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We show that local parity violation due to chirality imbalance in relativistic nuclear collisions can be 
revealed by measuring the projection of the polarization vector onto the momentum, i.e. the helicity, of 
final state baryons. The proposed method does not require a coupling to the electromagnetic field, like 
in the Chiral Magnetic Effect. By using linear response theory, we show that, in the presence of a chiral 
imbalance, the spin 1/2 baryons and anti-baryons receive an additional contribution to the polarization 
along their momentum and proportional to the axial chemical potential. The additional, parity-breaking, 
contribution to helicity can be detected by studying helicity-helicity azimuthal angular correlation.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The vacuum state of the Quantum Chromodynamics (QCD) plays a crucial role in the understanding of strong interactions phe-
nomenology. The study the Quark Gluon Plasma (QGP) in relativistic heavy ion collisions provides essential information on QCD at high 
temperature, but it may also shed light on QCD vacuum. Indeed, thanks to the high temperatures, non-trivial topological configurations 
can be produced with sufficiently high probability [1] through a classical thermal transition process called sphaleron [2]. Given the random 
nature of this process, the topological charge fluctuates on an event by event basis [3] in nuclear collisions and vanishes when averaged 
over many events.

The local topological fluctuations are transferred to the chirality of fermions through the axial anomaly [4,5] and an imbalance between 
right-handed and left-handed quarks, hence a local parity violation, is thereby generated [6]. Thanks to the chiral symmetry of QGP, the 
imbalance is maintained through all the evolution of the plasma [7]. The asymmetry between the number of right-handed and left-handed 
fermions can be included in a hydrodynamic picture with an axial chemical potential [7,8].

Local parity violation has been investigated in heavy-ion collisions via the so-called Chiral Magnetic Effect (CME) [8]. This phenomenon, 
experimentally found in condensed matter, is the generation of an electric current parallel to a magnetic field and proportional to the axial 
chemical potential. The CME is expected to bring about a charge-dependent azimuthal asymmetry in the spectrum of produced particles 
[9]. However, backgrounds unrelated to the CME are difficult to evaluate [10,11] and dedicated experiments with isobar collisions [12–14]
have been proposed and are currently ongoing to finally demonstrate its existence. From the phenomenological standpoint, there are large 
uncertainties on the magnitude of the magnetic field in the plasma phase and this affects the quantitative assessment of the CME.

Lately, the STAR experiment at RHIC measured a global � polarization [15] which turned out to be in very good agreement with 
predictions based on the hydrodynamic model of the QGP [16]. Also, the experiments proved to be able to measure it differentially 
in momentum space [17,18]. These findings have opened a new window in the field of relativistic heavy ion physics with spin and 
polarization being newly available probes to study the QGP and its properties.

In this work, we propose to study and detect local parity violation by measuring the longitudinal component of polarization, that 
is helicity, of baryons produced in the collision, particularly � hyperons. We will show that, if the axial chemical potential does not 
vanish at hadronization, the helicity of baryons is predicted to have an additional, parity-breaking, contribution with a specific azimuthal 
dependence in the transverse momentum plane. A similar idea was put forward by the authors of ref. [19], who proposed to correlate net 
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Fig. 1. Space-time diagram of a relativistic nuclear collision in the center-of-mass frame. �eq is the 3D hypersurface where local thermodynamic equilibrium is achieved, �FO

is the freeze-out hypersurface. The σ± are the side branches subsets of �eq and �B is the portion of hyperplane connecting the limiting surfaces of �FO.

helicity of �’s with charge separation due to CME. In fact, our proposed method does not require, like in the CME, the mediation of the 
electromagnetic field and it thus allows to evade some of the related uncertainties.

2. Polarization induced by an axial chemical potential

The mean spin vector of a spin 1/2 hadron in a nuclear collision can be calculated by using the formula [20]

Sμ(p) = 1

2

∫
�

d� · p tr
[
γ μγ 5W+(x, p)

]∫
�

d� · p tr [W+(x, p)]
(1)

where � is the so-called freeze-out hypersurface (see Fig. 1)1 and W+ is the future time-like part (that is the particle part) of the Wigner 
function:

W+(x, p)AB = θ(p0)θ(p2)
1

(2π)4

∫
d4 y e−ip·yTr(ρ̂ : 	B(x + y/2)	A(x − y/2) :). (2)

Because of the integration over the hypersurface, the four-momentum p argument of the Wigner becomes on-shell in the (1), that is 
p2 = m2 [20].

In the equation (2) ρ̂ is the density operator and : : denotes normal ordering. In the hydrodynamic model of the nuclear collision, to 
a good approximation, corresponding to ideal dissipationless hydrodynamics, is the local equilibrium density operator:

ρ̂LE = 1

ZLE
exp

⎡⎣−
∫
�

d�μ

(
T̂ μνβν −

∑
i

ζî jμi

)⎤⎦ , (3)

where β = (1/T )u is the four-temperature vector and ζi = μi/T are the temperature-scaled chemical potentials, which are connected to 
the conserved currents ̂ ji . In the equation (3) β, ζi are functions of the space-time point and may fluctuate on an event-by-event basis.

If there is a chiral imbalance in the QGP, the exponent in (3) should include an additional term:∫
�

d�μ ζA ĵμA , ζA = μA

T
, (4)

where ̂ j A is the axial current and μA the axial chemical potential at the hadronization. Even though the axial current is not conserved 
in the hadronic phase, the term (4) must be there if a chiral imbalance is generated when the plasma achieves local thermodynamic 
equilibrium, what can be shown by using the Gauss theorem to work out the actual density operator [21] (see Appendix A). The term 
(4) may violate parity (the operator ρ̂ does not commute with the reflection operator ̂) if the function ζA has a scalar component, 
that is a component which does not change sign under reflection [22]. It is important to stress that this component of ζA fluctuates on 
an event-by-event basis and averages to zero over many events, so as to keep parity breaking local, in a single event and not global, as 
mentioned above. Presently, there is quite a large uncertainty on the value of the axial chemical potential μA . Several estimates have been 
proposed based on the early-stage glasma model [3,23,24] or lattice simulations [25,26] which are then used to study its evolution in the 
QGP with hydrodynamic codes [24,27–30]. The calculations in [28] imply ζA =O(10−2) at hadronization [31].

Anyhow, it is expected that the term (4) is a “small” correction to the operators in (3) which does not affect much the shape of the 
momentum spectra (except for specific asymmetries such as those sought in the CME) and yet, it may have a sizeable impact on the 
polarization of emitted hadrons. Using the linear response theory to expand the local equilibrium operator, we determine, at the leading 
order, the mean spin vector of a free fermion induced by the axial chemical potential (see Appendix A):

Sμ
χ (p) � gh

2

∫
�

d� · p ζAnF (1 − nF)∫
�

d� · p nF

εpμ − m2t̂μ

mε
(5)

where gh = G A1(0) is the axial charge of the baryon species, which depends on the transformation properties of the axial current in 
flavour space. In the equation (5) nF is a shorthand for the Fermi-Dirac distribution function:

1 Precisely, � is the hypersurface including �F O and the two hyperbolic branches σ+ and σ− .
2
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nF = 1

eβ(x)·p−∑
i ζiqi + 1

(6)

and t̂μ = δ
μ
0 is the unit time-like vector in the center-of-mass frame (see Fig. 1). The appearance of an explicit dependence on a particular 

vector such as t̂ is owing to the fact that the axial charge:∫
�

d�μ̂ jμA

is not an actual scalar quantum operator for it depends on the integration hypersurface [32], being the axial charge operator not diver-
genceless. Indeed the vector t̂ can be viewed as the average normal vector to the hypersurface �FO in Fig. 1. This mean spin vector adds 
to the already known contribution from hydrodynamics, namely the well known from vorticity [33] and the recently found contributions 
from the shear tensor [34,35], resulting in a total spin polarization vector:

Sμ(p) = Sμ
hyd(p) + Sμ

χ (p) (7)

for a set of events with given ζA . Averaging over many events will lead to a cancellation of all parity-breaking terms of Sχ (p), as has been 
emphasized.

If ζ =O(10−2), the magnitude of the spin vector (5) is comparable to the one from hydrodynamics in the eq. (7). However, the former 
peculiarly differs from the latter in that it is just longitudinal, that is directed along the particle momentum. To prove it, let us back boost 
(5) to the rest frame of the particle:

S0 = S − p

ε(ε + m)
S · p, (8)

yielding:

S0,χ = hχ (p)p̂, (9)

with p̂ = p/|p| and:

hχ (p) = gh

2

|p|
ε

∫
�

d� · p ζAnF (1 − nF)∫
�

d� · p nF
. (10)

Altogether, the axial chemical potential induces an additional contribution to the helicity of spin 1/2 baryons2:

S0,χ · p̂ = hχ (p), (11)

which applies to anti-baryons as well being the axial current invariant by charge conjugation.
Since hχ depends on an axial chemical potential which fluctuates event-by-event with zero mean, it vanishes when averaged over 

many events. Therefore, the term (9) does not contribute to the overall mean spin vector measured by the experiments. Notwithstanding, 
this fluctuating contribution can be detected, what will be proposed in the next Sections.

3. Helicity and symmetry of a nuclear collision

The average high energy nuclear collision has two remarkable geometrical symmetries: parity  and rotation of an angle π around 
the angular momentum direction R J (π) (see Fig. 2). These geometrical symmetries should be reflected into the shape of the freeze-out 
hypersurface and the properties of the density operator and its local equilibrium approximation, that is eq. (3). Indeed, the operator com-
mutes with the quantum operators corresponding to  and R J (π), which implies that the fields β and ζi should fulfill those symmetries 
as well. For instance, the four-temperature β fulfills these relations under reflection:

β0(x0,−x) = β0(x0,x), β(x0,−x) = −β(x0,x).

On the other hand, as has been mentioned, a local parity breaking occurs if the axial chemical potential in a single collision event does 
not behave as a pseudo-scalar function, that is if:

ζA(x0,−x) �= −ζA(x0,x)

while rotational symmetry R J (π) is supposedly preserved.3

These geometrical symmetries, or lack thereof, have an exact match in momentum space (see discussion in ref. [36]). Particularly, if 
parity is conserved, momentum spectra must be invariant by reflecting p → −p. Likewise, the mean spin vector, being a pseudo-vector, 
should fulfill:

S0(−p) = S0(p)

2 We define helicity as the scalar product of the momentum and the spin vector in the rest frame. However, helicity is also defined as the scalar product of the momentum 
and the spin vector in the same reference frame. The two definitions differ, according to the equation (8) by a factor m/ε.

3 Note that the freeze-out hypersurface can be parametrized as x0 = f (x) and the function f (x) must be parity-invariant, so that the argument x0 does not change by 
reflection if the function ζA is restricted to the freeze-out hypersurface.
3
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Fig. 2. Geometry of a relativistic heavy ion collision. The system is symmetric by rotation around J by an angle π and is invariant by reflection with respect to the reaction 
plane (zx plane). Combining the two symmetries, the system is invariant by total reflection.

and helicity should be a pseudo-scalar in momentum space. On the other hand, if parity is broken, helicity can acquire a scalar component 
in momentum space. This is most easily seen in the simple case of a constant ζA over the freeze-out hypersurface, which turns the (11)
in the very simple and suggestive:

hχ (p) = gh

2

|p|
ε

ζA

under the approximation of 1 − nF ∼ 1 in the (10). In general, one can expand the function ζA(x) at the freeze-out into multipolar 
components, thus separating the parity-conserving (odd l) from the parity-breaking (even l) terms:

ζA(x) =
∞∑

l=0

l∑
m=−l

Zlm(r)Y l
m(θ,ϕ) , (12)

where Y l
m are the spherical harmonics. Correspondingly, the helicity function has a multipolar expansion in momentum space:

hχ (p) =
∞∑

l=0

l∑
m=−l

Hlm(p)Y l
m(θp, φp) (13)

with parity-conserving odd l terms and parity-breaking even l terms. Note, however, that the relations between the Hlm and the Zlm
are not straightforward because of the non-trivial dependence on the coordinates of the Fermi-Dirac distribution in the equation (10). 
Particularly, a coefficient Zlm in the eq. (12) cannot be reconstructed from the measurement of one coefficient Hlm with the same couple 
of integers. In fact, many integers (l, m) of Hlm can contribute to one multipolar coefficient Z LM and vice-versa.

4. Parity violation and helicity azimuthal dependence

Local parity violation in the helicity spectrum can be established, in a model independent way, by studying the azimuthal dependence 
of, e.g. � hyperon helicity in the transverse plane to verify the non-vanishing even l terms in the expansion (13). Let us consider, for 
simplicity, particles emitted at midrapidity in a heavy ion collision, i.e. with vanishing longitudinal momentum pz = 0; the momentum 
vector p is then only transverse and can be described by a magnitude pT and the azimuthal angle φ with respect to the reaction plane 
y = 0 in Fig. 2. In this case, the expansion (13) becomes a single-variable Fourier expansion in the azimuthal angle φ. The helicity 
function can be split into a parity preserving pseudo-scalar part hP and a parity breaking scalar part hS . Taking into account the rotational 
symmetry φ → π − φ and their transformation properties under reflection φ → π + φ, they can be written as:

hP (pT , φ) =
∑

k

Pk(pT ) sin[(2k + 1)φ], (14)

hS(pT , φ) =
∑

k

Sk(pT ) cos[2kφ].

The above forms are dictated by symmetry, hence they are completely general and model-independent, see Fig. 3 for an illustration. The 
models, amongst which the local equilibrium model with axial chemical potential, in principle predict the function (10) and, consequently, 
the momentum dependent coefficients of Pk and Sk in the (14).

The hydrodynamic polarization in eq. (7) does not break parity and does not contribute to hS , but only to hP . As we have emphasized, 
unlike for the Pk ’s, the Sk ’s average to zero over many events and suitable observables must be devised to detect them. For instance, by 
retaining only the leading harmonics in the (14), the helicity squared reads:

h2(pT ) = (S0 + P0 sinφ)2 = S2
0 + P 2

0 sin2 φ + 2S0 P0 sinφ (15)

and, assuming that S0 and P0 are uncorrelated, being 〈〈S0〉〉 = 0 when averaging over many events, one has:

〈〈h2(pT )〉〉 = 〈〈S2〉〉 + 〈〈P 2〉〉 sin2 φ . (16)
0 0

4
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Fig. 3. Examples of the distributions of the scalar, parity-breaking, component of the helicity (left) and of the pseudoscalar component (right) in the transverse momentum 
plane. The contour plots show the profile of the helicity calculated with the Fourier expansion (14) and parameter values quoted in the right bottom corner. The parity-
breaking component fluctuates on an event-by event basis with positive or negative values (left).

The constant term 〈〈S2
0〉〉 is non-vanishing and, at least in principle, one could think of measuring it by fitting the h2(φ) azimuthal function. 

However, since helicity can only be measured through the fluctuating angle between the momentum of the � and the momentum of the 
decay proton in the � rest frame, it would be hard to disentangle a mean value of the helicity squared from the fluctuation variance. 
Moreover, an accurate identification of the reaction plane is needed (not its orientation though) which might be difficult to achieve.

A better and definitely more realistic method is based on the measurement of the helicity-helicity angular correlation in the same 
event. Azimuthal polarization correlations have been proposed to detect the vortical structure of the hydrodynamic motion [37] and we 
find here that they can be used to detect the chirality imbalance as well. Suppose that two (or more) hyperons are emitted in the same 
event at two different angles φ and φ + �φ and also suppose, for illustrative purpose, that there is no sizeable spin-spin two-particle 
correlation. Then, if

n(pT 1,pT 2) = dN

d2pT 1d2pT 2

is the two-particle momentum spectrum, and N its integral, we have:

〈h1h2(�φ)〉 = 1

N

∫
d2pT 1d2pT 2δ(φ2 − φ1 − �φ)h1(pT 1)h2(pT 2)n(pT 1,pT 2) (17)

which is expected to receive contributions from the parity violating terms. Neglecting momentum correlations and the azimuthal 
anisotropies of the spectrum, such as elliptic flow, which introduce just small corrections, and retaining only the leading harmonics 
just like in equation (15), one has:

〈h1h2(�φ)〉 � 1

2π

2π∫
0

dφ
(

S̄2
0 + P̄ 2

0 sin2 φ cos�φ
)

= S̄2
0 + 1

2
P̄ 2

0 cos�φ,

where the bar stands for transverse momentum average. The first term now survives the averaging over many events, so that a pedestal 
in the helicity-helicity azimuthal correlation function, like in eq. (16), signals a local parity violation. The constant, parity-breaking term, 
S0 can be highlighted by integrating the equation (17) in �φ; it can be readily shown that, if momentum correlations are negligible as it 
was supposed for the equation (17):

1

2π

2π∫
0

d�φ 〈h1h2(�φ)〉 = S̄2
0

It is important to stress that the correlation function (17), as well as other possible combinations of two helicities, does not require the 
identification of the reaction plane and can be measured by means of the angles between the � momentum and the proton momentum 
in the � rest frame.
5
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While a non-vanishing value of the S̄2
0 is a clear signal of parity violation, one may wonders whether parity violation can be generated 

only by a genuine hot QCD-generated axial imbalance. Indeed, for the case of �, a possible source of background is the parity-violating 
polarization transfer in the weak � → � decay. A quantitative assessment certainly goes beyond the scope of the present work; we just 
remark that secondary �s from � decays can be selected out through the displacement of their production point from the primary vertex 
of the collision, what makes this background not irreducible.

5. Conclusions and outlook

To summarize, we have shown that the spin polarization vector of hyperons can be used to reveal local parity violation in hot QCD 
matter in relativistic heavy ion collisions. The helicity of �s acquires a term which is proportional to the fluctuating parity-breaking 
axial chemical potential, that we calculated in the linear approximation. To detect this contribution, we propose to measure the angular 
azimuthal correlation of the helicity of � pairs in the same event through the measurement of the angle between the momentum of the 
hyperon and the momentum of the decay proton in its rest frame. For this purpose, a full quantitative study of the relation between the 
axial chemical potential distribution and the corresponding helicity pattern would be an important point of a future analysis.
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Appendix A. Calculation of the axial chemical contribution to the spin polarization vector

In this Appendix section we provide the detailed derivation of the contribution of the axial chemical potential to the polarization vector 
of a spin 1/2 particles in a relativistic fluid at local thermodynamic equilibrium. We refer to the main letter for the notation.

The mean spin vector can be derived from the future time-like part of Wigner function of the emitted particle [20]:

Sμ(p) = 1

2

∫
�

d� · p tr
[
γ μγ 5W+(x, p)

]∫
�

d� · p tr [W+(x, p)]
, (A.1)

where � can be approximated as the freeze-out 3D hypersurface in Fig. 1. The Wigner function involves the effective hadronic fields, 
which are assumed to be free:

W+(x, p)ab = 1

(2π)4

∫
d4s e−ip·sTr(ρ̂ : 	b(x + s/2)	a(x − s/2) :). (A.2)

The density operator ρ̂ in the above equation must be fixed, in the Heisenberg representation. Therefore, in the hydrodynamic picture 
of the QCD plasma, it is assumed to be the local equilibrium density operator specified by the initial conditions [21], that is at the 3D 
hypersurface where the plasma is supposed to achieve local thermodynamic equilibrium (�eq in Fig. 1):

ρ̂ = 1

Z
exp

⎡⎢⎣−
∫

�eq

d�μ

(
T̂ μνβν − ζA ĵμA

)⎤⎥⎦ . (A.3)

For the sake of simplicity, we have neglected all terms involving the conserved currents except for the axial current operator ̂ j A
4 is the 

color-singlet axial current expressed in terms of the fundamental quark and gluon fields and includes the Chern-Simons current K̂ μ from 
anomaly [38] so as to be a conserved one in the plasma phase. The exponent can be rewritten, by using the Gauss’ theorem (see Fig. 1):∫

�eq

d�μ

(
T̂ μνβν − ζA ĵμA

) =
∫
�

d�μ

(
T̂ μνβν − ζA ĵμA

) +
∫
�

d�
(
T̂ μν∂μβν − ĵμA ∂μζA − ζA∂μ̂ jμA

)
(A.4)

where � is the space-time region encompassed by the 3D hypersurfaces �eq and � = �FO ∪ σ± [21]. The last term in the equation (A.4)
is responsible for the dissipative corrections and includes a term with the divergence of the axial current which is quasi-vanishing in the 
chirally symmetric QGP phase (broken by quark masses). In the hydrodynamic approach, the local thermodynamic equilibrium term is 
dominant and one can obtain a good approximation by neglecting the second integral on the right hand side of (A.4):

ρ̂ � ρ̂LE = 1

ZLE
exp

⎡⎣−
∫
�

d�μ

(
T̂ μνβν − ζA ĵμA

)⎤⎦ . (A.5)

4 In this work the axial current of the free Dirac field is defined as ̂ jμA = 	̄γ μγ 5	 with γ 5 = diag(I, −I).
6
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The eq. (A.2) is indeed the mean value of the Wigner operator at the point x

Ŵ (x, p)ab = 1

(2π)4

∫
d4s e−ip·s : 	b(x + s/2)	a(x − s/2) :

and, in the hydrodynamic limit of slowly varying β(x) compared to the microscopic length scales, one can Taylor expand the β field 
in (A.5) from x and retain only the leading term:

Tr(ρ̂LEŴ (x, p)) � 1

ZLE
Tr

⎛⎝Ŵ (x, p)exp

⎡⎣−β(x) · P̂ +
∫
�

d�ρ ζA ĵρA

⎤⎦⎞⎠ , (A.6)

where P̂ is the total four-momentum. The term involving the axial current term is supposedly small compared to the first term, hence 
one can expand the exponential in the (A.6) with the formula:

e Â+B̂ = e Â +
1∫

0

dz ez Â B̂ e−z Â e Â + · · · ,

where:

Â = −β(x) · P̂ , B̂ =
∫
�

d�ρ ζA ĵρA .

Therefore, the response of the thermal expectation value of Wigner operator to the axial current term B̂ at local equilibrium is obtained 
by the previous expansion and is given by, for the particle term:

〈Ŵ+(x, p)〉LE � 〈Ŵ+(x, p)〉β(x) + �W+(x, p) (A.7)

with

�W+(x, p) =
∫
�

d�ρ(y) ζA(y)

1∫
0

dz 〈Ŵ+(x, p)̂ jρA(y + izβ(x))〉c,β(x), (A.8)

where the symbol 〈· · ·〉β(x) denotes thermal averages with the density operator

ρ̂0 = 1

Z
exp[−β(x) · P̂ ]

i.e. the familiar homogeneous global equilibrium density operator in the grand-canonical ensemble. The subscript c on the thermal average 
in (A.8) signifies the connected part of the correlator, that is, for the simplest case of two operators:

〈Ô 1 Ô 2〉c ≡ 〈Ô 1 Ô 2〉 − 〈Ô 1〉〈Ô 2〉.
The color-singlet axial current operator can be decomposed on the multi-hadronic Hilbert space basis and can be written as a combi-

nation of creation and annihilation operators [39]:

ĵμA (x) =
∞∑

N=0
M=0

∑
j1,..., jN

k1,...,kM

∫
d3q′

1

2ε′
1

· · ·
∫

d3q′
N

2ε′
N

∫
d3q1

2ε1
· · ·

∫
d3qM

2εM

× â†
j1
(q′

1) · · · â†
jN

(q′
N )̂ak1(q1) · · · âkM (qM) Jμ(q′,q, x) j1,...,kM

where the indices jl and kl label the various hadronic species and the spin indices of the creation and annihilation operators have been 
omitted. Each function J (p′, p, x) can be obtained by forming suitable multi-hadronic matrix elements. In the formula (A.8), most of the 
above terms vanish and the predominant contribution is given by the term with two particles of the same species h as specified by the 
Wigner operator, which is made of hadronic fields. Specifically, the predominant term reads (with spin indices):∑

σ ,σ ′

∫
d3q′

2εq′

∫
d3q

2εq
â†

h(p′)σ ′̂ah(q)σ J (q,q′, x)hh
σ ,σ ′ (A.9)

and the integrand function can be obtained by taking the following matrix element of the axial current:

Jμ(q,q′, x)hh
σ ,σ ′ = 〈0|̂aσ ′(q′)̂ jμA (x)̂a†

σ (q)|0〉 = 〈q′,σ ′ |̂ jμA (x)|q,σ 〉 (A.10)

where creation and annihilation operators are covariantly normalized:

[̂aσ (q), â†
σ ′(q′)]± = 2ε δσσ ′δ3(q − q′).

The matrix element of the axial current on two spin 1/2 hadronic states has a well-known form which is dictated by Poincaré symmetry 
and Dirac equation:
7
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〈q′,σ ′ |̂ jμA (x)|q,σ 〉 = 1

(2π)3
eiQ ·xūσ ′(q′)

[
G A1(Q 2)γ μγ 5 + Q μ

2mh
G A2(Q 2)γ 5

]
uσ (q) (A.11)

with Q = (q′ − q) and u(q) are the spinors of the hadron normalized so as to:

ūσ (k)uσ ′(k) = 2mh δσσ ′ , v̄σ (k)vσ ′(k) = −2mh δσσ ′ .

The axial form factors G A1(Q 2) and G A2(Q 2) depend on the flavour-space transformation properties of the axial current ĵ A , that is 
whether ̂ j A includes the strange quark term and to what extent.

Altogether, the relevant part of the axial current operator in (A.8) is obtained by plugging the (A.11) and (A.10) into the (A.9):

ĵρA(y + izβ) → ĵρA,h(y + izβ) = 1

(2π)3

∑
σ ,σ ′

∫
d3q′

2εq′

∫
d3q

2εq
â†

h(q
′)σ ′̂ah(q)σ eiQ ·y−zt·β (A.12)

× ūσ ′(q′)
[

G A1(Q 2)γ μγ 5 + Q μ

2mh
G A2(Q 2)γ 5

]
uσ (q).

We are now in a position to work out the (A.8). The Wigner operator can be expanded by using the normal mode expansion of the 
Dirac field:

	(x) =
2∑

σ=1

1

(2π)3/2

∫
d3k

2εk

[
uσ (k)e−ik·x̂ah(k)σ + vσ (k)eik·x̂b†

h(k)σ

]
and retaining only the particle operators ̂ah and ̂a†

h:

Ŵ+(x, p)ab = 1

(2π)3

∑
τ ,τ ′

∫
d3k

2εk

∫
d3k′

2εk′
δ4(p − (k + k′)/2)e−ix·(k′−k)uτ ′(k′)aūτ (k)b̂a†

h(k)τ âh(k
′)τ ′ , (A.13)

while for the axial current the equation (A.12) is employed. From now on we omit the subscript h as only one hadronic species is involved.
It turns out that the correlator �W+(x, p)ab in the eq. (A.8) involves the thermal expectation values between four creation and 

annihilation operators where the first two operators come from the Wigner operator in the eq. (A.13) and the remaining two operators 
from the axial current operator in the eq. (A.12). Thanks to the thermal Wick theorem, a four-operator thermal expectation value can be 
reduced to the product of two-operator thermal expectation values as follows:

〈̂a†
1̂a2̂a†

3̂a4〉c = 〈̂a†
1̂a2̂a†

3̂a4〉 − 〈̂a†
1̂a2〉〈̂a†

3̂a4〉 = 〈̂a†
1̂a4〉〈̂a2̂a†

3〉 .

The two-operator thermal expectation values for non-interacting fields with the homogeneous grand-canonical ensemble operator ρ̂0 are 
given by:

〈̂a†
τ (k)̂aσ (q)〉β(x) =δτσ 2εqδ

3(k − q)nF(k, x),

〈̂aτ ′(k′)̂a†
σ ′(q′)〉β(x) =δτ ′σ ′2εq′δ3(k′ − q′)(1 − nF(k

′, x)),
(A.14)

where nF is the covariant Fermi-Dirac distribution function

nF(k, x) = 1

eβ(x)·k + 1
.

All other combinations have vanishing expectation values.
By using the (A.14), after some simple calculation, both terms on the right hand side of the equation (A.7) can be worked out:

〈Ŵ+(x, p)〉β(x) = (
m + γ μpμ

)
δ(p2 − m2)θ(p0)

1

(2π)3
nF (p) , (A.15)

and:

�W (x, p)+ab =
∫
�

d�ρ(y) ζA(y)

1∫
0

dz
1

(2π)6

∫
d3k d3k′

4εkεk′
δ4

(
p − k + k′

2

)
nF(k, x)(1 − nF(k

′, x)) (A.16)

×Aρ(k,k′)ab ei(k−k′)·(x−y)ez(k−k′)·β(x),

where we defined:

Aρ(k,k′) ≡ (/k′ + m)

[
G A1

(
Q 2

)
γ ργ 5 + k′ρ − kρ

2m
G A2

(
Q 2

)
γ 5

]
(/k + m),

where now Q = (k′ − k) because of the (A.14), and use has been made of the known relation:∑
uσ (k)ūσ (k) = /k + m.
σ

8
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We can now work out an approximated expression of the mean spin vector due to the axial chemical potential. By replacing the Wigner 
function in the eq. (A.1) with its local equilibrium approximation (A.7), and making use of the (A.15) taking into account the known traces 
of the γ matrices, we are left with:

Sμ
χ (p) = 1

2

∫
�

d� · p tr
[
γ μγ 5�W+(x, p)

]∫
�

d� · p tr
[〈Ŵ+(x, p)〉β(x) + �W+(x, p)

] , (A.17)

as the term due to eq. (A.15) in the numerator gives vanishing contribution. To proceed, we need to calculate some traces:

tr
(
/p + m

) = 4m

tr
[
(/k′ + m)γ ργ 5(/k + m)

] = 0,

tr
[
(/k′ + m)γ 5(/k + m)

] = 0,

tr
[
γ μγ 5(/k′ + m)γ 5(/k + m)

] = −4m(k′μ − kμ)

tr
[
γ μγ 5(/k′ + m)γ ργ 5(/k + m)

] = −4
(
ημρ(m2 + k · k′) − kρk′μ − kμk′ρ)

.

By plugging the equations (A.15) and (A.16) into the (A.17) and using the above trace formulae, the following expression is found for the 
mean spin vector:

Sμ
χ (p) = − 2

D

∫
�

d�(x) · p

∫
�

d�ρ(y) ζA(y)

1∫
0

dz

(2π)6

∫
d3k

2εk

∫
d3k′

2εk′
δ4

(
p − k + k′

2

)
× Bμρ(k,k′)nF(k, x)(1 − nF(k

′, x))ei(k−k′)·(x−y)ez(k−k′)·β(x),

(A.18)

where:

Bμρ(k,k′) ≡ G A1(Q 2)
[
ημρ(m2 + k · k′) − kρk′μ − kμk′ρ]

+ 1

2
G A2

(
Q 2

)
(k′μ − kμ)(k′ρ − kρ) (A.19)

and D is the denominator in the leading order approximation:

D = 4m

(2π)3

∫
�

d� · p δ(p2 − m2)θ(p0)nF(p). (A.20)

The (A.18) is a double integral in x, y which can be recast as:

Sμ
χ (p) = − 2

D

∫
�

d�(x) · p

∫
�

d�ρ(y)ζA(y) Gμρ(β(x), x − y)

where the function G results from the integration in k, k′, z. The function G decays on microscopic length scales as a function of its 
argument x − y whereas the function ζA supposedly varies significantly over a longer length scale, in the hydrodynamic picture. Therefore, 
one can obtain a good approximation of the above expression by replacing ζA(y) with ζA(x) and taking it out of the y integral. By doing 
so, only an exponential is left to be integrated in y in the eq. (A.18):∫

�

d�ρ(y) ζA(y)ei(k−k′)·(x−y) � ζA(x)

∫
�

d�ρ(y) ei(k−k′)·(x−y).

To evaluate the integral over the hypersurface �, one can take advantage of the Gauss theorem. By denoting with �B the space-time 
region encompassed by the 3D hypersurfaces �FO and �B which is the hyperplane region connecting the �FO boundaries (see Fig. 1):∫

�

d�ρ(y) ei(k−k′)·(x−y) =
∫
σ±

d�ρ(y) ei(k−k′)·(x−y) +
∫
�B

d�ρ(y) ei(k−k′)·(x−y) − i(k − k′)ρ
∫
�B

d4 y ei(k−k′)·(x−y).

The contribution afrom the hyperbolic branches σ± , which have not even entered the plasma phase (see Fig. 1), can be neglected alto-
gether, especially at high energy. The 3D hypersurface �B is a subset of a hyperplane parallel to t = 0 in the center-of-mass frame (see 
Fig. 1), thus d�ρ = t̂ρd3y = δ0

ρd3y. If it is large enough, one can approximate it with a Dirac δ:∫
�B

d�ρ(y)ei(k−k′)·(x−y) = t̂ρ

∫
d3 y ei(k−k′)·(x−y) � t̂ρ(2π)3δ3(k − k′).

Likewise, in the same approximation, the integral over the region �B multiplied by (k − k′) vanishes and one is finally left with the 
approximation:∫

d�ρ(y)ζA(y)ei(k−k′)·(x−y) � ζA(x)t̂ρ(2π)3δ3(k − k′). (A.21)
�
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With k = k′ , being k on-shell, we have k = k′ and Q = (k′ − k) = 0. Therefore, the equation (A.19) simplifies to:

Bμρ(k,k) = 2gh

(
ημρm2 − kρkμ

)
,

where gh = G A1(0) is the axial charge, that is the matrix element (A.11) at zero momentum transfer. With the approximation (A.21) we 
can readily integrate the expression (A.18) in k′ and we obtain

Sμ
χ (p) � −2gh

D

∫
�

d�(x) · p ζA(x)

1∫
0

dz

(2π)3

∫
d3k

2εk

1

2εk
δ4 (p − k)2

[
t̂μm2 − εkkμ

]
nF(k, x)(1 − nF(k, x)).

Now, the dependence on z is gone and the integration in z is thus trivial. Moreover:∫
d3k

2εk
δ4(p − k) f μ(k) =

∫
d4k δ(k2 − m2)θ(k0)δ

4(k − p) f μ(k) = θ(p0)δ(p2 − m2) f μ(p),

where

f μ(k) = t̂μm2 − εkkμ

εk
nF(k, x)(1 − nF(k, x)).

By using the previous results and replacing the denominator (A.20), the final expression of the mean spin vector, at the leading order in 
the axial chemical potential, is obtained:

Sμ
χ (p) = gh

2

∫
�

d�(x) · p ζA(x)nF(p, x) (1 − nF(p, x)) δ(p2 − m2)θ(p0)∫
�

d�(x) · p nF(p, x)δ(p2 − m2)θ(p0)

εpμ − m2t̂μ

mε
.

Since the integration over the hypersurface puts the momentum p on-shell [20], the delta functions δ(p2 − m2) give rise to an infinite 
constant and cancel out in the ratio, while θ(p0) becomes redundant. Therefore, the mean spin vector induced by chiral imbalance, at the 
leading order in the axial chemical potential, is:

Sμ
χ (p) = gh

2

∫
�

d� · p ζAnF (1 − nF)∫
�

d� · p nF

εpμ − m2t̂μ

mε
,

where the arguments have been omitted.
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