygotes for signal 2 SNP rs9397437 and in RMND1 expression with signal 3 SNP 

rs851983 (Supplementary Table 9). Such allelic imbalances indicate that risk alleles at these 

signals are associated with expression differences in local genes, but they do not indicate the 

directions of association. (iv) Expression quantitative trait locus (eQTL) analysis using the 

Gene-Tissue Expression (GTEx) database identified a significant association for SNPs in 

signal 3 with CCDC170 expression in normal breast tissues (Supplementary Table 10). We 

also performed cis-eQTL analyses on the 12 flanking genes in 135 normal breast tissue 

samples from the METABRIC study; however, no additional associations were detected 

(Supplementary Table 11).

 Bioinformatic and chromatin analyses

Analysis of cis enhancer–gene interactions using PreSTIGE12 showed evidence of multiple 

regulatory elements coinciding with signals 1–3 in ER+ MCF-7 breast cancer cells (Fig. 3a 

and Supplementary Fig. 3). A ‘super-enhancer’, associated with high levels of acetylation of 

his-tone H3 at lysine 27 (H3K27ac), was also identified in MCF-7 cells and encompasses 

the top risk-associated SNPs in these three signals (Fig. 3a and Supplementary Fig. 3)13. 

This super-enhancer was most readily detectable in MCF-7 cells and was not observed in 

other breast cancer cell lines, normal mammary epithelial cells or other tissues analyzed 

(Supplementary Fig. 4). Chromatin conformation capture (3C) experiments demonstrated 

that elements within signals 1 and 2 physically interacted with the promoters of ESR1, 

RMND1-ARMT1 and CCDC170 in MCF-7 and T-47D cells (Fig. 3b and Supplementary 

Fig. 5a,b). Furthermore, we detected interactions between signals 3–5 and ESR1 and/or 

RMND1-ARMT1 promoters (Fig. 3c,d and Supplementary Fig. 5c,d). The majority of these 

interactions were restricted to MCF-7 and T-47D cells (ER+ breast cancer cell lines), but the 

RMND1-ARMT1 interactions were also detected in either Bre-80 or MCF10A cells (ER− 

‘normal’ breast cell lines; Fig. 3b–d and Supplementary Fig. 5b–d). The 3C-identified 

interactions for each signal are summarized in Supplementary Table 12.

 Prioritizing candidate SNPs for functional assays

We applied a combination of in silico and in vitro analyses to prioritize candidate causal 

SNPs for functional follow-up, using previous observations that common cancer 

susceptibility alleles are enriched in cis-regulatory elements14–16. First, Table 3 showed that 
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19 of the 26 top candidates overlapped DNase I–sensitive sites and were associated with 

enhancer-enriched histone marks such as dimethylation of histone H3 at lysine 4 

(H3K4me2) and H3K27ac in MCF-7 and HMEC breast cells, indicative of putative 

regulatory elements (PREs) (Supplementary Fig. 6). In electromobility shift assays 

(EMSAs), 11 of these 19 SNPs altered the binding affinity of transcription factors in vitro 
(Supplementary Fig. 7). Of these, seven fell within promoter-specific long-range interactions 

identified by 3C (Fig. 3 and Supplementary Fig. 5). The 7 SNPs prioritized for further 

detailed analyses included 2 of 10 remaining candidates in signal 1 (rs7763637 and 

rs6557160), 1 of 3 candidates in signal 2 (rs17081533), 2 of 4 candidates in signal 3 

(rs851982 and rs851983), 1 of 3 candidates in signal 4 (rs1361024) and 1 of 6 candidates in 

signal 5 (rs910416) (Supplementary Table 12).

 Luciferase reporter assays

The regulatory capabilities of the PREs overlapping each signal and the effects of the seven 

prioritized candidate SNPs were examined in luciferase reporter assays in the ER+ MCF-7 

and BT-474 and the ER− Bre-80 breast cell lines. PRE constructs containing the reference 

alleles of the prioritized SNPs for signals 1, 2, 4 and 5 significantly increased associated 

target gene promoter activity when cloned in either direction, indicating that they act as 

orientation-independent transcriptional enhancers. In contrast, a PRE containing the 

reference alleles of the signal 3 candidates ablated target gene promoter activity, but only 

when cloned in the forward direction, suggesting that this region acts as an orientation-

dependent silencer (Fig. 4 and Supplementary Figs. 8–10). Notably, inclusion of the minor 

(risk) alleles of individual candidate SNPs in signals 1, 2 and 5 (rs6557160, rs17081533 and 

rs910416) significantly reduced ESR1 and RMND1 promoter activity but had no effect on 

the ARMT1 or CCDC170 promoters. However, inclusion of the signal 1 haplotype 

significantly decreased ESR1, RMND1 and CCDC170 promoter activity (Fig. 4 and 

Supplementary Figs. 8 and 9). Inclusion of the individual minor (risk) allele of signal 4 SNP 

rs1361024 or signal 3 SNP rs851983 in the respective constructs had no additional effects. 

In contrast, inclusion of the signal 3 minor (risk) allele of rs851982 or the haplotype 

construct increased ESR1 promoter activity in ER+ MCF-7 and BT-474 cells and RMND1 
promoter activity in all three cell lines (Fig. 4, Supplementary Figs. 8 and 9, and 

Supplementary Table 12).

 Transcription factor binding analyses

We used both bioinformatic analyses and functional studies to examine DNA-protein 

interactions for the seven prioritized SNPs. In silico prediction tools including intragenomic 

replicates (IGR)17, HaploReg18 and Alibaba2 (ref. 19) predicted that all seven SNPs alter 

transcription factor binding (Supplementary Fig. 11 and Supplementary Table 13).

Competition with known transcription factor binding sites suggested the identity of bound 

proteins for four of the prioritized SNPs, including GATA3 binding to the minor (risk) allele 

of signal 3 SNP rs851982 and CTCF binding to the minor allele of a second signal 3 

candidate, rs851983, as well as the common (protective) allele of signal 4 candidate 

rs1361024 and MYC binding to the common allele of signal 5 candidate rs910416 

(Supplementary Fig. 12 and Supplementary Table 12). Additional well-established breast 
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cell transcription factors, such as ER itself and FOXA1, were also assessed but did not 

display competitive binding to any prioritized SNP sites (Supplementary Fig. 13). Chromatin 

immunoprecipitation (ChIP) confirmed enrichment of GATA3 binding to DNA overlapping 

signal 3 candidate rs851982, but no difference between the alleles, and confirmed CTCF 

binding to the region overlapping signal 4 candidate rs1361024 in BT-474 cells (Fig. 5a and 

Supplementary Fig. 14). CTCF also bound to the region encompassing signal 3 candidate 

rs851983 (Fig. 5a, Supplementary Fig. 14 and Supplementary Table 12). CTCF mediates 

long-range chromatin looping; therefore, to assess the potential impact of signal 4 candidate 

rs1361024 and signal 3 candidate rs851983 on chromatin interactions, we performed allele-

specific 3C in heterozygous cell lines. Sequence profiles indicated that the protective G 

allele of signal 4 candidate rs1361024 increases looping between this enhancer and the 

ESR1 and RMND1 promoters (Fig. 5b and Supplementary Fig. 15a). We found no evidence 

for allele-specific looping between the silencer overlapping signal 3 and local gene 

promoters (Supplementary Fig. 15b).

 DISCUSSION

The fine-scale mapping, bioinformatic and functional analyses presented here provide 

evidence for the existence of at least five different genetic variants, each with a direct effect 

on breast cancer risk in Europeans, findings also supported by the limited available data in 

Asian populations. These variants are distributed upstream, within introns and downstream 

of ESR1, each in a region, which we have demonstrated via reporter assays, is regulatory for 

ESR1. Some may additionally regulate other local genes, such as RMND1, ARMT1 and 

CCDC170, previously reported to be co-regulated with ESR1 (ref. 20). Of note, the four 

sites more strongly associated with risks of ER− than ER+ tumors (signals 1, 2, 4 and 5) all 

overlap enhancer regions, and our evidence indicates that the minor (risk) alleles of 

candidate causal variants, within each of these enhancers, act to reduce expression of ESR1, 

RMND1 and CCDC170. In contrast, signal 3—which is associated with smaller but equal 

risks of developing both ER− and ER+ tumors—overlaps a putative gene silencer, and the 

risk alleles of the candidate causal variants here increase ESR1 and RMND1 expression. 

Furthermore, we have demonstrated altered binding of looping factor CTCF to candidate 

causal SNPs in signals 3 and 4, with evidence that the risk allele of signal 4 candidate 

rs1361024 abrogates binding and reduces chromatin looping between this enhancer element 

and the promoters of ESR1 and RMND1. We also provided evidence that signal 5 candidate 

rs910416 may display allele-specific binding of MYC.

Notably, the previously unrecognized signal 5 candidates, downstream of ESR1, 
significantly increase the risk of developing ER−PR−HER2+ tumors (a specific subtype 

shown to be more responsive to the drug trastuzumab) in contrast to the triple- negative 

(ER−PR−HER2−) tumor subtype, which has already been reported to be associated with 

other signals at 6q25 as well as 19p13 (ref. 21) and 5p15 (TERT)22. We also found evidence 

that the candidate causal variants at signals 3 and 5 predispose to aggressive, high-grade 

breast cancer, independently of ER status.

Mammographic density adjusted for age and body mass index (BMI), which describes the 

variation in epithelial and stromal tissue on a mammogram, is one of the strongest known 

Dunning et al. Page 7

Nat Genet. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



risk factors for breast cancer23 and has been shown to have a shared genetic basis with breast 

cancer, mediated through a large number of common variants24. Associations between ESR1 
SNPs and mammographic density have previously been reported25–27, but, in this detailed 

analysis, only signal 2 was significantly associated with mammographic dense area (P = 1.7 

× 10−5), although signal 1 also showed some evidence of an effect in the conditional analysis 

(P = 0.017). Although adjusting the breast cancer analysis of signal 2 for mammographic 

dense area produced some attenuation of the associated effect, the lead SNP remained 

significantly associated with breast cancer risk (unconditional OR = 1.30, 95% CI = 1.13–

1.49; P = 0.00024; OR conditional on dense area = 1.24, 95% CI = 1.08–1.43; P = 0.0025), 

suggesting either that the mechanism by which the signal 2 candidate causal variant affects 

breast cancer risk is not mediated through mammographic density or, alternatively, that 

dense area, as measured here, is unable to capture the association with breast composition 

that is most relevant to risk. This phenomenon, whereby the association with risk appears to 

be partially independent of mammographic density, has also been observed for the 10q21.2 

breast cancer locus4.

SNPs in the ESR1 region have previously been reported to be associated with bone mineral 

density28,29. These include SNPs within signal 1 (rs6930633, r2 = 0.73 with rs3757322) and 

signal 3 (rs2982575, r2 = 0.57 with rs851984), although the SNP with the most significant 

reported association with bone density measures, rs4870044, was not associated with breast 

cancer risk (P > 1 × 10−4) in our analysis nor correlated with any signal-representative SNPs 

(r2 <0.06). Similarly, SNP rs6933669, recently reported as associated with age at 

menarche30, is uncorrelated with these five signals (r2 <0.02) and was not associated with 

breast cancer (P = 0.1). Thus, although there is a known relationship between age at 

menarche and breast cancer risk, these phenotypes do not appear to share candidate causal 

variants in this region.

Our findings help address the question of the role of ERα in establishing breast cancer. 

Notably, the candidate causal SNPs identified here all increase risks of both ER+ and ER− 

tumor subtypes by varying degrees. ERα is a ligand-activated transcription factor that 

mediates the effect of estrogen through altering gene expression, and the links between 

estrogen, ERα and ER+ breast cancer are well documented, with adjuvant endocrine therapy 

considered standard treatment for ER+, early-stage breast cancer. Other studies have also 

reported 6q25 associations with ER− subtypes1,2,5, but the mechanisms by which ER− 

tumors develop are still debated. There is speculation that ER− tumors may arise from ER+ 

precursors by potentially reversible mechanisms, and our findings may lend support to this 

hypothesis. However, several recent studies have indicated that most tumors in BRCA1 
mutation carriers arise from ER− luminal progenitor cells; thus, estrogen may be working 

indirectly through paracrine regulation in the mammary epithelium, possibly stimulating the 

Notch or epidermal growth factor receptor (EGFR) signaling pathways of adjacent ER+ 

cells31,32. Our analyses unexpectedly suggested that, whereas signals 1–4 increased risks of 

all ER− tumor subtypes, the signal 5 candidate causal variant increased risks of ER−HER2+ 

breast cancer subtypes but not of triple-negative tumor development or of tumors in BRCA1 
mutation carriers (Table 1). This further complicates present understanding and underlines 

the need for further studies to address this issue.
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Collectively, our evidence supports a hypothesis that ESR1 is the major target gene of the 

enhancer and silencer elements in which we have identified candidate causal variants. In 

addition to ESR1, we provide evidence that the regions overlapping signals 1–4 

cooperatively regulate RMND1, raising the possibility that candidate causal SNPs act by 

altering both ESR1 and RMND1 expression. RMND1 (required for meiotic nuclear division 

1; C6orf96) has not been well characterized but is reported to localize to mitochondria and 

be involved in mitochondrial translation33. We additionally identified enhancer activity and 

chromatin interactions with two other genes, ARMT1 and CCDC170, but the actions of the 

candidate causal SNPs on these genes remain unclear. ARMT1 encodes Armt1, a protein 

carboxyl methyltransferase that targets PCNA and differentially regulates cancer cell 

survival in response to DNA damage34. Nothing is known about the function of CCDC170 

(coiled-coil domain–containing protein 170), but recurrent ESR1-CCDC170 rearrangements 

have been characterized in an aggressive subset of ER+ breast cancers35. A recent study also 

showed that higher CCDC170 expression correlated with ER negativity, highly proliferative 

features and worse clinical outcomes36. There are some data to suggest that these genes may 

cooperatively contribute to the increased proliferative capacity of ER+ tumors20, and it is 

tempting to speculate that these may be additional target genes for the candidate causal 

variants at a subset of the five signals identified here and perhaps responsible for their 

differential phenotype associations. A greater understanding of these genes may also provide 

novel targets for breast cancer prevention or therapies.

 URLs

1000 Genomes Project, http://www.1000genomes.org/; Breast Cancer Association 

Consortium (BCAC), http://ccge.medschl.cam.ac.uk/consortia/bcac/index.html; Consortium 

of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA), http://

ccge.medschl.cam.ac.uk/consortia/cimba/index.html; Collaborative Oncological Gene-

environment Study (COGS), http://www.cogseu.org/; iCOGS, http://

ccge.medschl.cam.ac.uk/research/consortia/icogs/; SNAP, https://

www.broadinstitute.org/mpg/snap/; The Cancer Genome Atlas (TCGA), https://tcga-

data.nci.nih.gov/; Cancer Genomics Hub (CGHub), https://cghub.ucsc.edu/; eMAP, http://

www.bios.unc.edu/~weisun/software.htm.

 ONLINE METHODS

 Study populations and genotyping

Epidemiological data were obtained from three separate consortia that had all conducted 

genotyping using the iCOGS array, a custom array comprising approximately 200,000 

SNPs. (i) Data on overall breast cancer risk, tumor subtypes and grade came from 50 breast 

cancer case-control studies participating in BCAC; these comprised 41 studies from 

populations of European ancestry and 9 studies from populations of East Asian ancestry3. 

Details of the participating studies, genotype calling and quality control are given 

elsewhere3. After quality control exclusions, we analyzed data from 46,451 cases and 42,599 

controls of European ancestry and 6,269 cases and 6,624 controls of Asian ancestry. A 

further 23 SNPs were directly genotyped in two case-control studies (CCHS and SEARCH). 

The ER status of the primary tumor was available for 34,539 European and 4,972 Asian 
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cases; of these, the tumor was ER− for 7,465 (22%) European and 1,610 (32%) Asian cases3. 

(ii) Data on BRCA1 mutation carriers were obtained through CIMBA. Eligibility is 

restricted to females 18 years or older with pathogenic mutations in BRCA1 or BRCA2. The 

majority of the participants were sampled through cancer genetics clinics37, including some 

related participants. Fifty-one studies from 25 countries contributed data on BRCA1 
mutation carriers who were genotyped using the iCOGS array38. After quality control of the 

phenotypes and genotypes, data were available on 15,252 BRCA1 mutation carriers, of 

whom 7,797 had been diagnosed with breast cancer, all of European ancestry. Analyses in 

BRCA1 mutation carriers assessed associations with breast cancer risk. (iii) Mammographic 

density information was available for 7,025 women from ten studies in BCAC and, in 

addition, 1,621 women from the Mayo Mammographic Health Study (MMHS). All were 

additionally participants in the MODE Consortium. Forty-six women were excluded because 

of missing BMI information, leaving 8,600 women with mammographic density 

information, relevant covariates and iCOGS genotyping (2,955 breast cancer cases and 5,645 

controls). Study details are given in Supplementary Table 14 and in Lindstrom et al.26. 

Mammographic density measurements were performed on digitized analog mammographic 

films using ‘Cumulus’ software39. This applies a thresholding technique to measure the total 

area of the breast and the absolute dense area, from which the absolute non-dense area and 

percent dense area are derived. Dense areas and non-dense areas were converted to cm2 

according to the pixel size used in the digitization. Readers blinded to genotype, case status 

and risk factor data conducted all measures. For cases, mammograms before the diagnosis of 

breast cancer were used or, where this was not possible, measures from the contralateral 

breast were used.

 SNP selection, genotyping and imputation

We first defined a mapping interval of ~1 Mb (chr. 6: 151,600,000–152,650,000; NCBI 

Build 37 assembly). We catalogued 2,821 variants with a MAF >2% using the 1000 

Genomes Project (March 2010 Pilot version 60 CEU project data); of these variants, we 

selected 277 SNPs correlated with the 3 previously reported associated SNPs (rs2046210 

(ref. 1), rs3757318 (ref. 2) and rs3020314 (ref. 40)) at r2 >0.1, plus a set of 698 SNPs 

designed to tag all remaining SNPs with r2 >0.9. Of the SNPs, 902 that passed quality 

control were included in this analysis. After completion of iCOGS genotyping, this initial set 

was supplemented with a further 23 SNPs selected from the October 2010 (Build 37) release 

of the 1000 Genomes Project, to improve coverage. These SNPs were genotyped in two 

large BCAC studies (CCHS and SEARCH) comprising 12,273 cases and controls, using a 

Fluidigm array according to the manufacturer’s instructions. Using the above data, results 

for all the additional known common variants (MAF >0.02 in Europeans) on the January 

2012 release of the 1000 Genomes Project were imputed using IMPUTE version 2.0. 

Quality control and imputation steps were carried out separately in the different consortia, 

leading to slight differences in the numbers of SNPs with available data. In addition to the 

902 successfully genotyped SNPs, genotypes at 2,972 SNPs were imputed in BCAC and 

2,907 SNPs were imputed in CIMBA (imputation r2 score >0.3 in each case). In total, 3,872 

genotyped or imputed SNPs were available for the combined BCAC ER− and CIMBA 

BRCA1 mutation carrier meta-analysis
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 Statistical analysis

 Case-control analysis, logistic regression and retrospective cohort 
analyses—For the case-control analysis in BCAC, per-allele odds ratios and standard 

errors were estimated for each SNP using logistic regression, separately for subjects of 

European and Asian ancestry and for each tested phenotype. Principal components were 

included as covariates as previously described21. The statistical significance of each SNP 

was derived using a Wald test. To evaluate evidence for multiple association signals, we 

performed conditional analyses in which the association for each SNP was reevaluated after 

including other associated SNPs in the model. SNPs with a P value <1 × 10−4 and MAF 

>2% in the single-SNP analysis were included in this analysis21. Haplotype-specific odds 

ratios and confidence limits were estimated using haplo.stats22.

Associations between genotypes and breast cancer risk in BRCA1 mutation carriers in 

CIMBA were evaluated using a per-allele trend test with 1 degree of freedom (Ptrend), based 

on modeling the retrospective likelihood of the observed genotypes conditional on breast 

cancer phenotypes41. To allow for non-independence among related individuals, an adjusted 

test statistic was used that took into account the correlation in genotypes21. Per-allele hazard 

ratio estimates were obtained by maximizing the retrospective likelihood. All analyses were 

stratified by country of residence.

Conditional analyses were performed to identify SNPs independently associated with each 

phenotype. To identify the most parsimonious model, all SNPs with a marginal P value <1 × 

10−4 were included in forward selection regression analyses with a threshold for inclusion of 

P < 1 × 10−4 and including terms for principal components and study. Similarly, forward 

selection Cox regression analysis was performed for BRCA1 mutation carriers, stratified by 

country of residence, using the same P-value thresholds. This approach provides valid 

significance tests of the associations, although the estimates quantifying the association can 

be biased41,42. Parameter estimates for the most parsimonious model were obtained using 

the retrospective likelihood approach.

Within MODE, mammographic dense area, non-dense area and percent dense area were 

each square-root transformed to fit a normal distribution. For the ten MODE and BCAC 

studies, a linear regression assuming a multiplicative per-allele model adjusting for study, 

age at mammogram, BMI, menopausal status (pre or post) and the first six principal 

components was carried out for each trait and for each SNP. The MMHS participants were 

analyzed separately in the same way but without the principal-components covariates, and 

the results were combined with those from BCAC using a standard inverse variance–

weighted fixed-effects meta-analysis.

 Expression analysis

eQTL analyses were conducted in 57 normal breast samples from the GTEx Project43 and 

135 adjacent normal breast samples from women of European origin in the METABRIC 

study44. For the METABRIC analyses, matched gene expression (Illumina HT-12 v3 

microarray) and germline SNP data from either genotyping (Affymetrix SNP 6.0) or 

imputation (1000 Genomes Project, March 2012 data using IMPUTE version 2.0) were 
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used. Correlations between the five signal-representative SNPs and expression levels of 

nearby genes (500 kb upstream and downstream of the SNPs) were assessed using a linear 

regression model in which an additive effect on expression level was assumed for each copy 

of the rare allele. Calculations were carried out using the eMAP library in R.

 Allele-specific expression analysis

ASE analysis has been described previously11. Three SNPs for signal 1, two SNPs for signal 

3 and a proxy SNP for signal 2 (r2 = 0.85) were on Affymetrix SNP Array 6.0. TCGA 

genotype calls and corresponding confidence scores were retrieved using level 2 TCGA SNP 

array Birdseed data downloaded from the TCGA portal. Genotyping data with a confidence 

score of 0.1 were excluded. We selected 742 breast cancer samples with European ancestry. 

The corresponding RNA-seq BAM files and metadata are available from the Cancer 

Genomics Hub (CGHub). Marker SNPs, the exonic SNPs of the target genes, were extracted 

from dbSNP human Build 142 (collectively ~800 SNPs for ESR1, RMND1, ARMT1 and 

CCDC170), and RNA-seq read counts on SNP sites for reference and alternative alleles were 

computed. Homozygote marker SNPs and those with low coverage (less than 15×) were 

excluded. Major allele fraction (μ) representing allelic imbalance for each marker SNP was 

computed, and an average of allelic imbalances for each gene was calculated for individual 

tumor samples. Marker SNPs with extreme μ values (μ >0.75) were not included in the 

analysis. Level 3 SNP array data were downloaded from the TCGA portal, and GISTIC 

version 2.0.16 was used to identify copy number variations (CNVs) for each sample. 

Samples with low or high CNV levels, as presented in the gene-based GISTIC module 

report, were excluded from the analysis of the corresponding gene. For each risk SNP, allelic 

imbalance for the target transcripts was compared between heterozygote (AB) and 

homozygote (AA and BB) samples. For a given risk SNP and target gene, we used Levene’s 

test, a more robust test than the F test, for equality of variances when the risk SNP was not in 

linkage disequilibrium with any of the marker SNPs on that gene (r2 <0.5). Otherwise, a 

two-tailed t test was used for equality of means45.

 Estrogen receptor protein expression

Normal breast samples derived from 150 postmenopausal donors (non-Hispanic, mean age 

of 62 years) and identified through the Susan G. Komen for the Cure Tissue Bank at the 

Indiana University Simon Cancer Center were used in this study46. DNA was extracted from 

blood cells at the Indiana CTSI Specimen Storage Facility using an AutogenFlex Star 

instrument (Autogen) and the FlexiGene AGF3000 blood kit for DNA extractions (Qiagen). 

SNP analysis was performed with 1 ng of DNA using TaqMan genotyping assays for 

rs2046210 (C_12034236_10), rs3757322 (C_27475059_10), rs9397437 (C_11556300_10), 

rs851984 (C_2496819_10), rs9918437 (C_29496189_10) and rs2747652 (C_2823750_10) 

from Life Technologies, following the manufacturer’s protocol. ER protein abundance was 

measured by immunohistochemical semiquantitation using an antibody to ERα (clone 6F11; 

1:40 dilution; Leica Microsystems) and quantified with (i) an H score consisting of the sum 

of the percent of tumor cells staining, multiplied by an ordinal value corresponding to the 

intensity level (0, none; 1, weak; 2, moderate; 3, strong; Supplementary Fig. 2), and (ii) the 

percentage of positive cells. Correlations between the H scores and ER 

immunohistochemistry values were calculated using Spearman’s rank correlation analysis. 
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All P values reported are two-sided, and values <0.05 were considered statistically 

significant.

 Cell lines

Breast cancer cell lines MCF-7 (ER+; American Type Culture Collection (ATCC) HTB22), 

T-47D (ER+; ATCC HTB133) and BT-474 (ER+; ATCC HTB20) were grown in RPMI 

medium with 10% FCS and antibiotics. Normal breast epithelial cell lines MCF10A (ATCC 

CRL 10317) and Bre-80 (provided as a gift from R. Reddel, Children’s Medical Research 

Institute, Sydney) were grown in DMEM/F12 medium with 5% horse serum (HS), 10 μg/ml 

insulin, 0.5 μg/ml hydrocortisone, 20 ng/ml epidermal growth factor, 100 ng/ml cholera 

toxin and antibiotics. Cell lines were maintained under standard conditions, routinely tested 

for mycoplasma and short tandem repeat (STR) profiled.

 Chromatin conformation capture

3C libraries were generated using EcoRI, HindIII or BglII as described previously15. 3C 

interactions were quantified by RT-PCR (qPCR) using primers designed within restriction 

fragments (Supplementary Table 15). qPCR was performed on a RotorGene 6000 instrument 

using MyTaq HS DNA polymerase (Bioline) with the addition of 5 mM Syto9, an annealing 

temperature of 66 °C and an extension time of 30 s. 3C analyses were performed in three 

independent 3C libraries from each cell line, with each experiment quantified in duplicate. 

BAC clones (RP11-108N8, RP11-713G5, RP11-450E24 and RP11-55K19) covering the 

6q25 region were used to create artificial libraries of ligation products to normalize for PCR 

efficiency. Data were normalized to the signal from the BAC clone library and, between cell 

lines, by reference to a region within GAPDH. All qPCR products were electrophoresed on 

2% agarose gels, gel purified and sequenced to verify the 3C product.

 Electromobility shift assays

Gel shift assays were performed with ER+ MCF-7 or ER− Bre-80 nuclear lysates and 

biotinylated oligonucleotide duplexes (Supplementary Table 16). Nuclear lysates were 

prepared using NE-PER nuclear and cytoplasmic extraction reagents (Thermo Fisher 

Scientific) according to the manufacturer’s instructions. Total protein concentrations in 

nuclear lysates were determined by Bradford’s method. Duplexes were prepared by 

combining sense and antisense oligonucleotides in NEBuffer2 (New England BioLabs) and 

heat annealing at 80 °C for 10 min followed by slow cooling to 25 °C for 1 h. Binding 

reactions were performed in binding buffer (10% glycerol, 20 mM HEPES (pH 7.4), 1 mM 

DTT, protease inhibitor cocktail (Roche), 0.75 μg poly(dI:dC) (Sigma-Aldrich)) with 7.5 μg 

of nuclear lysate. For competition assays, binding reactions were preincubated with 1 pmol 

of competitor duplex (Supplementary Table 17) at 25 °C for 10 min before the addition of 10 

fmol of biotinylated oligonucleotide duplex and a further incubation at 25 °C for 15 min. 

Reactions were separated on 10% Tris-borate-EDTA (TBE) polyacr-ylamide gels (Bio-Rad) 

in TBE buffer at 160 V for 40 min. Duplex-bound complexes were transferred onto Zeta-

Probe positively charged nylon membranes (Bio-Rad) by semidry transfer at 25 V for 20 

min and then cross-linked onto the membranes under 254-nm ultraviolet light for 10 min. 

Membranes were processed with the LightShift Chemiluminescent EMSA kit (Thermo 
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Fisher Scientific) according to the manufacturer’s instructions. Chemiluminescent signals 

were visualized with the C-DiGit blot scanner (LI-COR).

 Plasmid construction and reporter assays

Promoter-driven luciferase reporter constructs were generated by the insertion of PCR-

amplified fragments containing ESR1, ARMT1, RMND1 and CCDC170 promoters into the 

KpnI and MluI sites of pGL3-Basic. To assist in cloning, AgeI and SbfI sites were inserted 

into the BamHI and SalI sites downstream of the luciferase gene. A 1,496-bp signal 1 PRE 

fragment, a 997-bp signal 2 PRE fragment, a 1,566-bp signal 3 PRE fragment, a 1,463-bp 

signal 4 PRE fragment and a 1,349-bp signal 5 PRE fragment were generated by PCR or 

gBlocks (Integrated DNA Technologies) and cloned into the AgeI and SbfI sites of the 

modified pGL3-Promoter constructs. The minor alleles of individual SNPs were introduced 

into the PRE sequences by overlap extension PCR or gBlocks. Sequencing of all constructs 

confirmed variant incorporation (AGRF). ER+ MCF-7 and BT-474 or ER− Bre-80 cells were 

transfected with equimolar amounts of luci-ferase reporter plasmids and 50 ng of pRL-TK 

transfection control plasmid with Lipofectamine 3000. The total amount of transfected DNA 

was kept constant at 600 ng for each construct by the addition of pUC19 as a carrier 

plasmid. Luciferase activity was measured 24 h after transfection by the Dual-Glo 

Luciferase Assay System. To correct for any differences in transfection efficiency or cell 

lysate preparation, firefly luciferase activity was normalized to Renilla luciferase activity, 

and the activity of each construct was measured relative to the promoter-only construct, 

which had a defined activity of 1. Statistical significance was tested by log transforming the 

data and performing two-way ANOVA followed by Dunnett’s multiple-comparisons test in 

GraphPad Prism.

 Chromatin immunoprecipitation

ER+ MCF-7 and BT-474 breast cancer cells were cross-linked with 1% formaldehyde at 

37 °C for 10 min, rinsed once with ice-cold PBS containing 5% BSA and once with PBS, 

and collected in PBS containing 1× protease inhibitor cocktail (Roche). The cells were 

centrifuged for 2 min at 900g. Cell pellets were resuspended in 0.35 ml of lysis buffer (1% 

SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.1, 1× pro-tease inhibitor cocktail) and sonicated 

three times for 15 s each with a 70% duty cycle (Branson SLPt) followed by centrifugation 

at 15,000g for 15 min. Supernatants were collected and diluted in dilution buffer (1% Triton 

X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCl, pH 8.1). Two micrograms of 

antibody was prebound for 6 h to Protein G Dynabeads (Life Technologies) and then added 

to the diluted chromatin for overnight immunoprecipitation. The magnetic bead–chromatin 

complexes were collected and washed six times in RIPA buffer (50 mM HEPES, pH 7.6, 1 

mM EDTA, 0.7% sodium deoxy-cholate, 1% NP-40, 0.5 M LiCl) and then twice with TE 

buffer. To reverse the cross-linking, the magnetic bead complexes were incubated overnight 

at 65 °C in elution buffer (1% SDS, 0.1 M NaHCO3). DNA fragments were purified using a 

QIAquick Spin kit (Qiagen). For qPCR, 2.0 μl from a 100-μl immu-noprecipitated chromatin 

extraction was subjected to 40 cycles of amplification. All PCR products were sequenced by 

Sanger sequencing (AGRF). The antibodies used were to CTCF (C-20; sc-15914) and 

GATA3 (HG3-31; sc268) or control IgG (sc-2027) (all from Santa Cruz Biotechnology). 

ChIP primers are listed in Supplementary Table 18.
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Figure 1. 
Association results for all SNPs with six phenotypes. (a–f) The phenotypes analyzed include 

risk of ER+ breast cancer in BCAC (a), risk of ER− breast cancer in BCAC (b), risk of 

triple-negative breast cancer, derived from the CIMBA meta-analysis of BRCA1 mutation 

carriers with ER− tumors (c), risk of HER2+ breast cancer in BCAC (d), mammographic 

dense area in MODE (e) and tumor grade after adjustment for ER status in BCAC (f). P 
values for each SNP (from unconditional logistic regression) are shown plotted as the 

negative log-transformed P value against relative position across the locus. A schematic of 

the gene structures is shown above a and d. The physical positions of signals 1–5 are shown 

as colored, numbered stripes. Dotted horizontal lines indicate the genome-wide significance 

level.
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Figure 2. 
ER expression and allelic imbalance correlate with signal 1 SNPs. (a) Negative correlation 

between the signal 1 SNP rs2046210 and ER protein expression. Black dots represent ER 

expression from individual samples measured by immunohistochemistry (H score). 

Horizontal lines represent the mean H score for each genotype. The P value was calculated 

using a Spearman rank correlation test. (b) Box plots of ESR1 gene expression (log2 

transformed) in breast tumor and adjacent normal samples. Boxes extend from the 25th to 

the 75th percentile, horizontal bars represent the median, whiskers indicate the full range of 

ESR1 expression and outliers are represented as circles. (c) Allelic imbalance in ESR1 
expression by genotypic status at breast cancer risk variants. Data are classified according to 

the genotypes at risk SNPs (heterozygous versus homozygous). Black dots represent the 

average major allele fraction of the marker SNPs across ESR1 for an individual from TCGA 

with breast cancer. Red lines and whiskers correspond to means ± 1 s.d. For rs7740686 

(signal 1) and rs9397437 (signal 2), Levene’s test (equality of variances) was used to 

calculate the P values; for rs851985 (signal 3), a two-tailed t test (equality of means) was 

used to calculate the P value.
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Figure 3. 
Chromatin interactions across the 6q25.1 risk region. (a) Signals 1–5 are numbered and 

shown as colored stripes. RMND1, ARMT1, CCDC170 and ESR1 gene structures are 

depicted with exons (vertical bars) joined by introns (lines). Gene-enhancer predictions from 

PreSTIGE12, ChIP-seq binding profiles for H3K27ac13 and Encyclopedia of DNA Elements 

(ENCODE) RNA polymerase II ChIA-PET interactions in MCF-7 cells are shown. (b–d) 3C 

anchor points (3C baits) and interrogated sequences (3C regions) are depicted as black boxes 

and gray shading, respectively. 3C interaction profiles in ER+ MCF-7 and ER− Bre-80 breast 

cell lines are shown for signals 1 and 2 (b), signals 3 and 4 (c) and signal 5 (d). 3C libraries 

were generated with EcoRI, with the anchor point set at the ESR1, RMND1-ARMT1 or 
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CCDC170 promoter region. Graphs present the results from three biological replicates; error 

bars, s.d.
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Figure 4. 
Risk alleles reduce ESR1 and RMND1 promoter activity. Luciferase reporter assays were 

performed following transient transfection of ER+ MCF-7 breast cancer cells. PREs 

containing the major SNP alleles were cloned downstream of target gene promoter-driven 

luciferase constructs (prom) for the creation of reference (Ref-PRE) constructs. Minor SNP 

alleles were engineered into the constructs and are designated by the rsID of the 

corresponding SNP. “Haplotype” denotes a construct that contains the minor alleles of both 

candidate SNPs within signal 1 or 3. Error bars, 95% confidence intervals from three 

independent experiments. P values were determined by two-way ANOVA followed by 

Dunnett’s multiple-comparisons test: **P < 0.01, ***P < 0.001.
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Figure 5. 
GATA3 and CTCF binding in vivo. (a) ChIP and quantitative PCR (qPCR) assays using 

antibody against GATA3 or CTCF in ER+ BT-474 breast cancer cells. A region within the 

second intron of ESR1 served as a negative control (NC). Normal rabbit IgG was used as a 

non-specific antibody control. Graphs present the results of two biological replicates; error 

bars, s.d. (b) 3C followed by sequencing for the signal 4 PRE containing rs1361024 in 

heterozygous ER+ MCF-7 breast cancer cells shows allele-specific chromatin looping. The 

chromatograms represent one of three independent 3C libraries generated and sequenced.
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