
Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM

DOTTORATO DI RICERCA
IN MATEMATICA, INFORMATICA, STATISTICA

CURRICULUM IN MATEMATICA
CICLO XXXIII

Sede amministrativa Università degli Studi di Firenze
Coordinatore Prof. Paolo Salani

Adaptive Regularisation Methods under
Inexact Evaluations for

Nonconvex Optimisation and
Machine Learning Applications

Settore Scientifico Disciplinare MAT/08

Dottorando
Gianmarco Gurioli

Tutore
Prof. Stefania Bellavia

Coordinatore
Prof. Paolo Salani

Anni 2017/2020

Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM

Mathematical Institute, University of Oxford

Thesis candidated for the label of
DOCTOR EUROPAEUS

Institutions involved:

Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM,

University of Oxford

The realisation of this thesis has benefited from fruitful discussions with
Prof. Philippe L. Toint, during his annual visits at the University of Florence, and
from valuable hints by Prof. Coralia Cartis, during my research period at the

Mathematical Institute, University of Oxford.

Dottorando
Gianmarco Gurioli

Tutori
Prof. Stefania Bellavia,
Università degli Studi di Firenze
Prof. Coralia Cartis,
University of Oxford and Balliol College

Coordinatore
Prof. Paolo Salani

Contents

Contents i

List of Algorithms v

List of Tables vii

List of Figures ix

Introduction 1

I General Background on Adaptive Cubic Regularisation 5

1 The Adaptive Cubic Regularisation (ARC) Framework 7
1.1 The ARC algorithm . 12
1.2 Worst-case evaluation complexity analysis of the basic ARC algorithm . . . 16

1.2.1 Convergence to first-order critical points 22
1.2.2 Convergence to second-order critical points 23

1.3 Guidelines for approximately minimising the cubic model 30
1.3.1 Characterisation of the minimiser of the cubic model 30
1.3.2 Cubic model minimisation in a subspace 33
1.3.3 Methods for approximately minimising the cubic model 34

II Adaptive Cubic Regularisation Methods under Inexact Evaluations 39

2 Inexact Evaluations in the Finite-Sum Minimisation Setting 45

3 Adaptive Cubic Regularisation Methods under Dynamic Inexact Hessian Informa-
tion 49
3.1 Overview of the requirements for Hessian approximation 50
3.2 An adaptive choice of the inexact Hessian: the ARC-DH algorithm 51
3.3 Complexity and convergence analysis to first-order critical points 55
3.4 Complexity and convergence analysis to second-order critical points 58
3.5 The finite-sum minimisation setting . 60
3.6 Related works . 62
3.7 Chapter conclusion . 63

4 Adaptive Regularisation Methods with Inexact Function and Derivatives Evaluations 65
4.1 High-order necessary conditions and the ARqpDA algorithm 66
4.2 Enforcing the relative error on Taylor’s increments 71

4.2.1 The accuracy checks . 71
4.2.2 Computing the optimality measure . 75

i

4.2.3 Computing the step . 77
4.2.4 Evaluation complexity of a single ARqpDA iteration 81

4.3 Evaluation complexity of the deterministic ARqpDA 82
4.4 A variant of the ARqpDA algorithm . 87
4.5 Application to unconstrained and bound-constrained first and second-order

nonconvex inexact optimisation . 88
4.5.1 Quadratic regularisation for first-order optimality (case p = q = 1) . . . 88
4.5.2 Cubic regularisation for first-order and/or second-order optimality (case

1 ≤ q ≤ p = 2) . 90
4.6 A probabilistic viewpoint on ARqpDA . 91
4.7 Chapter conclusion . 93

III Stochastic Complexity Analysis 95

5 Stochastic Analysis of an Adaptive Cubic Regularisation Method under Inexact
Gradient Evaluations and Dynamic Hessian Accuracy 99
5.1 A stochastic cubic regularisation algorithm with inexact derivatives evalua-

tions: the SARC-IGDH algorithm . 100
5.1.1 Main assumptions on the algorithm . 103

5.2 Complexity analysis of the algorithm . 103
5.2.1 Existing and preliminary results . 104
5.2.2 Bounding the expected number of steps with Σk ≥ σ 109
5.2.3 Bounding the expected number of steps with Σk < σ 111

5.3 Subsampling scheme for finite-sum minimisation 115
5.4 Chapter conclusion . 116

6 Stochastic Analysis of an Adaptive Regularisation Methods with Inexact Function
and Derivatives Evaluations 119
6.1 A stochastic regularisation algorithm with inexact evaluations: the SARqp al-

gorithm . 120
6.1.1 The stochastic setting . 123

6.2 Worst-case evaluation complexity . 126
6.2.1 General properties of the algorithm . 126
6.2.2 Bounding the expected number of steps with Σk ≥ σ 130
6.2.3 Bounding the expected number of steps with Σk < σ 131

6.3 Chapter conclusion . 133

IV Supervised Learning and Numerical Tests 135

7 Machine Learning and Real-Life Applications 137
7.1 Basics of supervised learning . 137

7.1.1 The underlying optimisation problem . 139
7.2 Numerical tests for nonconvex binary classification 147

7.2.1 Implementation issues . 148
7.2.2 Numerical tests on the ARC-DH algorithm 149

7.2.2.1 Synthetic datasets . 149
7.2.2.2 Real datasets . 153

7.2.3 Numerical tests on the SARC-IGDH algorithm 156
7.2.4 Preliminary numerical tests on the AR1DA algorithm 158

7.2.4.1 Binary classification of the Mushroom dataset via neural net-
works . 159

ii

7.3 A real-life machine learning application: the parametric design of centrifu-
gal pumps . 161
7.3.1 Centrifugal pumps: historical background and characterisation . . . 163
7.3.2 Pipelines for the parametric design: an industrial application 165
7.3.3 Numerical resolution of the classification task 168

Conclusions 195

A Appendix 199
A.1 Computing the global minimiser of the model (1.14) 199
A.2 Proofs . 203

Coauthorship of publications related to the thesis 207

Bibliography 209

iii

List of Algorithms

1 The Trust-Region algorithm [52](iteration k). 9
2 The ARC algorithm. 13
3 Modified Steps 2–3 of the ARC algorithm (Algorithm 2). 15
4 Modified Steps 0–2 of the ARC algorithm (Algorithm 2). 28
5 The Lanczos method [52] for an orthonormal basis of Kt, t ≥ 0. 36
6 The ARC algorithm with Dynamic Hessian (ARC-DH) accuracy. 54
7 The Adaptive Regularisation algorithm with Dynamic Accuracy (ARqpDA),

1 ≤ q ≤ p ≤ 2. 70
8 Verify the accuracy of ∆T r(x, vω). 73
9 Modified Step 1 of the ARqpDA algorithm, 1 ≤ q ≤ p ≤ 2. 75
10 Modified Step 2 of the ARqpDA algorithm. 78
11 The AR1DA Algorithm (ARqpDA with q = p = 1). 89
12 The Stochastic ARC algorithm with Inexact Gradient and Dynamic Hessian

(SARC-IGDH) accuracy. 102
13 Modified Steps 0–2 of the SARC-IGDH algorithm. 115
14 The SARqp Algorithm, 1 ≤ q ≤ p ≤ 2. 122
15 [40, Algorithm 6.1]. 201

v

List of Tables

2.1 First and second-order derivatives of (2.13) and corresponding uniform bounds. 48

4.1 Iteration and evaluation complexity bounds for ARqpDA, given 1 ≤ q ≤ p ≤ 2. 66

7.1 Synthetic datasets. Number of training samples (N), feature dimension (da),
number of testing samples (NT), 2-norm condition number of the Hessian
matrix at the computed solution (cond), scalar c used in forming Hessian esti-
mates (c). 150

7.2 The columns are divided in three different groups. ARC-Dynamic: aver-
age number of iterations (n-iter) and EGE at termination. ARC-Sub: worst
(Save-W), best (Save-B) and mean (Save-M) percentages of saving ob-
tained by ARC-Dynamic over ARC-Sub on the synthetic datasets. ARC-KL:
worst (Save-W), best (Save-B) and mean (Save-M) percentages of saving
obtained by ARC-Dynamic over ARC-KL on the synthetic datasets. 151

7.3 Synthetic1 dataset. Average number of iterations (n-iter), EGE, and worst
(Save-W), best (Save-B) and mean (Save-M) percentages of saving ob-
tained by ARC-Dynamic over ARC-Sub. 151

7.4 Synthetic6 dataset. Average number of iterations (n-iter), EGE, and worst
(Save-W), best (Save-B) and mean (Save-M) percentages of saving ob-
tained by ARC-Dynamic over ARC-Sub. 151

7.5 Synthetic datasets. Binary classification rate on the testing set employed
by ARC-Dynamic, ARC-Dynamic(c), c ∈ {0.25, 0.5, 0.75, 1, 1.25}, ARC-KL and
ARC-Sub; mean values over 20 runs. 152

7.6 Real datasets. Size of the training set (N), problem dimension (da), size of the
testing set (NT), tolerance ε for approximate optimality (ε1) and the ratio ρ/c

used for sample sizes computations. 154

7.7 Real datasets. Binary classification rate on the testing set employed by ARC-
Dynamic, ARC-Fix(p), p ∈ {0.01, 0.05, 0.1, 2} and ARC-Full; mean values over
20 runs. 154

7.8 Real datasets. Number of EGE employed by ARC-Dynamic, ARC-Fix(p), p ∈
{0.01, 0.05, 0.1, 2} and ARC-Full; mean values over 20 runs. 155

7.9 Increase of the CM at the k-th iteration of ARC-Dynamic and SARC related
to the derivatives computation; r denotes the number of performed Barzilai-
Borwein iterations. 157

7.10 Synthetic datasets. The columns are divided in two different groups. ARC-
Dynamic: average number of iterations (n-iter) and CMT. SARC: average
number of iterations (n-iter), CMT and mean percentage of saving (Save-M)
obtained by SARC over ARC-Dynamic. Mean values over 20 runs. 157

7.11 Synthetic datasets. Binary classification rate at termination on the testing
set employed by ARC-Dynamic and SARC; mean values over 20 runs. 157

vii

7.12 Mushroom and MNIST datasets. List of the considered architectures (ANN)
with the related number of parameters (n) and the binary classification rate
(ACC) on the testing set via AR1DA; mean values over 20 runs. 160

7.13 Pumps datasets. Size of the training set (N), problem dimension da (number
of features), size of the testing set (NT) and the ratio ρu between unfeasible
and feasible pumps in the training set. 169

7.14 Pumps datasets. Performance rates (testing set) via SVM in [104]. 171
7.15 PUMPSU dataset. Performance rates (testing set) via the FLM and the LMN

methods in [105]. 171
7.16 PUMPSU dataset. Performance rates and binary classification rate (ACC) on

the testing set via ARC-Dynamic and AR1DA; mean values over 20 runs. . . 172
7.17 PUMPSU dataset. Performance rates and binary accuracy (ACC) on the

testing set via MBGD and SVRG; mean values over 20 runs. 172
7.18 PUMPSVU dataset. Performance rates and binary accuracy (ACC) on the

testing set via ARC-Dynamic and the set of first-order methods: AR1DA,
MBGD and SVR; mean values over 20 runs. 173

7.19 Pumps datasets. Ratio FDR/PPV computed by the considered methods
on the PUMPSU and the PUMPSVU datasets. The values of ρu on both datasets
are also reported. The notation “n.a.” and “und.” stand for “not available"
and “undefined”, respectively. 174

viii

List of Figures

7.1 Comparison of ARC-Dynamic (continuous line), ARC-Dynamic(c) with c =

0.5 (dashed line with circles), c = 0.75 (dashed line with asterisks), c = 1.25

(dashed line with plus symbols), ARC-KL (dashed line with diamonds) and
ARC-Sub (dashed line with triangles) against EGE. Each row corresponds to
a different synthetic dataset. Training loss (left) and testing loss (right) against
EGE, logarithmic scale on the y axis. 174

7.2 Comparison of ARC-Dynamic (continuous line), ARC-Dynamic(c) with c =

0.25 (dashed line with squares), c = 0.5 (dashed line with circles), c = 0.75

(dashed line with asterisks), c = 1 (dashed line with crosses), ARC-KL (dashed
line with diamonds) and ARC-Sub (dashed line with triangles) against EGE.
Each row corresponds to a different synthetic dataset. Training loss (left) and
testing loss (right) against EGE, logarithmic scale on the y axis. 175

7.3 Synthetic datasets, Euclidean norm of the gradient against EGE (training
set), logarithmic scale on the y axis. ARC-Dynamic (continuous line), ARC-
Dynamic(c) with c = 0.25 (dashed line with squares), c = 0.5 (dashed line with
circles), c = 0.75 (dashed line with asterisks), c = 1 (dashed line with crosses),
c = 1.25 (dashed line with plus symbols), ARC-KL (dot line with diamonds)
and ARC-Sub (dashed line with triangles). 176

7.4 Synthetic datasets, 2-norm of the step against iterations via ARC-KL. Loga-
rithmic scale on the y-axis. 177

7.5 Synthetic datasets. Sample size for Hessian approximations against iterations. 178

7.6 Synthetic datasets. Portions of the corresponding graphs in Figure 7.5 show-
ing the iterations associated to low sample sizes. 179

7.7 Performance profile (EGE count) on [1, 3.4] for real datasets. 180

7.8 MNIST dataset (top), Gisette dataset (bottom), training loss (left) and test-
ing loss (right) against EGE, logarithmic scale on the y axis. ARC-Dynamic
(continuous line), ARC-Fix(p) with p = 0.2 (dashed line with crosses), p = 0.1

(dashed line with asterisks), p = 0.05 (dashed line with circles), p = 0.01

(dashed line with squares) and ARC-Full (dashed line with triangles). 180

7.9 Mushroom dataset, training loss (left) and testing loss (right) against EGE,
logarithmic scale on the y axis. ARC-Dynamic (continuous line), ARC-Fix(p)
with p = 0.2 (dashed line with crosses), p = 0.1 (dashed line with asterisks),
p = 0.05 (dashed line with circles), p = 0.01 (dashed line with squares) and
ARC-Full (dashed line with triangles). 181

7.10 HTRU2 dataset (top), Cina0 dataset (mid), a9a dataset (bottom), training
loss (left) and testing loss (right) against EGE, logarithmic scale on the y axis.
ARC-Dynamic (continuous line), ARC-Fix(p) with p = 0.2 (dashed line with
crosses), p = 0.1 (dashed line with asterisks), p = 0.05 (dashed line with cir-
cles), p = 0.01 (dashed line with squares) and ARC-Full (dashed line with
triangles). 182

ix

7.11 Ijcnn1 dataset (top), Reged0 dataset (bottom), training loss (left) and test-
ing loss (right) against EGE, logarithmic scale on the y axis. ARC-Dynamic
(continuous line), ARC-Fix(p) with p = 0.2 (dashed line with crosses), p = 0.1

(dashed line with asterisks), p = 0.05 (dashed line with circles), p = 0.01

(dashed line with squares) and ARC-Full (dashed line with triangles). 183
7.12 Synthetic datasets. Comparison of SARC (continuous line with asterisks) and

ARC-Dynamic (dashed line with triangles) against the considered cost mea-
sure CM. Each row corresponds to a different synthetic dataset. Training loss
(left) and testing loss (right) against CM with logarithmic scale on the y axis. 184

7.13 Synthetic datasets. Comparison of SARC (continuous line with asterisks) and
ARC-Dynamic (dashed line with triangles) against the considered cost mea-
sure CM. Each row corresponds to a different synthetic dataset. Training loss
(left) and testing loss (right) against CM with logarithmic scale on the y axis. 185

7.14 Synthetic datasets. Euclidean norm of the computed gradient against CM
(training set) with logarithmic scale on the y axis. SARC (continuous line with
asterisks), ARC-Dynamic (dashed line with triangles). 186

7.15 Synthetic datasets. Sample size (percentage) for Hessian approximations
employed by ARC-Dynamic (dashed line with triangles) and SARC (dashed
line with asterisks), together with the sample size (percentage) for gradi-
ent approximations considered by SARC (dotted dashed line with asterisks)
against iterations. 187

7.16 Cost Measure at Termination (CMT) against τ0 among SARC (continuous
line) and ARC-Dynamic (dashed line) on Synthetic1 and Synthetic4. 188

7.17 Mushroom dataset. Each row corresponds to a different ANN architecture
within the AR1DA method. Training loss (left) and testing loss (right) against
CM. 188

7.18 Mushroom dataset. Each row corresponds to a different ANN architecture
within the AR1DA method. Training loss (left) and testing loss (right) against
CM. 189

7.19 MNIST dataset. Each row corresponds to the performance of AR1DA with
a different ANN architecture: (784, 1) (first row), (784, 15, 1) (second row) and
(784, 15, 2, 1) (third row). Training loss (left) and testing loss (right) against CM. 190

7.20 Mushroom dataset. Each row corresponds to a different ANN architecture
within the AR1DA method. Sample size (percentage) for computed objec-
tive and gradient against CM. 191

7.21 MNIST dataset. Sample sizes performed by AR1DA with different ANN archi-
tectures against CM: (784, 1) (top-left), (784, 15, 1) (top-right) and (784, 15, 2, 1)

(bottom). 192
7.22 Single-shaft centrifugal impeller (left) and 3D view of impeller grid (right). . . 192
7.23 Left: PUMPSU dataset, comparison of ARC-Dynamic (continuous line) and

AR1DA (dashed line) against Cost Measure. Right-hand side. Right: PUMPSVU
dataset, training loss (dashed line) and testing loss (continuous line) against
Cost Measure via ARC-Dynamic. 193

7.24 PUMPSU dataset. Sample size (percentage) for gradient and Hessian ap-
proximations employed by AR1DA against Cost Measure. 193

A.1 Graphs of the functions θ1(λ) (left) and θ2(λ) (right) from (A.1) when ∇f(x) =

(0.25, 1)>, ∇2f(x) = diag(−1, 1) and σ = 2. 199
A.2 Graphs of the functions ϕ1(λ) (left) and ϕ2(λ) (right) from (A.2) when∇f(x) =

(0.25, 1)>, ∇2f(x) = diag(−1, 1) and σ = 2. 200
A.3 Graphs of the functions β1(λ) (left) and β2(λ) (right) from (A.2) when∇f(x) =

(0.25, 1)>, ∇2f(x) = diag(−1, 1) and σ = 2. 200

x

Introduction

In this thesis we mainly consider the numerical resolution of the following unconstrained
minimisation problem

min
x∈Rn

f(x), (1)

in which f : Rn → R represents the objective function, that is assumed to be sufficiently
smooth (f ∈ C2(Rn)) and bounded below.

In particular, we assume to bump into large-scale instances of the problem (i.e. with
large values of the number of independent variables n) and to cope with highly nonlin-
ear and/or nonconvex f , since this is the most frequent case when considering real-life
applications, such as the one arising in machine learning. In this way, the set of sta-
tionary points P def

= {x ∈ Rn | ∇f(x) = 0 } can be extremely rich compared to the case
of convex objective functions, where each stationary point, if any, is a global minimiser
or, more restrictively, when looking at the case of strictly convex functions, admitting at
most a global minimiser. Within nonconvexity, in fact, P can be populated by a variety of
local/global minimiser, local/global maximiser and saddle points.

In this light, second-order procedures are interesting strategies to handle the situation
in which a first-order optimisation solver gets stuck on a saddle point. This is because
these methods go beyond function and gradient computations, making use of second-
order information, let us say curvature information, cabled in Hessian computations. In
this context, this thesis builds on Adaptive Regularisation algorithms using Cubics (ARC).

From a macroscopic point of view, this class of second-order globally convergent
methods is based on an iterative scheme that starts from an initial guess x0 ∈ Rn and
generates a sequence

x0, x1, ..., xk, ...,

aiming at reducing the objective from an iteration to the other, in order to have f(xk) <

f(xk−1), for k ≥ 1.
The basic idea is specular to the well-known Trust-Region methods with which ARC

schemes share the fact that at each iteration a model based on the Taylor’s series of f
centered at xk with increment s is considered and truncated to the second order. From
this point on, the two approaches differ. In particular, instead of choosing a suitably small
trust-region radius ∆k > 0 and solving the per-iteration problem

min
s∈Rn, ‖s‖≤∆k

f(xk) +∇f(xk)>s+
1

2
s>∇2f(xk)s

for obtaining a candidate sk to define the new iterate xk + sk, the ARC approach solves
the unconstrained minimisation problem

min
s∈Rn

f(xk) +∇f(xk)>s+
1

2
s>∇2f(xk)s+

σk
3
‖s‖3, (2)

choosing a sufficiently large regularisation parameter σk > 0. The idea is thus to (ap-
proximately) solve (2), selecting the regulariser σk adaptively in order to get a suitable

1

decrease f(xk + sk) < f(xk) and, hence, setting xk+1 = xk + sk.
The choice of ARC methods in turn is not casual, since all the novel variants designed
and analysed in this work focus on optimal complexity for reaching a first-order critical
point under a certain accuracy and the complexity bounds for ARC methods have been
proved to be optimal.

The notion of complexity we look at here consists in the worst-case count of outer iter-
ations needed to find an approximate first or second-order critical point (iteration com-
plexity), with the aim of deriving an upper bound on it. The existence of such a bound
implies the termination of the algorithm and allows to derive its convergence properties.
Moreover, when the per-iteration number of function and its derivatives computations is
known, the bound for the worst-case iterations complexity applies also to give an up-
per bound on the number of function and derivatives evaluation, falling into the range
of evaluation complexity. In particular, for ARC schemes employing exact function and
derivatives, since each outer iteration of the method requires a function, a gradient and
a Hessian computation, the two notions are the same.

In many applications it is necessary (and sometimes also useful) to evaluate f(x)

and/or ∇jf(x), j ∈ {1, 2}, inexactly. We need only think to variable accuracy schemes,
evaluations affected by noise, approximations based on subsampling scheme or com-
plicated computations involving truncated iterative processes. As a consequence, a
careful investigation of inexact versions of second-order methods has got increasing in-
terest in literature. In particular, in the ARC context, approximate evaluations of f and its
derivatives have to be incorporated in (2), in order to reduce the per-iteration cost of the
procedure, while preserving optimal complexity and without deteriorating (hopefully) the
overall performance of the algorithm.

In so doing, great attention has to be placed on designing levels of resemblance
between approximate function/derivatives and their exact counterparts that are reliable
and implementable, basing on known and already computed quantities. It should be
specified that for maintaining the convergence and complexity properties of the basic
exact version of the method, such accuracy agreements usually have to be fulfilled at
each iteration k of the scheme, yielding a deterministic complexity analysis.

On the other hand, we will see that the practical estimate of f and its derivatives at
a certain iterate is not uniquely identified and can be obtained in practice only under
a certain probability, generating a non-deterministic algorithm. A relevant example in
such a context, common to many machine learning applications, is given by finite-sum
minimisation problems, i.e. occurrences of (1) with f(x) = 1

N

∑N
i=1 ϕi(x), ϕi : Rn → R,

and N a positive integer, for which accuracy requirements on f and its derivatives can
be practically achieved within an arbitrary prescribed probability by means of concen-
tration inequalities (see, e.g., [115]). Therefore, the complexity bounds coming from the
deterministic analysis can only be restored in probability, in the sense that they still hold
but within a certain probability of success, depending on the probabilities of the function
and derivatives approximations to match the prescribed accuracy levels. This is the field
of the so-called probabilistic analysis, that derives probabilistic conditions under which
properties of the deterministic algorithms are preserved without providing an algorithm
which is robust against failures to satisfy the adaptive accuracy requirements.

In fact, this approach does not give information about the true decrease of the objec-
tive function when the accuracy of the estimates for f or the derivatives are not satisfied;
in other words, nothing is said about a possible upper bound on the expected number
of steps needed to reach an approximate stationary point for the first time. This upper
bound is challenging and its investigation calls for a stochastic analysis of the methods.

The major aim of this thesis is essentially to handle the main challenges presented
above, exploiting the design, analysis and development of novel variants of ARC meth-
ods, employing inexact derivatives and/or function evaluations.

2

To start with, Part I introduces a suitable reference version of the ARC method, ob-
tained by merging existing basic forms of ARC algorithms, in order to set the general
background on adaptive cubic regularisation, rederiving its convergence and, mainly,
complexity properties, for higher understanding of the methods and theory presented in
the subsequent parts and chapters.

Having set the scene, Part II copes with the need of introducing inexactness in func-
tion and derivatives computations while conserving optimal complexity. After setting the
finite-sum minimisation framework (Chapter 2), this starts from Chapter 3 with the employ-
ment of inexact Hessian information, adaptively chosen, before moving on to Chapter 4,
in which an extended framework based on function estimates together with approximate
derivatives evaluations is considered.

Part III is then devoted to handle the stochastic complexity analysis of the frameworks
presented in Chapter 3 and Chapter 4, addressed in Chapter 5 and Chapter 6, respec-
tively.

Finally, Part IV faces the numerical tests of the proposed methods in the context of su-
pervised learning, ranging from popular machine learning datasets to a real-life machine
learning industrial application related to the parametric design of centrifugal pumps.

Notations. Z, N and R denote the set of integers, natural and real numbers, respectively.
Given the scalar or vector or matrix v, and the nonnegative scalar χ, we write v = O(χ) if
there is a constant g such that ‖v‖ ≤ gχ. Given any set S, |S| denotes its cardinality. Unless
otherwise specified, ‖ · ‖ denotes the standard Euclidean norm for vectors and matrices.
For a general symmetric tensor S of order p ≥ 1, we define

‖S‖[p]
def
= max
‖v‖=1

|S[v]p| = max
‖v1‖=···=‖vp‖=1

|S[v1, . . . , vp]| (3)

the induced Euclidean norm (see [126, Theorem 2.1] for a proof of the second equality).
Given a vector x ∈ Rn and a symmetric matrix A ∈ Rn×n, we denote by ‖x‖A the A-norm
of x, defined by ‖x‖A

def
=
√
x>Ax. Given n scalars {λi}ni=1, diag(λ1, · · · , λn) denotes the

diagonal matrix of Rn×n with diagonal components (i, i) equal to λi, for i ∈ {1, · · · , n}. We
also denote by ∇jxf(x) the j-th order derivative tensor of f evaluated at x, noting that
such a tensor is always symmetric for any j ≥ 2. ∇0

xf(x) and ∇1
xf(x) are synonyms for f(x)

and∇xf(x), respectively. The subscript x in∇jxf(x), j ≥ 0, is omitted when obvious from the
context. The notation ∇jxf(x)[s]` denotes the j-th derivative tensor applied to j copies of
the vector s. We use notations globminx∈S f(x) and globmaxx∈S f(x) to denote the smallest
and biggest value of f(x) over x ∈ S, respectively. All inexact functional evaluations are
indicated by an overbar. dαe and bαc denote the smallest integer not smaller than α and
the largest integer not exceeding α ∈ R (α ≥ 0), respectively. For symmetric matrices,
λmin(M) is the leftmost eigenvalue of M . As usual, R+ denotes the set of positive real
numbers, 0 is used for both the scalar zero and the null vector, while we use the notation
In ∈ Rn×n to denote the identity real matrix of dimension n× n. For nonnegative integers
i and j, we denote by δij ∈ {0, 1} the Kronecker delta, such that δij = 1 if and only if i = j.
Given k vectors {vi}ki=1 ⊆ Rn, span{v1, ..., vk} represents the subspace of Rn generated by
v1, ..., vk. We use the notation E[X] to indicate the expected value of a random variable
X. In addition, given a random event E, P (E) denotes the probability of E, while 1E

refers to the indicator of the random event E occurring (i.e. 1E(z) = 1 if z ∈ E, otherwise
1E(z) = 0). The notation Ec indicates that event E does not occur. Symbol “∧” is the
logical conjunction operator “and". Finally, we denote by ei ∈ Rn the i-th orthonormal
basis vector of Rn (i.e., ei ∈ Rn has zero entries except from the i-th component which is
equal to 1) and by e the Euler’s number.

3

Part I

General Background on Adaptive
Cubic Regularisation

5

Chapter 1

The Adaptive Cubic Regularisation
(ARC) Framework

Adaptive Regularisation methods using Cubics (ARC) are Newton-type procedures for
solving unconstrained optimisation problems of the form

min
x∈Rn

f(x), (1.1)

in which f : Rn → R is a sufficiently smooth and possibly nonconvex function. To ensure the
well-posedness of the considered problem, the objective function in (1.1) is additionally
assumed to be bounded below. Since the seminal work [95] by Nesterov and Polyak, the
method is proved to be a globally convergent second-order iterative scheme. In fact,
regardless of the initial guess x0 ∈ Rn, it generates a sequence of iterates {xk}k≥0 until a
point x̃ satisfying the approximate first-order optimality condition,

‖∇f(x̃)‖ ≤ ε1, (1.2)

or the second-order approximate optimality condition

‖∇f(x̃)‖ ≤ ε1 ∧ λmin(∇2f(x̃)) ≥ −ε2, (1.3)

is met, where εj > 0, j ∈ {1, 2}, denotes the j-th order tolerance. As usual (see, e.g., [40]),
conditions (1.2)–(1.3) are the discrete counterparts of the first and second-order optimal-
ity necessary conditions, reported below for the sake of completeness.

Theorem 1. (First-Order Necessary Optimality Condition). With reference to problem
(1.1), if x∗ is a local minimiser and f is continuously differentiable in an open neigh-
bourhood of x∗, then ∇f(x∗) = 0.

Theorem 2. (Second-Order Necessary Optimality Condition). With reference to prob-
lem (1.1), if x∗ is a local minimiser and ∇2f exists and is continuous in an open neigh-
bourhood of x∗, then ∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite.

The method can thus be used as a concrete alternative to line search [56] and trust-
region [52] algorithms, commonly-used as convergence schemes for unconstrained opti-
misation to globalise Newton-like iterations.

Like the trust-region approach, the aim of the k-th iteration of ARC methods is, given

7

the current iterate xk, to find a step s ∈ Rn such that xk + s reduces f , i.e. such that

f(xk + s) < f(xk).

To do that, assuming that f is twice continuously differentiable, both algorithms make use
of the Taylor’s series as a model to predict the values of the objective function f in a
neighborhood of the current iterate xk.

From this point on the two approaches differ and let us briefly recall the main frame of
the Trust-Region framework in [52]. To start with, the k-th iteration of trust-region schemes
considers a ball centered in xk with radius ∆k in which we trust that the following quadratic
model

mTR
k (s)

def
= f(xk) +∇f(xk)>s+

1

2
s>∇2f(xk)s, (1.4)

used to predict f(xk + s), is reliable. This is, mainly, the Taylor’s expansion centered at xk
with increment s, truncated to the second order in which ∇2f(xk) can represent the true
Hessian ∇2f ∈ Rn×n evaluated at xk (Newton Trust-Region method) or it can be replaced
by an approximation given by a symmetric matrix ∇2f(xk) (Quasi-Newton Trust-Region
method), in order to decrease the per-iteration computational cost of the algorithm.
Hence, it is expected to be a good estimate if ‖s‖ is sufficiently small and ∇2f(xk) is a
suitably good approximation of ∇2f(xk). In fact, assuming that ‖(∇2f(xk) −∇2f(xk))s‖ =

O(‖s‖2), the second-order Taylor’s expansion of f at xk coupled with the definition (1.4)
gives:

f(xk + s) = f(xk) +∇f(xk)>s+
1

2
s>∇2f(xk)s+O(‖s‖3) (1.5)

= mTR
k (s) +

1

2
s>
(
∇2f(xk)−∇2f(xk)

)
s+O(‖s‖3)

= mTR
k (s) +O(‖s‖3)

and, hence, f(xk + s) −mTR
k (s) = O(‖s‖3). In this view, a radius ∆k > 0 coming from the

previous iteration is considered and the new trial iterate xk + s generated at iteration k is
required to lay in the ball

Bk = {x ∈ Rn | ‖x− xk‖∗ ≤ ∆k } ,

in which ‖ · ‖∗ denotes a generic vectorial norm. A common choice is to define Bk re-
ferring to the Euclidean norm (see, e.g., [97]). The step sk is then defined by solving the
following quadratically constrained quadratic minimisation problem, known as the trust-
region minimisation subproblem:

min
s∈Rn, ‖s‖≤∆k

mTR
k (s) = min

s∈Rn, ‖s‖≤∆k

f(xk) +∇f(xk)>s+
1

2
s>∇2f(xk)s. (1.6)

It is worth noting that both the objective and the constraint (that can be rewritten as
s>s ≤ ∆2

k in (1.6)) are quadratic. Moreover, exact minimisation in (1.6) is not needed to
gain global convergence and prove complexity, but it suffices to find a step sk that in-
duce a “sufficient” decrease in the model. See [97, 52] for techniques employing exact
minimisation of the trust-region subproblem (1.6) and [52] for inexact resolutions. In addi-
tion, we do not forget that the subproblem minimisation is aimed at obtaining a reduction
of the objective. To this purpose, the following quantities are computed at iteration k.

• Actual reduction of the objective function: f(xk)− f(xk + sk);

• Predicted reduction of the objective function: mTR
k (0)−mTR

k (sk);

8

• Decrease ratio:

ρTRk
def
=

f(xk)− f(xk + sk)

mTR
k (0)−mTR

k (sk)
. (1.7)

Note that, when minimising (1.6), s = 0 ∈ Bk implies that mTR
k (sk) ≤ mTR

k (0), so the
predicted reduction is nonnegative by definition and the sign of ρTRk is given by its numer-
ator. If ρTRk ≥ η1 ∈ (0, 1), then a sufficient decrease of the objective function has actually
been gained, meaning that f(xk + sk) ≤ f(xk)− η1(mTR

k (0)−mTR
k (sk)), and thus the step

sk is accepted to update the iterate, setting xk+1
def
= xk + sk. Otherwise, the step sk is re-

jected. Finally, the guideline to update the radius ∆k relies on the fact that (1.7) provides
a measure of accordance between the model used and the function over the step, in
the sense that the larger is the ratio ρTRk (close to 1), the better is the agreement between
the two.

Note that:
ρTRk ' 1 ⇒ mTR

k (sk) ' f(xk + sk),

being mTR
k (0) = f(xk) by definition of mTR

k (s) in (1.4). Therefore, if ρTRk is large (in practice
above a prescribed decrease fraction η2 ∈ [η1, 1), with 0 ≤ η1 < 1), then enlarging ∆k is
considered licit, solving the trust-region subproblem (1.6) at the next iteration in a larger
ball; on the other hand, if ρTRk is small (even close to be null), the model is not considered
as a good approximation of the objective function f in the ball Bk and the radius ∆k is
reduced. The detailed iteration k of the Trust-Region algorithm in [52] is reported below.

Algorithm 1 The Trust-Region algorithm [52](iteration k).

Step 0: Initialisation. Given the current iterate xk, the radius ∆k > 0, the trust-region Bk,
the constants η1, η2, γ1, γ2, s.t.

0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1. (1.8)

Compute f(xk).

Step 1: Model definition. Build the model mTR
k (s) according to (1.4).

Step 2: Step computation. Compute a step sk by approximately solving the trust-region
subproblem (1.6) that “sufficiently reduces” the model.

Step 3: Acceptance of the trial step. Compute f(xk + sk) and ρTRk defined in (1.7):

ρTRk =
f(xk)− f(xk + sk)

mTR
k (0)−mTR

k (sk)
.

If ρTRk ≥ η1, then set xk+1 = xk + sk; otherwise set xk+1 = xk.

Step 4: Trust-region radius update. Set

∆k+1 ∈


[∆k,∞] , if ρTRk ≥ η2,

[γ2∆k,∆k] , if ρTRk ∈ [η1, η2) ,

[γ1∆k, γ2∆k] , if ρTRk < η1.

Set k = k + 1 and go to Step 1 if ρk ≥ η1; go to Step 2 otherwise.

The ARC approach stems from the idea of replacing the subproblem (1.6) by an un-
constrained optimisation subproblem to be solved at each iteration, in which the model
is still based on the Taylor’s expansion truncated to the second order, but incremented
by an additional cubic term.

9

To get more insight, let us assume that the Hessian ∇2f(x) is Lipschitz continuous on
a neighborhood of Rn containing the path of iterates {xk}k≥0, being L > 0 its 2-norm
Lipschitz constant (see Assumption 1.2.2), then from the Taylor’s expansion of f centered
at xk with increment s, it first follows that

f(xk + s) = f(xk) +∇f(xk)>s+
1

2
s>∇2f(xk)s+

+

∫ 1

0

(1− τ)s>(∇2f(xk + τs)−∇2f(xk))s dτ (1.9)

def
= TE2 (xk, s) +

∫ 1

0

(1− τ)s>(∇2f(xk + τs)−∇2f(xk))s dτ

≤ TE2 (xk, s) +
1

6
L‖s‖3 def

= mC
k (s), (1.10)

for all s ∈ Rn, where TE2 (xk, s) is such that TE2 (xk, 0) = f(xk) and denotes, for later use, the
Taylor’s expansion of f centered at xk with increment s truncated to the second-order.

The idea is indeed to overestimate f(xk + s) by the cubic model mC
k (s). Thus, so long

as
mC
k (s) < mC

k (0) = f(xk),

the new iterate xk+1 = xk + sk reduces f(x), providing f(xk+1) < f(xk). The minimisation
of the model mC

k (s) can indeed be considered to generate the step sk, forming the basis
for a new unconstrained optimisation algorithm.

The whole thesis elaborates on this algorithm, developing different independent lines
of research. We briefly reviewed here the main contributions on the topic.

The overestimation in (1.10) was firstly considered in the unpublished technical report
[70] written in 1981 by Griewank within the context of affine-invariant variants of Newton’s
method which are globally convergent to second-order critical points. In that work, a
variant of (1.10) is introduced. The core of this variant mainly consists in replacing L/2 > 0

by a k-dependent term σk > 0, considering the new model definition

mG
k (s)

def
= TE2 (xk, s) +

1

3
σk‖s‖3Gk , (1.11)

where σk‖ ·‖Gk is iteratively chosen to ensure the overestimation in (1.10), while preserving
the affine-invariant structure. In the work, all the minimisers (local or global) of the model
which provide descent are characterised and global convergence to second-order crit-
ical points is proved if the step s is computed by finding any second-order minimiser of
the model inducing a descent of the objective f . Concerning the convergence analysis,
quadratic local convergence is proved and the convergence proofs assume a global
Hölder condition on the Hessian of the objective function together with the assumption
that the sequence of symmetric positive definite matrices Gk stabilises over iterations. Us-
ing a variant of the nonlinear conjugate-gradient method, he also exploits the case in
which the minimisation of (1.11) is approximately performed, showing the rate of conver-
gence and giving some preliminary numerical results.

In more recent years, Nesterov and Polyak (see [95]) reconsidered the model (1.10)
showing that the resulting algorithm has a better global iteration worst-case complexity
bound with respect to the steepest descent method, if the step is computed via global
minimisation and the Hessian ∇2f(x) is globally Lipschitz continuous. The main contribu-
tion of the paper is related to global worst-case complexity bounds for different problem
classes, including some nonconvex cases. It is also shown that the search direction can
be computed by standard linear algebra techniques.

In this context, the notion of iteration complexity consists in the worst-case number
of outer iterations required by the considered algorithm to reach a first or second-order

10

critical point, while when the bound refers to the number of function and its derivatives
evaluation, we fall into the range of evaluation complexity. Usually (and this is the case
of this thesis), the study of evaluation complexity also includes iteration complexity, since
it stems from it counting the number of function and derivatives evaluations needed at
each outer iteration of the method. Although no numerical results were provided, global
convergence to second-order critical points and asymptotically quadratic rate of con-
vergence were analysed.

Subsequently, Nesterov has proposed in [94] more sophisticated methods to further
improve the complexity bounds in the convex case.

In 2007, the work [122] by Wieser, Deuflhard and Erdmann independently turned to
the same line of thought, motivated (as Griewank) by the design of an affine-invariant
version of Newton’s method. Their approach directly evolved from techniques for convex
problems and, elaborating on [58], it makes use of the cubic model (1.11) with the choice
Gk = σkGwhereG is positive definite and σk is an estimate of the global Lipschitz constant,
following similar updating rules for σk as the ones by Griewank. The proposed method
does not consider global model minimisation, but rather uses approximate techniques for
finding a local minimiser, such as Krylov’s subspace techniques and nonlinear conjugate-
gradients. Again, global Lipschitz continuity is assumed, but no formal convergence or
complexity analysis is presented, while limited but encouraging numerical experiments
are discussed.

We start here from the ARC formulation given in [40, 41] by Cartis, Gould and Toint,
aimed at unifying and extending the previous contributions into a coherent and numer-
ically efficient algorithmic framework, for which global and asymptotic convergence re-
sults can be proved under weaker assumptions and with simpler proofs, while preserving
the complexity bounds shown in [95].

At each iteration of their approach, an approximate global minimiser of a local cubic
regularisation model for the objective function, which remains computationally-viable
even for large-scale problems, is determined and this ensures a significant improvement in
the objective so long as the Hessian of the objective is locally Lipschitz continuous, without
insisting in that ∇2f(x) be globally Lipschitz or Hölder continuous for what concerns the
convergence properties to first-order critical points, while the globally Lipschitz continuity
of the Hessian is needed for convergence to second-order critical points and the proof of
complexity. Let us turn to the overestimation in (1.10). It is worth noting that the cubic term
in the definition of mC

k depends on the Lipschitz constant L of the Hessian and, hence,
it implicitly assumes the knowledge of that constant to be computed at step k. Such
an assumption can be quite stringent, especially when minimising nonconvex objective
functions.

It is for this reason that the adaptive cubic regularisation framework deals with the
idea of getting rid of the Lipschitz constant, trying to overestimate it by the adaptive
cubic regulariser σk. If

σk ≥
L

2
, (1.12)

the following inequality directly follows from (1.10):

f(xk + s) ≤ TE2 (xk, s) +
1

3
σk‖s‖3

def
= mE

k (s). (1.13)

Consequently, any vector s ∈ Rn satisfying

mE
k (s) < mE

k (0) = f(xk)

provides a reduction of the objective function f at xk+s with respect to the current value

11

f(xk). From now on, the Euclidean norm is considered for simplicity of exposition. Hence,
the idea of the ARC framework is to (approximately) minimise the cubic model (1.13) at
each iteration of the method, choosing the cubic regularisation parameter σk with the
aim of ensuring the overestimation property in (1.13).

The authors in [40, 41] also allows for inexactness in the Hessian computation, redefin-
ing the model as the following regularised approximate Taylor’s series

mk(s)
def
= f(xk) +∇f(xk)>s+

1

2
s>∇2f(xk)s+

1

3
σk‖s‖3

def
= T̂2(xk, s) +

1

3
σk‖s‖3, (1.14)

such that

∇smk(s) = ∇sT̂2(xk, s) + σks‖s‖ = ∇f(xk) +∇2f(xk)s+ σks‖s‖, (1.15)

where ∇2f(xk) is a symmetric approximation to the local Hessian ∇2f(xk) in the cubic
model on each iteration. This may be highly useful in practice, enabling to reduce the
computational cost related to the exact Hessian computation.

Of course, the replacement of the true Hessian∇2f(xk) with its approximation∇2f(xk)

in the model definition will affect the overestimation property of the model, since (when
∇2f(xk) 6= ∇2f(xk)) it is no longer guaranteed that

f(xk + s) ≤ mk(s), (1.16)

for any s ∈ Rn and under the validity of (1.12). The regulariser σk therefore performs a dou-
ble task: it may account not only for the discrepancy between the objective function and
its second order Taylor’s expansion, but also for the difference between the exact and the
approximate Hessian. Nevertheless, it can be proved that if the Hessian approximation
∇2f(xk) is accurate enough, then a different lower bound on σk (compared to (1.12)) still
ensures that each vector s ∈ Rn such thatmk(s) < mk(0) = f(xk) provides f(xk+s) < f(xk).
We will further discuss this point in the next section, in which the reference ARC algorithm
is introduced.

Alternatively, a secant-like strategy is employed in [29] to define the cubic term in
the used cubic model. Other ways of estimating such a term are also given in [21], via
a mixed factorisation based on the Bunch-Parlett-Kaufman decomposition, and in [70],
where the local cubic terms are bounded using ellipsoidal norms.

This first part of the thesis is organised as follows. Section 1.1 introduces a suitable
version of the ARC algorithm considered as the basic scheme for its extensions in the
upcoming parts of the thesis. Such a version is configured as a combination of existing
ARC algorithms and, hence, it requires a first research investigation to analyse its worst-
case complexity analysis and convergence to first and second-order critical points, that
is the focus of Section 1.2. Finally, Section 1.3 gives useful guidelines for approximate
minimising the cubic subproblem involved within the ARC framework.

1.1 The ARC algorithm

In this section we recall the main facts about the ARC algorithm. In order to make it useful
for the lines of research developed in the next chapters, the ARC scheme is introduced
embedding the model definition (1.14), like [40], in the scheme of [22, Algorithm 1 (case
p = 2)]. We preliminary assume that

f ∈ C1(Rn).

12

Algorithm 2 The ARC algorithm.

Step 0: Initialisation. Given an initial point x0, the initial regulariser σ0 > 0, the positive
accuracy level ε1. Given θ, η1, η2, γ1, γ2, γ3, σmin s.t.

θ > 0, σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1, 0 < γ1 < 1 < γ2 < γ3.

Compute f(x0) and set k = 0.

Step 1: Test for termination. Evaluate ∇f(xk). If ‖∇f(xk)‖ ≤ ε1, terminate with the approxi-
mate solution x̂ = xk; otherwise, compute the model mk(s) as defined in (1.14).

Step 2: Step computation. Compute the step sk by approximately minimising the model
mk(s) w.r.t. s so that

mk(s) < mk(0), (1.17)

‖∇smk(s)‖ ≤ θ‖sk‖2. (1.18)

Step 3: Acceptance of the trial step. Compute f(xk + sk) and

ρk =
f(xk)− f(xk + sk)

T̂2(xk, 0)− T̂2(xk, sk)
. (1.19)

If ρk ≥ η1, then set xk+1 = xk + sk; otherwise set xk+1 = xk.

Step 4: Regularisation parameters update. Set

σk+1 ∈


[max(σmin, γ1σk), σk] , if ρk ≥ η2, (very successful iteration)

[σk, γ2σk] , if ρk ∈ [η1, η2) , (successful iteration)

[γ2σk, γ3σk] , if ρk < η1, (unsuccessful iteration).

(1.20)

Set k = k + 1 and go to Step 1 if ρk ≥ η1 or to Step 2 otherwise.

All the initial parameters and constants are given at Step 0, where f is also evaluated
at the starting point x0. The test for termination is then considered at Step 1. If it is not
fulfilled, the model (1.14) is computed, where ∇2f(xk) is an approximation to the Hes-
sian of f (provided the latter exists). We will see the usual condition on the agreement
between the Hessian approximation ∇2f(xk) and the true one in the next section (see
Assumption 1.2.3). At Step 3, given an estimate xk of a critical point of f , a step sk is
computed satisfying (1.17)–(1.18). Once f(xk + sk) is evaluated, the magnitude of the
decrease ratio ρk decides about the acceptance of the trial point xk + sk. The step sk is
accepted and the new iterate xk+1 is set to xk+sk whenever a reasonable fraction of the
predicted model decrease f(xk)− T̂2(xk, sk) is realised by the actual decrease in the ob-
jective, namely f(xk)− f(xk + sk). This is measured by computing the ratio ρk in (1.19) and
requiring ρk to be greater than a prescribed positive constant η1 ∈ (0, 1). We will shortly
see (Remark 2 on page 15) that ρk is well defined, provided that (1.17) holds. Since the
current regulariser σk has resulted in a successful step, there is no reason to increase it,
and indeed there may be benefits in decreasing it if a good agreement between model
and function is observed. By contrast, if ρk is smaller than η1, we judge that the improve-
ment in objective is not sufficient; indeed, as already noticed in the introduction, there is
no improvement if ρk ≤ 0. If this happens, the step will be rejected and xk+1 left as xk.
Under these circumstances, the only recourse available is to increase σk prior to the next
iteration with the implicit intention of reducing the size of the step, aiming at satisfying the
(local) overestimation property.

This property is represented by the one in (1.13) in the particular case in which∇2f(xk) =

13

∇2f(xk), otherwise a new overestimation property has to be proved. Moreover, evidence
of the fact that the updating rule at Step 4 ensures the termination of the scheme has
to be given. These two latter aspects will be fully addressed in the analysis of the next
section.

Remark 1. We stress that the use of the condition (1.17), in place of an inequality like
mk(sk) ≤ mk(0), entains that a nonzero step sk satisfying (1.17)–(1.18) can always be
computed by Algorithm 2 before termination. Therefore, two possible situations have
to be excluded. The first one is when the model mk(s) built at iteration k admits only the
minimiser ŝk = 0 (for which mk(ŝk) = 0 = mk(0)). In such a case, from (1.15) we have
0 = ∇smk(ŝk) = ∇f(xk) and Algorithm 2 would have already stopped, due to the fulfill-
ment of the termination criterion ‖∇f(xk)‖ ≤ ε1. It remains thus to exclude the case in
which the model mk(s) has a minimiser sk 6= ŝk = 0, such that mk(sk) = mk(0). To cope
with that, recalling that by definition mk(0) = f(xk), we notice that mk(sk) = mk(0) implies

∇f(xk)>sk +
1

2
s>k∇2f(xk)sk +

1

3
σk‖sk‖3 = 0. (1.21)

Moreover, if sk is a minimiser of mk(s), it has to satisfy the necessary optimality condition
(1.3), that together with (1.14)–(1.15) implies that

0 = ∇smk(sk) = ∇f(xk) +∇2f(xk)sk + σksk‖sk‖, (1.22)

0 ≤ s>k∇2mk(sk)sk = s>k∇2f(xk)sk + σk‖sk‖3. (1.23)

Left-multiplying (1.22) by s>k and substracting (1.21) from the resulting equation, we get
that

1

2
s>k∇2f(xk)sk +

2

3
σk‖sk‖3 (1.24)

is null, which is excluded by the validity of (1.23). In fact, (1.23) is equivalent to

1

2
s>k∇2f(xk)sk ≥ −

1

2
σk‖sk‖3,

implying from (1.24) that

1

2
s>k∇2f(xk)sk +

2

3
σk‖sk‖3 ≥

(
2

3
− 1

2

)
σk‖sk‖3 =

1

6
σk‖sk‖3 > 0,

where the last inequality is due to sk 6= 0 and σk ≥ σmin > 0.
The same argument applies to the ARC-DH algorithm in Chapter 3 and the SARC-IGDH
algorithm in Chapter 5.

We proceed by deriving a preliminar result on the model decrease obtained under
the condition (1.17), also ensuring the well-definitiveness of ρk in (1.19).

Lemma 3. With reference to the model definition (1.14), assume that Assumption
1.2.1(ii) and (1.17) hold. Then,

T̂2(xk, 0)− T̂2(xk, sk) ≥ σk
3
‖sk‖3. (1.25)

Proof. Because of (1.17) and (1.14):

0 < mk(0)−mk(sk) = T̂2(xk, 0)− T̂2(xk, sk)− σk
3
‖sk‖3, (1.26)

which implies the desired bound.

14

Remark 2. Referring to Algorithm 2, we underline that from (1.25) and the regularisation
parameter updating rule (1.20) it follows:

T̂2(xk, 0)− T̂2(xk, sk) ≥ σk
3
‖sk‖3 ≥

σmin

3
‖sk‖3 > 0, (1.27)

in which ‖sk‖ 6= 0 because of (1.17). Therefore, the ratio (1.19) is well-defined for all k ≥ 0

and the same argument applies to [22, Algorithm 7].

The analogy between the construction of the ARC algorithm and of the basic Trust-
Region method defined by Algorithm 1 is superficially evident in the choice of the mea-
sure ρk, i.e. the threshold for step acceptance and for the updating rule of σk, which is
specular of the one used to update the trust-region radius ∆k in Algorithm 1 (compare
the Step 4 of Algorithm 2 with that of Algorithm 1). As noticed in [40], at a deeper level
the parameter σk might be viewed as the reciprocal of the trust-region radius and it has
here to be incremented suitably in order to let the overestimation property (1.16) with
s = sk hold.

Following [40], the model definition (1.14) is given referring to the Euclidean norm.
Anyway, due to the equivalence of norms on Rn, the 2-norm could be replaced by the
A-norm, given a symmetric positive definite matrix A ∈ Rn×n. It can be shown that the
convergence properties of Algorithm 2 established in what follows remain true in such
a more general setting, although some of the constants involved change accordingly.
The use of different norms may be viewed as an attempt to achieve affine invariance,
as in the spirit of [70, 122]. Also, regularisation terms of the form ‖sk‖i, i > 2, may be
employed in (1.14) in place of the cubic term. Complexity aspects of such a modification
are discussed in [41], while in [70] this extension is considered to cope with the possibility
of Hölder rather than Lipschitz continuous Hessians.

The above Algorithm 2 is essentially [22, Algorithm 7] written for a third-order model
and employing a Hessian approximation ∇2f(xk) to replace the exact value ∇2f(xk). On
the other hand, it reduces to [40, Algorithm 2.1] if the modified steps 2–3 reported below
are considered within the scheme of Algorithm 2.

Algorithm 3 Modified Steps 2–3 of the ARC algorithm (Algorithm 2).

Step 2: Step computation. Compute a step sk for which

mk(sk) ≤ mk(sCk), (1.28)

where the Cauchy point sCk is defined by

sCk = −αCk ∇f(xk), αCk = arg min
α∈R, α>0

mk(−α∇f(xk)). (1.29)

Step 3: Acceptance of the trial step. Compute f(xk + sk) and

ρk =
f(xk)− f(xk + sk)

T̂2(xk, 0)−mk(sk)
. (1.30)

If ρk ≥ η1, then set xk+1 = xk + sk; otherwise, set xk+1 = xk.

As for Trust-Region methods, we note that the Cauchy point is computationally inex-
pensive as it is a one-dimensional minimisation of a (two-piece) cubic polynomial; this
involves finding roots of a quadratic polynomial and requires a matrix-vector and three
vector products. Resorting to the Cauchy decrease is quite informative, since it enables
to keep a tight control on the effort spent in the step computation. Its use is considered
in [38, 40, 41] to prove convergence up to second-order critical points and to derive the

15

complexity results. In particular (consider for simplicity of exposure ε1 = ε2 = ε in (1.2)–
(1.3)), requiring the mild Cauchy condition (1.28) on the step, as in Algorithm 3, the au-
thors in [41] obtain an upper bound on the total number of iterations the ARC algorithm
takes to drive the norm of the gradient of f below ε that is of order ε2, so the same as for
the steepest descent method (see [96]). This is to be expected since the Cauchy-point
condition requires no more than a move in the negative gradient direction.

The steepest descent-like complexity bound can be improved when sk is the global
minimiser of the model (1.14) in a subspace containing the gradient ∇f(xk) and an ap-
propriate termination criterion is employed (see, e.g., (3.26), (3.27)). In particular, assum-
ing the Lipschitz continuity of ∇2f(x), and requiring ∇2f(xk) to be “sufficiently close” to
∇2f(xk) along sk (i.e. (1.31)), the authors in [40] show that their ARC algorithm has an
overall worst-case iteration count of order ε−3/2 for generating ‖∇f(xk)‖ ≤ ε, and of order
ε−3 for achieving approximate nonnegative curvature in a subspace containing sk. These
bounds match those proved by Nesterov and Polyak in [95, Section 3] for their Algorithm
3.3. By contrast, the Cauchy-point requirement is not needed in [22] to derive the result
of complexity (and, therefore, of convergence) for first-order stationary points, nor global
optimisation is required at the level of the minimisation subproblem considered at Step 3
of Algorithm 2.

Therefore, instead of referring to results from [40, Algorithm 2.1] (proved in [40, 41]),
from which Algorithm 2 inherits the use of Hessian approximations, or [22, Algorithm 1
(case p = 2)], with which Algorithm 2 shares the definition of ρk, we will recall then main
properties of the ARC framework by building directly on Algorithm 2. This, in turn, will
require the preliminary research effort of combining techniques from [40, 41, 22], but it
will be helpful for later use, when dealing with the novel extensions of the basic ARC
algorithm (Algorithm 2) considered in the next chapters of this thesis.

1.2 Worst-case evaluation complexity analysis of the basic
ARC algorithm

The main reason to consider the ARC framework in place of other globalisation strategies,
such as Newton-type methods embedded into a line search or a trust-region scheme,
lies on its optimal complexity. That is to say that, given the first-order ε1 tolerance, an ε1-
approximate first-order stationary point is reached, in the worst-case, in at most O(ε

−3/2
1)

iterations (see, e.g. [95, 41, 30, 22]). On the other hand, basic trust-region and line search
schemes take at most O(ε−2

1) iterations to drive the norm of the gradient of f below ε1
(see, e.g., [38, 42, 96]). We observe that due to the direct correspondence between the
count of ARC iterations and the number of function and derivatives evaluations these
bounds also apply to the latter (evaluation complexity). Moreover, in [31] it has been
shown that the bound O(ε

−3/2
1) for computing an ε1-approximate first-order stationary

point is optimal among methods operating on functions with Lipschitz continuous Hessian.
Further results showing optimal complexity bounds for approximate first-order stationary
points can be found in [87], where a cubic regularisation counterpart of a variable-norm
trust-region method for unconstrained minimisation is considered. Concerning the anal-
ogous bounds for convergence to second-order critical points, an (ε1, ε2)-approximate
first and second -order critical point is found by ARC in at most O(max(ε

−3/2
1 , ε−3

2)) itera-
tions (see, [40, 22, 38, 37]), instead of the O(max(ε−2

1 , ε−3
2)) bound gained by trust-region

procedures (see, e.g., [42]).
For this purpose, this section is devoted to derive the worst-case evaluation complexity

analysis of the ARC framework considered in Algorithm 2, basing on the analysis in [40,
41, 22].

First of all, let us consider the following preliminary assumptions on f .

16

Assumption 1.2.1. With reference to problem (1.1), the objective function f is assumed to
be:

(i) bounded below by flow, for all x ∈ Rn;

(ii) twice continuously differentiable, i.e. f ∈ C2(Rn).

Assumption 1.2.2. The Hessian of the objective function f in (1.1) is Lipschitz continuous
on the path of iterates with Lipschitz constant L, i.e.

‖∇2f(xk + βsk)−∇2f(xk)‖ ≤ Lβ‖sk‖, ∀k ≥ 0, β ∈ [0, 1].

We further assume that the Hessian approximation ∇2f(xk) considered for the model
construction at Step 1 of Algorithm 2 satisfies the following agreement along the step sk.

Assumption 1.2.3. With reference to problem (1.1), for all k ≥ 0 and some constant χ > 0,
the agreement between ∇2f(xk) and ∇2f(xk) along sk is such that

‖(∇2f(xk)−∇2f(xk))sk‖ ≤ χ‖sk‖2. (1.31)

As it will be helpful for the upcoming chapters, we observe that a way of imposing
(1.31) consists in prescribing that

‖∇2f(xk)−∇2f(xk)‖ ≤ χ‖sk‖, (1.32)

which, by virtue of the Cauchy-Swarz inequality, trivially implies that

‖(∇2f(xk)−∇2f(xk))sk‖ ≤ ‖∇2f(xk)−∇2f(xk)‖‖sk‖ ≤ ‖(∇2f(xk)−∇2f(xk))sk‖ ≤ χ‖sk‖2.

We underline that the theoretical requirement (1.31) is stronger than the well-known
Dennis-Moré condition

lim
k→+∞

‖(∇2f(xk)−∇2f(xk))sk‖
‖sk‖

= 0 (1.33)

in [57], that is achieved by proper Quasi-Newton updates. Ensuring theoretically condi-
tion (1.32) is a crucial point for a practical implementation of the algorithm and it will be
the focus of the next chapter.

Having set the main assumptions on f , we first ensure the validity of the overestima-
tion property (1.16) for any s ∈ Rn, given the Hessian approximation requirement (1.31)
and provided that the cubic regularisation parameter σk is sufficiently large. As already
noticed in the previous subsection (at the end of page 10), this motivates the decreas-
ing of the regulariser σk on very successful iterations in the design of the basic Algorithm 2.

Lemma 4. With reference to problem (1.1) and the model definition in (1.14), let
Assumption 1.2.1(ii), Assumption 1.2.2 and Assumption 1.2.3 hold.
For all k ≥ 0:

f(xk + sk) ≤ mk(sk), (1.34)

provided that σk ≥ (3χ+ L)/2.

Proof. Due to Assumption 1.2.1(ii) and Assumption 1.2.2, (1.10) with s = sk holds. Conse-

17

quently, by virtue of (1.31) and recalling the model definition in (1.14),

f(xk + sk) ≤ f(xk) +∇f(xk)sk +
1

2
s>k∇2f(xk)sk +

1

6
L‖sk‖3

= f(xk) +∇f(xk)sk +
1

2
s>k (∇2f(xk)−∇2f(xk))sk +

1

2
s>k∇2f(xk)sk +

1

6
L‖sk‖3

≤ f(xk) +∇f(xk)sk +
1

2
s>k∇2f(xk)sk +

1

2
‖sk‖‖(∇2f(xk)−∇2f(xk))sk‖+

1

6
L‖sk‖3

≤ f(xk) +∇f(xk)sk +
1

2
s>k∇2f(xk)sk +

1

2

(
χ+

L

3

)
‖sk‖3

= T̂2(xk, s) +
1

2

(
χ+

L

3

)
‖sk‖3 (1.35)

= mk(sk)− 1

3
σk‖sk‖3 +

1

2

(
χ+

L

3

)
‖sk‖3.

The thesis then follows provided that

1

2

(
χ+

L

3

)
− σk

3
≤ 0,

i.e., σk ≥ (3χ+ L)/2.

Remark 3. Recalling the model definition (1.14), such that mk(s) = f(xk) when s is null, we
remark that (1.34) and (1.17) imply that

f(xk + sk) ≤ mk(sk) < mk(0) = f(xk),

resulting in a reduction of the objective function f when moving from xk to the new iterate
xk + sk.

We now assure that the updating rule in (1.20) is such that the regularisation parameter
σk remains bounded above through all iterations, providing the termination of Algorithm
2.

Lemma 5. With reference to Algorithm 2, let Assumption 1.2.1(ii), Assumption 1.2.2
and Assumption 1.2.3 hold. For all k ≥ 0,

σk ≤ σmax
def
= max

[
σ0, γ3

3χ+ L

2(1− η2)

]
, (1.36)

where σ0 and γ3 are the constants defined in (1.8).

Proof. We first derive conditions on σk ensuring a very successful iteration. From (1.35) we
have that

f(xk + sk)− T̂2(xk, sk) ≤ 1

2

(
χ+

L

3

)
‖sk‖3. (1.37)

Consequently, using (1.27) and recalling (1.19), we then deduce that

1− ρk ≤
f(xk + sk)− T̂2(xk, sk)

T̂2(xk, 0)− T̂2(xk, sk)
≤ 3

2σk

(
χ+

L

3

)
and ρk ≥ η2 is guaranteed requiring

3

2σk

(
χ+

L

3

)
≤ 1− η2,

18

which is equivalent to

σk ≥
3χ+ L

2(1− η2)

def
= σ∗. (1.38)

To sum up, according to the updating rule (1.20), we have that if (1.38) holds, then ρk ≥
η2 and σk+1 ≤ σk (σk is not increased); otherwise it can happen that η1 ≤ ρk < η2 or
ρk < η1, obtaining that σk+1 ≥ σk (σk not decreased) with σk+1 < γ3σ

∗. In fact, by virtue
of (1.20), ρk < η2 and σk+1 ≥ γ3σ

∗ would imply that σk ≥ γ3
t σ
∗, 1 ≤ t ≤ γ3, and, hence,

σk ≥ σ∗, contradicting the inequality ρk < η2. The bound in (1.36) then follows by taking
into account the generality of σ0.

Our next step, very much in the line of the theory proposed in [41, 22], is to show that
the step length cannot be arbitrarily small compared with the gradient of the objective
function f at the trial point xk + sk.

Lemma 6. Let Assumption 1.2.1(ii), Assumption 1.2.2 and Assumption 1.2.3 hold. Then,

‖sk‖ ≥
√
ζ∗‖∇f(xk + sk)‖, (1.39)

for some positive ζ∗, when sk satisfies (1.18).

Proof. The Taylor’s expansion (1.9) implies

∇f(xk + s) = ∇f(xk) +∇2f(xk)s+ 2

∫ 1

0

(1− τ)(∇2f(xk + τs)−∇2f(xk))s dτ. (1.40)

Recalling the T̂2(xk, s) definition in (1.14), we also note that

∇sT̂2(xk, s) = ∇f(xk) +∇2f(xk)s.

Consequently, using Assumption 1.2.2 and Assumption 1.2.3, we derive

‖∇f(xk + sk)−∇sT̂2(xk, sk)‖ = ‖∇f(xk + sk)−∇f(xk)−∇2f(xk)sk‖
≤ ‖(∇2f(xk)−∇2f(xk))sk‖

+2

∫ 1

0

(1− τ)‖(∇2f(xk + τsk)−∇2f(xk))sk‖ dτ

≤ χ‖sk‖2 + 2

∫ 1

0

Lτ(1− τ)‖sk‖2 dτ

≤
(
χ+

L

3

)
‖sk‖2. (1.41)

In addition, recalling (1.15),

∇f(xk + sk) = ∇f(xk + sk)−∇sT̂2(xk, sk) +∇sT̂2(xk, sk) + σk‖sk‖sk − σk‖sk‖sk
= ∇f(xk + sk)−∇sT̂2(xk, sk) +∇sm(sk)− σk‖sk‖sk, (1.42)

yielding

‖∇f(xk + sk)‖ ≤ ‖∇f(xk + sk)−∇sT̂2(xk, sk)‖+ ‖∇sm(sk)‖+ σk‖sk‖2

≤
(
χ+

L

3
+ θ + σmax

)
‖sk‖2,

19

in which we have used (1.41)–(1.42), (1.18) and (1.36). The claim is then given defining

ζ∗
def
=

(
χ+

L

3
+ θ + σmax

)−1

> 0.

We now bound the number of unsuccessful iterations as a function of the number of
successful ones. The proof is the same as [22, Lemma 2.4] (see also [41, Theorem 2.1])
and it is here reported for clarity of presentation. To do so, let us introduce the disjointed
sets Sk and Uk for classifying successful (or very successful) and unsuccessful iterations of
Algorithm 2, between 0 and k, defined as

Sk
def
= { 0 ≤ j ≤ k | ρj ≥ η1 } , Uk

def
= { 0 ≤ j ≤ k | ρj < η1 } . (1.43)

Lemma 7. The mechanism of Algorithm 2 ensures that, if σk ≤ σmax for some σmax > 0,
then the total number of iterations |Sk|+ |Uk| is bounded above by

|Sk|
(

1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
. (1.44)

Proof. The regularisation parameter update (1.20) gives that, for each k,

γ1σj ≤ max(γ1σj , σmin) ≤ σj+1, j ∈ Sk,
γ2σj ≤ σj+1, j ∈ Uk.

Thus we deduce inductively that

σ0γ
|Sk|
1 γ

|Uk|
2 ≤ σk.

We therefore obtain, using the hypothesis σk ≤ σmax, that

|Sk| log γ1 + |Uk| log γ2 ≤ log

(
σmax

σ0

)
,

which implies that

|Uk| ≤ −|Sk|
log γ1

log γ2
+

1

log γ2
log

(
σmax

σ0

)
,

since γ2 > 1. The desired result (1.44) then follows from the inequality γ1 < 1 given by
(1.8).

Using all the above results, we are now in position to state our main evaluation com-
plexity result.

20

Theorem 8. (Worst-case evaluation complexity of Algorithm 2). With reference to
Algorithm 2, let Assumption 1.2.1, Assumption 1.2.2 and Assumption 1.2.3 hold. Then,
given ε1 > 0, Algorithm 2 takes at most⌊

κs
f(x0)− flow

ε
3/2
1

⌋
(1.45)

successful iterations, each involving one evaluation of f , of its gradient and approxi-
mate Hessian, and at most⌊

κs
f(x0)− flow

ε
3/2
1

⌋(
1 +
|logγ1|
logγ2

)
+

1

logγ2
log

(
σmax

σ0

)
(1.46)

total iterations to produce an iterate x∗ such that ‖∇f(x∗)‖ ≤ ε1, where σmax is defined
in (1.36), with

κs
def
=

3

η1σminζ∗
3/2

> 0

and ζ∗ as in Lemma 6.

Proof. The proof parallels the one of [22, Theorem 2.5]. First note that the we are under
the validity of the assumptions of Lemma 5, so the bound (1.36) holds. At each successful
iteration at each successful iteration before termination, from (1.27) and (1.39), we have
that

f(xk)− f(xk + sk) ≥ η1(T̂2(xk, 0)− T̂2(xk, sk))

≥ η1
σmin

3
‖sk‖3

≥ η1
σmin

3
ζ∗3/2‖∇f(xk + sk)‖3/2

def
= κ−1

s ‖∇f(xk + sk)‖3/2.

(1.47)

Consequently, before termination (1.2), it holds

f(xk)− f(xk + sk) ≥ κ−1
s ‖∇f(xk + sk)‖3/2 ≥ κ−1

s ε
3/2
1 ,

implying that

f(x0)− flow ≥ f(x0)− f(xk+1) =
∑
j∈Sk

(f(xj)− f(xj + sj)) ≥ |Sk|κ−1
s ε

3/2
1 ,

in which we have used Assumption 1.2.1(i) and, hence,

|Sk| ≤

⌊
κs
f(x0)− flow

ε
3/2
1

⌋
. (1.48)

Having proved (1.45), we can directly invoked Lemma 7 to obtain the upper bound (1.46)
on the total number of iterations |Sk|+ |Uk|, yielding

|Sk|+ |Uk| ≤ |Sk|
(

1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
≤

⌊
κs
f(x0)− flow

ε
3/2
1

⌋(
1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
, (1.49)

21

in which we have used (1.48) to derive the last inequality.

We have shown that, under suitable smoothness assumptions, an ε1-approximate sta-
tionary point is found by Algorithm 2 in at most O(ε

−3/2
1) iterations and evaluations of the

objective function, its gradient and approximate Hessian. The result in Theorem 8 is made
possible by the introduction in [22] of two main innovations:

• a weaker termination conditions on the model minimisation subproblem (no global
optimisation is required at all);

• a reformulation of the ratio of achieved versus predicted decreases (i.e. (1.19)),
where the model is limited to the Taylor’s approximation.

Of course, each iteration of the proposed algorithm requires the approximate minimi-
sation of a typically nonconvex regularised cubic model, but this minimisation does not
involve additional computation of the objective function of the original problem or of its
derivatives and, therefore, its cost does not affect the evaluation complexity of Algorithm
2, as already noticed at the beginning of the subsection. Which numerical procedure is
better for this task is not the aim of this thesis (for instance, one might think of applying an
efficient first-order method on the model), but a guidance to do that is given in Section
1.3.

1.2.1 Convergence to first-order critical points

As a direct consequence of the complexity analysis presented in the previous section,
we have that

lim inf
k→∞

||∇f(xk)‖ = 0. (1.50)

Furthermore, let us introduce the following sets to directly address the set of success-
ful/very successful and unsuccessful iterations:

S = {k ≥ 0| k successful or very successful},
U = {k ≥ 0| k unsuccessful}.

We can now parallel [40, Lemma 5.1] in order to turn the liminf convergence in (1.50)
into a lim-type convergence result, which is the aim of this subsection.

Theorem 9. Let Assumption 1.2.1, Assumption 1.2.2 and Assumption 1.2.3 hold. Then,
the step sk and the iterates {xk}k≥0 generated by Algorithm 2 satisfy

‖sk‖ → 0, as k →∞, k ∈ S (1.51)

and
‖∇f(xk)‖ → 0, as k →∞. (1.52)

Proof. By (1.27),

f(xk)− f(xk+1) ≥ η1(T̂2(xk, 0)− T̂2(xk, sk)) ≥ η1
σmin

3
‖sk‖3, k ∈ S.

Since, by Assumption 1.2.1(i), f is bounded below by flow, one has that

f(x0)− flow ≥ f(x0)− f(xk+1) =

k∑
j=0, j∈S

(f(xj)− f(xj+1)) ≥ η1
σmin

3

k∑
j=0, j∈S

‖sj‖3, k ≥ 0,

22

which implies the convergence of the series
∑∞
k=0, k∈S ‖sk‖3 and, hence,

‖sk‖3 → 0, as k →∞, k ∈ S,

giving the first claim of the thesis.
As for ‖∇f(xk)‖, Lemma 6 ensures that

ζ∗‖∇f(xk+1)‖ ≤ ‖sk‖2 → 0, as k →∞, k ∈ S.

This fact, along with ∇f(xk+1) = ∇f(xk) at unsuccessful iterations (i.e. for k ∈ U), provides
the vanishing of the sequence {‖∇f(xk)‖}k≥0, as k →∞.

The optimal complexity result given by Theorem 8, implying (1.52) and here proved
for the basic ARC scheme described by Algorithm 2, will be the common thread for the
extensions of the ARC framework considered in the following chapters of this thesis. Un-
der suitable assumptions, we will analyse in the next subsection its generalisation to the
case of second-order critical points, in which quadratic local rate of convergence will be
proved.

An intermediate result, showing local quadratic rate of convergence to first-order crit-
ical points, was shown in [40] for Algorithm 2 with the modified steps in Algorithm 3, under
a set of stricter assumptions compared to the ones required by Theorem 9. The result,
given by [40, Corollary 4.10], is reported below.

Theorem 10. [40, Corollary 4.10] With reference to Algorithm 2 with the modified steps
in Algorithm 3, let Assumption 1.2.1(ii), Assumption 1.2.2 and Assumption 1.2.3 hold.
Assume also that:

i) ∇f(x) is Lipschitz continuous in an open set containing all the iterates {xk}k≥0;

ii) the step sk is required to satisfy ∇f(xk)>sk + s>k∇2f(xk)sk +σk‖sk‖3 = 0, choosing
θ in (1.18) as θk = κθ min[1, ‖sk‖], for k ≥ 0 and some κθ ∈ (0, 1);

iii) the gradient is uniformly continuous on the sequence of iterates {xk}k≥0, namely

‖∇f(xti)−∇f(x`i)‖ → 0, whenever ‖xti − x`i‖ → 0, i→∞;

iv) the level of resemblance between the approximate Hessian ∇2f(xk) and the
true one ∇2f(xk) at iteration k is such that

‖(∇2f(xk)−∇2f(xk))sk‖
‖sk‖

→ 0, whenever ‖∇f(xk)‖ → 0;

v) the norms of the Hessian approximations are uniformly bounded above:
‖∇2f(xk)‖ ≤ κB , for all k ≥ 0 and some κB ≥ 0;

vi) xk → x∗, as k →∞, with ∇2f(x∗) positive definite.

Then, {∇f(xk)}k≥0 converges to zero and {xk}k≥0 converges to x∗ quadratically, as
k →∞.

1.2.2 Convergence to second-order critical points

After having exploited convergence to first-order critical points, we now carry on the
analysis focusing on the convergence of the sequence generated by Algorithm 2 to

23

second-order critical points, i.e. to a points x∗ satisfying (1.3). In so doing, the two fol-
lowing scenarios are considered.

• We study the asymptotic behaviour of {xk}k≥0 under the assumption that the ap-
proximate Hessian ∇2f(xk) at xk becomes positive definite along a converging sub-
sequence of {xk}k≥0. In this situation, local quadratic rate of convergence is re-
stored provided that, as in [40], the step satisfies the Cauchy condition (1.28).

• We analyse the case in which the Hessian approximation ∇2f(xk) is not convex,
obtaining a second-order complexity bound in accordance with the study in [38].

To address the fist claim, let us report the following preliminary assumption and results.

Assumption 1.2.4. With reference to problem (1.1), for all k ≥ 0 and some κB ≥ 0 it holds

‖∇2f(xk)‖ ≤ κB .

Lemma 11. [91, Lemma 4.10]. Let x∗ be an isolated limit point of a sequence {xk}k≥0

in Rn. If {xk}k≥0 does not converge, then there is a subsequence {x`j}j≥0 which
converges to x∗ and ε > 0 such that ‖x`j+1 − x`j‖ ≥ ε.

Proof. [91, Lemma 4.10]. Choose ε > 0 so that if ‖x − x∗‖ ≤ ε and x is a limit point of
{xk}k≥0, then x = x∗. If ‖xkj − x∗‖ ≤ ε, then define `j by

`j = max{` | ‖xi − x∗‖ ≤ ε, i = kj , · · · , `}.

In this manner, a subsequence {x`j}j≥0 is defined such that

‖x`j − x∗‖ ≤ ε, ‖x`j+1 − x∗‖ > ε.

It follows that {x`j}j≥0 converges to x∗ and thus ‖x`j − x∗‖ ≤ ε
2 for all `j sufficiently large.

Hence,
‖x`j+1 − x`j‖ ≥ ‖x`j+1 − x∗‖ − ‖x`j − x∗‖ ≥

ε

2
,

as desired.

Lemma 12. [40, Lemma 2.1]. Suppose that the step sk satisfies the Cauchy condition
(1.28)–(1.29). Then, for k ≥ 0, we have that

f(xk)−mk(sk) ≥ f(xk)−mk(sCk) ≥

≥ ‖∇f(xk)‖2

6
√

2 max
(

1 + ‖∇2f(xk)‖, 2
√
σk‖∇f(xk)‖

) (1.53)

=
‖∇f(xk)‖

6
√

2
min

 ‖∇f(xk)‖
1 + ‖∇2f(xk)‖

,
1

2

√
‖∇f(xk)‖

σk

 .

Proof. [40, Lemma 2.1]. Due to (1.28) and since the first inequality in (1.53) is straight-
forward, it remains to show the second inequality in (1.53). For any α ≥ 0, using the

24

Cauchy-Schwarz inequality, we have that

mk(sCk)− f(xk) ≤ mk(−α∇f(xk))− f(xk)

= −α‖∇f(xk)‖2 +
1

2
α2∇f(xk)>∇2f(xk)∇f(xk) +

1

3
α3σk‖∇f(xk)‖3

≤ α‖∇f(xk)‖2
(
−1 +

1

2
α‖∇2f(xk)‖+

1

3
α2σk‖∇f(xk)‖

)
. (1.54)

Now mk(sCk) ≤ f(xk), provided that

−1 +
1

2
α‖∇2f(xk)‖+

1

3
α2σk‖∇f(xk)‖ ≤ 0

and α ≥ 0 in the latter two inequalities, being equivalent to

α ∈ d0, αke, αk
def
=

3

2σk‖∇f(xk)‖

[
−1

2
‖∇2f(xk)‖+

√
1

4
‖∇2f(xk)‖2 +

4

3
σk‖∇f(xk)‖

]
.

Furthermore, we can express αk as

αk = 2

(
1

2
‖∇2f(xk)‖+

√
1

4
‖∇2f(xk)‖2 +

4

3
σk‖∇f(xk)‖

)−1

.

Letting

θk
def
=
[√

2 max
(

1 + ‖∇2f(xk)‖, 2
√
σk‖∇f(xk)‖

)]−1

(1.55)

and employing the inequalities√
1

4
‖∇2f(xk)‖2 +

4

3
σk‖∇f(xk)‖ ≤ 1

2
‖∇2f(xk)‖+

2√
3

√
σk‖∇f(xk)‖

≤ 2 max

(
1

2
‖∇2f(xk)‖, 2√

3

√
σk‖∇f(xk)‖

)
≤
√

2 max
(

1 + ‖∇2f(xk)‖, 2
√
σk‖∇f(xk)‖

)
and

1

2
‖∇2f(xk)‖ ≤ max

(
1 + ‖∇2f(xk)‖, 2

√
σk‖∇f(xk)‖

)
,

it follows that 0 < θk ≤ αk. Thus, substituting the value of θk in the last inequality in (1.54),
we obtain that

mk(sCk)− f(xk) ≤ ‖∇f(xk)‖2
√

2 max
(

1 + ‖∇2f(xk)‖, 2
√
σk‖∇f(xk)‖

)
·
(
−1 +

1

2
θk‖∇2f(xk)‖+

1

3
θ2
kσk‖∇f(xk)‖

)
≤ 0. (1.56)

It now follows from the definition of θk in (1.55) that θk‖∇2f(xk)‖ ≤ 1 and θ2
kσk‖∇f(xk)‖ ≤ 1,

so that the expression in the curly brackets in (1.56) is bounded above by −1/6. This and
(1.56) imply the second inequality in (1.53).

Remark 4. We have already noticed that an important point in the design of ARC-type
algorithms is the well definition of the per-iteration decrease ratio ρk (see, e.g., (1.19) in
Algorithm 2). This property has been highlighted for Algorithm 2 and [22, Algorithm 7] in
Remark 2, since its denominator cannot be null. For the sake of completeness, let us now
prove that the denominator of the corresponding decrease ratio (1.30) in [40, Algorithm

25

2.1] (i.e. Algorithm 2 with the modified steps in Algorithm 3) is strictly positive as well. We
first note that the Cauchy point sCk required at Step 2 of Algorithm 3 is the global minimiser
of mk(s) in (1.14) over the subspace generated by {−∇f(xk)}, implying that

∇smk(sk)>sk = ∇f(xk)>sk + s>k∇2f(xk)sk + σk‖sk‖3 = 0, (1.57)

s>k∇2f(xk)sk + σk‖sk‖3 ≥ 0. (1.58)

are satisfied with sk = sCk (see, e.g., Lemma 17). Recalling the model definition (1.14) and
condition (1.28), then the denominator of ρk in (1.30) satisfies the equality:

f(xk)−mk(sk) ≥ f(xk)−mk(sCk) = −∇f(xk)>sCk −
1

2
(sCk)>∇2f(xk)sCk −

1

3
σk‖sCk ‖3

= −∇f(xk)>sCk −
(

1− 1

2

)
(sCk)>∇2f(xk)sCk −

(
1− 2

3

)
σk‖sCk ‖3

=
1

2
(sCk)>∇2f(xk)sCk +

2

3
σk‖sCk ‖3 (1.59)

≥
(
−1

2
+

2

3

)
σk‖sCk ‖3 =

1

6
σk‖sCk ‖3. (1.60)

If
∇f(xk) 6= 0, for all k ≥ 0, (1.61)

then (1.59) implies sCk 6= 0. To see this, assume sCk = 0. Then, (1.59) gives f(xk) = mk(sCk),
contradicting

f(xk)−mk(sCk) > 0, for all k ≥ 0,

which follows from (1.53) and (1.61). The proof is thus concluded because whenever
sCk 6= 0, then (1.60) ensures that f(xk)−mk(sk) > 0 and, hence, ρk in (1.30) is well defined,
since σk ≥ σmin > 0 for all k ≥ 0.

We can now proceed in the study of the convergence to second-order stationary
points by stating the following theorem.

Theorem 13. Let Assumption 1.2.1(i), Assumption 1.2.2 and (1.32) hold. Suppose that
{xki}ki≥0 is a subsequence of successful iterates converging to some x∗ and that the
approximate Hessians ∇2f(xki) is positive definite whenever xki is sufficiently close to
x∗. Then,

i) xk → x∗ as k →∞ and x∗ is second-order critical.

ii) Further assume the validity of Assumption 1.2.4. If sk satisfies the Cauchy condition
(1.28)–(1.29) for all k ≥ 0, then all the iterations are eventually successful and
{xk}k≥0 converges to x∗ quadratically.

Proof. We first notice that, due to (1.32), Assumption 1.2.3 holds.

i) From (1.32) and (1.51), we note that

‖∇2f(xk)−∇2f(xk)‖ ≤ χ‖sk‖ → 0, k →∞, k ∈ S. (1.62)

From standard perturbation results on the eigenvalues of symmetric matrices and taking
into account the convergence of {xki} to x∗, it then follows that∇2f(x∗) is positive definite
(hence invertible). Therefore (see [77]), x∗ is an isolated limit point and the claim i) is
proved by virtue of (1.51) and Lemma 11.

ii) From the convergence of {xk}k≥0 to x∗, (1.62) and the positive definitiveness of

26

∇2f(x∗), it follows that

λmin(∇2f(xk)) ≥ λ > 0, ∀k ∈ S sufficiently large. (1.63)

Then, recalling that ∇2f(xk) is not modified along unsuccessful iterations, we have that

λmin(∇2f(xk)) ≥ λ, ∀k sufficiently large. (1.64)

Using (1.18) and recalling (1.15), we have that

θ‖∇f(xk)‖ ≥ ‖∇smk(sk)‖

=
∥∥∥∇f(xk) +∇2f(xk)sk + σksk‖sk‖

∥∥∥
≥ ‖(∇2f(xk) + σk‖sk‖In)sk‖ − ‖∇f(xk)‖

≥ ‖sk‖∥∥∥(∇2f(xk) + σk‖sk‖In)−1
∥∥∥ − ‖∇f(xk)‖, (1.65)

where the last inequality follows thanks to the fact that for each nonsingular matrix A ∈
Rn×n and vector x ∈ Rn, ‖s‖ = ‖Ins‖ = ‖A−1As‖ ≤ ‖A−1‖‖As‖, giving ‖As‖ ≥ ‖s‖/‖A−1‖.
Moreover, recalling (1.64) and taking into account that∥∥∥(∇2f(xk) + σk‖sk‖In)−1

∥∥∥ =
1

λmin(∇2f(xk)) + σk‖sk‖
≤ 1

λ
,

inequality (1.65) yields

‖sk‖ ≤
1 + θ

λ
‖∇f(xk)‖, ∀k sufficiently large (1.66)

and ‖sk‖ → 0, as k →∞, due to (1.52). Moreover, by (1.29), (1.26) and [40, Lemma 2.1],

T̂2(xk, 0)− T̂2(xk, sk) ≥ mk(0)−mk(sk)

≥ ‖∇f(xk)‖
6
√

2
min

 ‖∇f(xk)‖
1 + ‖∇2f(xk)‖

,
1

2

√
‖∇f(xk)‖

σk

 . (1.67)

Consequently, Assumption 1.2.4 and (1.36) yield

T̂2(xk, 0)− T̂2(xk, sk) ≥ ‖∇f(xk)‖
6
√

2
min

‖∇f(xk)‖
1 + κB

,
1

2

√
‖∇f(xk)‖
σmax

 .

Thus, (1.52) and (1.66) imply that for k sufficiently large,

T̂2(xk, 0)− T̂2(xk, sk) ≥ ‖∇f(xk)‖2

6
√

2(1 + κB)
≥ λ2

6
√

2(1 + κB)(1 + θ)2
‖sk‖2

def
= κc‖sk‖2,

and, hence, by (1.19) and (1.37),

1− ρk =
f(xk + sk)− T̂2(xk, sk)

T̂2(xk, 0)− T̂2(xk, sk)
≤

1
2

(
χ+ L

3

)
‖sk‖3

κc‖sk‖2
≤ (χ+ L/3)

2κc
‖sk‖.

As a result, ρk → 1 and the iterations are eventually very successful. Last, (1.66) and (1.39)
provide

‖∇f(xk+1)‖ ≤ ‖sk‖
2

ζ∗
≤ (1 + θ)2

ζ∗λ2 ‖∇f(xk)‖2, ∀k sufficiently large.

27

Then, {‖∇f(xk)‖}k≥0 converges quadratically to zero and the quadratic rate of conver-
gence of the sequence {xk}k≥0 follows in a standard way by means of the Taylor’s ex-
pansion.

The assumption on the positive definitiveness of the Hessian approximations close to x∗

can be removed restoring the convergence to second-order critical points. To this aim,
we need to equip, as in [38], Algorithm 2 with the following stopping criterion

‖∇f(xk)‖ ≤ ε1 and λmin(∇2f(xk)) ≥ −ε2, ε1, ε2 > 0, (1.68)

which represents, as stated the beginning of the chapter, the approximate counterpart
of the second-order optimality condition (1.3) with the Hessian matrix at xk approximated
by ∇2f(xk). Moreover, the trial step sk computed at Step 2 of Algorithm 2 is required to
satisfy the following additional condition: if ∇2f(xk) is not positive semidefinite, then

mk(sk) ≤ mk(sEk), (1.69)

where sEk is the so-called eigenpoint, defined as

sEk = αEk uk and αEk = arg min
α≥0

mk(αuk) (1.70)

and uk is an approximation of the eigenvector of ∇2f(xk) associated with its smallest
eigenvalue λmin(∇2f(xk)), in the sense that

∇f(xk)>uk ≤ 0 and u>k∇2f(xk)uk ≤ κsncλmin(∇2f(xk))‖uk‖2, (1.71)

for some constant κsnc ∈ (0, 1]. We underline that the minimisation in (1.70) is global over
the subspace generated by αuk and thus (see, e.g., Lemma 17) (1.57)–(1.58) are satisfied
with sk = sEk .

The above modifications can be helpfully summarised in the following steps.

Algorithm 4 Modified Steps 0–2 of the ARC algorithm (Algorithm 2).

Step 0: Initialisation. Given an initial point x0, the initial regulariser σ0 > 0, the positive
accuracy levels ε1, ε2. Given θ, η1, η2, γ1, γ2, γ3, σmin s.t.

θ > 0, σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1, 0 < γ1 < 1 < γ2 < γ3.

Compute f(x0) and set k = 0.

Step 1: Test for termination. Evaluate ∇f(xk). If (1.68) is satisfied, terminate with the ap-
proximate solution x̂ = xk. Otherwise, compute the model mk(s) as defined in (1.14).

Step 2: Step computation. Compute the step sk by approximately minimising the model
mk(s) with respect to s so that

mk(s) < mk(0), ‖∇smk(s)‖ ≤ θ‖sk‖2,

and (1.69) is fulfilled.

We hereafter refer to Algorithm 2 with the modified steps 0–2 defined as in Algorithm
4 as ARC-II. Of course, the termination criterion adopted at Step 1 does not affect the
mechanism for updating σk, then the upper bound σmax on σk given by (1.36) is still valid.

Let us denote by:

• S̃k, the set of indices of successful iterations of ARC-II whenever ‖∇f(xk)‖ > ε1 and/or
λmin(∇2f(xk)) < −ε2, i.e., the indices of successful iterations before (1.68) is met;

28

• S̃(1)
k , the set of indices of successful iterations where ‖∇f(xk)‖ > ε1;

• S̃(2)
k , the set of indices of successful iterations where λmin(∇2f(xk)) < −ε2;

• Ũk, the set of unsuccessful iterations of ARC-II.

It is worth noting that the cardinality of S̃(1)
k is the same as in Algorithm 2 (see Theorem

8), while proceeding as in Theorem 8 the cardinality of Ũk is still bounded in terms of the
number of successful iterations S̃k (see also [41, Theorem 2.1]). It indeed remains to derive
the cardinality of S̃(2)

k .

Lemma 14. [38, Lemma 2.8] Let Assumption 1.2.1, Assumption 1.2.2 and Assumption
1.2.3 hold. Suppose that sk satisfies (1.69)–(1.70). Then, the number of successful
iterations of Algorithm ARC-II with λmin(∇2f(xk)) < −ε2 is bounded above by⌊

κe
f(x0)− flow

ε32

⌋
,

with κe
def
=

6σ2
max

η1κ3
snc
.

Proof. The proof parallels that of [38, Lemma 2.8]. We first note that (1.57)–(1.58) with
sk = sEk imply

mk(0)−mk(sEk) = −∇f(xk)>sEk −
1

2
(sEk)>∇2f(xk)sEk −

σk
3
‖sEk ‖3

= σk‖sEk ‖3 +
1

2
(sEk)>∇2f(xk)sEk −

σk
3
‖sEk ‖3

≥
(

1− 1

2
− 1

3

)
σk‖sEk ‖3 =

1

6
σk‖sEk ‖3. (1.72)

Moreover, using (1.58) with sk = sEk and (1.71),

σk‖sEk ‖ ≥ −
(sEk)>∇2f(xk)sEk

‖sEk ‖2
≥ −κsncλmin,

which by (1.36) gives

‖sEk ‖ ≥
−κsncλmin

σk
≥ −κsncλmin

σmax
. (1.73)

Assume now that k ∈ S̃(2)
k , we have that

f(xk)− f(xk + sk) ≥ η1(T̂2(xk, 0)− T̂2(xk, sk)) = η1(mk(0)−mk(sk) +
σk
3
‖sk‖3︸ ︷︷ ︸
>0

)

> η1(mk(0)−mk(sEk)) ≥ η1
σk
6
‖sEk ‖3

≥ η1
−κ3

sncλmin(∇2f(xk))3

6σ2
max

> η1
κ3
sncε

3
2

6σ2
max

,

in which we have used (1.26), (1.69), (1.72), (1.73) and recalling that λmin(∇2f(xk)) < −ε2

29

for k ∈ S̃(2)
k . Consequently, defining κe

def
=

6σ2
max

η1κ3
snc

, before termination it holds

f(x0)− flow ≥ f(x0)− f(xk+1) ≥
∑
j∈S̃(2)

k

(f(xj)− f(xj + sj)) ≥ |S̃(2)
k |κ

−1
e ε32

and, hence,

|S̃(2)
k | ≤ κe

f(x0)− flow
ε32

,

which completes the proof.

We thus conclude that Algorithm ARC-II produces an iterate xk̂ satisfying (1.68) within
at most

O
(

max(ε
−3/2
1 , ε−3

2)
)

iterations, in accordance with the complexity result in [38].

1.3 Guidelines for approximately minimising the cubic model

Despite the complexity and convergence properties of the ARC algorithm derived in the
previous subsections, its practical efficiency ultimately relies on the ability of exactly or
approximately minimise mk in (1.14). Which numerical procedure is preferable for this task
is beyond the scope of this thesis, but let us end this first chapter giving useful guidelines
to approximately minimise the cubic model mk, after a characterisation of the global
minimiser of the cubic model over Rn is given.

The presented exposition quotes the innovative presentation in [40] and is organised as
follows. Though mk is nonconvex, the first theorem reported from [40] in Subsection 1.3.1
provides a characterisation of its global solutions over Rn, from which the model can be
globally minimised using a factorisation of the matrix ∇2f(xk). Nevertheless, this could
be less viable when dealing with large-scale optimisation, hence Subsection 1.3.2 studies
the cubic model minimisation in a sequence of nested subspaces, while Subsection 1.3.3
considers the computation of cheaper and approximate minimisers of the model, without
involving explicit factorisations of ∇2f(xk), but only matrix-vector products.

1.3.1 Characterisation of the minimiser of the cubic model

This subsection is aimed at giving necessary and sufficient optimality conditions for the
global minimiser of the cubic model mk. We will follow the scheme in [40], which is closer
to the trust-region approach compared to the analogous one in [95] and [70].

For fixed k, k ≥ 0, let us rewrite the gradient of the model in (1.15) and its second-order
derivative as

∇smk(s) = ∇f(xk)+∇2f(xk)s+λs, ∇2
smk(s) = ∇2f(xk)+λIn+λ

(
s

‖s‖

)(
s

‖s‖

)>
, (1.74)

letting λ = σk‖s‖. The following global optimality result holds true from [40].

30

Theorem 15. [40, Theorem 3.1]. Any s∗k is a global minimiser of mk(s) over Rn if and
only if it satisfies the system of equations(

∇2f(xk) + λ∗kIn

)
s∗k = −∇f(xk), (1.75)

where λ∗k = σk‖s∗k‖ and ∇2f(xk) + λ∗kIn is positive semidefinite. If ∇2f(xk) + λ∗kIn is
positive definite, then s∗k is unique.

Proof. [40, Theorem 3.1]. In this proof, the iteration subscript k is omitted for simplicity.
Firstly, let s∗ be a global minimiser of mk(s) over Rn. It follows from (1.74) and the first and
second-order necessary optimality conditions at s∗ that

∇f(x) +
(
∇2f(x) + λ∗In

)
s∗ = 0,

and hence that (1.75) holds and

ω>

[
∇2f(x) + λ∗In + λ∗

(
s∗

‖s∗‖

)(
s∗

‖s∗‖

)>]
ω ≥ 0, (1.76)

for all ω ∈ Rn. If s∗ = 0, by λ∗ = σ‖s‖ we have λ∗ = 0 and (1.76) implies that ∇2f(x) is
positive semidefinite, which gives the required result. We indeed just need to consider
s∗ 6= 0. There are two cases. Firstly, suppose that ω>s∗ = 0. In this case, it immediately
follows from (1.76) that

ω>
(
∇2f(x) + λ∗In

)
ω ≥ 0, (1.77)

for all ω for which ω>s∗ = 0. It thus remains to consider vectors ω for which ω>s∗ 6= 0. Since
ω and s∗ are not orthogonal, the line s∗ + αω intersects the ball centered in the origin of
radius ‖s∗‖ at two points, s∗ and u∗ 6= s∗, say, and thus

‖u∗‖ = ‖s∗‖. (1.78)

We let ω∗ = u∗ − s∗ and note that ω∗ is parallel to ω. Since s∗ is a global minimiser, we
immediately have that

0 ≤ m(u∗)−m(s∗)

= ∇f(x)>(u∗ − s∗) +
1

2
(u∗)>∇2f(x)u∗ − 1

2
(s∗)>∇2f(x)s∗ +

σ

3

(
‖u∗‖3 − ‖s∗‖3

)
= ∇f(x)>(u∗ − s∗) +

1

2
(u∗)>∇2f(x)u∗ − 1

2
(s∗)>∇2f(x)s∗, (1.79)

where the last equality follows from (1.78). But left-multiplication in (1.75) by (s∗ − u∗)>

gives that
(u∗ − s∗)>∇f(x) = (s∗ − u∗)>∇2f(x)s∗ + λ∗(s∗ − u∗)>s∗. (1.80)

In addition, (1.78) shows that

(s∗ − u∗)>s∗ =
1

2
(s∗)>s∗ +

1

2
(u∗)>u∗ − (u∗)>s∗ =

1

2
(ω∗)>ω∗. (1.81)

31

Thus, combining (1.79)–(1.80), we find that

0 ≤ 1

2
λ∗(ω∗)>ω∗ +

1

2
(u∗)>∇2f(x)u∗ − 1

2
(s∗)>∇2f(x)s∗

+(s∗)>∇2f(x)s∗ − (u∗)>∇2f(x)s∗

=
1

2
(ω∗)>

(
∇2f(x) + λ∗In

)
ω∗, (1.82)

from which we deduce
ω>
(
∇2f(x) + λ∗In

)
ω ≥ 0, (1.83)

for all ω such that ω>s∗ 6= 0, since ω∗ is parallel to ω. Hence, (1.77) and (1.83) together
show that ∇2f(x) + λ∗In is positive semidefinite. The uniqueness of s∗ when ∇2f(x) + λ∗In
is positive definite, hence invertible, follows from (1.75) by reductio ad absurdum. We
directly refer to [40, Proof of Theorem 3.1] for the sufficiency implication.

We can now state the following relevant remark, linking the trust-region radius ∆k of
the Trust-Region framework (see, e.g., Algorithm 1) to the regulariser σk of ARC (see, e.g.,
Algorithm 2).

Remark 5. The result in Theorem 15, together with its proof, is definitely similar to those for
the trust-region subproblem (1.6), as it can be seen from [52, Corollary 7.2.2], reported
below. Therefore, recalling that s∗k would satisfy (1.75), we have from Theorem 15, when
‖s∗k‖ = ∆k, that

σk =
λ∗k
∆k

and, hence, one might interpret the regulariser σk of the ARC framework as inversely pro-
portional to the trust-region radius ∆k.

Theorem 16. [52, Corollary 7.2.2] With reference to Algorithm 1 (Trust-Region), any
global minimiser s∗,TRk of (1.4) subject to ‖s∗,TRk ‖ ≤ ∆k satisfies the system of equations(

∇2f(xk) + λ∗kIn

)
s∗,TRk = −∇f(xk),

where ∇2f(xk) + λ∗kIn is positive semidefinite and the Lagrange multiplier λ∗k for the
constraint satisfies λ∗k ≥ 0, λ∗k(‖s∗,TRk ‖ − ∆k) = 0. If ∇2f(xk) + λ∗kIn is positive definite,
then s∗,TRk is unique.

Always on the basis of Theorem 15, methodologies to compute the global minimiser s∗k
are reported in [40, Section 6.1]. Following that lines, we here give the main idea, leaving
the details in the Appendix (Section A.1). Throughout the remaining part of this section,
we drop the major iteration subscript k for convenience. Due to Theorem 15, to compute
the global model minimiser of mk(s) over Rn we search for a pair (s, λ) such that

(∇2f(x) + λIn)s = −∇f(x), and λ2 = σ2s>s (1.84)

and for which ∇2f(x) + λIn is positive semidefinite. As noticed by the authors in [40, 70],
we can suppose that, in analogy with the trust-region approach (see, e.g., [52, Section
7.3.1]), ∇2f(x) admits an eigen-decomposition

∇2f(x) = U>ΛU,

giving
B(λ)

def
= ∇2f(x) + λIn = U>(Λ + λIn)U, (1.85)

32

where Λ
def
= diag(λ1, · · · , λn), with λ1 ≤ λ2 ≤ · · · ≤ λn, and U is an orthonormal matrix of

associated eigenvectors. Therefore, from Theorem 15, the value of λ we seek must satisfy
λ ≥ −λ1 as only then is B(λ) positive semidefinite.
Suppose that λ > −λ1, then B(λ) is positive definite and let

s(λ) = −B(λ)−1∇f(x) = −U>(Λ + λIn)−1U∇f(x), (1.86)

where the last equality is due to (1.85). But (see (1.75)) the value of λ∗ is the solution of
the nonlinear equation ‖s(λ)‖2 = λ2/σ2. The analysis reported in the Appendix (Section
A.1) shows that a safeguarded univariated Newton’s iteration can be considered for the
solution of the nonlinear equation ‖s(λ)‖2 = λ2/σ2, with s(λ) given by (1.86). The applica-
tion of the Newton’s method to such an equation requires the resolution of a sequence
of linear systems

B(λ(j))s = (∇2f(x) + λ(j)In)s = −∇f(x), (1.87)

where λ(j) is the j-th Newton’s iterate.

1.3.2 Cubic model minimisation in a subspace

The computation of the model global minimiser via the Newton’s iteration may be com-
putational demanding for large-scale problems, since a sequence of n× n linear systems
(1.87) has to be solved.

As in the case of trust-region methods, a much more useful approach in practice
is to compute an approximate global minimiser of mk(s) which corresponds to globally
minimising the model over a sequence of nested Krylov’s subspaces, where each sub-
problem is computationally quite inexpensive (see Subsection 1.3.3). It is important to
note that the step computed with this strategy still satisfies (1.57)–(1.58), as stated in the
following lemma.

Lemma 17. [40, Lemma 3.2] Let sk be the global minimiser of mk over some subspace
Lk ⊆ Rn. Then, sk satisfies (1.57)–(1.58). Furthermore, letting Qk denote any orthogo-
nal matrix whose columns form a basis of Lk, we have that

Q>k∇2f(xk)Qk + σk‖sk‖In is positive semidefinite. (1.88)

Proof. [40, Lemma 3.2] Let sk be the global minimiser of mk over some Lk, then sk solves

min
s∈Lk

mk(s). (1.89)

Let ` denote the dimension of the subspace Lk and letQk ∈ Rn×` be an orthogonal matrix
whose columns form a basis of Lk. Thus, Q>k Qk = I` and for all s ∈ Lk, we have s = Qku ,
for some u ∈ R`. Recalling that sk solves (1.89) and letting

sk = Qkuk, (1.90)

we have that uk is the global minimiser of

min
u∈R`

mk,r(u)
def
= f(xk) + (Q>k∇f(xk))>u+

1

2
u>Q>k∇2f(xk)Qku+

1

3
σk‖u‖3,

where we have used that the Euclidean norm is invariant with respect to multiplication

33

by orthogonal matrices∗. Applying Theorem 15 to the reduced model mk,r and uk, it
follows that

Q>k∇2f(xk)Qkuk + σk‖uk‖uk = −Q>k∇f(xk),

and left-multiplication by u>k ∈ R1×` gives

u>k Q
>
k∇2f(xk)Qkuk + σk‖uk‖3 = −u>k Q>k∇f(xk),

which is the same as (1.57), recalling that (1.90) and the invariancy of the Euclidean norm
with respect to multiplication by orthogonal matrices give

uk = Q>k sk with ‖uk‖ = ‖Q>k sk‖ = ‖sk‖. (1.91)

Moreover, Theorem 15 implies that Q>k∇2f(xk)Qk + σk‖uk‖In is positive semidefinite. Con-
sequently, due to (1.91), this is (1.88) and also implies

u>k Q
>
k∇2f(xk)Qkuk + σk‖uk‖3 ≥ 0,

which is, by virtue of (1.91), (1.58).

Remark 6. As anticipated on page 28, we remark that Theorem 15 implies that the step sEk
satisfying conditions (1.70) also fulfill (1.57)–(1.58) considered in the hypotheses of Lemma
14, since it is defined (see (1.70)) as the global minimiser of mk(s) along the subspace
generated by αuk. The same is true for the Cauchy point sCk in (1.29), used in Theorem
13, where the global minimisation is made over the subspace generated by {−∇f(xk)}.
On the other hand, requiring that sk satisfies (1.57) may not necessarily imply (1.28). Nev-
ertheless, when globally minimising mk over successive subspaces, the Cauchy condition
(1.28) can be easily ensured by including ∇f(xk) in each of the subspaces. This is the ap-
proach considered in [40] where the subspaces generated by Lanczos method naturally
include the gradient (see Subection 1.3.3).

1.3.3 Methods for approximately minimising the cubic model

We now describe the procedure outlined in [40] to compute an approximate minimiser
of mk(s) that is the global minimiser over a proper subspace Lk ⊆ Rn. In particular, the
method proposed in [40] requires only Hessian-vector products rather than access to the
Hessian itself (a so-called “matrix-free” approach) and, hence, it may be used in principle
for large unstructured problems. This approach has been also used in [65] for the Trust-
Region method. In both cases, the Lanczos method [63, 64] is used to build an orthogonal
basis {q0, · · · , qj}, j ≥ 0, for the Krylov’s subspace:

Kj
def
= K(∇2f(xk),∇f(xk), j) = span{∇f(xk),∇2f(xk)∇f(xk), · · · , (∇2f(xk))j∇f(xk)}, (1.92)

formed by successively applying ∇2f(xk) to ∇f(xk). Let us briefly recall the main facts
about the Lanczos iteration.

We start by K(∇2f(xk),∇f(xk), 0) = span{q0}, with q0 = ∇f(xk)/‖∇f(xk)‖. Thus,

Kj = K(∇2f(xk), q0, j).

Suppose now that we have found a suitable orthonormal basis {qs}is=0 forK(∇2f(xk), q0, i),

∗For all vectors u ∈ R` and orthogonal matrices Q ∈ Rn×l it holds: ‖Qu‖2 = (Qu)>(Qu) = u>(Q>Q)u =
u>I`u = ‖u‖2, implying that ‖Qu‖ = ‖u‖.

34

for all i ∈ {0, ..., t} with t ∈ {0, ..., j − 1}, i.e.

K(∇2f(xk), q0, i) = span{q0, ..., qi}, q>r qs = δrs, s, r ∈ {0, ..., i}, i ∈ {0, ..., t}.

The construction of the next basis vector qt+1 such that

K(∇2f(xk), q0, t+ 1) = span{q0, ..., qt, qt+1}

is based on the fact that qt+1 we seek has to lie in the span of the previous {qi}ti=0 and
∇2f(xk)qt. This is due to [52, Lemma 5.2.1], reported below.

Lemma 18. [52, Lemma 5.2.1] Suppose that

K(∇2f(xk), q0, i) = span{q0, q1, ..., qi}, (1.93)

for i ∈ {0, ..., t+ 1} and that the qi are mutually orthonormal. Then,

qi+1 ∈ span{q0, q1, ..., qi,∇2f(xk)qi}, (1.94)

for all i ∈ {0, ..., t}.

Proof. The proof, as it appears in [52], is reported in the Appendix (Section A.2).

As qt+1 is required to be orthonormal to {qi}ti=0, it has to contain a nonzero component
of ∇2f(xk)qt. It thus suffices to find a vector

yt+1 =

t∑
i=0

θtiqi +∇2f(xk)qt (1.95)

that is orthogonal to qi, for i ∈ {0, ..., t}, and then to normalise yt+1, setting

qt+1
def
=

yt+1

γt+1
, γt+1

def
= ‖yt+1‖. (1.96)

At a first sight (1.95) appears to require that all the {qi}ti=0 are available, but it can in
practice be computed solely as a linear combination of ∇2f(xk)qt, qt and qt−1. In fact,
given r ∈ {0, ..., t − 2}, we can use the orthogonality of yt+1 and qr, together with the
mutual orthonormality of the {qi}ti=0, to derive, from (1.95), that

0 = q>r yt+1 =

t∑
i=0

θtiq
>
r qi + q>r ∇2f(xk)qt = θtr + q>r ∇2f(xk)qt. (1.97)

As the {qi}ti=0 are mutually orthonormal, (1.94) implies

∇2f(xk)qr ∈ span{q0, ..., qr, qr+1}

and, hence, that
q>r ∇2f(xk)qt = 0,

for all r ∈ {0, ..., t−2}. Consequently (recall (1.97)), θtr = 0 for all r ∈ {0, ..., t−2}. Combining
this latter equalities with (1.95), the definition of qt+1 in (1.96) and (1.97), we obtain that

yt+1 = γt+1qt+1 = ∇2f(xk)qt − q>t ∇2f(xk)qtqt − q>t−1∇2f(xk)qtqt−1. (1.98)

This relationship leads to an alternatine expression for γt+1 in (1.96). To this purpose, tak-

35

ing the inner product of (1.98) with qt+1 and using once again the mutual orthonormality
of {qi}t+1

i=0 gives

γt+1 = γt+1q
>
t+1qt+1

= q>t+1∇2f(xk)qt − (q>t ∇2f(xk)qt)(q
>
t+1qt)− (q>t−1∇2f(xk)qt)(q

>
t+1qt−1)

= q>t+1∇2f(xk)qt.

Therefore, γt = q>t ∇2f(xk)qt−1 = q>t−1∇2f(xk)qt and we can rewrite (1.95) as

yt+1 = γt+1qt+1 = ∇2f(xk)qt − δtqt − γtqt−1, (1.99)

setting δt
def
= q>t ∇2f(xk)qt.

Summarising, we may compute orthonormal bases of the Krylov’s subspace Kj , for
j ≥ 0, with the following algorithm.

Algorithm 5 The Lanczos method [52] for an orthonormal basis of Kt, t ≥ 0.

Given ∇f(xk), set y0 = ∇f(xk), q−1 = 0.

For t = 0, 1, ...:

1. Set γt = ‖yt‖.

2. Set qt = yt/γt.

3. Set δt = q>t ∇2f(xk)qt.

4. Compute yt+1 = ∇2f(xk)qt − δtqt − γtqt−1.

It is thus evident that the major cost of the Lanczos iteration consists in the Hessian-
vector product ∇2f(xk)qt, to be computed at each iteration t ≥ 0.

In matrix terms, setting Qt
def
= (q0, · · · , qt) ∈ Rn×(t+1) and q−1 = 0, then (1.99) can be

written in a more compact way as

∇2f(xk)Qt −QtTt = γt+1qt+1e
>
t+1, (1.100)

where Tt ∈ R(t+1)×(t+1) is a symmetric tridiagonal matrix with diagonal elements (δ0, δ1, ..., δt),
upper and lower diagonal elements (γ1, γ2, ..., γt). Moreover, the columns of Qt are or-
thonormal, i.e.

Q>t qt+1 = 0 (1.101)

Q>t Qt = It+1 (1.102)

Left-multiplication in (1.100) by Q>t and (1.101)–(1.102) give:

Q>t ∇2f(xk)Qt = Tt. (1.103)

After (j + 1) steps, the Lanczos method indeed generates a matrix Qj
def
= (q0, · · · , qj) ∈

Rn×(j+1) with orthogonal columns {qt}jt=0 ⊆ Rn that span the Krylov’s subspace (1.92)
generated by this method. Such a matrix satisfies the properties (1.101)–(1.103) with t = j.

Let us now see how exploiting the Lanczos basis to compute a global minimiser of
mk(s) over Kj . We can take advantage of the tridiagonal structure of Tj ∈ R(j+1)×(j+1)

and search for a minimiser s(k)
j of mk(s) in the range of the basis Qj . To do so we first

note that for all s ∈ Kj there exists a vector u ∈ Rj+1 such that s = Qju. Using this and

36

(1.102)–(1.103) with t = j, the problem mins∈Kj mk(s) reduces to

min
u∈Rj+1

m̃
(k)
j (u)

def
= f(xk) +∇f(xk)>Qje1u

>e1 +
1

2
u>Tju+

1

3
σ‖u‖3, (1.104)

with e1 ∈ Rj+1. We indeed search for a solution u
(k)
j ∈ Rj+1 of problem (1.104), defining

s
(k)
j = Qju

(k)
j . Such iteration on j is pursued until an iterate s

(k)

j
fulfilling a suitable termina-

tion criterion (see, e.g., (3.26), (3.27)) is found.

Remark 7. As noticed in [40, Section 6.2], there are a number of relevant observations
that can be made.

• As Tj is tridiagonal, even when n is large, it is feasible to use the method based
on factorisation described in Appendix (Section A.1) to compute the solution of
mins∈Kj mk(s).

• Having found u
(k)
j , the matrix Qj is needed to recover s(k)

j , and thus the Lanczos vec-
tors qj will either need to be saved on backing store or regenerated when required.

• As a sequence of such problems is solved and as Tj only changes by the addition
of an extra diagonal and superdiagonal entry, solution data from one subproblem
may be useful for starting the next.

• The authors in [40] underline that employing this approach within Algorithm 2 with
the modified steps in Algorithm 3 benefits from the theoretical guarantees of con-
vergence and satisfies the complexity bounds developed in [41]. To see this one
can set Lk = Sj in Lemma 17 and note that the current gradient is included in all the
subspaces Sj .

We end this chapter mentioning that, upon Lanczos-type iterations where the minimi-
sation is done via nested (lower dimensional) Krylov’s subspaces, a number of procedures
have been proposed to approximately minimise the cubic model (1.14) at each iteration
of the ARC framework. These methods range from the described approach in [40], up to
minimisation via gradient descent (see, e.g., [1, 33, 32]) or the Barzilai-Borwein gradient
method [103, 71, 20]. All these techniques require the evaluation of the gradient (1.15) of
the model mk(s) at iteration k, this in turn needs the computation of the Hessian-vector
product ∇2f(xk)s.

If the exact Hessian is considered, the product ∇2f(xk)s can be approximated by
finite-difference, with at most two gradient evaluations [20, 32].
The basis for doing that is once again the Taylor’s expansion. In fact (see, e.g., [97]), when
second derivatives of f exist and are Lipschitz continuous in a neighborhood xk, we have
that

∇f(xk + hs) = ∇f(xk) + h∇2f(xk)s+
1

2
h2∇3f(xk)[s]2 +O(h3)︸ ︷︷ ︸

=O(h2)

, (1.105)

∇f(xk − hs) = ∇f(xk)− h∇2f(xk)s+
1

2
h2∇3f(xk)[s]2 +O(h3), (1.106)

so that, from (1.105),

∇2f(xk)s =
∇f(xk + hs)−∇f(xk)

h
+O(h)

and, hence, we can set

∇f(xk + hs)−∇f(xk)

h
' ∇2f(xk)s, (1.107)

37

choosing a small positive scalar h. In this respect, the authors in [20] consider h = 2 ·
10−6 1+‖xk‖

max[10−5,‖s‖] . The approximation error is O(h) and the cost for obtaining the estimation
is an additional single gradient evaluation at xk + hs, since ∇f(xk) is already available
at iteration k when computing the Hessian-vector product ∇2f(xk)s. The formula (1.107)
corresponds to the so-called forward-difference approximation.

The accuracy of the Hessian-vector product approximation can even be increased
considering a central-difference formula, obtained by substracting (1.106) from (1.105)
and dividing by 2h, which provides us with

∇2f(xk)s =
∇f(xk + hs)−∇f(xk − hs)

2h
+O(h2),

giving
∇f(xk + hs)−∇f(xk − hs)

2h
' ∇2f(xk)s.

In this case the approximation error becomes O(h2), but the two gradient evaluations
∇f(xk + hs) and ∇f(xk − hs) are needed.

Interestingly, all these matrix-free implementations remain relevant if∇2f(xk) is approx-
imated via subsampling (see Section 3.5), proceeding as in Section 3.1 of [15], while back-
propagation-like methods in machine learning via artificial neural networks (see Section
7.1) also allow computations of Hessian-vector products at a similar cost [100, 112].

38

Part II

Adaptive Cubic Regularisation
Methods under Inexact Evaluations

39

Introduction to Part II

Iteration and evaluation complexity of algorithms for nonlinear and possibly nonconvex
optimisation problems of the form (1.1) has been the subject of active research in recent
years. Until recently, the results had focused on methods using up to second-order deriva-
tives of the objective function and on convergence guarantees to first or second-order
stationary points [120, 96, 95, 68, 41].

We recall that the complexity results in [22, 41, 38, 37, 36] are sharp and optimal with
respect to steepest descent, Newton’s method and Newton’s method embedded into
a line search or a trust-region strategy [42, 38]. Therefore, ARC methods have generated
considerable interest in the research community.

Even more recently, [35] proposed a conceptual unified framework subsuming all the
known results for regularisation methods, establishing an upper evaluation complexity
bound for arbitrary model degree (in analogy to [22]) and also, for the first time, for ar-
bitrary orders of optimality. This paper additionally covers unconstrained problems and
problems involving “inexpensive” constraints, that is constraints whose evaluation/en-
forcement cost is negligible compared to that of evaluating the objective function and its
derivatives and, hence, the evaluation complexity is, for such constraints, well captured
by the number of evaluations of the objective function and its derivatives. It also allows
for a full range of smoothness assumptions on the objective function. Finally, it proves
that the complexity results obtained are optimal in the sense that upper and lower eval-
uation complexity bounds match in order. In [35], all the above mentioned results are
established for versions of the regularisation algorithms where it is assumed that objective
function values and values of its derivatives (when necessary) can be computed exactly.
Nevertheless, in many real-life problems, it may be difficult or even not possible to obtain
accurate values of the objective and/or derivatives.

This difficulty has been known for a long time and has generated its own stream of re-
sults, among which we mention the Trust-Region method using dynamic accuracy on the
objective function and (possibly on) its gradient (see Sections 8.4.1.1 and 10.6 of [52] and
[13]), together with the purely probabilistic approaches of [99, 19, 23]. Consequently,
suitable variants of existing and well-assessed methods to allow for inexact derivatives
and/or function evaluations, though conserving optimal complexity, are getting increas-
ing attraction.

To start with, particularly relevant is the ARC algorithm where exact second derivatives
of f are not required [40]. Inexact Hessian information is used and suitable approximations
of the Hessian make the algorithm convenient for problems where the evaluation of sec-
ond derivatives is expensive. Clearly, the agreement between the Hessian and its approx-
imation characterises complexity and convergence rate behaviour of the procedure; in
[40, 41], the well-known Dennis-Moré condition [57] and slightly stronger agreements are
considered.

Recently, ARC and Newton-type methods with inexact or incomplete Hessian infor-
mation, coupled with possibly inexact function and gradient information, have received
large attention (see, e.g., [10, 5, 12, 15, 28, 30, 44, 50, 79, 102, 107, 124, 123, 125, 69]).
In particular, ARC methods with probabilistic models have been proposed and studied

41

in [44, 50, 79, 124, 123, 125], while a cubic regularised method incorporating variance
reduction techniques has been given in [127]; inexact Hessian information is considered
in [50, 9, 124, 123]; approximate gradient and Hessian evaluations are used in [35, 44,
114, 125]; function, gradient and Hessian values are sampled in [84, 18]. The amount of
inexactness allowed is controlled dynamically in [35, 44, 84, 50, 9].

The interest in such methods is mainly motivated by problems where the evaluation
of f and/or its derivatives is computationally expensive, such as large-scale optimisation
problems arising in machine learning and data analysis, modeled as

min
x∈Rn

f(x) =
1

N

N∑
i=1

ϕi(x), (1.108)

with N being a positive scalar and ϕi : Rn → R. That is to say that the objective function
f is the mean of the N component functions ϕi in (1.108) and, hence, the evaluation
of the exact function and derivatives might be, for larger values of N , computationally
expensive.

First-order methods, requiring only up to first-order derivatives of the objective f , to-
gether with their stochastic versions, are frequently used by the community within this
framework. These methods include Gradient Descent (GD), Stochastic Gradient Descent
(SGD), incremental gradient algorithms based on variance reduction, such as Stochastic
Variance Reduction Gradient (SVRG), SVRG with Barzilai-Borwein step sizes (SVRG-BB),
StochAstic Recursive grAdient algoritHm (SARAH), Stochastic Average Gradient (SAG)
and its variant SAGA, gradient methods with adaptive step length selection based on
line search or other globalisation strategies (see [11, 54]). Generally, their per-iteration
cost is rather low and they result in a quite smart implementation. Anyway, convergence
may take a while on large-scale problems (the rate of convergence is generally low),
their performance can be seriously hindered by ill-conditioning and, mainly, their success
is tightly intertwined with fine-tuning (often many) hyperparameters† (think about the step
size of a line search scheme, for instance). In addition, the objective function f of (1.1)
can be nonconvex, as usual in machine learning applications, so first-order methods are
expected to have more difficulty avoiding saddle points, since the make no use of cur-
vature information.

By contrast, second-order strategies, where also second-order derivatives (i.e., curva-
ture information) are considered to guide the optimisation process, have been shown to
be highly resilient to ill-conditioned and badly-scaled problems, taking advantage of cur-
vature information to easier escape from saddle points [28, 38, 123] or even local minima
(see, e.g. [88]). They also seem to be less sensitive to the choice of hyperparameters and
less involved in the parameters tuning. However, the per iteration cost is expected to be
higher than first-order schemes, due to the step computation, the Hessian evaluation or
the approximation of Hessian-vector products.

This second part of the thesis presents variants of the basic ARC method introduced
in Part I, aiming at reducing the per-iteration cost by employing inexact function and/or
derivatives information.

This part is the subject of the recent publications [9, 10] and it is argued in three differ-
ent chapters.

In Chapter 2 we analyse how to compute inexact evaluations for f and its derivatives

†The hyperparameters are parameters that cannot be estimated from the data. Their formal definition,
quoting [14], is the following.

We define a hyperparameter for a learning algorithm A as a variable to be set prior to the actual
application of A to the data, one that is not directly selected by the learning algorithm itself.

.

42

in the finite-sum minimisation setting.
Chapter 3 considers a new ARC method based on inexact Hessian information, dy-

namically chosen. The theoretical analysis of the proposed procedure is given, in order to
show that the key complexity property of ARC framework is still guaranteed. Application
to large-scale finite-sum minimisation (1.108) based on subsampled Hessian is discussed
and analysed in both a deterministic and probabilistic manner.

Chapter 4 finally proposes an extension of the method considered in Chapter 3 and
of the framework [35] when models up to order three are considered, within the range
of unconstrained or inexpensively-constrained problems, allowing for inexact evaluations
of the objective function and of the required derivatives. This generalisation shares with
the method of the previous chapter the advantage of preserving the optimal evalua-
tion complexity of the standard regularisation methods. An interesting, but practically
more restrictive, variant of our algorithm is also exploited, deriving an improved eval-
uation complexity, as well as a probabilistic version of the framework, with a practical
application to the context of subsampling methods for machine learning.

43

Chapter 2

Inexact Evaluations in the
Finite-Sum Minimisation Setting

In what follows, we focus on the solution of large-scale instances of the finite-sum prob-
lems arising in machine learning and data analysis, modelled by (1.108), that can be con-
veniently solved by subsampling procedures where f(xk) and/or ∇f(xk) and/or ∇f2(xk)

are approximated by randomly sampling component functions from {ϕi(xk)}Ni=1, {∇ϕi(xk)}Ni=1,
{∇2ϕi(xk)}Ni=1 (see, e.g., [28]).

To this aim, let us consider the generic setting in which at iteration k ≥ 0 the inexact
quantities fk(xk), fk(xk+sk), ∇f(xk) and∇2f(xk) have to be computed. Assume that the
following requirements have to be satisfied:

P
[
‖∇jf(xk)−∇jf(xk)‖ ≤ τj,k

]
≥ (1− t), j ∈ {1, 2}, (2.1)

P
[
|fk(xk + sk)− f(xk + sk)| ≤ τ0,k

]
≥ 1− t, (2.2)

P
[
|fk(xk)− f(xk)| ≤ τ0,k

]
≥ 1− t, (2.3)

with τj,k, j ∈ {1, 2} prefixed absolute accuracies for the derivative of order j at iteration k

and t ∈ (0, 1) a prescribed probability of failure. We are therefore assuming that the pre-
scribed accuracies on f and its derivative of order j ∈ {1, 2} are satisfied with probability
at least 1− t.

The approximations of the objective function value and of first and second derivatives
by a subsampling procedures take the form:

fk(xk) =
1

|Dk,1|
∑
i∈Dk,1

ϕi(xk), fk(xk + sk) =
1

|Dk,2|
∑
i∈Dk,2

ϕi(xk + sk), (2.4)

∇f(xk) =
1

|Gk|
∑
i∈Gk

∇ϕi(xk), (2.5)

∇2f(xk) =
1

|Hk|
∑
i∈Hk

∇2ϕi(xk), (2.6)

where Dk,1, Dk,2, Gk, Hk are subsets of {1, 2, . . . , N} and |Dk,1|, |Dk,2|,Gk|, |Hk| being the
so-called sample sizes.

The question then arises of estimating the cardinality of these sample sets in order to
ensure that the approximations of the objective function value and its first and second
derivatives satisfy (2.1), for j ∈ {1, 2}, (2.2) and (2.3) (for the case j = 0). This issue can be
addressed using the operator-Bernstein inequality given in [115].

The next theorem provides us with the final result concerning the sample sizes for uni-

45

form subsampling the objective function and its derivatives up to order j = 2.

Theorem 19. Suppose that there exist nonnegative constants {κϕ,j}2j=0 such that, for
x ∈ Rn and all j ∈ {0, 1, 2},

max
i∈{1,...,N}

‖∇jϕi(x)‖ ≤ κϕ,j(x). (2.7)

Let t ∈ (0, 1) and suppose that a subsample Ak is chosen randomly and uniformly
from {1, . . . , N} and that, for some j ∈ {0, 1, 2}, one computes

∇jf(x) =
1

|Ak|
∑
i∈Ak

∇jϕi(x),

with

|Ak| ≥ min

{
N,

⌈
4κϕ,j(x)

τj

(
2κϕ,j(x)

τj
+

1

3

)
log

(
dj
t

)⌉}
, (2.8)

where

dj =


2, if j = 0,

n+ 1, if j = 1,

2n, if j = 2.

Then condition (2.1) holds for x = xk with probability at least (1 − t) if j ∈ {1, 2}, or, if
j = 0, each of the conditions (2.2) and (2.3) holds with probability at least (1 − t) for
x = xk + sk and x = xk, respectively.

Proof. Let Ak ⊆ {1, . . . , N} be a sample set of cardinality |Ak|. Consider j ∈ {0, 1, 2} and
|Ak| random tensors Zu(x) such that,

P
[
Zu(x) = ∇jϕi(x)

]
=

1

N
, (i ∈ {1, . . . , N}).

For u ∈ Ak, let us define

Xu
def
=
(
Zu(x)−∇jf(x)

)
, ∇jf(x)

def
=

1

|Ak|
∑
u∈Ak

Zu(x)

and
X

def
=
∑
u∈Ak

Xu = |Ak|
(
∇jf(x)−∇jf(x)

)
.

Since (1.108) gives that
1

N

N∑
i=1

∇jϕi(x) = ∇jf(x),

we deduce that

E(Xu) =
1

N

N∑
i=1

(
∇jϕi(x)−∇jf(x)

)
= 0, u ∈ Ak.

Moreover, assuming Zu(x) = ∇jϕl(x) for some l ∈ {1, . . . , N} and using (2.7), we have that

‖Xu‖ ≤

∥∥∥∥∥N − 1

N
∇jϕl(x)− 1

N

∑
i∈{1,...,N}\{l}

∇jϕi(x)

∥∥∥∥∥ ≤ 2
N − 1

N
κϕ,j(x) ≤ 2κϕ,j(x),

46

so that the variance of X can be bounded as follows:

v(X) = max
[
‖E(XXT)‖, ‖E(XTX)‖

]
= max

[∥∥∥ ∑
u∈Ak

E(XuX
T
u)
∥∥∥,∥∥∥ ∑

u∈Ak

E(XT
uXu)

∥∥∥]
≤ max

[∑
u∈Ak

‖E(XuX
T
u)‖,

∑
u∈Ak

‖E(XT
uXu)‖

]
≤ max

[∑
u∈Ak

E(‖XuX
T
u ‖),

∑
u∈Ak

E(‖XT
uXu‖)

]
≤
∑
u∈Ak

E(‖Xu‖2) ≤ 4|Ak|κ2
ϕ,j(x),

in which the first and the third inequalities hold because of the triangular inequality, while
the second is due to the Jensen’s inequality∗ (note that the spectral norm ‖ · ‖ is convex).
Therefore, according to the Operator-Bernstein Inequality stated in [115, Theorem 6.1.1],
we obtain that

P
[
‖∇jxf(x)−∇jxf(x)‖ ≥ εj

]
= P

[
‖X‖ ≥ εj |Ak|

]
≤ dje

−
ε2j |Ak|

4κϕ,j(x)(2κϕ,j(x)+
1
3 εj) , (2.9)

with dj = 2 if j = 0, dj = n + 1 if j = 1 and dj = 2n if j = 2. Then, bounding the right-hand
side of (2.9) by t, taking logarithms and extracting |Ak| gives (2.8).

In particular, Theorem 19 gives the lower bounds

|Dk,`| ≥ min

{
N,

⌈
4κϕ,0(x)

τ0,k

(
2κϕ,0(x)

τ0,k
+

1

3

)
log

(
2

t

)⌉}
, (2.10)

with

x =

{
xk, if ` = 1,

xk + sk if ` = 2,

|Gk| ≥ min

{
N,

⌈
4κϕ,1(xk)

τ1,k

(
2κϕ,1(xk)

τ1,k
+

1

3

)
log

(
n+ 1

t

)⌉}
, (2.11)

|Hk| ≥ min

{
N,

⌈
4κϕ,2(xk)

τ2,k

(
2κϕ,2(xk)

τ2,k
+

1

3

)
log

(
2n

t

)⌉}
. (2.12)

The implementation of rules (2.10)-(2.12) requires the knowledge of the size of the com-
ponent functions ϕi and their first and second-order derivatives. If only global information
is available, the dependence on x may obviously be avoided by choosing a uniform
upper bound κϕ,j for all x ∈ Rn, at the cost of a lesser adaptivity. Similar bounds on the
sample size used to approximate gradients and Hessians up to a prescribed probability
have been derived and used in [123], where it has also been observed that there are
problems in which estimations of the needed uniform upper bounds can be obtained.

In particular, let {(ai, bi)}Ni=1 denote the pairs forming a data set with ai ∈ Rn being the
vector containing the features of the i-th example and bi being its label.

In [123] the authors considered the minimisation of objective function (1/N)
∑N
i=1(Φ(aTi x)−

bia
T
i x) over a sparsity inducing constraint set, e.g., X = {x ∈ Rn | ‖x‖1 ≤ 1}, for cumulant

generating functions Φ of different forms, and explicitly provided the uniform bound κϕ,1.
Taking into account that x belongs to the set X , uniform bounds for the objective function
and the Hessian norm can also be derived.

Uniform bounds are available also in the unconstrained setting for binary classification

∗The Jensen’s inequality describes how averaging interacts with convexity. Let X be a random matrix, and
let h be a real-valued function convex on matrices. Then, h(E[X]) ≤ E[h(X)].

47

problems modelled by the sigmoid function and least-squares loss, i.e. problems of the
form (1.108) and

ϕi(x) =

(
bi −

1

1 + e−a
T
i x

)2

, i = 1 . . . , N. (2.13)

Let vi(x) = (1 + e−a
T
i x)−1 and note that bi ∈ {0, 1}, vi(x) ∈ (0, 1) for any x ∈ Rn. Then,

|ϕi(x)| ≤ 1, for any x ∈ Rn. Moreover, uniform upper bounds κϕ,j for ∇jϕi(x), j ∈ {1, 2}
can be easily derived and are reported in Table 2.1 along with the expression of the
first and second-order derivatives of ϕi(x). The computation of these bounds requires
a pre-processing phase as the norms of the features vectors {ai}Ni=1 of the datasets are
needed.

Derivatives κϕ,j

∇ϕi(x) −2(bi − vi(x))(1− vi(x))vi(x)ai 2
5‖ai‖

∇2ϕi(x) −2vi(x)(1− vi(x))(3vi(x)2 − 2vi(x)(1 + bi) + bi)aia
>
i

1
2‖ai‖2

Table 2.1: First and second-order derivatives of (2.13) and corresponding uniform bounds.

48

Chapter 3

Adaptive Cubic Regularisation
Methods under Dynamic Inexact
Hessian Information

This chapter focuses on a variant of the ARC methods for problem (1.1) with inexact
Hessian information and presents a strategy for choosing the Hessian approximation dy-
namically.

We propose a rule for fixing the desired accuracy in the Hessian approximation, wired
into the resulting ARC scheme. The agreement between the Hessian of f and its approxi-
mation can be loose at the beginning of the iterative process and progressively increases
as the norm of step size drops below one and a stationary point for (1.1) is approached.

The resulting ARC variant employs a potentially milder accuracy requirement on the
Hessian approximation than the proposals in [50, 124], without impairing optimal complex-
ity results. The new algorithm is theoretically analysed and first and second-order optimal
complexity bounds are proved in a deterministic manner. In particular, we show that the
complexity bounds and convergence properties of our scheme match those of the ARC
methods described in Chapter 1.

We also discuss the application of our method to finite-sum minimisation problems
(1.108) and show that it is compatible with subsampled Hessian approximations adopted
in literature; in this context, we give probabilistic and deterministic results as well as nu-
merical tests on a set of nonconvex binary classification problems.

The chapter is organised as follows. With reference to the main ARC framework given
by Algorithm 2 in Part I, Section 3.1 briefly reviews the classical accuracy requirements for
Hessian approximation and introduces our new choice. Then, in Section 3.2, we introduce
our variant of the algorithm, based on a dynamic rule for building the inexact Hessian in
order to achieve the level of resemblance designed in Section 3.1. The first-order iteration
and evaluation complexity bound of the resulting algorithm is studied in Section 3.3 along
with the asymptotic behaviour of the generated sequence, while complexity bounds
and convergence to second-order points are analysed in Section 3.4. The application
of our algorithm to the finite-sum optimisation problem is discussed in Section 3.5. Finally,
the main differences of our proposal from the closely related works in the literature is
addressed in Section 3.6.

49

3.1 Overview of the requirements for Hessian approximation

With reference to the basic ARC algorithm (Algorithm 2) introduced in Part I, we have that
optimal complexity to reach first-order critical points (see Theorem 8) can be achieved
under Assumption 1.2.1 on the objective function, Assumption 1.2.2 on its Hessian and
Assumption 1.2.3 about the requirement on the Hessian approximation.

We now recall the classical choices that have been considered in literature, thou pre-
serving the complexity result.
Kohler and Lucchi [79] suggested to achieve (1.31) by imposing

‖∇2f(xk)−∇2f(xk)‖ ≤ χ‖sk‖, (3.1)

for some χ > 0. It is evident that the agreement between ∇2f(xk) and ∇2f(xk) depends
on the step length which can be determined only after ∇2f(xk) is formed. This issue is
circumvented in practice employing the step length at the previous iteration [79].

Xu et al. [124, 125] analysed ARC algorithm making a major modification on the level
of resemblance between ∇2f(xk) and ∇2f(xk) over (1.31), requiring

‖(∇2f(xk)−∇2f(xk))sk‖ ≤ µ‖sk‖, (3.2)

with µ ∈ (0, 1). In practice, (3.2) is achieved imposing ‖∇2f(xk) − ∇2f(xk)‖ ≤ µ. In
order to retain the optimal complexity of the classical ARC method, µ = O(ε1) is as-
sumed. We observe that, given a positive υ, the requirement ‖∇2f(xk) − ∇2f(xk)‖ ≤ υ

can be enforced approximating ∇2f(x) by finite-differences or interpolating functions
[52]. Moreover, for the class of large-scale finite-sum minimisation (1.108), the require-
ment ‖∇2f(xk) − ∇2f(xk)‖ ≤ υ can be satisfied in probability via subsampling as in (2.6)
(see also [10, 28, 79, 124]).

In this work, we propose a variant of Algorithm 2 employing a model of the form (1.14)
and a matrix ∇2f(xk) such that

‖∇2f(xk)−∇2f(xk)‖ ≤ ck, (3.3)

for all k ≥ 0 and positive scalars ck.
The accuracy ck on the inexact Hessian information is dynamically chosen and when

the norm of the step is smaller than one it depends on the current gradient norm. We
will show that for properly chosen scalars ck, condition (3.3) is an implementable rule to
achieve (1.31). In addition, in the first phase of the procedure, the accuracy imposed on
∇2f(xk) can be less stringent with respect to the proposal made in [50, 124, 125], though
preserving the complexity bound O(ε

−3/2
1).

The study of our variant of the ARC algorithm is presented in the subsequent sections.
We refer to Sections 3.5 and 3.6 for a discussion on the application to the finite-sum op-
timisation problem of the form (1.108) and the comparison with the above mentioned
related works in the literature, that can be addressed in a more direct way once that our
new strategy is presented.

50

3.2 An adaptive choice of the inexact Hessian: the ARC-DH
algorithm

We now propose and study a variant of Algorithm 2 which maintains the complexity
bound O(ε

−3/2
1) to handle first-order critical points.

Our algorithm is based on the use of an approximation ∇2f(xk) of ∇2f(xk) in the con-
struction of the cubic model and a rule for choosing the level of agreement between
∇2f(xk) and ∇2f(xk). The accuracy requirements in the approximate minimisation of
mk(s) consist of (1.17) and a condition on ‖∇smk(sk)‖ which includes the condition (1.18)
but it is not limited to it.

Our analysis is carried out under Assumption 1.2.1, Assumption 1.2.2, Assumption 1.2.4
and we suppose that the step sk computed has the following property.

Assumption 3.2.1. For all k ≥ 0 and some 0 ≤ θk ≤ θ ∈ [0, 1), sk satisfies

mk(sk) < mk(0), (3.4)

‖∇smk(sk)‖ ≤ θk‖∇f(xk)‖. (3.5)

By (1.10) and (1.14) it follows that

mC
k (s) = T̂2(xk, s) +

1

2
sT (∇2f(xk)−∇2f(xk))s+

L

6
‖s‖3. (3.6)

Then, (1.10) yields
f(xk + s) ≤ T̂2(xk, s) + Ek(s), (3.7)

where
Ek(s) =

1

2
‖∇2f(xk)−∇2f(xk)‖‖s‖2 +

L

6
‖s‖3. (3.8)

Now, we make our key requirement on the agreement between ∇2f(xk) and ∇2f(xk)

and analyse its effects on the ARC algorithm.

Assumption 3.2.2. Let ∇2f(xk) ∈ Rn×n satisfy

∆k = ∇2f(xk)−∇2f(xk), ‖∆k‖ ≤ ck, (3.9)

ck = c, if ‖sk‖ ≥ 1, (3.10)

ck ≤ α(1− θ)‖∇f(xk)‖, if ‖sk‖ < 1, (3.11)

for all k ≥ 0, with α, ck and c positive scalars, sk ∈ Rn and θ ∈ [0, 1) as in Assumption 3.2.1.

Bounds on ‖∆k‖ and on Ek(sk) involving ‖sk‖ are derived below and give Ek(sk) =

O(‖sk‖3).

Lemma 20. Let Assumption 1.2.1(ii), Assumption 1.2.2, Assumptions 3.2.1–3.2.2 and
Assumption 1.2.4 hold. Let Ek(s) and ∆k as in (3.8)–(3.9). Then,

‖∆k‖ ≤
{
c‖sk‖, if ‖sk‖ ≥ 1,

α(κB + σk)‖sk‖, if ‖sk‖ < 1,
(3.12)

and

Ek(sk) ≤


1

2

(
c+

L

3

)
‖sk‖3, if ‖sk‖ ≥ 1,

1

2

(
α(κB + σk) +

L

3

)
‖sk‖3, if ‖sk‖ < 1.

(3.13)

51

Proof. First consider the case ‖sk‖ ≥ 1. Trivially, the inequality in (3.9) gives (3.12) and

Ek(sk) ≤ 1

2
c‖sk‖3 +

L

6
‖sk‖3,

i.e., the first bound in (3.13).
Suppose now that ‖sk‖ < 1. Using (3.5), Assumptions 1.2.4 and 3.2.1, we obtain

θ‖∇f(xk)‖ ≥ ‖∇smk(sk)‖

=
∥∥∥∇f(xk) +∇2f(xk)sk + σksk‖sk‖

∥∥∥ (3.14)

≥ ‖∇f(xk)‖ − ‖∇2f(xk)‖ ‖sk‖ − σk‖sk‖2

≥ ‖∇f(xk)‖ − κB‖sk‖ − σk‖sk‖,

which gives

‖sk‖ ≥
(1− θ)‖∇f(xk)‖

κB + σk
. (3.15)

Thus, (3.9) and (3.11) yield

‖∆k‖ ≤ ck =
ck
‖sk‖

‖sk‖ ≤
ck(κB + σk)

(1− θ)‖∇f(xk)‖
‖sk‖.

Finally, (3.11) implies (3.12) and this along with (3.8) gives (3.13).

Taking into account the previous result and assuming α ∈ [0, 2/3), we can establish
when the overestimation property f(xk + sk) ≤ mk(sk) is verified. Using (1.14) and (3.6)–
(3.7) we see that if Ek(sk) ≤ σk‖sk‖3/3, then mC

k (sk) ≤ mk(sk), which implies that mk(sk)

overestimates f(xk + s).
If ‖sk‖ ≥ 1 and

1

2

(
C +

L

3

)
≤ σk

3
, i.e., σk ≥

3c+ L

2
,

then (3.13) implies mC
k (sk) ≤ mk(sk).

Analogously, if ‖sk‖ < 1,

1

2

(
α(κB + σk) +

L

3

)
≤ σk

3
i.e., σk ≥

3ακB + L

2− 3α
,

then (3.13) implies mC
k (sk) ≤ mk(sk).

We can now deduce an important upper bound on the regularisation parameter σk.

Lemma 21. Let Assumption 1.2.1(ii), Assumption 1.2.2, Assumptions 3.2.1–3.2.2 and
Assumption 1.2.4 hold. Suppose that the scalar α in Assumption 3.2.2 is such that

α ∈
[
0,

2

3

)
and that the constant η2 in Algorithm 2 is such that η2 ∈

(
0,

2− 3α

2

)
. It

then holds

σk ≤ σmax
def
= max

{
σ0, γ3

3c+ L

2(1− η2)
, γ3

3ακB + L

2− 3α− 2η2

}
, ∀k ≥ 0, (3.16)

where γ3 is the constant used in (1.20).

Proof. Let us derive conditions on σk ensuring ρk ≥ η2. By (1.14) and (3.4), it follows ‖sk‖ 6= 0

and by (1.25),
T̂2(xk, 0)− T̂2(xk, sk) >

σk
3
‖sk‖3 > 0. (3.17)

52

Moreover, by (3.7) and the fact that Ek(sk) > 0,

1− ρk =
f(xk + sk)− T̂2(xk, sk)

T̂2(xk, 0)− T̂2(xk, sk)
≤ Ek(sk)

T̂2(xk, 0)− T̂2(xk, sk)
<

3Ek(sk)

σk‖sk‖3
. (3.18)

If ‖sk‖ ≥ 1, using (3.13) we obtain

1− ρk<
3

2σk

(
c+

L

3

)
and ρk ≥ η2 is guaranteed when

σk ≥
3C + L

2(1− η2)
.

On the other hand, if ‖sk‖ < 1, then (3.13) and (3.18) give

1− ρk<
3

2σk

(
α(κB + σk) +

L

3

)
and ρk ≥ η2 is guaranteed when

σk ≥
3ακB + L

2− 3α− 2η2
,

noting that the denominator is strictly positive by assumption. Then, the updating rule
(1.20) implies σk+1 ≤ σk in case ρk ≥ η2 and, more generally, the inequality (3.16).

An important consequence of Lemma 20 and Lemma 21 is that (3.3) implies

‖∇2f(xk)−∇2f(xk)‖ ≤ max(c, α(κB + σmax))‖sk‖, (3.19)

for all k ≥ 0, so that condition (1.31) is satisfied.
With reference to Lemma 21, the value of α in (3.11) determines the accuracy of

∇2f(xk) as an approximation to ∇2f(xk) and the admitted maximum value of η2. For
decreasing values of α, the accuracy of the Hessian approximation increases and η2

reaches one. On the other hand, if α tends to 2/3, then the accuracy of the Hessian
approximation reduces, η2 tends to zero and σmax tends to infinity.∗

On the basis of the previous analysis we sketch on the following page our version of
Algorithm 2, denoted as ARC-DH.

The main feature is the adaptive rule for adjusting the agreement between ∇2f(xk)

and ∇2f(xk), as specified in Assumption 3.2.2. At the beginning of the k-th iteration, the
variable flag is equal to either 1 or 0 and determines the value of ck; specifically ck = c if
flag = 1, ck = α(1 − θ)‖∇f(xk)‖ otherwise, with ∇f(xk) being available (at iteration k = 0,
flag is set equal to 1). Scalars c and α are initialised at Step 0; the choice of α and η2 is
made in accordance to the results presented above. Then, ∇2f(xk) is computed at Step
2 and the trial step sk is computed at Step 3. Step 4 is devoted to a check on the accor-
dance between ck and ‖sk‖, since (3.11) is required to hold if ‖sk‖ < 1, whereas ‖sk‖ can
be determined only after ∇2f(xk) is formed. Therefore, at the end of a successful itera-
tion, the value of flag is fixed according to the step length at the last step. Successively,
once ∇2f(xk) and sk have been computed, if ‖sk‖ < 1, flag = 1 and c > α(1− θ)‖∇f(xk)‖
hold, then the step is rejected and the iteration is unsuccessful; variable flag is set equal
to 0 and ∇2f(xk) is recomputed at the successive iteration. This unsuccessful iteration
is ascribed to the choice of the matrix ∇2f(xk), hence the regularisation parameter is

∗Values η2 =
3

4
and η2 =

9

10
used in the literature for the trust-region and ARC frameworks are achieved

setting α =
1

6
and α =

1

15
, respectively.

53

left unchanged. On the other hand, if the level of accuracy in ∇2f(xk) with respect to
∇2f(xk) fulfills the requests (3.10)–(3.11), in Step 5 we proceed for acceptance of the trial
steps and update of the regularising parameter as in Algorithm 2.

Summarising, by construction, Assumption 3.2.2 is satisfied at every successful iteration
and at any unsuccessful iteration detected in Step 5.

Algorithm 6 The ARC algorithm with Dynamic Hessian (ARC-DH) accuracy.

Step 0: Initialisation. Given an initial point x0, the initial regulariser σ0 > 0, the accuracy
level ε1. Given θ, α, η1, η2, γ1, γ2, γ3, σmin, c s.t.

0 < θ < 1, α ∈
[
0,

2

3

)
, σmin ∈ (0, σ0], 0 < η1 ≤ η2 <

2− 3α

2
, 0 < γ1 < 1 < γ2 < γ3, c > 0.

Compute f(x0) and set k = 0, c0 = c, flag = 1.

Step 1: Test for termination. If ‖∇f(xk)‖ ≤ ε1, terminate with the current solution x̂ = xk.

Step 2: Hessian approximation. Compute ∇2f(xk) satisfying (3.9).

Step 3: Step computation. Choose θk ≤ θ. Compute the step sk satisfying (3.4)– (3.5).

Step 4: Check on ‖sk‖.
If ‖sk‖ < 1 and flag = 1 and c > α(1− θ)‖∇f(xk)‖,

set xk+1 = xk, σk+1 = σk, (unsuccessful iteration)

set ck+1 = α(1− θ)‖∇f(xk)‖, flag = 0,

set k = k + 1 and go to Step 2.

Step 5: Acceptance of the trial step and parameters update.
Compute f(xk + sk) and ρk in (1.19).
If ρk ≥ η1,

define xk+1 = xk + sk, set

σk+1 ∈
{

[max(σmin, γ1σk), σk] , if ρk ≥ η2, (very successful iteration)
[σk, γ2σk] , if ρk ∈ [η1, η2) , (successful iteration)

If ‖sk‖ ≥ 1, set ck+1 = c, flag = 1;
else, set ck+1 = α(1− θ)‖∇f(xk+1)‖, flag = 0.

Set k = k + 1 and go to Step 1.

else,

define xk+1 = xk, σk+1 ∈ [γ2σk, γ3σk] , (unsuccessful iteration)

ck+1 = ck, ∇2f(xk+1) = ∇2f(xk).

Set k = k + 1 and go to Step 3.

Finally, both flag and ck are updated at Step 5 as follows. If the iteration is successful, we
update flag and ck following (3.10)–(3.11) and using the norm of the accepted trial step;
clearly, this is a prediction, as the step sk+1 is not available at this stage and such a setting
may be rejected at Step 4 of the successive iteration. If the iteration is unsuccessful, then
we do not change either ck or ∇2f(xk).

54

The classification of successful and unsuccessful iterations of the ARC-DH algorithm
between 0 and k can be made introducing the sets:

Sk = { 0 ≤ j ≤ k | j successful in the sense of Step 5 } , (3.20)

Uk,1 = { 0 ≤ j ≤ k | j unsuccessful in the sense of Step 5 } , (3.21)

Uk,2 = { 0 ≤ j ≤ k | j unsuccessful in the sense of Step 4 } . (3.22)

More insight into the settings of ck and σk in our algorithm, first we note that ck satisfies

ck = 1Wk
α(1− θ)‖∇f(xk)‖+ (1− 1Wk

)c,

where we set Wk
def
= {sk : ‖sk‖ < 1}. It follows that if

‖∇f(x)‖ ≤ κg,

for all x in an open convex set X containing {xk} and some positive κg, then

ck ≤ max{c, α(1− θ)κg}.

Second, we observe that the update of σk is not affected by unsuccessful iterations in
the sense of Step 4. In fact, we have σk+1 = σk whenever an unsuccessful iteration occurs
at Step 4 and the rule for adapting σj , j ≤ k, has the form

σj+1 ≥ γ1σj , j ∈ Sk, (3.23)

σj+1 ≥ γ2σj , j ∈ Uk,1, (3.24)

σj+1 = σj , j ∈ Uk,2. (3.25)

As a consequence, the upper bound on the scalars σk established in Lemma 21 is still
valid.

3.3 Complexity and convergence analysis to first-order criti-
cal points

To study the iteration complexity of the ARC-DH algorithm we here consider two possible
stopping criteria for the approximate minimisation of model (1.14) at Step 3. Given θ ∈
(0, 1), the first criterion has the form

‖∇sm(xk, sk, σk)‖ ≤ θmin
(
‖sk‖2, ‖∇f(xk)‖

)
, (3.26)

which amounts to (3.5) with θk = θmin
(

1, ‖sk‖2
‖∇f(xk)‖

)
. The second criterion is considered in

[40, (3.28)] and takes the form

‖∇sm(xk, sk, σk)‖ ≤ θmin(1, ‖sk‖)‖∇f(xk)‖. (3.27)

It corresponds to the choice θk = θmin(1, ‖sk‖) in (3.5).

55

Lemma 22. Let Assumption 1.2.1(ii), Assumption1.2.2 and Assumption 1.2.4 hold. Sup-

pose that α ∈
[
0,

2

3

)
and η2 ∈

(
0,

2− 3α

2

)
in ARC-DH. Then, given ε1 > 0, at iteration

k ∈ Sk ∪ Uk,1:
‖sk‖ ≥

√
ζ‖∇f(xk + sk)‖, (3.28)

for some positive ζ, both when sk satisfies (3.26) or (3.27) and the norm of the Hessian
is bounded above by a constant κH on the path of iterates, i.e.

‖∇2f(xk + βsk)‖ ≤ κH , ∀k ≥ 0, β ∈ [0, 1]. (3.29)

Proof. Since the assumptions of Lemma 6 are satisfied, (3.26) implies (1.18) and by (3.12)
it follows that

‖(∇2f(xk)−∇2f(xk))sk‖ ≤ max(c, α(κB + σmax))‖sk‖2.

Then, from Lemma 6, we have that (3.28) holds, with

ζ
def
=

(
max (c, α(κB + σmax)) +

L

3
+ θ + σmax

)−1

> 0.

We turn now the attention to the case sk satisfying (3.27). Combining

∇f(xk + sk) = ∇f(xk) +

∫ 1

0

∇2f(xk + tsk)skdt

and the boundness of the Hessian, we have

‖∇f(xk)‖ ≤ ‖∇f(xk + sk)‖+ κH‖sk‖

and by (3.27):

‖∇sm(xk, sk, σk)‖ ≤ θmin(1, ‖sk‖)‖∇f(xk + sk)‖+ θmin(1, ‖sk‖)κH‖sk‖
≤ θ‖∇f(xk + sk)‖+ θκH‖sk‖2.

Thus, (1.41) (with χ = max(c, α(κB + σmax))) and (1.42) give

(1− θ)‖∇f(xk + sk)‖ ≤ (max (c, α(κB + σmax)) + L/3 + θκH + σmax) ‖sk‖2,

so the claim follows with

ζ
def
=

(
1− θ

max (c, α(κB + σmax)) + L/3 + θκH + σmax

)
> 0.

56

The iteration complexity theorem for first-order critical points can then be proved.

Theorem 23. Suppose that Assumption 1.2.1(i) holds together with the assumptions of
Lemma 22. Then, the ARC-DH algorithm requires at most

IS =

⌊
κs
f(x0)− flow

ε
3/2
1

⌋
(3.30)

successful iterations and at most

IT =

⌊
κs
f(x0)− flow

ε
3/2
1

⌋(
1 +
|logγ1|
logγ2

)
+

1

logγ2
log

(
σmax

σ0

)
+ bκu(f(x0)− flow)c

iterations to produce an iterate xk̂ satisfying ‖∇f(xk̂)‖ ≤ ε1, with κs = 3
η1σminζ3/2

, ζ as in
Lemma 22 and κu = 3

η1σmin
.

Proof. The mechanism of the ARC-DH algorithm for updating σk has the form (3.23)–(3.25).
An unsuccessful iteration in Uk,2 does not affect the value of the regularisation parameter,
as σk+1 = σk. Moreover, the assumptions of Lemma 21 hold at iterations k ∈ Sk. Hence,
σk ≤ σmax, for all k ≥ 0, due to Lemma 21. Then, proceeding as in the proof of Theorem 8
(see (1.47)), it is still true that before termination

f(x0)− f(xk+1) =
∑
j∈Sk

(f(xj)− f(xj + sj)) ≥ |Sk|κ−1
s ε

3/2
1 ,

from which (3.30) immediately follows.
The upper bound on |Uk,1| follows from Lemma 7 and is still given by

|Uk,1| ≤ |Sk|
| log γ1|
log γ2

+
1

log γ2
log

(
σmax

σ0

)
.

As for |Uk,2|, it is less or equal than the number of successful iterations with ‖sk‖ ≥ 1. By con-
struction, an unsuccessful iteration in Uk,2 occurs at most once between two successful
iterations with the first one such that flag = 1 and it cannot occur between two successful
iterations if flag is null at the first of such iterations. In fact, flag is reassigned only at the end
of a successful iteration and can be set to one only in case of a successful iteration with
‖sk‖ ≥ 1 (see Step 5 of the ARC-DH algorithm), except for the first iteration. If the case
flag = 1 and ‖sk‖ < 1 occurs, then flag is set to zero and is not further changed until the
subsequent successful iteration. Moreover, as flag is initialised to one, at most one addi-
tional unsuccessful iteration in Uk,2 may occur before the first successful iteration.
Noting that, by (1.47),

f(x0)− f(xk+1) =
∑
j∈Sk

(f(xj)− f(xj + sj))

≥
∑

j ∈ Sk,
‖sk‖ ≥ 1

(f(xj)− f(xj + sj))

≥ η1
σmin

3

∑
j ∈ Sk,
‖sk‖ ≥ 1

‖sk‖3,

57

we have

f(x0)− flow ≥ η1
σmin

3
|Uk,2|

def
= κ−1

u |Uk,2|

Then, we obtain |Uk,2| ≤ bκu(f(x0)− flow)c and the proof is concluded.

As noticed on top of Subsection 1.2.1, the complexity analysis presented implies

lim inf
k→∞

||∇f(xk)‖ = 0.

The lim-type convergence can then be restored as done in Part I for the basic ARC
framework. To do that, further characterisations of the asymptotic behaviour of ‖∇f(xk)‖
and ‖sk‖ are given below, where the sets S, U1, U2 are defined as

S = {k ≥ 0 | k successful or very successful in the sense of Step 5},
U1 = {k ≥ 0 | k unsuccessful in the sense of Step 5},
U2 = {k ≥ 0 | k unsuccessful in the sense of Step 4}.

The following theorem is stated.

Theorem 24. Suppose that Assumption 1.2.1(i) holds, together with the assumptions
of Theorem 23. Then, the steps sk and the iterates xk generated by the ARC-DH
algorithm satisfy

‖sk‖ → 0, as k →∞, k ∈ S, (3.31)

and
‖∇f(xk)‖ → 0, as k →∞. (3.32)

Moreover, unsuccessful iterations in U2 do not eventually occur.

Proof. The first two claims are proved proceeding as in the proof of Thereom 9, replacing
ζ∗ by ζ defined in Lemma 22. Finally, the behaviur of {‖sk‖}k∈S (see (3.31)) implies that
all successful iterations are eventually such that ‖sk‖ < 1. Thus, the mechanism of the
ARC-DH algorithm gives flag = 0 for all k sufficiently large and unsuccessful iterations in the
sense of Step 4 cannot occur.

3.4 Complexity and convergence analysis to second-order
critical points

In this section we focus on the convergence of the sequence generated by our pro-
cedure to second-order critical points x∗, i.e. points satisfying (1.3), also exploiting the
resulting iteration complexity.

As for the basic ARC framework introduced in Part I, we first analyse the asymptotic
behaviour of {xk} in the case where the approximate Hessian ∇2f(xk) becomes positive
definite along a converging subsequence of {xk}. In such a context, we show quadratic
local rate of convergence of {xk}, under the additional requirement on the step given
by the Cauchy condition (1.28)–(1.29).

Second, we consider the case where ∇2f(xk) is not convex and obtain a second-
order complexity bound in accordance with the study of Cartis et al. [38]. That said, the
result of Theorem 13 still holds for ARC_SO.

58

Theorem 25. Suppose that Assumption 1.2.1(i) holds together with the assumptions of
Theorem 23. Suppose that {xki} is a subsequence of successful iterates converging
to some x∗ and that ∇2f(xki) is positive definite whenever xki is sufficiently close to
x∗. Then,

i) xk → x∗ as k →∞ and x∗ is second-order critical.

ii) If, for all k ≥ 0, sk satisfies (1.28)–(1.29), then all the iterations are eventually suc-
cessful and xk → x∗ quadratically.

Proof. The proof is the same as the one of Theorem 13, replacing χ by α(κB + σmax) (see
the upper bound in (3.12) when ‖sk‖ < 1).

Dropping the assumption that ∇2f(xk) is positive definite, convergence to second-
order critical points can be studied. Following [38], where a modification of the ARC
algorithm in [40] is proposed, we equip the ARC-DH algorithm with a further stopping
criterion and impose an additional condition on the step.

• First, the ARC-DH algorithm is stopped when (1.68) holds, so that when the approx-
imate counterpart of the second-order optimality condition (1.3) with the Hessian
matrix approximated by ∇2f(xk) is met. The above criterion does not imply, in gen-
eral, vicinity to local minima, as well as it does not guarantee the iterates to be dis-
tant from saddle points. Then, the possibility of referring to the strict-saddle property
[82] may play a significant role; indeed, (1.68) implies closeness to a local minimum
for sufficiently small values of the tolerances ε1 and ε2.

• Second, the trial step sk computed at Step 3 of the ARC-DH algorithm is required to
satisfy (1.69)–(1.71), where the minimisation in (1.70) is global, implying that (1.57)–
(1.58) are fulfilled.

We refer to the resulting algorithm as ARC Second Order critical points (ARC_SO). The
termination criterion here adopted does not affect the mechanism for updating σk, then
the upper bound σmax on σk given in Lemma 21 is still valid. Since the definition of succes-
sul iterations in the ARC-DH algorithm is the same as in the basic Algorithm 2, the thesis of
Lemma 14 still holds for ARC_SO.

Lemma 26. Suppose that Assumption 1.2.1(i) holds, together with the assumptions of
Theorem 23. Suppose that sk satisfies (1.69)–(1.71). Then, the number of successful
iterations of Algorithm ARC_SO with λmin(∇2f(xk)) < −ε2 is bounded above by⌊

κe
f(x0)− flow

ε32

⌋
,

where κe
def
=

6σ2
max

η1κ3
snc
.

Proof. The proof is the same as the one of Lemma 14.

We thus conclude that Algorithm ARC_SO produces an iterate xk̂ satisfying (1.68)
within at most

O
(

max(ε
−3/2
1 , ε−3

2)
)
,

iterations, in accordance with the complexity result in [38] and of Algorithm 2.

59

3.5 The finite-sum minimisation setting

In this section we discuss the application of the ARC-DH algorithm to the finite-sum prob-
lem (1.108), where the Hessian matrix at iteration k is approximated via the uniform sub-
sampling procedure described in Chapter 2, i.e. by means of (2.6), giving both determin-
istic and probabilistic results.

The application of the ARC-DH algorithm to problem (1.108) with such an Hessian ap-
proximation is supported by the result (2.12) with τ2,k = ck, which gives the sample size
required to obtain an approximation ∇2f(xk) satisfying (3.9) in probability, with probabil-
ity at least (1− t), being t ∈ (0, 1) a pre-fixed failure probability.

The adaptive nature of (2.12) is thus implicit in its dependance on the iterate and on
ck, which are dynamically updated during the execution of the algorithm. Depending
on the size of N , it may clearly be necessary to consider the whole set {1, . . . , N} for small
values of τ2,k. In particular, whenever N is large enough to ensure that (2.10)–(2.12) do
not require the full sample, the size of the sample used to obtain a single approximate
Hessian corresponds to O(τ−2

2,k).
A specular approach based on the Inexact Restoration framework is given in [12]

where, in the context of finite-sums problems, the sample size rather than the approxi-
mation accuracy is adaptively chosen.

The implementation of the rule (2.12) requires the knowledge of the size of second-
order derivatives. If only global information is available, the dependence on x may obvi-
ously be avoided by choosing a uniform upper bound κϕ,2 for all x ∈ Rn, at the cost of a
lesser adaptivity. We hereafter assume the existence of κϕ,2 ≥ 0 such that

sup
x∈Rn

κϕ,2(x) ≤ κϕ,2, (3.33)

yielding supx∈Rn ‖∇2f(x)‖ ≤ κϕ,2 and Assumption 1.2.4 with κB = κϕ,2.
We first give deterministic results, namely properties which are valid independently of

Assumption 3.2.2 on ∇2f(xk), now guaranteed with probability (1 − t) by Theorem 19. In
the following theorem the only requirement on ∇2f(xk) is the boundness of its norm, i.e.
Assumption 1.2.4; concerning the trial step sk, the Cauchy condition (1.28)–(1.29) is as-
sumed.†

Theorem 27. Let f ∈ C2(Rn). Suppose that Assumption 1.2.1(i) holds, assume also that
(2.7) holds for j = 2, together with (3.33) and conditions (1.28)–(1.29). Then,

i) given ε1 > 0, the ARC-DH algorithm takes at most O(ε−2
1) successful iterations to

satisfy ‖∇f(xk)‖ < ε1;

ii) ‖∇f(xk)‖ → 0, as k → ∞ and therefore all the accumulation points of the se-
quence {xk}, if any, are first-order stationary points;

iii) if {xki} is a subsequence of iterates converging to some x∗ such that ∇f2(x∗) is
definite positive, then xk → x∗ as k →∞.

Proof. i). The claim follows from Lemma 3.1–3.3 and Corollary 3.4 in [41]. In fact, we can
rely on the proof of [41, Lemma 3.2] thanks to (1.67) and considering that

f(xk + sk)− T̂2(xk, sk) ≤ 2κϕ,2‖sk‖2, k ≥ 0.

†This result is valid independently from the specific form of f considered in this section, provided that the norm
of the Hessian of f is bounded in an open convex set containing all the sequence {xk}k≥0 and Assumption 1.2.4
holds.

60

ii) The sub-optimal complexity result in item i) guarantees that lim infk→∞ ‖∇f(xk)‖ = 0

and that the number of successful iterations is not finite. Moreover, limk→∞ ‖∇f(xk)‖ = 0

follows by the fact that (2.7) holds for j = 2, together with (3.33) and [40, Corollary 2.6].
iii) Proceeding as in Theorem 24 we obtain (3.31). Since ∇2f(x∗) in positive definite, x∗

is an isolated limit point; consequently, (3.31) and Lemma 11 yield the claim.

Focusing on the optimal complexity result, we observe that the ARC-DH algorithm
requires at most O(ε

−3/2
1) iterations to satisfy ‖∇f(xk)‖ ≤ ε1 with probability 1 − t, t ∈ (0, 1),

provided that the sample size is chosen according to (2.12) and t is suitable chosen.
In fact, let Ei be the event: “the relation ‖∇2f(xi) − ∇2f(xi)‖ ≤ ci holds at iteration i,
1 ≤ i ≤ k”, and E(k) be the event: “the relation ‖∇2f(xi) − ∇2f(xi)‖ ≤ ci holds for the
entire k iterations”. If the events Ei are independent, it follows, due to (2.1) for j = 2 and
τ2,k = ck, that

P (E(k)) ≡ P

(
k⋂
i=1

Ei

)
= (1− t)k.

Thus, requiring that the event E(k) occurs with probability 1− t, we obtain

P (E(k)) = (1− t)k = 1− t, i.e., t = 1− k
√

1− t = O

(
t

k

)
.

Taking into account the iteration complexity, we set k = O
(
ε
−3/2
1

)
and deduce the follow-

ing choice of t:
t = O(tε

3/2
1). (3.34)

Summarising, choosing, at each iteration, t according to (3.34) and the sample size
according to (2.12), the complexity result in Theorem 23 holds with probability of success
1−t. As also noticed in [124], we underline that the resulting per-iteration failure probability
t is not too demanding in what concerns the sample size, because it influences only the
logarithmic factor of (2.12).

Observe that (2.12) and ck = α(1− θ)‖∇f(xk)‖ yield |Hk| = O(‖∇f(xk)‖−2) as long as N
is large enough so that full sample size is not reached. Hence, in the general case, |Hk| is
expected to grow along the iteration and reach values of order ε−2

1 at termination.
In the specific case where k ∈ S ∪ U1, ck = α(1 − θ)‖∇f(xk)‖ and λmin(∇2f(xk)) ≥ λ for

some positive λ, using (1.66) and Lemma 22 we obtain

‖∇f(xk)‖ ≥ λ

1 + θ
‖sk‖ ≥

√
ζλ

1 + θ

√
‖∇f(xk+1)‖.

Then ‖∇f(xk)‖ ≥
√
ζε1λ

1+θ , provided that the algorithm does not terminate at iteration k + 1;
consequently, |Hk| is expected to grow along such iterations and eventually reach values
of order ε−1

1 . On the other hand, the sample size for Hessian approximation is expected
to be small with respect to O(ε−1

1) when ck is set equal to the arbitrar constant accuracy
c, hence the iterations at which ck = c can be neglected within this analysis. Taking into
account that U2 does not depend on ε1 we can claim that, with probability 1− t, at most
O(ε

−5/2
1)∇2ϕi-evaluations are required to compute an ε-approximate first-order stationary

point, provided that λmin(∇2f(xk)) ≥ λ at all iterations where ck = α(1− θ)‖∇f(xk)‖. This is
ensured for the subclass of problems where functions ϕi are strongly convex. Problems of
this type arise, for instance, in classification procedures (see Section 7.1).

For this subclass of problems, Theorem 13, item ii), also ensures that, for k sufficiently
large, say k ≥ k̄, with probability (1− t)k0 , there exists M > 0 such that

‖xk+1 − x∗‖ ≤M‖xk − x∗‖2, k = k̄, . . . , k̄ + k0 − 1,

61

where x∗ the unique minimiser. Specifically, proceeding as in [107, Theorem 2] and de-
noting by Ei the event: “the relation ‖∇2f(xi) − ∇2f(xi)‖ ≤ ci holds at iteration i, i ≥ k̄”,
we have that the overall success probability in consecutive k0 iterations is

P

k̄+k0−1⋂
i=k̄

Ei

 = (1− t)k0 ,

which concludes our argument.

3.6 Related works

Variants of ARC based on suitable approximations of the gradient and/or the Hessian of
f have been discussed in a few recent lines of works reviewed in this section.

Besides the algorithms in [40, 41, 38], which employs approximations for the Hessian
and are suited for a generic nonconvex function f , papers [50, 44, 79, 124, 125] propose
variants of the algorithm given in [40] where the gradient and/or the Hessian approxi-
mations can be performed via subsampling techniques [15, 28] and are applicable to
large-scale finite-sum minimisation (1.108); probabilistic/stochastic complexity and con-
vergence analysis is carried out.

Cartis et al. [40, 41, 38] analyse the ARC framework under varying assumptions on
the Hessian approximation ∇2f(xk) and establish optimal and sub-optimal worst-case it-
eration bounds for first and second-order optimality. First-order complexity was shown to
be of O(ε−2

1) iterations under Assumption 1.2.4 and, as mentioned in Section 3.1, and of
O(ε

−3/2
1) iterations when, in addition, ∇2f(xk) resembles the true Hessian and condition

(1.31) is satisfied.
Kohler et al. [79] propose and study a variant of ARC algorithm suited for finite-sum

minimisation not necessarily convex. A subsampling scheme for the gradient and the
Hessian of f is applied, maintaining the O(ε

−3/2
1) result for first-order complexity. The sam-

pling scheme provided guarantees that the subsampled gradient ∇f(xk) satisfies

‖∇f(xk)−∇f(xk)‖ ≤M‖sk‖2, ∀k ≥ 0, M > 0, (3.35)

with prefixed probability, while the subsampled Hessian ∇2f(xk) satisfies the condition
(1.31) with prefixed probability. As specified in Section 3.1, (1.31) is enforced via (3.1) and,
since the step length can be determined only after ∇f(xk) and ∇2f(xk) are formed, the
step length at the previous iteration is taken.

Cartis and Scheinberg [44] analyse a probabilistic cubic regularisation variant where
conditions (3.35) and (1.31) are satisfied with sufficiently high probability. Enforcing such
conditions in a practical setting calls for an (inner) iterative process which requires a step
computation at each repetition; in the worst-case the derivatives accuracy may reach
order O(ε1) at each iteration (see also [10]).

As mentioned in Section 3.1, Xu et al. [124] develop and study a version of ARC where
a major modification on the level of resemblance between ∇2f(xk) and ∇2f(xk) is made
over (1.31). Matrix ∇2f(xk) is supposed to satisfy Assumption 1.2.4 and

‖(∇2f(xk)−∇2f(xk))sk‖ ≤ µ‖sk‖, µ ∈ (0, 1), (3.36)

and the latter condition can be enforced building ∇2f(xk) such that

‖∇2f(xk)−∇2f(xk)‖ ≤ µ, µ = χε1, χ > 0. (3.37)

Nonconvex finite-sum minimisation is the motivating application for the proposal and

62

uniform/non-uniform sampling strategies are provided to construct matrices ∇2f(xk) sat-
isfying ‖∇2f(xk) −∇2f(xk)‖ ≤ µ with prefixed probability. In particular, unlike the criterion
in [79], the rule for choosing the sample size at iteration k does not depend on the step sk
which is not available when ∇2f(xk) has to be built. Worst-case iteration count of order
ε
−3/2
1 is shown when µ = O(ε1), while sub-optimal worst-case iteration count of order ε−2

1 is
achieved if µ = O(

√
ε1). Note that the accuracy requirement on∇2f(xk) is fixed along the

iterations and depends on the accuracy requirement on the gradient norm, that is on the
gradient norm at the final iteration. Then, when the Hessian of problem (1.108) is approx-
imated via subsampling with accuracy proportional to ε1, as in [124], O(ε−2

1) evaluations
of Hessian components ∇2ϕi are needed at each iteration, assuming N sufficiently large
and, hence, O(ε

−7/2
1) total evaluations of the component Hessian functions ∇2ϕi, in the

worst-case, to reach an ε1-approximate first-order stationary point. At this regard we un-
derline that, as seen at the end of the previous section, O(ε

−5/2
1) of such ∇2ϕi-evaluations

are needed in the strongly convex case when our adaptive requirement (3.10)–(3.11) for
Hessian approximation is used. Additionally, the use of approximate gradient via subsam-
pling is addressed in [125].

Chen et al. [50] propose an ARC procedure for convex optimisation via random sam-
pling. The objective function f is convex and defined as finite-sum (1.108) of possibly
nonconvex functions. Semidefinite positive subsampled approximations ∇2f(xk) satisfy-
ing ‖∇2f(xk) − ∇2f(xk)‖ ≤ µk , µk ∈ (0, 1), are built with a prefixed probability. Itera-
tion complexity of order O(ε

−1/3
1) is proved with respect to the fulfillment of condition

f(xk) − f(x∗) ≤ ε1, x∗ being the global minimum of (1.108); the scalar µk is updated as
µk+1 = O(min(µk, ‖∇f(xk)‖)), and the model mk(s) is minimised on a subspace of Rn im-
posing the strict condition ‖∇smk(s)‖ ≤ θmin(‖∇f(xk)‖, ‖∇f(xk)‖3, ‖sk‖2), θ ∈ (0, 1).

Summarising, our proposal differs from the above works in the following respects.
In [79] the upper bound in (3.1) is replaced by a bound computed using information from
the previous iteration and no check on the fulfillment of (3.1) is made, while in [44] the error
in Hessian approximation is dynamically reduced to fulfill (3.1); on the contrary, our accu-
racy requirement ck is computable and the condition (1.31) is satisfied at every successful
iteration and at any unsuccessful iteration detected in Step 5, without deteriorating the
computational complexity. Our proposal improves upon [124, 125] in the construction of
∇2f(xk), as the level of resemblance between ∇2f(xk) and ∇2f(xk) is not maintained
fixed along iterations but adaptively chosen, remaining less stringent than the first-order
ε1 tolerance when the constant accuracy c is selected by the adaptive procedure or,
otherwise, whether the current gradient norm is sufficiently high (see, e.g., (3.9)–(3.11));
it improves upon [50] as the prescribed accuracy on ∇2f(xk) (and the sample size) may
reduce at some iteration, but the ultimate accuracy on ‖∇smk(sk)‖ is milder, and our
complexity results are optimal for nonconvex problems, while the analysis in [50] is limited
to convex problems.

3.7 Chapter conclusion

We proposed an ARC algorithm for solving nonconvex optimisation problems based on a
dynamic rule for building inexact Hessian information.

The new algorithm maintains the distinguishing features of the ARC framework, i.e., the
optimal worst-case iteration bound for first and second-order critical points.

Application to large-scale finite-sum minimisation is sketched and analysed. In case
of sums of strictly convex functions, the adaptivity allows to improve complexity results in
terms of component Hessian evaluations over approaches that do not employ adaptive
rules.

Convergence properties are analysed both under deterministic and probabilistic con-

63

ditions, in the latter case properties of the deterministic algorithm are preserved in high
probability.

However, this analysis does not give any indication on the properties of the method
when the adaptive accuracy requirement is not satisfied at some iteration. A stochastic
analysis, in the spirit of [44], would be handled in Part III of this thesis as a new relevant
contribution on the topic, coupled with an extension of the ARC-DH algorithm to the
case of inexact gradient evaluations.

64

Chapter 4

Adaptive Regularisation Methods
with Inexact Function and
Derivatives Evaluations

This chapter goes further into the analysis of ARC frameworks with inexact function and
derivatives computations. A regularisation algorithm using inexact function values and
inexact derivatives is proposed and its evaluation complexity carried out.

This algorithm is applicable to unconstrained problems and to problems with inexpen-
sive constraints, that is constraints whose evaluation and enforcement has negligible cost
with respect to the objective function evaluation and its derivatives, under the assump-
tion that the derivative of highest degree is globally Lipschitz continuous. It features a
very flexible adaptive mechanism for determining the inexactness which is allowed, at
each iteration, when computing objective function values and derivatives.

For a better readability and a more practical application, the method is exposed
considering convergence up to a q-th order optimality point, with q ∈ {1, 2}, using at
iteration k a regularised model model of order p + 1, based on a regularisation term of
order p+ 1 and a truncated Taylor’s expansion of order p, for 1 ≤ p ≤ q:

m
(p)
k (s)

def
= f(xk) +

p∑
`=1

1

`!
∇`f(xk)[s]` +

σk
(p+ 1)!

‖s‖p+1

def
= T

f

p(xk, s) +
σk

(p+ 1)!
‖s‖p+1 (4.1)

def
= f(xk)−∆T

f

p(xk, s) +
σk

(p+ 1)!
‖s‖p+1, (4.2)

in which f(xk) and ∇`f(xk) represent approximations of f(xk) and ∇`f(xk), respectively,
for ` ∈ {1, 2}. In other words, here, beside the inexact cubic model m(2)

k (s), we are also
considering the quadratic model given by m(1)

k (s), i.e. adding the quadratic regularisa-

tion term σk‖s‖2/2 to the first-order truncated Taylor’s expansion T
f

1 (xk, s). Nevertheless,
the complexity analysis presented in the chapter (see [10]) can be extended to arbitrary
order q of optimality using an arbitrary model degree of order p+1, with 1 ≤ q ≤ p, of avail-
able approximate first p derivatives, under the assumption that the derivative of highest
degree

65

is globally Hölder continuous∗. In this sense, it can be seen as an extension of the
unifying framework of [35] to the evaluation complexity for the inexact case. In particular,
the proposed framework potentially allows all combinations of exact/inexact objective
functions and derivatives of any order, including of course models of orders p + 1 equals
to two and three.

Concerning evaluation complexity, if a q-th-order minimiser is sought using approxima-
tions to the first p derivatives, with 1 ≤ q ≤ p ≤ 2, it is proved that a suitable approximate
minimiser within ε is computed by the proposed algorithm in at most O

(
ε−

p+1
p−q+1

)
iterations

and at most O
(
| log(ε)|ε−

p+1
p−q+1

)
approximate evaluations, as reported in the table below.

q p iteration and approximate approximate evaluations of the
f evaluations first p derivatives

1 1 O(ε−2) O(| log ε|ε−2)
1 2 O(ε−3/2) O(| log ε|ε−3/2)
2 2 O(ε−3) O(| log ε|ε−3)

Table 4.1: Iteration and evaluation complexity bounds for ARqpDA, given 1 ≤ q ≤ p ≤ 2.

An algorithmic variant, although more rigid in practice, can be proved to find such an
approximate minimiser inO

(
| log(ε)|+ε−

p+1
p−q+1

)
evaluations. As for the previous chapter, the

deterministic complexity results are finally extended to the probabilistic context, yielding
adaptive sample size rules for subsampling (see Chapter 2) methods.

The outline of the current chapter is as follows. Section 4.1 recalls the notions of high-
order optimality proposed in [35] and introduces the general Adaptive Regularization
algorithm with model of order p + 1 allowing Dynamic Accuracy (ARqpDA). The details
of how to obtain the desired relative accuracy levels from known absolute errors are ex-
amined in Section 4.2. The evaluation complexity of obtaining approximate minimisers
using this algorithm is then analysed in Section 4.3, while an algorithmic variant of the al-
gorithm is discussed in Section 4.4. The general framework is then explicitly specialised to
first-order optimisation (case q = p = 1) in Section 4.5, showing that practical implementa-
tion for low orders is simple. The stochastic evaluation complexity and sampling rules for
machine learning applications are finally derived in Section 4.6.

4.1 High-order necessary conditions and the ARqpDA algo-
rithm

Given p ∈ {1, 2}, we consider the set-constrained optimisation problem

min
x∈X

f(x), (4.3)

where we assume that the values of the objective function f and its derivatives cannot be
computed exactly, so that inexact approximations are considered. The feasible set X ⊆
Rn is closed and nonempty and represents inexpensive constraints, that is constraints such
that their evaluation/enforcement has negligible cost compared to that of computing
the objective function and its derivative. Such constraints include (but are not limited to)
∗The p-th derivative tensor of f at x is globally Hölder continuous if there exist constants L ≥ 0 and β ∈ (0, 1]

such that, for all x, y ∈ Rn,
‖∇pxf(x)−∇pxf(y)‖[p] ≤ L‖x− y‖β .

The more standard case where f is assumed to have Lipschitz-continuous p-th derivative is recovered by setting
β = 1 in the above assumptions (for example, the choices p = 2 and β = 1 correspond to the assumption that
f has a Lipschitz continuous Hessian).

66

bound constraints and other convex constraints with cheap projections. Unconstrained
problems are obviously also covered by this definition.

Similarly to Assumption 1.2.1 and Assumption 1.2.2, let us regroup three fundamental
hypotheses on the objective function f in the following assumption.

Assumption 4.1.1. With reference to (4.3), given p ∈ {1, 2}, we assume that:

1. f is p-times continuously differentiable,

2. f is bounded below by flow, and

3. the p-th derivative of f at x is globally Lipschitz continuous, that is, there exist con-
stants L ≥ 0 such that, for all x, y ∈ Rn,

‖∇pxf(x)−∇pxf(y)‖ ≤ L‖x− y‖. (4.4)

As usual, the p-th degree Taylor’s expansion of f around x evaluated at s is still denoted
by

T fp (x, s)
def
= f(x) +

p∑
`=1

1

`!
∇`f(x)[s]` =

{
f(x) +∇f(x)>s, if p = 1,

f(x) +∇f(x)>s+ 1
2s
>∇2f(x)s, if p = 2.

(4.5)

we may then define the Taylor’s increment by

∆T fp (x, s)
def
= T fp (x, 0)− T fp (x, s) = −

p∑
`=1

1

`!
∇`f(x)[s]`, p ∈ {1, 2}. (4.6)

Therefore, for p ∈ {1, 2}, the model (4.1) (the superscript p is hereafter omitted for simplicity
of notation) takes the form:

mk(s) = T
f

p(xk, s) +
σk

(p+ 1)!
‖s‖p+1 =


f(x) +∇f(x)>s+ σk

2 ‖s‖
2, if p = 1,

f(x) +∇f(x)>s+ 1
2s
>∇2f(x)s+ σk

3 ‖s‖
3, if p = 2.

(4.7)
Under the above assumptions, we recall the bounds on differences between f and its

derivatives and their Taylor’s expansion, proved in [35].

Lemma 28. [35, Lemma 2.1] Let Assumption 4.1.1 hold and let T fp (x, s) be the Taylor’s
approximation of f(x+ s) around x given by (4.5). Then for all x, s ∈ Rn,

|f(x+ s)− T fp (x, s)| ≤ L

(p+ 1)!
‖s‖p+1, (4.8)

‖∇jxf(x+ s)−∇jsT fp (x, s)‖ ≤ L

(p− j + 1)!
‖s‖p+1−j . (j = 1, . . . , p). (4.9)

We underline that (1.10) ensures (4.8) when p = 2 (third-order model) is considered.
We also follow [35] and define a q-th-order necessary minimiser, q ∈ {1, 2}, as a point
x ∈ Rn such that, for some δ ∈ (0, 1],

φδf,q(x)
def
= f(x)− globmin

x+d∈X
‖d‖≤δ

T fq (x, d) = globmax
x+d∈X
‖d‖≤δ

∆T fq (x, d) = 0. (4.10)

It is worth noting that, in the unconstrained case, φf,q(x) represents the maximal de-
crease in T fq (x, d) achievable in a ball of radius δ centered at x and it can be seen as a

67

more compact way of addressing the classical first and second-order necessary optimal-
ity conditions, since it subsumes to them.

• If q = 1, (4.10) gives that, for any δ ∈ (0, 1] (and in particular for δ = 1),

φδf,q(x) = ‖∇f(x)‖δ = 0, (4.11)

and first-order optimality is thus equivalent to

‖∇f(x)‖ = 0.

• Similarly, for q = 2, (4.10) gives

φδf,q(x) = globmax
x+d∈X
‖d‖≤δ

(
−∇f(x)>d− 1

2
d>∇2f(x)d

)
= 0,

being equivalent to ‖∇f(x)‖ = 0 and the semi-positiveness of ∇2f(x), i.e.,

‖∇f(x)‖ = 0 and λmin[∇2f(x)] ≥ 0. (4.12)

’

Remark 8 (Higher order optimality). The properties of (4.10) are further discussed in [35],
but we emphasise that, for any q ≥ 1 and in contrast with other known measures, it varies
continuously as x varies continuously in X . In the unconstrained case, solving the global
optimisation problem involved in its definition is easy for q = 1, as the global minimiser is an-
alytically given by d∗ = −δ∇f(x)/‖∇f(x)‖, and also for q = 2 using a trust-region scheme
(whose cost is essentially comparable to that of computing the leftmost eigenvalue in
(4.12)).

Let us turn to the case 1 ≤ q ≤ p ≤ 2. If we now relax the notion of exact minimisers, we
may define an (ε, δ)-approximate q-th-order necessary minimiser as a point x ∈ Rn

φδf,q(x) ≤ εχq(δ), (4.13)

where

χq(δ)
def
=

q∑
`=1

δ`

`!
=

{
δ, if q = 1,

δ + δ2

2 , if q = 2.
(4.14)

provides a natural scaling. In other words, an (ε, δ)-approximate q-th-order necessary
minimiser is a point from which no significant decrease of the Taylor’s expansion of degree
q can be obtained in a ball of optimality radius δ, within the constraint. This notion has the
advantage of being well-defined and continuous in x. By definition, the following bounds
hold for χq(δ) in (4.14), q ∈ {1, 2}:

1 ≤ χq(δ) ≤
3

2
δq, if δ ≥ 1, (4.15)

δ ≤ χq(δ) ≤
3

2
δ, if δ ∈ [0, 1]. (4.16)

Again, the notion reduces to familiar concepts in the low-order unconstrained cases.
For instance, we verify that for unconstrained problems with q = 2, (4.13) requires that, if d
is the global minimiser in (4.10) (the solution of a trust-region problem),

max
[
0,−

(
∇f(x)T d+ 1

2d
T∇2f(x)d

)]
≤ ε(δ + 1

2δ
2),

68

which automatically holds for any δ ∈ (0, 1] if ‖∇f(x)‖ ≤ ε and λmin[∇2f(x)] ≥ −ε. We note
that, when assessing whether x is an (ε, δ)-approximate q-th-order necessary minimiser,
the global maximisation in (4.10) can be stopped as soon as ∆T fq (x, d) exceeds εχq(δ),
thereby significantly reducing the cost of this assessment.

Having defined what we mean by high-order approximate minimisers, we now turn
to describe what we mean by inaccurate objective function and derivatives values. It is
important to observe at this point that, in an optimisation problem, the role of the objec-
tive function is more central than that of any of its derivatives, since it is the quantity we
ultimately wish to decrease. For this reason, we will handle the allowed inexactness in f

differently from that in ∇jf , j ∈ {1, .., p}: we will require an (adaptive) absolute accuracy
for the first and a relative accuracy for the second. In fact, we can, in a first approach,
abstract the relative accuracy requirements for the derivatives ∇jf(x) into a requirement
on the relative accuracy of ∆T fp (x, s).

Let ω ∈ [0, 1) represent a relative accuracy level, p ∈ {1, 2} and denote inexact quanti-
ties by an overbar. For what follows, we will thus require that, if

∆T
f

p(x, s) = T
f

p(xk, 0)− T fp(xk, s), (4.17)

then
|∆T fp(x, s)−∆T fp (x, s)| ≤ ω∆T

f

p(x, s). (4.18)

It may not be obvious at this point how to enforce this relative error bound: this is the
object of Section 4.2 below. For now, we simply assume that it can be done in a finite
number of evaluations of {∇jxf(x)}pj=1 which are inexact approximations of {∇jxf(x)}pj=1.

Given an inexactly computed ∆T
f

p(x, s) satisfying (4.18), we then have to consider
to compute our optimality measure inexactly too. Observing that the definition (4.10) is
independent of f(x) because of cancellation, we see that, for 1 ≤ q ≤ p ≤ 2,

φ
δ

f,q(x) = max

[
0, globmax

x+d∈X
‖d‖≤δ

∆T
f

q (x, d)

]
. (4.19)

Under the above assumptions, we now describe an algorithm allowing inexact com-
putation of both the objective function and its derivatives, whose purpose is to find (for
given q ∈ {1, 2} and a suitable relative accuracy ω) a point xk satisfying

φ
δ

f,q(x) ≤ ε

1 + ω
χq(δ), (4.20)

for some optimality radius δ ∈ (0, 1]. We will show that, at termination, the computed
approximation xε is an (ε, δ)-approximate q-th-order necessary minimiser, q ∈ {1, 2}, i.e.
it satisfies (4.13). This algorithm uses a regularised truncated and approximated Taylor’s
expansion of order p ∈ {1, 2}, defined at iteration k by (4.1) (or, equivalently, by (4.7)).
The superscript p in the model definition is hereafter omitted for simplicity of notation. This
model is then approximately minimised and the resulting trial point is then accepted or
rejected depending on whether or not it produces a significant decrease. This is detailed
in the ARqpDA algorithm on the next page.

69

Algorithm 7 The Adaptive Regularisation algorithm with Dynamic Accuracy (ARqpDA),
1 ≤ q ≤ p ≤ 2.

Step 0: Initialisation. An initial point x0 ∈ X and an initial regularisation parameter σ0 > 0

are given, as well as an accuracy level ε ∈ (0, 1) and a relative accuracy ω > 0. The
constants δ−1, θ, µ, η1, η2, γ1, γ2, γ3 and σmin are also given and satisfy θ > 0, µ ∈ (0, 1],
δ−1 ∈ (0, 1], σmin ∈ (0, σ0],

0 < η1 ≤ η2 < 1, 0 < γ1 < 1 < γ2 < γ3, α ∈ (0, 1), (4.21)

0 < ω < min
[1− η2

3
,
η1

2
< 1
]
. (4.22)

Set k = 0.

Step 1: Compute the optimality measure and check for termination. Compute
φ
δk−1

f,q (xk). If (4.20) holds with δ = δk−1, terminate with the approximate solution
xε = xk.

Step 2: Step calculation. Compute a step sk 6= 0 such that xk + sk ∈ X and an optimality
radius δk ∈ (0, 1] by approximately minimising the model mk(s), in the sense that

mk(sk) < mk(0) (4.23)

and
‖sk‖ ≥ µε

1
p−q+1 or φ

δk
mk,q

(sk) ≤ θ‖sk‖p−q+1

(p− q + 1)!
χq(δk). (4.24)

Step 3: Acceptance of the trial point. Compute fk(xk + sk) ensuring that

|fk(xk + sk)− f(xk + sk)| ≤ ω|∆T fp(xk, sk)|. (4.25)

Also ensure (by setting fk(xk) = fk−1(xk) or by (re)computing fk(xk)) that

|fk(xk)− f(xk)| ≤ ω|∆T fp(xk, sk)|. (4.26)

Then compute

ρk =
fk(xk)− fk(xk + sk)

∆T
f

p(xk, sk)
. (4.27)

If ρk ≥ η1, then set xk+1 = xk + sk; otherwise set xk+1 = xk.

Step 4: Regularisation parameter update. Set

σk+1 ∈


[max(σmin, γ1σk), σk] if ρk ≥ η2, (very successful iteration)

[σk, γ2σk] if ρk ∈ [η1, η2), (successful iteration)

[γ2σk, γ3σk] if ρk < η1. (unsuccessful iteration)

(4.28)

Increment k by one and go to Step 1.

Comments on the ARqpDA algorithm

Some comments on this algorithm are useful at this stage.

1. We underline that at each occurrence of Step 2 before termination we have that a
nonzero step sk can be found. In this situation, in fact, φ

δk−1

f,q (xk) is nonzero (it even

does not satisfy (4.20) with δ = δk−1), that is letting d the global minimiser of T
f

q (xk, d)

(required for evaluating φ
δk−1

f,q (xk)), it follows that the inexact Taylor’s series T
f

q (xk, βd)

decreases monotonically for β ∈ [0, 1], thanks to the fact that q ∈ {1, 2} and, thus, a
decrease of the regularised model (4.7) is possibile for small enough β.

70

2. Our assumption (4.18) is used three times in the algorithm: at Step 1 for computing
φ
δk−1

f,q (xk), at Step 2 when computing sk and φ
δk
mk,q

(sk).

3. As indicated above, we require a bound on the absolute error in the objective
function value: this is the object of (4.25) and (4.26), where we introduced the
notation fk(xk) to denote an inexact approximation of f(xk). Note that a new
value of fk(xk) should be computed to ensure (4.26) in Step 3 only if k > 0 and
ω∆T

f

p(xk−1, sk−1) > ω∆T
f

p(xk, sk). If this is the case, the (inexact) function value is
computed twice per iteration instead of just once.

4. Contrary to the Trust-Region method with dynamic accuracy of [52, Section 10.6]
and [13], we do not recompute approximate values of the objective function at
xk once the computation of sk is complete (provided we can ensure (4.18), as dis-
cussed in Section 4.2).

5. If ‖sk‖ ≥ µε
1

p−q+1 in Step 2, then the (potentially costly) calculation of φ
δk
mk,q

(sk) is
unnecessary and δk may be chosen arbitrarily in (0, 1].

6. We call iteration k successful when ρk ≥ η1 and xk+1 = xk + sk. The iteration is called
unsuccessful otherwise, setting xk+1 = xk in this case. As usual, we use the notation
(1.43) to denote the set Sk of successful and Uk of unsuccessful iterations of index at
most k, respectively, generated by the ARqpDA algorithm.

7. As indicated above, ensuring (4.18) may require a certain number of (approximate)
evaluations of the derivatives of f . For a single iteration of the algorithm, these
evaluations are always at the current iterate xk.

Since the mechanism for updating the regulariser σk in (6.8) is the same as (1.20) in
Algorithm 2, Lemma 7 still holds, so that the number of unsuccessful iterations |Uk| until
iteration k remains a fixed proportion of that of the successful ones |Sk|.

We now state a lemma ensuring that ARqpDA is well-defined when sk 6= 0, that can be
derived without modification from the case where the computation of f and its deriva-
tives are exact.

Lemma 29. [35, Lemma 2.5] Suppose that s∗k 6= 0 is a global minimiser of mk(s) under
the constraint that xk + s ∈ X such that mk(s∗k) < mk(0). Then, there exists a neigh-
bourhood of s∗k and a range of sufficiently small δ such that (4.23) and the second
part of (4.24) hold for any sk in the intersection of this neighbourhood with X and any
δk in this range.

4.2 Enforcing the relative error on Taylor’s increments

We now return to the question of enforcing (4.18). For improved readability, we temporar-
ily ignore the iteration index k.

4.2.1 The accuracy checks

While there may be circumstances where (4.18) can be enforced directly, we here con-
sider that the only control the user has on the accuracy of ∆T

f

p(x, s) is by enforcing
bounds {εj}pj=1 on the absolute errors on the derivatives {∇jf(x)}pj=1, p ∈ {1, 2}. In other

71

words, we seek to ensure (4.18) by selecting absolute accuracies {εj}pj=1 such that, when

‖∇jf(x)−∇jf(x)‖ ≤ εj for j ∈ {1, . . . , p}, p ∈ {1, 2}, (4.29)

the desired accuracy requirement follows.

In all cases described below, the process can be viewed as an iteration with four main
steps.

• The first is to compute the relevant approximate derivative satisfying (4.29) for given
values of {εj}pj=1.

• The second is to use these approximate derivatives to compute the requested Tay-
lor’s increment and associated quantities.

• Tests are then performed in the third step to verify the desired accuracy require-
ments and terminate if they are met.

• If not the case, the absolute accuracies {εj}pj=1 are then decreased before a new
iteration is started.

We then formalise the resulting accuracy tests in the VERIFY algorithm, stated as Algo-
rithm 8 on the facing page.

Assume that for a vector vω, a bound δ ≥ ‖vω‖, a degree r, the prescribed relative
and absolute accuracies ω and ξ > 0, the increment ∆T r(x, vω) are given. We intend
to use the algorithm for ∆T

f

q (x, vω), ∆T
f

p(x, vω) and ∆T
mk
q (x, vω), in which, recalling the

p-dependent definition of mk in (4.7),

T
mk
q (x, vω) =



mk(x) +∇f(xk)>vω + σk
2 x>vω, if q = p = 1,

mk(x) +∇f(xk)>vω + x>∇2f(xk)vω + σk
2 ‖x‖x

>vω, if q = 1, p = 2,

T
mk
1 (x, vω) + 1

2v
>
ω∇2f(xk)vω + σk

2‖x‖‖x
>vω‖2, if q = p = 2.

(4.30)

∆T
mk
q (x, vω)

def
= mk(x)− Tmkq (x, vω) = T

mk
q (x, 0)− Tmkq (x, vω), q ∈ {1, 2}. (4.31)

The corresponding quantities using exact evaluations ∇jf(xk), j ∈ {0, 1, 2}, are denoted
by Tmkq (x, vω) and ∆Tmkq (x, vω), q ∈ {1, 2}. For keeping our development general, in Algo-
rithm 8 and Lemma 30 we use the notation ∆T r(x, vω) and ∆Tr(x, vω), r ∈ {1, 2}. Moreover,
we assume that the current absolute accuracies {ζj}rj=1 of the derivatives of T r(x, vω) with
respect to vω at vω = 0 are given. Because it will be the case below, we assume for sim-
plicity that ∆T r(x, vω) ≥ 0.

As can be expected, a suitable relative accuracy requirement will be achievable
as long as ∆T

f

p(x, s) remains safely away from zero; but, if exact computations are to
be avoided, we may have to accept a simpler absolute accuracy guarantee when
∆T

f

p(x, s) vanishes.

72

Algorithm 8 Verify the accuracy of ∆T r(x, vω).

flag = VERIFY
(
δ,∆T r(x, vω), {ζj}rj=1, ω, ξ

)
Set flag = 0.

• If
∆T r(x, vω) = 0 and max

j∈{1,...,r}
ζj ≤ ξ, (4.32)

set flag = 1.

• Else, if
∆T r(x, vω) > 0 and

r∑
j=1

ζj
j!
δj ≤ ω∆T r(x, vω), (4.33)

set flag = 2.

• Else, if
∆T r(x, vω) > 0 and

r∑
j=1

ζj
j!
δj ≤ ξχr(δ), (4.34)

set flag = 3.

Let us now consider what properties are ensured for the various possible values of flag.

Lemma 30. Suppose that∥∥∥[∇jvωTr(x, vω)
]
vω=0

−
[
∇jvωTr(x, vω)

]
vω=0

∥∥∥
[j]
≤ ζj for j ∈ {1, . . . , r} (4.35)

and ω ∈ (0, 1). We then have that:

• if max
j∈{1,...,r}

ζj ≤ ξ, (4.36)

then the VERIFY algorithm returns a nonzero flag;

• if the VERIFY algorithm terminates with flag = 1, then ∆T r(x, vω) = 0 and∣∣∆T r(x, v)−∆Tr(x, v)
∣∣ ≤ ξχr(‖v‖), for all v; (4.37)

• if the VERIFY algorithm terminates with flag = 2, then ∆T r(x, vω) > 0 and∣∣∆T r(x, v)−∆Tr(x, v)
∣∣ ≤ ω∆T r(x, vω), for all v with ‖v‖ ≤ δ; (4.38)

• if the VERIFY algorithm terminates with flag = 3, then ∆T r(x, vω) > 0 and

max
[
∆T r(x, vω),

∣∣∆T r(x, v)−∆Tr(x, v)
∣∣] ≤ ξ

ω
χr(δ) for all v with ‖v‖ ≤ δ. (4.39)

Proof. We first prove the first proposition. If ∆T r(x, vω) = 0 and (4.36), then (4.32) ensures
that flag = 1 is returned. If ∆T r(x, vω) > 0, from (4.14) and (4.36) we deduce that

r∑
j=1

ζj
j!
δj ≤

[
max

j∈{1,...,r}
ζj

]
χr(δ) ≤ ξχr(δ),

also causing termination with flag = 3 because of (4.34), if it has not occurred with
flag = 2 because of (4.33), hence proving the first proposition.

73

Consider now the three possible termination cases and suppose first that termination oc-
curs with flag = 1. Then, using the triangle inequality, (4.35), (4.32) and (4.14), we have
that, for any v, ∣∣∆T r(x, v)−∆Tr(x, v)

∣∣ ≤ r∑
j=1

ζj
j!
‖v‖j ≤ ξχr(‖v‖),

yielding (4.37). Suppose now that flag = 2. It follows that (4.33) holds and for any v with
‖v‖ ≤ δ, ∣∣∆T r(x, v)−∆Tr(x, v)

∣∣ ≤ r∑
j=1

ζj
j!
‖v‖j ≤

r∑
j=1

ζj
j!
δj ≤ ω∆T r(x, vω),

which is (4.38). Suppose finally that flag = 3. Since termination did not occur in (4.33),
we have that

0 < ω∆T r(x, vω) ≤ ξχr(δ). (4.40)

Furthermore, (4.34) implies that, for any v with ‖v‖ ≤ δ,

∣∣∆T r(x, v)−∆Tr(x, v)
∣∣ ≤ r∑

j=1

ζj
j!
‖v‖j ≤

r∑
j=1

ζj
j!
δj ≤ ξ

ω
χr(δ).

This inequality and (4.40) together imply (4.39).

Clearly, the outcome corresponding to our initial aim to obtain a relative error of at
most ω corresponds to the case where flag = 2. As we will see in what follows, the two
other cases are also useful.

74

4.2.2 Computing the optimality measure

We now describe, in the subsequent Algorithm 9, how to compute the (inexact) optimal-
ity measure φ

δk−1

f,q (xk) at Step 1 of the ARqpDA algorithm.

Algorithm 9 Modified Step 1 of the ARqpDA algorithm, 1 ≤ q ≤ p ≤ 2.

Step 1: Compute the optimality measure and check for termination.

Step 1.0: The iterate xk and the radius δk−1 ∈ (0, 1] are given, as well as the constants
γε ∈ (0, 1) and κε > 0. Set iε = 0.

Step 1.1: Choose an initial set of derivative absolute accuracies {εj,0}pj=1 such that

εj,0 ≤ κε, for j ∈ {1, . . . , p}. (4.41)

Step 1.2: If unavailable, compute {∇jf(xk)}qj=1 satisfying

‖∇jf(x)−∇jf(x)‖ ≤ εj,iε , for j ∈ {1, . . . , q}.

Step 1.3: Solve
globmax
xk+d∈X
‖d‖≤δk−1

∆T
f

q (xk, d),

to obtain the global maximiser dk and the corresponding Taylor’s increment
∆T

f

q (xk, dk). Compute

flag = VERIFY
(
δk−1,∆T

f

q (xk, dk), {εj}qj=1, ω,
1
2ωε
)
.

Step 1.4: Terminate the ARqpDA algorithm with the approximate solution xε = xk if
flag = 1, or if flag = 3, or if flag = 2 and (4.20) holds with δ = δk−1. Also go to
Step 2 of the ARqpDA algorithm if flag = 2 but (4.20) fails.

Step 1.5: Otherwise (i.e. if flag = 0), set

εj,iε+1 = γεεj,iε , for j ∈ {1, . . . , p}, (4.42)

increment iε by one and return to Step 1.1.

We immediately observe that Algorithm 9 terminates in a finite number of iterations,
since it does so as soon as flag > 0 which, because of the first proposition of Lemma 30,
must happen after a finite number of passes in iterations using (4.42). We discuss in Sec-
tion 4.2.4 exactly how many such decreases might be needed.

We now verify that terminating the ARqpDA algorithm as indicated in this modified ver-
sion of Step 1 provides the required result.

75

Lemma 31. If xk is an isolated feasible point, then

φ
δk−1

f,q (xk) = 0 = φ
δk−1

f,q (xk),

which means that φ
δk−1

f,q (xk) is a faithful indicator of optimality at xk.
Moreover, if the ARqpDA algorithm terminates within Step 1.4, then

φ
δk−1

f,q (xk) ≤ εχq(δk−1) (4.43)

and xk is a (ε, δk−1)-approximate q-th-order necessary minimiser; otherwise, Algo-
rithm 9 terminates with

(1− ω)φ
δk−1

f,q (xk) ≤ φδk−1

f,q (xk) ≤ (1 + ω)φ
δk−1

f,q (xk). (4.44)

.

Proof. If xk is an isolated feasible point (i.e. such that the intersection of any ball of radius
δk−1 > 0 centered at xk with X is reduced to xk), then clearly dk = 0 and thus, irrespective
of ω and δk−1 > 0 (recall definitions (4.10) and (4.19)),

φ
δk−1

f,q (xk) = 0 = ∆T
f

q (xk, dk) = φ
δk−1

f,q (xk). (4.45)

We then notice that Step 1.2 of Algorithm 9 yields (4.35) with Tr = T fr , r = q and {ζj}rj=1 =

{εj,iε}
q
j=1. Furthermore, ω ∈ (0, 1) (see, (4.22)), so that the assumptions of Lemma 30 are

satisfied. If xk is an isolated feasible point, the conclusions of the lemma directly follow
from (4.45). Assume therefore that xk is not an isolated feasible point and first note that,
because Step 1.3 finds the global maximum of ∆T

f

q (xk, d), we have that ∆T
f

q (xk, dk) ≥
0. Suppose now that, in Step 1.3, the VERIFY algorithm returns flag = 1 and, thus, that
∆T

f

q (xk, dk) = 0. This means that xk is a global minimiser of T
f

q (xk, d) in the intersection of

a ball of radius δk−1 and X and it is such that ∆T
f

q (xk, d) ≤ 0 for any d in this intersection.
Thus, for any such d, we obtain from (4.37) with ξ = 1

2ωε that

∆T fq (xk, d) ≤ ∆T
f

q (xk, d) +
∣∣∣∆T fq (xk, d)−∆T fq (xk, d)

∣∣∣ ≤ 1
2ωεχq(δk−1),

which, since ω < 1, implies (4.43). Suppose next that the VERIFY algorithm returns flag =
3. Then ∆T

f

q (xk, dk) > 0 and thus dk 6= 0. Using the fact that the nature of Step 1.3 ensures

that ∆T
f

q (xk, d) ≤ ∆T
f

q (xk, dk) for d with ‖d‖ ≤ δk−1 we have, using (4.39) with ξ = 1
2ωε, that,

for all such d,

∆T fq (xk, d) ≤ ∆T
f

q (xk, d) +
∣∣∣∆T fq (xk, d)−∆T fq (xk, d)

∣∣∣
≤ ∆T

f

q (xk, dk) +
∣∣∣∆T fq (xk, d)−∆T fq (xk, d)

∣∣∣
≤ εχq(δk−1),

yielding (4.43). If the VERIFY algorithm returns flag = 2, then, for any d with ‖d‖ ≤ δk−1,

∆T fq (xk, d) ≤ ∆T
f

q (xk, d) +
∣∣∣∆T fq (xk, d)−∆T fq (xk, d)

∣∣∣ ≤ (1 + ω)∆T
f

q (xk, dk).

Thus, for all d with ‖d‖ ≤ δk−1,

max
[
0,∆T fq (xk, d)

]
≤ (1 + ω) max

[
0,∆T

f

q (xk, dk)
]

= (1 + ω)φ
δk−1

f,q (xk). (4.46)

76

But termination implies that (4.20) holds for δ = δk−1 and (4.43) follows with this value of δ.
Finally, if the ARqpDA algorithm does not terminates within Step 1.4 but Algorithm 9 for the
modifies Step 1 terminates, it must be because the VERIFY algorithm returns flag = 2. This
implies, as above, that (4.46) holds, which is the rightmost part of (4.44). Similarly, for any
d with ‖d‖ ≤ δk−1,

∆T fq (xk, d) ≥ ∆T
f

q (xk, d)−
∣∣∣∆T fq (xk, d)−∆T fq (xk, d)

∣∣∣
≥ ∆T

f

q (xk, d)− ω∆T
f

q (xk, dk).

Hence,
globmax
xk+d∈X
‖d‖≤δk−1

∆T fq (xk, d) ≥ globmax
xk+d∈X
‖d‖≤δk−1

[
∆T

f

q (xk, d)− ω∆T
f

q (xk, dk)
]

= (1− ω)∆T
f

q (xk, dk).

Since ∆T
f

q (xk, dk) > 0 when the VERIFY algorithm returns flag = 2, we then obtain that, for
all ‖d‖ ≤ δk−1,

max
[
0, globmax

xk+d∈X
‖d‖≤δk−1

∆T fq (xk, d)
]
≥ max

[
0, (1− ω)∆T

f

q (xk, dk)
]

= (1− ω)φ
δk−1

f,q (xk),

which is the leftmost part of (4.44).

4.2.3 Computing the step

We now consider how to compute sk at Step 2 of the ARqpDA algorithm. The process is
more complicated than for Step 1, as it potentially involves two situations in which one
wishes to guarantee a suitable relative error. The first is when minimising the model

mk(s) = f(xk)−∆T
f

p(xk, s) +
σk

(p+ 1)!
‖s‖p+1

or, equivalently, maximising

−mk(s) = −f(xk) + ∆T
f

p(xk, s)−
σk

(p+ 1)!
‖s‖p+1, (4.47)

and the second is when globally minimising the model Taylor’s expansion taken at xk + sk
in a neighbourhood of diameter δk.

The first of these situations can be handled in a way very similar to that used above for
computing φ

δk−1

f,q (xk) at Step 1: given a set of approximate derivatives, a step sk is com-

puted such that it satisfies (4.23)–(4.24), the relative error of the associated ∆T
f

p(xk, sk)

is then evaluated; if it is insufficient, the accuracy on the derivative approximations im-
proved and the process restarted. If the relative error on ∆T

f

p(xk, sk) is satisfactory and

the first test of (4.24) fails, it remains to check that the relative error on φ
δk
mk,q

(sk) is also
satisfactory. Moreover, as in the original ARqpDA algorithm, we have to take into account
the possibility that minimising the model might result in a vanishing decrease.

The resulting somewhat involved process is formalised in Algorithm 10 on the next
page.

77

Algorithm 10 Modified Step 2 of the ARqpDA algorithm.

Step 2: Step calculation.

Step 2.0: The iterate xk, the radius δk−1 ∈ (0, 1], the constants γε ∈ (0, 1), ϑ ∈ (0, 1),
the counter iε and the absolute accuracies {εj,iε}

p
j=1 are given.

Step 2.1: If unavailable, compute {∇jf(xk)}pj=1 satisfying (4.29) with εj = εj,iε for
j ∈ {1, . . . , p}.

Step 2.2: Compute a step sk 6= 0 with xk + sk ∈ X such that (4.23) holds.

•• Otherwise, pursue the approximate minimisation of the model mk(s) for xk+

sk ∈ X in order to satisfy (4.24), yielding a step sk, a decrease ∆T
f

p(xk, sk)

and, if the first part of (4.24) fails, the global maximiser dmkk of ∆T
mk
q (sk, d)

subject to ‖d‖ ≤ δk and xk + sk + d ∈ X , together with the corresponding
Taylor’s increment ∆T

mk
q (sk, d

mk
k).

• Compute

flags = VERIFY
(
‖sk‖,∆T

f

p(xk, sk), {εj}pj=1,
1
2ωε
)
.

If flags = 0, go to Step 2.5.

Step 2.3: If flags = 1 or flags = 3, compute

globmin
xk+s∈X

mk(s),

to obtain the minimiser sk, ∆T
f

p(xk, sk).
Set dmkk = 0 = ∆T

mk
q (sk, d

mk
k) and compute

flags = VERIFY
(
‖sk‖,∆T

f

p(xk, sk), {εj}pj=1, ω,
1
2ωε
)
.

If flags = 0, go to Step 2.5.

Step 2.4: If flags = 1 or flags = 3, terminate the ARqpDA algorithm with xε = xk.
Otherwise, if ‖sk‖ ≥ µε

1
p−q+1 or if ‖sk‖ < µε

1
p−q+1 and

flagd=VERIFY
(
δk,∆T

mk
q (sk, d

mk
k),

{5

2
εj

}q
j=1

, ω,
ϑ(1− ω)

(1 + ω)2

ωε

2

)
> 0,

go to Step 3 of the ARqpDA algorithm with the step sk, the associated
∆T

f

p(xk, sk) and δk.

Step 2.5: Set (if flags = 0 or flagd = 0),

εj,iε+1 = γεεj,iε , for j ∈ {1, . . . , p}, (4.48)

increment iε by one and go to Step 2.1.

Observe that, in Step 2.2, dmkk and ∆T
mk
q (sk, d

mk
k) result from the computation of φ

δk
mk,q

(sk)

which is necessary to verify the second part of (4.24). Note also that we have speci-
fied, in the call to VERIFY in Step 2.4 of Algorithm 10, absolute accuracy values equal to{

5
2εj

}q
j=1

. This is because this call aims at checking the accuracy of the Taylor’s expansion

of the model and the derivatives which are then approximated are not {∇jxf(xk)}qj=1, but
{∇jdT mk

q (sk, 0)}qj=1. It is easier to derive such (approximate) derivatives for q = 1 and q = 2

and to verify that they can be written in a more compact way as

∇jdT
mk
q (sk, 0) =

p∑
`=j

∇`xf(xk)‖sk‖`−j

(`− j)!
+
[
∇js‖s‖p+1

]
s=sk

, 1 ≤ q ≤ p ≤ 2, (4.49)

78

where the last term at the right-hand side is exact. This yields the following error bound.

Lemma 32. Suppose that ‖sk‖ ≤ µε
1

p−q+1 . Then, for all j ∈ {1, . . . , p}, 1 ≤ q ≤ p ≤ 2,∣∣∣∇jdT mk
q (sk, 0)−∇jdT

mk
q (sk, 0)

∣∣∣ ≤ 5

2
εj . (4.50)

Proof. Using the triangle inequality, (4.49), the inequality ‖sk‖ ≤ µε
1

p−q+1 ≤ µ and (4.14),
we have that, for all j ∈ {1, . . . , p},

∣∣∣∇jdT mk
q (sk, 0)−∇jdT

mk
q (sk, 0)

∣∣∣ ≤ p∑
`=j

εj‖sk‖`−j

(`− j)!
≤ εj

p∑
`=j

µ`−j

(`− j)!
≤ εj(1 + χp(µ)).

Inequality (4.50) then follows due to χp(µ) ≤ 3
2µ (recall (4.16)).

Again, Algorithm 10 must terminate in a finite number of iterations. Indeed, if after
finitely many iterations flags = 1 or flags = 3 at the start of Step 2.4, the conclusion is
obvious. Suppose now that flags = 2 at all iterations. If ‖sk‖ < µε

1
p−q+1 always hold, the

first proposition of Lemma 30 ensures that flagd > 0 after finitely many decreases in (4.48),
also causing termination. Termination might of course occur if ‖sk‖ ≥ µε

1
p−q+1 before this

limit.
The next lemma characterises the outcomes of Algorithm 10.

Lemma 33. Suppose that the modified Step 2 is used in the ARqpDA algorithm. If this
algorithm terminates within that step, then either xk is an (ε, δ)-approximate q-th-order
necessary minimiser for some δ > 0, or

φ
‖sk‖
f,p (xk) ≤ εχp(‖sk‖). (4.51)

Otherwise we have that (4.23) and∣∣∣∆T fp(xk, sk)−∆T fp (xk, sk)
∣∣∣ ≤ ω∆T

f

p(xk, sk) (4.52)

are satisfied. Moreover, either ‖sk‖ ≥ µε
1

p−q+1 or

φδkmk,q(sk) ≤ (1 + ω) max

[
ϑ(1− ω)

(1 + ω)2
ε,
θ‖sk‖p−q+1

(p− q + 1)!

]
χq(δk) (4.53)

hold.

Proof. We first note that, because of (4.47) and since Step 2.2 imposes (4.23), we have
that ∆T

f

p(xk, sk) ≥ 0 at the end of this step. Let us first consider the case where the calls
to the VERIFY algorithm in Step 2.2 and in Step 2.3 both return flags = 1 or flags = 3

and note that Step 2.1 yields (4.35) with Tr = T fr , r = p and {ζj}rj=1 = {εj,iε}
p
j=1. Moreover,

(4.22) ensures that ω ∈ (0, 1), so that we can use Lemma 30 to analyse the outcome of the
above calls to the VERIFY Algorithm. Since sk 6= 0, we have that ∆T

f

p(xk, sk) > 0 because
of (4.23). Moreover, using the fact that sk computed in Step 2.3 is a global minimiser of
mk, we obtain that

∆T
f

p(xk, s)−
σk

(p+ 1)!
‖s‖p+1 ≤ ∆T

f

p(xk, sk)− σk
(p+ 1)!

‖sk‖p+1, (4.54)

79

for all s. Thus, if ‖s‖ ≤ ‖sk‖, then ∆T
f

p(xk, s) ≤ ∆T
f

p(xk, sk). This implies that

globmax
xk+s∈X
‖s‖≤‖sk‖

∆T
f

p(xk, s) = ∆T
f

p(xk, sk).

We may now repeat the proof of Lemma 31 for the cases flags ∈ {1, 3}, with q replaced
by p and δk−1 replaced by ‖sk‖, and deduce that (4.51) holds.
Assume now that Algorithm 10 terminates at Step 2.4. This means that the VERIFY algo-
rithm invoked in either Step 2.2 or Step 2.3 terminates with flags = 2 and we deduce from
(4.38) that(4.52) holds.
Let us now consider the case ‖sk‖ < µε

1
p−q+1 and note that Lemma 32 ensures that (4.35)

is satisfied with Tr = Tmkr , r = q and {ζj}rj=1 =
{

5
2εj,iε

}q
j=1

. Moreover, the triangle inequality

gives
∆Tmkq (sk, d) ≤ ∆T

mk
q (sk, d) +

∣∣∣∆Tmkq (sk, d)−∆Tmkq (sk, d)
∣∣∣ . (4.55)

First, assume that Algorithm 10 terminates within Step 2.4 because flagd = 1 is returned by
VERIFY. Then, ∆T

mk
q (sk, d

mk
k) = 0. Moreover, using (4.55), the definition of dmkk given at Step

2.2 of Algorithm 10, (4.37) and recalling that ω ≤ 1, we obtain that, for all d with ‖d‖ ≤ δk,

∆Tmkq (sk, d) ≤ ∆T
mk
q (sk, d) +

∣∣∣∆Tmkq (sk, d)−∆Tmkq (sk, d)
∣∣∣

≤ ∆T
mk
q (sk, d

mk
k) +

∣∣∣∆Tmkq (sk, d)−∆Tmkq (sk, d)
∣∣∣

=
∣∣∣∆Tmkq (sk, d)−∆Tmkq (sk, d)

∣∣∣
≤ ϑ(1− ω)

2(1 + ω)2
ω εχq(‖d‖)

≤ ϑ(1− ω)

(1 + ω)2
ε χq(δk). (4.56)

If, instead, termination occurs with VERIFY returning flagd = 2, then we will show that for
all d with ‖d‖ ≤ δk,

∆Tmkq (sk, d) ≤ (1 + ω)∆T
mk
q (sk, d

mk
k) ≤ (1 + ω)

θ‖sk‖p−q+1

(p− q + 1)!
χq(δk). (4.57)

Indeed, from (4.55), (4.38), (4.22) and the definition of dmkk at Step 2.2 of Algorithm 10, we
obtain, for all d with ‖d‖ ≤ δk,

∆Tmkq (sk, d) ≤ (1 + ω)∆T
mk
q (sk, d

mk
k),

≤ (1 + ω) max

[
0, globmax

xk+sk+d∈X
‖d‖≤δk

∆T
mk
q (sk, d)

]

= (1 + ω)φ
δk
mk,q

(sk),

in which the equality follows from the definition (4.19). We can then conclude, using
(4.24), that (4.57) holds for all d with ‖d‖ ≤ δk.

Finally, if termination occurs instead because VERIFY returns flagd = 3, we deduce from
the (4.55) and (4.39) that, for all d with ‖d‖ ≤ δk,

∆Tmkq (sk, d) ≤ ϑ(1− ω)

(1 + ω)2
ε χq(δk). (4.58)

80

Observe now that (4.22), (4.10) (for mk at sk) and each of (4.56), (4.57) or (4.58) ensures
(4.53).

Note that (4.51) may be viewed as a stronger optimality condition than (4.13), since it
implies that the p-th (rather than q-th with q ≤ p) order Taylor’s expansion of f around xk is
bounded below by a correctly scaled multiple of ε and in a possibly larger neighborhood.
It is thus acceptable to terminate the ARqpDA algorithm with xε = xk, as stated at Step
2.4 of Algorithm 10.

4.2.4 Evaluation complexity of a single ARqpDA iteration

The last part of this section is devoted to bound the evaluation complexity of a single
iteration of the ARqpDA algorithm.

The count in (approximate) objective function evaluations is the following: these only
occur in Step 3 which requires at most two such evaluations. Now observe that evalua-
tions of {∇jf}pj=1, p ∈ {1, 2}, possibly occur in Step 1.2 and Step 2.1. However, it is important
to note that, within these steps, the derivatives are evaluated only if the current values
of the absolute errors are smaller than that used for the previous evaluations of the same
derivative at the same point (xk). Moreover, these absolute errors are, by construction,
linearly decreasing with rate γε within the same iteration of the ARqpDA algorithm. In fact,
they are initialised at Step 1.1, decreased each time by a factor γε in (4.42) invoked in
Step 1.5, down to values {εj,iε}

p
j=1 which are then passed to the modified Step 2 and

decreased there further in (4.48) at Step 2.5, again by successive multiplication with γε.
Furthermore, we have already argued, both for the modified Step 1 and the modified
Step 2, that any of these algorithms terminates as soon as (4.36) holds for the relevant
value of ξ, which we therefore need to determine. For Step 1, this value is 1

2ωε, while, for
Step 2, it is given by

min

[
1
2ωε,

ϑ(1− ω)

(1 + ω)2

ωε

2

]
=

ϑ(1− ω)

2(1 + ω)2
ωε, (4.59)

when ‖sk‖ < µε
1

p−q+1 and by 1
2ωε, when ‖sk‖ ≥ µε

1
p−q+1 .

The following lemma can thus be proved.

Lemma 34. Recalling the definition of ω in (4.22), each iteration of the ARqpDA algo-
rithm involves at most two (approximate) evaluations of the objective function and
at most 1 + νmax(ε) (approximate) evaluations of its p first derivatives, where

νmax(ε) =

⌊
1

log(γε)

{
log

(
ϑ(1− ω)

5(1 + ω)2
ωε

)
− log(κε)

}⌋
. (4.60)

Proof. The upper bound on the (approximate) function evaluations immediately follows
from the observation that, as mentioned at the beginning of the current subsection, these
computations occur at most twice at Step 3 of the ARqpDA algorithm. Concerning the
second part of the thesis we notice that, from Lemma 32, in Step 2.4 of Algorithm 10
we have to make {∇jf(xk)}pj=1 5/2-times more accurate than the desired accuracy in

{∇jdT mk
q (sk, 0)}qj=1, when ‖sk‖ < µε

1
p−q+1 (recall that the input values for the absolute ac-

curacy values in the VERIFY call are
{

5
2εj

}q
j=1

). Thus, the VERIFY Algorithm stops whenever

max
j∈{1,...,q}

εj ≤
ϑ(1− ω)ωε

5(1 + ω)2 .

81

We may thus conclude from Lemma 30 that no further reduction in {εj}pj=1 (and hence
no further approximation of {∇jf(xk)}pj=1) will occur once iε, the number of decreases in
{εj}pj=1, is large enough, to ensure that

γiεε [max
j∈{1,...,p}

εj,0] ≤ ϑ(1− ω)

5(1 + ω)2ωε

(note that this inequality could hold for iε = 0). Since ω ∈ (0, 1) and because of (4.41), the
above inequality is then verified when

iε ≤
⌊

1

log(γε)

{
log

(
ϑ(1− ω)

5(1 + ω)2ωε

)
− log(κε)

}⌋
,

which concludes the proof when taking into account that the derivatives must be com-
puted at least once per iteration.

We conclude this subsection by a comment on what happens whenever exact ob-
jective function and derivatives values are used. In that case the (exact) derivatives are
computed only once per iteration of the ARqpDA algorithm (in Step 1.2 for the first q and
in Step 2.1 for the remaining (p − q)) and every other call to VERIFY returns flag = 1 or
flag = 2. Moreover, there is no need to recompute fk(xk) to obtain (4.26) in Step 3. The
evaluation complexity of a single iteration of the ARqpDA algorithm then reduces to a
single evaluation of f and its first p derivatives (and νmax(ε) = 1 for all k), as expected.

4.3 Evaluation complexity of the deterministic ARqpDA

This section is devoted to the evaluation complexity analysis of the ARqpDA algorithm in
the deterministic context.

We start by extending the analogous result of Lemma 3 (see, also, [35]) to prove that
the decrease of a model employing inexact function and derivatives evaluations remains
bounded below and greater than zero, ensuring the well-definitiveness of the ratio ρk in
(4.27).

Lemma 35. The mechanism of the ARqpDA algorithm guarantees that, for all k ≥ 0,

∆T
f

p(xk, sk) >
σk

(p+ 1)!
‖sk‖p+1, (4.61)

and so (4.27) is well-defined.

Proof. We have that, by the model definition (4.2),

0 < mk(0)−mk(sk) = T p(xk, 0)− T p(xk, sk)− σk
(p+ 1)!

‖sk‖p+1.

As done in Lemma 21 for the case of an ARC algorithm with inexact Hessian evalua-
tions (the ARC-DH algorithm), we next show that the regularisation parameter σk remains
bounded, even in the presence of inexact computation of f and its derivatives. This
lemma heavily hinges on (4.18), (4.25) and (4.26).

82

Lemma 36. Let Assumption 4.1.1 hold. Then, for all k ≥ 0,

σk ≤ σmax
def
= max

[
σ0,

γ3(L+ 3)

1− η2 − 3ω

]
, (4.62)

with ω defined as in (4.22).

Proof. Assume that
σk ≥

L+ 3

1− η2
. (4.63)

Also observe that, because of the triangle inequality, (4.52) (as ensured by Lemma 33)
and (4.26),

|T fp(xk, sk)− T fp (xk, sk)| ≤ |fk(xk)− f(xk)|+ |∆T fp(xk, sk)−∆T fp (xk, sk)|

≤ 2ω|∆T fp(xk, sk)|

and hence, again using the triangle inequality, (4.25), (4.8), (4.61) and (4.63),

|ρk − 1| ≤
|fk(xk + sk)− T fp(xk, sk)|

∆T
f

p(xk, sk)

≤ 1

∆T
f

p(xk, sk)

[
|fk(xk + sk)− f(xk + sk)|+ |f(xk + sk)− T fp (xk, sk)|

+ |T fp(xk, sk)− T fp (xk, sk)|
]

≤ 1

∆T
f

p(xk, sk)

[
|f(xk + sk)− T fp (xk, sk)|+ 3ω∆T

f

p(xk, sk)
]

≤ 1

∆T
f

p(xk, sk)

[L

(p+ 1)!
‖sk‖p+1 + 3ω∆T

f

p(xk, sk)
]

<
L

σk
+ 3ω

≤ 1− η2

(4.64)

and, thus, that ρk ≥ η2. Then, iteration k is very successful in that ρk ≥ η2 and, because of
(6.8), σk+1 ≤ σk. As a consequence, the mechanism of the algorithm ensures that (4.62)
holds.

We now borrow a technical result from [35].

Lemma 37. [35, Lemma 2.4] Let s be a vector of Rn and p ∈ {1, 2} such that j ∈
{0, . . . , p}. Then,

‖∇js
(
‖s‖p+1

)
‖[j] ≤

(p+ 1)!

(p− j + 1)!
‖s‖p−j+1. (4.65)

Our next move is to prove a lower bound on the norm of the step. While the proof
of this result is clearly inspired from that of [35, Lemma 3.3], it nevertheless crucially differs
when approximate values are considered instead of exact ones.

83

Lemma 38. Let Assumption 4.1.1 hold. Then, for all k ≥ 0 such that the ARqpDA algo-
rithm does not terminate at iteration k + 1,

‖sk‖ ≥ κsε
1

p−q+1 , (4.66)

where

κs
def
= min

{
µ,

[
(1− ω)(1− ϑ)(p− q + 1)!

(1 + ω)(L+ σmax + θ(1 + ω))

] 1
p−q+1

}
. (4.67)

Proof. If ‖sk‖ ≥ µε
1

p−q+1 , the result is obvious. Suppose now that

‖sk‖ < µε
1

p−q+1 . (4.68)

Since the algorithm does not terminate at iteration k + 1, we have that

φ
δk
f,q(xk+1) >

ε

1 + ω
χq(δk)

and therefore, using (4.44), that

φδkf,q(xk+1) >
1− ω
1 + ω

εχq(δk). (4.69)

Let the global minimum in the definition of φδkf,q(xk+1) be achieved at d, with ‖d‖ ≤ δk.
Then, using (4.10), the triangle inequality and (4.65), we deduce that

φδkf,q(xk+1) = −
q∑
`=1

1

`!
∇`xf(xk+1)[d]`

≤

∣∣∣∣∣
q∑
`=1

1

`!
∇`xf(xk+1)[d]` −

q∑
`=1

1

`!
∇`sT fp (xk, sk)[d]`

∣∣∣∣∣−
q∑
`=1

1

`!
∇`sT fp (xk, sk)[d]`

≤
q∑
`=1

1

`!

[
‖∇`xf(xk+1)−∇`sT fp (xk, sk)‖[`]

]
δ`k

−
q∑
`=1

1

`!

(
∇`s
[
T fp (xk, s) +

σk
(p+ 1)!

‖s‖p+1

]
s=sk

)
[d]`

+

q∑
`=1

σk
`!(p− `+ 1)!

‖sk‖p−`+1δ`k. (4.70)

Now, because of (4.1), (4.10) (for mk at sk) and the fact that ‖d‖ ≤ δk, we have that

−
q∑
`=1

1

`!

(
∇`s
[
T fp (xk, s) +

σk
(p+ 1)!

‖s‖p+1

]
s=sk

)
[d]` = ∆Tmkq (sk, d) ≤ φδkmk,q(sk).

Then, as ‖sk‖ < µε
1

p−q+1 < 1 because of (4.68), we may use (4.53) (ensured by Lemma 33)
and (4.9) and distinguish the cases where the maximum in (4.53) is attained in its first or its
second argument. In the latter case, we deduce from (4.70) that

φδkf,q(xk+1) ≤
q∑
`=1

L

`!(p− `+ 1)!
‖sk‖p−`+1δ`k + (1 + ω)

θ χq(δk)

(p− q + 1)!
‖sk‖p−q+1

+

q∑
`=1

σk
`!(p− `+ 1)!

‖sk‖p−`+1δ`k

≤

[
L+ σk + θ(1 + ω)

]
χq(δk)

(p− q + 1)!
‖sk‖p−q+1; (4.71)

84

otherwise, (4.70) guarantees that

φδkf,q(xk+1) ≤ (L+ σk)χq(δk)

(p− q + 1)!
‖sk‖p−q+1 +

ϑ(1− ω)

1 + ω
εχq(δk). (4.72)

Using now (4.69), (4.22), (4.68), (4.71) and (4.72), we thus have that

‖sk‖ ≥ min

{
µε

1
p−q+1 ,

[
ε(1− ω)(p− q + 1)!

(1 + ω)(L+ σk + θ(1 + ω))

] 1
p−q+1

,

[
ε(1− ω)(1− ϑ)(p− q + 1)!

(1 + ω)(L+ σk)

] 1
p−q+1

}

≥ min

{
µε

1
p−q+1 ,

[
ε(1− ω)(1− ϑ)(p− q + 1)!
(1 + ω)(L+ σk + θ(1 + ω))

] 1
p−q+1

}
,

where we have used the fact that θ ∈ (0, 1) to obtain the last inequality. Then, (4.66)
follows from (4.62).

We now combine all the above results to deduce an upper bound on the maximum
number of successful iterations, from which a final evaluation (and iteration) complexity
bound immediately follows.

Theorem 39. Let Assumption 4.1.1 hold and ε ∈ (0, 1) be given. Then, the ARqpDA
algorithm using the modified Steps 1 (on page 75) and 2 (on page 78) produces an
iterate xε such that (4.13) or (4.51) holds in at most⌊

κp(f(x0)− flow)
(
ε−

p+1
p−q+1

)⌋
+ 1 (4.73)

successful iterations,

τ(ε)
def
=

⌊{⌊
κp(f(x0)− flow)

(
ε−

p+1
p−q+1

)
+ 1
⌋(

1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)}⌋
(4.74)

iterations in total, 2τ(ε) (approximate) evaluations of f and (1 + νmax(ε))τ(ε) approx-
imate evaluations of {∇jxf}

p
j=1, where σmax is given by (4.62), ω by (4.22), νmax(ε) by

(4.60) and where

κp
def
=

(p+ 1)!

(η1 − 2ω)σmin
max

{
1

µp+1
,

[
(1 + ω)(L+ σmax + θ(1 + ω))

(1− ω)(1− ϑ)(p− q + 1)!

] p+1
p−q+1

}
. (4.75)

Proof. At each successful iteration k before termination the algorithm guarantees the
decrease

f(xk)− f(xk+1) ≥ [fk(xk)− fk(xk+1)]− 2ω∆T
f

p(xk, sk)

≥ η1∆T
f

p(xk, sk)− 2ω∆T
f

p(xk, sk)

>
(η1 − 2ω)σmin

(p+ 1)!
‖sk‖p+1,

(4.76)

where we used (4.22), (4.25), (4.26), (4.27), (4.61) and (6.8). Moreover, we deduce from
(4.76) and (4.66) that

f(xk)− f(xk+1) ≥ κ−1
p ε

p+1
p−q+1 , where κ−1

p
def
=

(η1 − 2ω)σminκ
p+1
s

(p+ 1)!
, (4.77)

85

with κs as in (4.67). Thus, since {f(xk)}k≥0 decreases monotonically,

f(x0)− f(xk+1) ≥ κ−1
p ε

p+1
p−q+1 |Sk|.

Using that f is bounded below by flow, we conclude that

|Sk| ≤ κp(f(x0)− flow)ε−
p+1
p−q+1 (4.78)

until termination, and the desired bound on the number of successful iterations follows.
Lemma 7 is then invoked to compute the upper bound on the total number of iterations,
and Lemma 34 to deduce the upper bounds on the number of evaluations of f and its
derivatives.

We emphasise that (4.73) was shown in [35] to be optimal for a quite wide class of
minimisation algorithms. The slightly weaker bound (1 + νmax(ε))τ(ε) may be seen as the
(very modest) price to pay for allowing inexact evaluations.

Focusing on the order in ε and using (4.74), we therefore obtain the following con-
densed result on evaluation (and iteration) complexity for nonconvex optimisation.

Theorem 40. Let Assumption 4.1.1 hold. Then, given ε ∈ (0, 1), the ARqpDA algorithm
using the modified Steps 1 (on page 75) and 2 (on page 78) needs at most

O
(
ε−

p+1
p−q+1

)
iterations and (approximate) evaluations of f

and at most

O
(
| log(ε)|ε−

p+1
p−q+1

)
(approximate) evaluations of the p first derivatives

to compute an (ε, δ)-approximate q-th-order necessary minimiser for the set-
constrained problem (4.3).

As indicated in the comment at the end of Section 4.2, all O(| log(ε)|) terms reduce to
a constant independent of ε if exact evaluations of f and its derivatives are used, so that
the above results recover the optimal complexity bounds of [35]. Furthermore, we notice
that this term is completely negligible with respect to ε−

p+1
p−q+1 , concluding that the use of

inexact function and derivatives evaluations has a very low impact in terms of complexity.
We conclude this section by commenting on the special case where the objective

function evaluations are exact and that of the derivatives inexact. We first note that this
case is already covered by the theory presented above (since (4.25) and (4.26) auto-
matically holds as their left-hand side is identically zero), but in this case the ARqpDA al-
gorithm can be simplified by replacing the computation of f(xk + sk) by that of f(xk + sk)

and by entirely skipping the verification and possible recomputation of f(xk). As conse-
quence, the ARqpDA algorithm only evaluates the exact objective function f once per
iteration and the maximum number of such evaluations is therefore given by τ(ε) instead
of 2τ(ε), while the maximum number of (inexact) derivatives evaluations is still given by
(1 + νmax(ε))τ(ε).

86

4.4 A variant of the ARqpDA algorithm

We now describe a variant of the ARqpDA algorithm for which an even better evalua-
tion complexity can be proved, but at the price of a more restrictive dynamic accuracy
strategy.

In the Step 1.0 of the ARqpDA algorithm, we allow the choice of an arbitrary set of
{εj,0}pj=1 with the constraint that εj,0 ≤ κε for j ∈ {1, . . . , p}, p ∈ {1, 2}. This allows such
accuracy thresholds to vary non-monotonically from iteration to iteration, providing con-
siderable flexibility and allowing large inaccuracies, even if these thresholds were made
small in past iterations due to local nonlinearity.

A different, more rigid, strategy is also possible: suppose that the thresholds {εj,0}pj=1

are not reset at each iteration, namely that

Step 1.1 is only executed for k = 0. (4.79)

This clearly results in a monotonic decrease of each εj across all iterations. As a conse-
quence, νmax(ε) in (4.60) now bounds the total number of reductions of the εj over all
iterations, i.e. on the entire run of the algorithm.

We then deduce that the total number of approximate evaluations of the derivatives
is then bounded by νmax(ε) + τ(ε) (instead of (1 + νmax(ε))τ(ε)) and we may establish the
worst-case complexity of the resulting “monotonic” variant as follows.

Theorem 41. Let Assumption 4.1.1 hold and ε ∈ (0, 1) be given. Then, the ARqpDA
algorithm using the modified Steps 1 (on page 75) and 2 (on page 78) as well as the
modified rule (4.79) produces an iterate xε such that (4.13) or (4.51) holds in at most
(4.73) successful iterations, τ(ε) iterations in total, 2τ(ε) (approximate) evaluations of f
and νmax(ε) + τ(ε) approximate evaluations of {∇jxf}

p
j=1, where τ(ε) is given by (4.74),

κp by (4.75), σmax by (4.62), ω by (4.22) and νmax(ε) by (4.60).

As above, this complexity bound can be condensed to

O
(
ε−

p+1
p−q+1

)
iterations and (approximate) evaluations of f

O
(
| log(ε)|+ ε−

p+1
p−q+1

)
(approximate) evaluations of the first p derivatives,

(4.80)

typically improving on Theorem 40. When p = 2 and q = 1, the ARqpDA variant using the
more restrictive accuracy strategy (4.79) requires at most

O
(
| log(ε)|+ ε−3/2

)
(approximate) evaluations of the gradient, which corresponds to the bound derived for
the ARC-DFO algorithm of [39]. This is not surprising, as this latter algorithm uses a mono-
tonically decreasing sequence of finite-difference step sizes, implying monotonically de-
creasing gradient-accuracy thresholds.

One should however notice that the improved bound (4.80) comes at the price of ask-
ing, for potentially many iterations, an accuracy on {∇jf}pj=1 which is tighter than what
is needed to ensure progress of the minimisation. In practice, this might be a significant
drawback. We will thus restrict our attention, in what follows, to the original ARqpDA al-
gorithm, but similar developments are obviously possible for the “monotonic” variant just
discussed.

87

4.5 Application to unconstrained and bound-constrained first
and second-order nonconvex inexact optimisation

As already mentioned, the ARqpDA algorithm, here defined for better readability and
more practical application with 1 ≤ q ≤ p ≤ 2, has been formally written using variables
q and p, since it can be in theory defined also when 1 ≤ q ≤ p (p > 2) is considered. This
means that a p-th order Taylor’s expansion is employed in the model definition (4.1), with a
regularisation term of order (p+ 1) to search for an approximate (ε-δ) q-th order necessary
minimiser in the sense of the measure (4.20). In such a wide-ranging applicability context,
the framework discussed may appear somewhat daunting in its generality. Moreover, the
fact that it involves (possibly constrained) global optimisation subproblems in several of its
steps may suggest that it has to remain conceptual.

We show in this section that this is not the case and stress that it is much simpler when
specialised to small values of p and q (which are, for now, the most practical ones) and
that our approach leads to elegant and implementable numerical algorithms. To illus-
trate this point, we now specify what happens for each of the three cases associated
with the range 1 ≤ q ≤ p ≤ 2.

4.5.1 Quadratic regularisation for first-order optimality (case p = q = 1)

We first discuss the case where one seeks to compute a first-order critical point for an un-
constrained optimisation problem using approximate function values as well as approxi-
mate gradients. This corresponds to the case q = 1 (first-order optimality), p = 1 (model
with first-order Taylor’s expansion and quadratic regularisation) and X = Rn.

We first note that, as pointed out in (4.11),

φδf,1(x) = ‖∇f(x)‖δ and φ
δ

f,1 = ‖∇f(x)‖δ, irrespective of δ ∈ (0, 1], (4.81)

which means that, since we can choose δ = 1, Step 1 of the ARqpDA algorithm reduces
to the computation of an approximate gradient ∇f(xk) with relative error ω and the veri-
fication of ε-approximate optimality is not yet achieved. If that is the case, computing sk
at Step 2 is also simple, since in this case it can che chosen as the global minimiser s∗k of
the model, which takes the form:

sk = s∗k = − 1

σk
∇f(xk).

Lemma 29 then ensures that this step is acceptable for some δk ∈ (0, 1], the value of which
being irrelevant since it is not used in Step 1 of the next iteration. Moreover, if the relative
error on ∇f(xk) is bounded by ω, then

|∆T f1 (xk, sk)−∆T f1 (xk, sk)| ≤ ‖∇f(xk)−∇f(xk)‖‖∇f(xk)‖
σk

≤ ω
‖∇f(xk)‖2

σk

= ω∆T
f

1 (xk, sk)

and (4.18) automatically holds, so that no iteration is needed in Algorithm 10.

The resulting algorithm, where we have made the modified Step 1 explicit, is given as
Algorithm 11 (AR1DA) on the facing page.

88

Algorithm 11 The AR1DA Algorithm (ARqpDA with q = p = 1).

Step 0: Initialisation. An initial point x0 ∈ Rn and an initial regularisation parameter σ0 > 0

are given, as well as an accuracy level ε ∈ (0, 1) and a relative accuracy ω > 0. The
constants α, ω, κε, η1, η2, γ1, γ2, γ3 and σmin are also given, satisfying

σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1, 0 < γ1 < 1 < γ2 < γ3,

κε ∈ (0, 1], γε ∈ (0, 1), α ∈ (0, 1), 0 < ω < min

[
1− η2

3
,
η1

2

]
.

Set k = 0.

Step 1: Compute the optimality measure and check for termination. Initialise ε1,0 = κε
and set i = 0. Do

1. compute ∇f(xk) with ‖∇f(xk)−∇f(xk)‖ ≤ ε1,i and increment i by one.

2. if ε1,i ≤ ω‖∇f(xk)‖ and ‖∇f(xk)‖ ≤ ε/(1 + ω), then terminate with xε = xk; else, if
ε1,i ≤ ω‖∇f(xk)‖, go to Step 2;

3. set ε1,i+1 = γεε1,i and return to item 1 in this enumeration.

Step 2: Step calculation. Set

sk = −∇f(xk)/σk and ∆T
f

1 (xk, sk) = ‖∇f(xk)‖2/σk.

Step 3: Acceptance of the trial point.
Compute fk(xk + sk) ensuring that

|fk(xk + sk)− f(xk + sk)| ≤ ω|∆T f1 (xk, sk)|. (4.82)

Also ensure (by setting fk(xk) = fk−1(xk) or by (re)computing fk(xk)) that

|fk(xk)− f(xk)| ≤ ω|∆T f1 (xk, sk)| (4.83)

Then, compute
ρk =

fk(xk)− fk(xk + sk)

∆T
f

1 (xk, sk)
. (4.84)

If ρk ≥ η1, then set xk+1 = xk + sk; otherwise set xk+1 = xk.

Step 4: Regularisation parameter update. Set

σk+1 ∈


[max(σmin, γ1σk), σk] if ρk ≥ η2,

[σk, γ2σk] if ρk ∈ [η1, η2),

[γ2σk, γ3σk] if ρk < η1.

(4.85)

Increment k by one and go to Step 1.

Theorem 40 then guarantees that the AR1DA Algorithm will find an ε-approximate first-
order minimiser for the unconstrained version of problem (4.3) in at most O

(
ε−2
)

iterations
and approximate evaluations of the objective function (which is proved in [35] to be op-
timal) and at most O

(
| log(ε)|ε−2

)
approximate evaluations of the gradient.

Comments on the AR1DA algorithm

The following comments can be useful for a better contextualisation of the algorithm.

1. The accuracy requirement is truly adaptive and the absolute accuracy ε1,i may
remain quite large as long as ‖∇f(xk)‖ itself remains large, as shown by item 3 in

89

Step 1. Note that, in the worst case, Step 1 terminates whenever ε1,i ≤ ε ω/(1 + ω) as
one of the following situation occurs within Step 1.2: either ‖∇f(xk)‖ ≤ ε/(1 + ω) or
‖∇f(xk)‖ > ε/(1 + ω) > ε1,i/ω.

2. The accuracy requirement for computing f does not depend on the absolute ac-
curacy of the gradient, but only on its (squared) norm. At initial iterations, this may
be quite large.

3. The AR1DA Algorithm is very close in spirit to the Trust-Region with Dynamic Accu-
racy of [52 Sections 8.4.1.1 and 10.6] and, when values of f are computed exactly,
essentially recovers a proposal in [26]. It is also close to the proposal of [99], which is
based on an Armijo-like line search and has similar accuracy requirements.

4. Due to the definition of sk at Step 2, we have that for any successful iteration k:

xk+1 = xk + sk = xk −
1

σk
∇f(xk), (4.86)

that can be viewed as the general iteration of a gradient descent method under
inexact gradient evaluations with an adaptive choice of the so-called learning rate
(it corresponds to the opposite of the coefficient of ∇f(xk) in (4.86)), taken as the
inverse of the quadratic regulariser σk > 0 (see, e.g., [106]).

4.5.2 Cubic regularisation for first-order and/or second-order optimality
(case 1 ≤ q ≤ p = 2)

We now turn to the case where one seeks a first-order critical point (q = 1) for an uncon-
strained problem using approximate gradients and Hessians (p = 2).

As for the case p = q = 1, we have that (4.81) holds, making the verification of optimal-
ity in Step 1 relatively easy. Computing sk is now more complicated but still practical, as
it now implies minimising the regularised model mk starting from xk until a step sk is found,
such that

‖sk‖ ≥ µε
1
2 or φ

δ

mk,1
(sk) = ‖∇smk(sk)‖ ≤ 1

2θ‖sk‖2

(as proposed in [41], see also [70, 95, 43, 60]), with the additional constraint that, for sk 6= 0,

max(ε1,i, ε2,i) ≤ ω
∆T

f

2 (xk, sk)

χ2(‖sk‖)
, (4.87)

where
∆T

f

2 (xk, sk) = −∇f(xk)>sk − 1
2s
>
k∇2f(xk)sk.

The resulting specification of ARqpDA for ARq2DA is quite similar to AR1DA and is omitted
for brevity. We note what follows.

1. Algorithm ARq2DA is guaranteed by Theorem 40 to find an ε-approximate first-order
minimiser for the unconstrained version of problem (4.3) in at most O

(
ε−3/2

)
iterations

and approximate evaluations of the objective function (which is proved in [35] to be
optimal) and at most O

(
| log(ε)|ε−3/2

)
approximate evaluations of the gradient and

Hessian.

2. As for AR1DA, the absolute accuracies required by ARq2DA on the approximate
function, gradient and Hessian only depend on the magnitude of the Taylor’s incre-
ment, which is typically quite large in early iterations. The relative errors on the latter
two remain bounded away from zero.

90

3. The absolute accuracies required on the approximate gradient and Hessian are
comparable in magnitude, although (4.87) could be exploited to favour one with
respect to the other.

Finally, The case where p = 2 (model employing second-order Taylor’s expansion and
cubic regularisation) and q = 2 (second-order optimality) is also computationally quite
accessible: calculating the optimality measure φ

δk
f,1(xk) or φ

δk
mk,1

(sk) now involve a stan-
dard trust-region subproblem, for which both exact and approximate numerical solvers
are known (see [52, Chapter 7] for instance), but the rest of the algorithm — in partic-
ular its adaptive accuracy requirement — is very similar to what we have just discussed
(see also [35]). Theorem 40 then ensures that the resulting method converges to an ε-
approximate second-order necessary minimiser for the unconstrained version of problem
(4.3) in at most O

(
ε−3
)

iterations and approximate evaluations of the objective function
and at most O

(
| log(ε)|ε−3

)
approximate evaluations of the gradient and the Hessian.

We conclude this section with a brief discussion of the case where q = 1 and p ∈ {1, 2}
as before, but where X is now defined by bound constraints. It is clear that evaluat-
ing and enforcing such constraints (by projection, say) has negliglible cost and there-
fore falls in our framework. In this case, the calculations of φ

δk
f,1(xk) or φ

δk
mk,1

(sk) involve
linear optimisation problems†, which are computationally quite tractable. If p = 1, the
Step 2.2 and 2.3 involve convex quadratic optimisation, while they involve minimising a
regularised quadratic model if p = 2. All results remain the same and the ARqpDA al-
gorithm is then guaranteed to find a bound-constrained approximate first-order approx-
imate minimiser in at most O

(
ε−2
)

or O
(
ε−3/2

)
iterations and approximate evaluations of

the objective function (which is proved in [35] to be optimal) and at most O
(
| log(ε)|ε−2

)
or O

(
| log(ε)|ε−3/2

)
approximate evaluations of the gradient and the Hessian. The same

algorithms and results obviously extend to the case where X is a convex polyhedral set or
any closed non-empty convex set, provided the cost of the projection on this set remains
negligible compared to that of (approximately) evaluating the objective function and its
derivatives.

4.6 A probabilistic viewpoint on ARqpDA

In this section we consider the case where the bounds {εj}pj=1 on the absolute errors
on the derivatives {∇jf(x)}pj=1 are satisfied with probability at least (1 − t), with arbitrary
t ∈ (0, 1).

As already pointed out in Chapter 2, this may occur in the finite-sum setting if the
approximate derivatives are obtained by some random sampling scheme. We therefore
assume that (2.1) for j ∈ {1, ..., p}, (2.2) and (2.3) hold, with τ0,k

def
= ω|∆T fp(xk, sk)| and

τj,k = εj,ik , j ∈ {1, 2}, with ik the last index considered in the inner loop for i at Step 1 of
the ARqpDA algorithm. Clearly, different values for t could be chosen in (2.1), one for each
index (order of the derivative) j ∈ {1, ..., p}, p ∈ {1, 2}. Similarly, different values of t in (2.2)
and (2.3) could be considered. However, for the sake of simplicity, we here assume that
all the inequalities involved in (2.1)–(2.3) hold with the same fixed lower bound (1 − t) on
the probability of success. We also assume that the events in (2.1)–(2.3) are independent.

Among the stochastic variants of trust-region and adaptive cubic regularisation meth-
ods analysed in literature, complexity results are given in expectation in [23, 44], i.e. giving
an upper bound on the expected number of iterations needed to reach a first-order crit-
ical point per the first time, while in [2, 124, 125] the analysis is carried out in probability.
The latter point shows that the complexity result given by the deterministic analysis holds
with a certain probability, assuming that the accuracies on the objective function and/or

†Formerly known as linear programming problems (LPs).

91

derivatives are satisfied ad each iteration of the method within a certain pre-fixed (itera-
tion independent) probability. In this section we join this second line of research, following
the high-probability approach of [124, 125], where an overall and cumulative success of
(2.1)–(2.3) is assumed along all the iterations up to termination.

We stress that Algorithms 9 and 10 terminate independently of the satisfaction of the
accuracy requirements on the derivatives. This is due to the fact that termination relies on
the inequality (4.36). Moreover, during the iterations of either of these algorithms before
the last, it may happen that the accuracy on the derivatives fails to be achieved, but this
has no impact on the worst-case complexity. Satisfying the accuracy requirement is only
crucial at the last iteration of Algorithm 9 or 10 (that is in Steps 1.2 and 2.2).

Let Er(S) be the event: “the relations

‖∇jf(xk)−∇jf(xk)‖ ≤ τj,k for all j ∈ {1, . . . , r}, r ∈ {1, 2},

hold for some j at Step S of the last iteration of the relevant algorithm”. In Step 1.2, inexact
values are computed for the first q derivatives and the probability that the event Eq(1.2)

occurs is therefore at least (1− t)q. Similarly, the probability that event Ep(2.1) occurs is at
least (1−t)p. Finally, at Step 3 of the ARqpDA algorithm, the probability that both (4.25) and
(4.26) hold is at least (1− t)2. Then, letting for i ∈ {1, . . . , k}, E[i] be the event: “inequalities
(4.18), (4.25) and (4.26) hold at iteration i of the ARqpDA algorithm”, the probability that
E[i] occurs is thus at least (1 − t)p+q+2. Finally, letting E(k) be the event: “E[i] occurs for all
iterations i ∈ {1, . . . , k} of the ARqpDA algorithm”, we deduce that

P
[
E(k)

]
= P

[
k⋂
i=1

E[i]

]
≥ (1− t)k(p+q+2).

Thus, requiring that the event E(k) occurs with probability at least 1− t, we obtain that

P
[
E(k)

]
≥ (1− t)k(p+q+2) = 1− t, i.e. t = 1− (1− t)

1
k(p+q+2) = O

(
t

k(p+ q + 2)

)
.

Taking into account that, when (4.18), (4.25) and (4.26) hold, the ARqpDA algorithm
terminates in at most k = O

(
ε−

p+1
p−q+1

)
iterations (as stated by Theorem 40), we deduce the

following result.

Theorem 42. Let Assumption 4.1.1 hold. Suppose that the probabilistic assumptions
of this section hold and that, at each of iteration of the ARqpDA algorithm, the prob-
ability t satisfies

t = O

(
t ε

p+1
p−q+1

(p+ q + 2)

)
. (4.88)

Then, given ε ∈ (0, 1), the conclusions of Theorem 40 hold with probability at least
(1− t).

As a consequence, when p = q = 2 we have to choose t = O
(

1
6 t ε

3
)
, while, when

p = q = β = 1, we have to choose t = O
(

1
4 t ε

2
)
.

We stress that the above analysis is unduly pessimistic in the case where p = q = 1.
Indeed, as already noticed in Section 4.5, no reduction in {εj}pj=1 is necessary at Step
2, as (4.18) is automatically enforced whenever the relative error on the first derivative
∇f(x) is bounded by ω. Noting that this last event has probability at least (1 − t), we can
conclude that P (E[i]) ≥ (1− t)3 and to get the optimal complexity O

(
ε−2
)

with probability
at least 1− t we need to choose t = O

(
1
3 t ε

2
)
.

We also emphasise that the purpose of Theorem 42 is limited to offer guidance on de-

92

sirable value of t and not to prescribe an algorithmically binding bound. Indeed, some
of the constants involved in the bound of Theorem 40 (and thus of Theorem 42) are typ-
ically unknown a priori (which is why we have not been more specific in (4.88)). The
above argument naturally applies to (1.108), where the approximation of the objective
function values and of its first and second derivatives is obtained by the uniform random
subsampling procedure introduced in Section 3.5. In particular, at iteration k these ap-
proximations are still given by (2.4)–(2.6), (2.10)–(2.12) by virtue of the operator-Bernstein
inequality, under the assumptions of Theorem 19.

We stress that the adaptive nature of these sample sizes is apparent in formulae (2.10)–
(2.12), because they depend on xk and τj,k, which are themselves dynamically updated
in the course of the ARqpDA algorithm. Depending on the size of N , it may clearly be
necessary to consider the whole set {1, . . . , N} for small values of {εj}2j=0. If the cost of
evaluating functions ψi, for 1 ≤ i ≤ N , is comparable for all i, the cost of evaluating
fk(xk) amounts to the fraction |Dk,1|/N of the effort for computing the exact value f(xk).
Analogous considerations hold for the objective function derivatives.

In particular, whenever N is large enough to ensure that (2.10)–(2.12) do not require
the full sample, the size of the sample used to obtain a single approximate objective
function value is O(ε−2

0). Analogously, gradient and Hessian values are approximated by
averaging over samples of size O(ε−2

1) and O(ε−2
2), respectively. In Step 3 of the AR1DA

algorithm, the choice ε0 ∈
[
γεω‖∇jf(xk)‖2/σk, ω‖∇jf(xk)‖2/σk

]
is required to ensure that

(4.82)-(4.83) are satisfied. With this choice, the iteration k of the AR1DA algorithm requires
O(‖∇jf(xk)‖−4) ψi-evaluations (O(ε−4) ψi-evaluations in the worst-case). Similarly, ε0 =

O(ω‖∆TE2 (xk, sk)‖) is needed at iteration k of the ARq2DA algorithm. As a consequence,
and if the algorithm does not terminate at iteration k+ 1, it follows from Lemma 35 and 38
that O(ε−(3/(3−q))2) ψi-evaluations may be required in the worst case.

Finally, using Lemma 34 and (4.59), we claim that each iteration of the AR1DA and
ARq2DA algorithms requires at most O((1 + νmax(ε))ε−2) evaluations of component gradi-
ents and component Hessians, where νmax(ε) has been defined in (4.60). These bounds
turn out to be better or the same as those derived in [23, 44, 125]. Although they may
appear discouraging, it should be kept in mind that they are valid only if N is truly large
compared with 1/ε (for instance, it has to exceed O(ε−4) to allow for approximate func-
tions in the AR1DA Algorithm). In other words, the sampling schemes (2.10)–(2.12) are
most relevant when 1/ε remains modest compared with N .

4.7 Chapter conclusion

We have provided a general regularisation algorithm using inexact function and deriva-
tives values, featuring a flexible adaptive mechanism for specifying the amount of inex-
actness acceptable at each iteration.

This algorithm, inspired by the unifying framework proposed in [35], is applicable to
unconstrained and inexpensively-constrained nonconvex optimisation problems and is
here proved to gain up to second-order optimality using regularisation up to order 3,
under a set of usual smoothness assumptions on the objective function f (standard in such
a context) and the global Lipschitz continuity of the objective function highest derivative
employed in the model definition.

Optimal evaluation (and iteration) complexity is achieved if the accuracy require-
ments for function and derivatives evaluations are assumed and restored in probability,
when such requirements hold with a pre-fixed iteration independent probability. Never-
theless, all the results of this chapter holds for arbitrary degree of available derivatives,
arbitrary order of optimality and assuming the global Hölder continuity of the objective
function highest derivative (see [10]).

93

We have finally provided a probabilistic version of the complexity result and derived
associated lower bounds on sample size in the context of subsampling.

94

Part III

Stochastic Complexity Analysis

95

Introduction to Part III

Solving optimisation problems involving inexact evaluations is a recent attractive topic,
that has been investigated in three different frameworks.

• The first is that of deterministic dynamic accuracy, where it is assumed that the ac-
curacy of f and its derivatives can be specified and fullfilled by the algorithm (see
[52, Section 10.6] and [88, 66, 10], for example). In this context, adaptive conditions
are derived that guarantee convergence to approximate solutions and evaluation
complexity of the resulting algorithms can be analysed [10], indicating a very mod-
est degradation of the worst-case performance compared with the case where
evaluations are exact [35, 34].

• To deal with the nondeterministic aspects of these algorithms, high probability results
are given in [9, 10, 50, 124, 125] and it is shown that the optimal complexity result is
restored in probability, in the spirit of Subsection 3.5 and Subsection 4.6 of this thesis.

• A drawback of this approach is that nothing is said for the case where the requested
accuracy requirement cannot be met or, as is often the case, cannot even be mea-
sured. In fact, the techniques listed at the previous bullet do not provide algorithms
which are robust against failures to satisfy the adaptive accuracy requirements. This
is in contrast with the interesting analysis of unconstrained first-order methods in [99,
127, 23]. Combining the generality of our approach with the robustness of the pro-
posal is thus desirable.

This part of the thesis investigates this third point, motivated by the fact that inexactness
in the function (and possible derivatives) values can be often seen as caused by some
random noise, in which case the algorithm/user is not able to specify an accuracy level
and poor accuracy might result.

The available analysis for this case differs by the assumptions made on the distribution
of this noise.

In [99], the authors consider a line search method for the unbiased case and estimate
its evaluation complexity for finding approximate first-order critical points. It is assumed,
instead, that the function values of f , as well as those of its derivatives, can be approxi-
mated within a prescribed accuracy with a fixed and sufficiently high probability, condi-
tioned to the past.

A similar context is considered in [17], where the objective function values are inexact
but computed with accuracy guaranteed with probability one.

A trust-region variant is also proposed in [49], where the authors proved almost-surely
convergence to first-order critical points. The approach of [44] includes the use of ran-
dom first-order models and directions within the line search method as well as proba-
bilistic second-order models in the ARC framework. In both cases, the authors employ
exact function evaluations. A general theory for global convergence rate analysis is also
provided.

97

More recently, [23] proposed an evaluation complexity analysis for a trust-region method
(covering convergence to second-order points) using elegant properties of supermartin-
gales, and making no assumption on bias. A recent overview is proposed in [55].

The structure of this part is as follows.
In Chapter 5 we adapt an extended version of the adaptive cubic regularisation

method with dynamic inexact Hessian information for unconstrained nonconvex optimi-
sation (problem (1.1)) presented in Chapter 3 to the stochastic optimisation setting. While
exact function evaluations are still considered, this novel variant inherits the innovative use
of adaptive accuracy requirements for Hessian approximations and additionally employs
inexact computations of the gradient. Without restrictions on the variance of the errors,
we assume that these approximations are available within a sufficiently large, but fixed,
probability and we extend, in the spirit of [44], the deterministic analysis of the framework
to its stochastic counterpart, showing that the expected number of iterations to reach
a first-order stationary point matches the well known worst-case optimal complexity. The
chapter presents the work in [6], just accepted for publication.

Chapter 6 is the core of [8], recently submitted for publication and of publication [7].
Its focus is to generalise the framework of Chapter 4 allowing random noise in derivatives
and inexact function values for computing approximate minimisers of problem (4.3), pre-
serving optimal evaluation complexity in the order of the accuracy tolerances and is here
presented up to second-order optimality for inexpensively constrained smooth optimisa-
tion problems.

98

Chapter 5

Stochastic Analysis of an Adaptive
Cubic Regularisation Method under
Inexact Gradient Evaluations and
Dynamic Hessian Accuracy

The cubic regularisation variant proposed in Chapter 3 employs exact gradient and en-
sures condition (1.31) by requiring (3.3), i.e.

‖∇2f(xk)−∇2f(xk)‖ ≤ ck,

where we recall that the guideline for choosing ck is the following:

ck ≤
{
c, c > 0, if ‖sk‖ ≥ 1,

α(1− θ)‖∇f(xk)‖, if ‖sk‖ < 1,
(5.1)

with 0 ≤ α < 2
3 and 0 < θ < 1.

Regarding the gradient approximation, in Chapter 3 we assumed to use exact gradi-
ent computations, while in [39, 79] the accuracy requirement has the following form:

‖∇f(xk)−∇f(xk)‖ ≤ µ‖sk‖2, (5.2)

in which ∇f(xk) denotes the gradient approximation and µ is a positive constant. It thus
depends on the norm of the step.

In [125], as for the Hessian approximation, in order to get rid of the norm of the step, a
very tight accuracy requirement in used as the absolute error has to be of the order of ε21
at each iteration, i.e.

‖∇f(xk)−∇f(xk)‖ ≤ µε21. (5.3)

As already noticed, in [124, 125], a complexity analysis in high probability is carried out
in order to cover the situation where accuracy requirements (3.37) and (5.3) for Hessian
and gradient estimation are satisfied only with a sufficiently large probability.

At variance, the behaviour of cubic regularisation approaches employing approxi-
mated derivatives is analysed in expectation in [44], assuming that (1.31) and (5.2) are
satisfied with high probability. In the finite-sum minimisation context, accuracy require-
ments (1.31), (3.1) and (5.2) can be enforced with high probability by subsampling via an
inner iterative process. Namely, the approximated derivative is computed using a pre-
dicted accuracy, the step sk is computed and, if the predicted accuracy is larger than

99

the required accuracy, the predicted accuracy is progressively decreased (the sample
size progressively increased), until the accuracy requirement is satisfied.

In this chapter we generalise the method given in Chapter 3, keeping the practical
adaptive criterion (3.3), which is implemented without including an inner loop, but allow-
ing inexactness in the gradient as well. More specifically, we require that the gradient
approximation satisfies the following relative implicit condition:

‖∇f(xk)−∇f(xk)‖ ≤ ζk‖∇f(xk)‖2, (5.4)

where ζk is an iteration-dependent nonnegative parameter.
Unlike [44, 79] (see (5.2)), this latter condition does not depend on the norm of the

step. As a consequence, its practical implementation calls for an inner loop that can
be performed before the step computation and, remarkably, extra-computations of the
step are not needed.

In the upcoming analysis, we assume that the accuracy requirements (3.3) and (5.4)
are satisfied with high probability and we perform, in the spirit of [44], the stochastic anal-
ysis of the resulting method, showing that the expected number of iterations needed to
reach an ε1-approximate first-order critical point is, in the worst-case, of the order of ε−3/2

1 .
Of course, this analysis also applies to the method given in Chapter 3, that can be seen
as a particular case (exact gradient computations).

The rest of this chapter is organised as follows. In Section 5.1 we introduce a stochastic
ARC algorithm with inexact gradients and dynamic Hessian accuracy, stating the main
assumptions on the stochastic process induced by the algorithm. Relying on several exist-
ing results and deriving some additional outcomes, Section 5.2 is then devoted to perform
the iteration complexity analysis of the framework, while Section 5.3 proposes a practical
guideline to apply the method for solving finite-sum minimisation problems.

5.1 A stochastic cubic regularisation algorithm with inexact
derivatives evaluations: the SARC-IGDH algorithm

With reference to problem (1.1), we still consider the set of smoothness assumptions on f

given by Assumption 1.2.1, but we also need to assume that the Hessian matrix of problem
(1.1) is global Lipschitz continuous, as stated below.

Assumption 5.1.1. The Hessian of the objective function in (1.1) is assumed to be globally
Lipschitz continuous with Lipschitz constant L > 0, i.e.

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖, (5.5)

for all x, y ∈ Rn.

The iterative method we are going to introduce is, basically, the stochastic counter-
part of the ARC-DH algorithm, adding inexactness for first-order information. We here list
the main differences.

• At iteration k, given the trial step s, the value of the objective function at xk + s

is predicted by mean of a cubic model mk(s) defined in terms of an approximate
Taylor’s expansion of f centered at xk with increment s, truncated to the second
order, namely

mk(s) = f(xk) +∇f(xk)T s+
1

2
sT∇2f(xk)s+

σk
3
‖s‖3 def

= T̃2(xk, s) +
σk
3
‖s‖3, (5.6)

100

in which the gradient ∇f(xk) and the Hessian matrix ∇2f(xk) represent approxima-
tions of ∇f(xk) and ∇2f(xk), respectively.

• Given this new model definition, the minimisation of the cubic model (5.6) at each
iteration is still done following the strategy in ARC-DH, in the sense that the minimiser
sk satisfies

mk(xk, sk, σk) < mk(xk, 0, σk), (5.7)

‖∇smk(xk, sk, σk)‖ ≤ θk‖∇f(xk)‖, (5.8)

for all k ≥ 0 and some 0 ≤ θk ≤ θ, θ ∈ [0, 1). Practical choices for θk are, for instance,
θk = θmin

(
1, ‖sk‖2

‖∇f(xk)‖

)
or θk = θmin(1, ‖sk‖) (see, e.g., [9]), leading to

‖∇smk(xk, sk, σk)‖ ≤ θmin
(
‖sk‖2, ‖∇f(xk)‖

)
, (5.9)

and
‖∇smk(xk, sk, σk)‖ ≤ θmin(1, ‖sk‖)‖∇f(xk)‖, (5.10)

respectively. Note that, differently from (3.5), (3.26) and (3.27) in Chapter 3, condi-
tions (5.8), (5.9) and (5.10) employ inexact gradient evaluations.

• The relative decrease is defined by

ρk =
f(xk)− f(xk + sk)

T̃2(xk, 0)− T̃2(xk, sk)
, (5.11)

with T̃2 as in (5.6).

• If ρk ≥ η, with η ∈ (0, 1) a prescribed decrease fraction, then the trial point is ac-
cepted, the iteration is declared successful, the regularisation parameter is de-
creased by a factor γ (until a lower bound) and we go on recomputing the approxi-
mate model at the updated iterate; otherwise, an unsuccessful iteration occurs: the
point xk+sk is rejected, the regulariser is increased by a factor γ, a new approximate
model at xk is computed and a new trial step sk is recomputed.

• Being within the range of a scheme inducing a stochastic process, no termination
criterion is employed.

At each iteration, the model mk(s) involved relies on inexact quantities (see in (5.6)),
that can be considered as realisations of random variables. Hereafter, all random quan-
tities are denoted by capital letters, while the use of small letters is reserved for their reali-
sations (that, for instance, appear in the ARC algorithms considered in the first two parts
of this thesis). In particular, let us denote a random model at iteration k as Mk, while we
use the notation mk for its realisation. Moreover, we denote by ∇f(Xk) and ∇2f(Xk) the
random variables for ∇f(xk) and ∇2f(xk), respectively. Consequently, the iterates Xk, as
well as the regularisers Σk and the steps Sk are the random variables with realisations xk,
σk and sk, respectively.

The core of the analysis exploited in this chapter is to derive the expected worst-case
iteration complexity bound to approach an ε1-approximate first-order optimality point;
that is, given a first-order tolerance ε1 ∈ (0, 1), the number of steps k (in the worst-case)
such that an iterate xk satisfying

‖∇f(xk)‖ ≤ ε1

is reached, among all possible realisations of the algorithm.

101

To this purpose, after the description of the algorithm, we state the main definitions
and hypotheses needed to carry on with the analysis up to the complexity result.

Our algorithm is reported below.

Algorithm 12 The Stochastic ARC algorithm with Inexact Gradient and Dynamic Hessian
(SARC-IGDH) accuracy.

Step 0: Initialisation. An initial point x0 ∈ Rn and an initial regularisation parameter σ0 > 0

are given. The constants θ, α, η, γ, σmin and c are also given, such that

0 < θ < 1, α ∈
[
0,

2

3

)
, σmin ∈ (0, σ0], 0 < η <

2− 3α

2
, γ > 1, c > 0. (5.12)

Compute f(x0) and set k = 0, flag = 1.

Step 1: Gradient approximation. Compute an approximate gradient ∇f(xk)

Step 2: Hessian approximation (model costruction). If flag = 1, set ck = c; else, set ck =

α(1− θ)‖∇f(xk)‖.
Compute an approximate Hessian ∇2f(xk) that satisfies the condition (3.3) with a
prefixed probability. Form the model mk(s) defined in (5.6).

Step 3: Step calculation. Choose θk ≤ θ. Compute the step sk satisfying (5.7)–(5.8).

Step 4: Check on the norm of the trial step. If ‖sk‖ < 1 and flag = 1 and
c > α(1− θ)‖∇f(xk)‖,

set xk+1 = xk, σk+1 = σk, flag = 0 (unsuccessful iteration)

set k = k + 1 and go to Step 1.

Step 5: Acceptance of the trial point and parameters update. Compute f(xk + sk) and
the relative decrease ρk defined in (5.11).

If ρk ≥ η,

set xk+1 = xk + sk, set σk+1 = max[σmin,
1
γσk]. (successful iteration)

If ‖sk‖ ≥ 1, set flag = 1; otherwise, set flag = 0.

Else,

set xk+1 = xk, σk+1 = γσk. (unsuccessful iteration)

Set k = k + 1 and go to Step 1.

We note that the SARC-IGDH algorithm generates a random process

{Xk, Sk,Mk,Σk, Ck}, (5.13)

(X0 = x0 and Σ0 = σ0 are deterministic), where Ck refers to the random variable for the
dynamic Hessian accuracy ck, that is adaptively defined in Step 2 of the SARC-IGDH al-
gorithm. In fact, since its definition relies on random quantities, Ck constitutes a random
variable too. We recall that, in the deterministic counterpart given by the ARC-DH al-
gorithm, the Hessian approximation ∇2f(xk) computed at iteration k has to satisfy the
absolute accuracy requirement (3.3). Here, this condition is assumed to be satisfied only
with a certain probability (see Assumption 5.1.2).

The main goal is thus to prove that, if Mk is sufficiently accurate with a sufficiently high
probability conditioned to the “past”, then the stochastic process preserves optimal itera-

102

tion complexity in expectation, to reach an ε1-approximate first-order critical point. To this
scope, the next section is devoted to state the basic probabilistic accuracy assumptions
and definitions.

5.1.1 Main assumptions on the algorithm

For k ≥ 0, to formalise the conditioning on the past, let AMk−1 denote the σ̂-algebra in-
duced by the random variables M0, M1,..., Mk−1, with AM−1 = σ̂(x0).

We first consider the following definitions for measuring the accuracy of the model es-
timates.

Definition 5.1.1 (Accurate model). A sequence of random models {Mk} is said to be p∗-
probabilistically sufficiently accurate for the SARC-IGDH algorithm, p∗ ∈ (0, 1], with respect
to the corresponding sequence {Xk, Sk,Σk, Ck}, if the event Mk = M(1)

k ∩ M
(2)
k ∩ M

(3)
k ,

with

M(1)
k =

{
‖∇f(Xk)−∇f(Xk)‖ ≤ κ(1− θ)2

(
‖∇f(Xk)‖

Σk

)2

, κ > 0

}
, (5.14)

M(2)
k =

{
‖∇2f(Xk)−∇2f(Xk)‖ ≤ Ck

}
, (5.15)

M(3)
k =

{
‖∇f(xk)‖ ≤ κg, ‖∇2f(xk)‖ ≤ κB , κg > 0, κB > 0

}
, (5.16)

satisfies

P (Mk|AMk−1) = E[1Mk
|AMk−1] ≥ p∗. (5.17)

What follows is an assumption regarding the nature of the stochastic information used
by the SARC-IGDH algorithm.

Assumption 5.1.2. We assume that the sequence of random models {Mk}, generated by
the SARC-IGDH algorithm, is p∗-probabilistically sufficiently accurate for some sufficiently
high probability p∗ ∈

(
2
3 , 1
]
.

5.2 Complexity analysis of the algorithm

For a given level of tolerance ε1, the aim of this section is to derive a bound on the ex-
pected number of iterations E[Nε] which is needed, in the worst-case, to reach an ε1-
approximate first-order stationary point.

Specifically, Nε denotes a random variable corresponding to the number of steps re-
quired by the process until ‖∇f(Xk)‖ ≤ ε1 occurs for the first time, namely

Nε = inf{k ≥ 0 | ‖∇f(Xk)‖ ≤ ε1}; (5.18)

indeed, Nε can be seen as a stopping time for the stochastic process generated by the
SARC-IGDH algorithm (see [23, Definition 2.1]).

The analysis follows the path of [44], but some results need to be proved as for the
adopted accuracy requirements for gradient and Hessian and failures in the sense of
Step 4. It is preliminarly useful to sum up a series of existing lemmas from [44, 9] and
to derive some of their suitable extensions, which will be of paramount importance to
perform the complexity analysis of our stochastic method. These lemmas are recalled in
the following subsection.

103

5.2.1 Existing and preliminary results

We observe that each iteration k of the SARC-IGDH algorithm with 1Mk
= 1 corresponds

to an iteration of the ARC-DH algorithm, before termination, except for the fact that
in the SARC-IGDH algorithm the model (5.6) is defined not only using inexact Hessian
information, but also considering an approximate gradient.

In particular, the nature of the accuracy requirement for the gradient approximation
given by (5.14) is different from the one for the Hessian approximation, namely (5.15).
In fact, a realisation ck of the upper bound Ck in (5.15), needed to obtain an approxi-
mate Hessian ∇2f(xk), is determined by the mechanism of the algorithm and is available
when forming the Hessian approximation ∇2f(xk). On the other hand, (5.14) is an implicit
condition and can be practically gained computing the gradient approximation within
a prescribed absolute accuracy level, that is eventually reduced to recompute the in-
exact gradient ∇f(xk); but, in contrast with [44, Algorithm 4.1], without additional step
computations, which is performed only once per iteration at Step 3 of the SARC-IGDH
algorithm.

We will see that, for any realisation of the algorithm, if the model is accurate (i.e.,
1Mk

= 1), then there exist δ ≥ 0 and ξk > 0 such that

‖(∇f(xk)−∇f(xk))sk‖ ≤ δ‖sk‖3, ‖(∇2f(xk)−∇2f(xk))sk‖ ≤ ξk‖sk‖2,

which will be fundamental to recover optimal complexity. At this regard, let us consider
the following definitions and state the lemma below.

With reference to the SARC-IGDH algorithm, for all 0 ≤ k ≤ l, l ∈ {0, ..., Nε − 1}, we
define the events

Sk = { iteration k is successful } ,
Uk,1 = { iteration k is unsuccessful in the sense of Step 5 } ,
Uk,2 = { iteration k is unsuccessful in the sense of Step 4 } .

(5.19)

We underline that if k ∈ Uk,1 then ρk < η, while k ∈ Uk,2 if and only if ‖sk‖ < 1, flag = 1

and c > α(1− θ)‖∇f(xk)‖. Moreover, if ρk < η and a failure in Step 4 does not occur, then
k ∈ Uk,1.

Lemma 43. Consider any realisation of the SARC-IGDH algorithm. Then, at each
iteration k such that 1M(1)

k ∩M
(3)
k

= 1 (accurate gradient and bounded inexact deriva-
tives), we have

‖∇f(xk)−∇f(xk)‖ ≤ δ‖sk‖2, δ
def
= κ

(
κB
σmin

+ 1

)
max

[
κg
σmin

,
κB
σmin

+ 1

]
, (5.20)

and, thus,

‖(∇f(xk)−∇f(xk))sk‖ ≤ δ‖sk‖3. (5.21)

Proof. Let us consider k such that 1M(1)
k ∩M

(3)
k

= 1. Using (5.8) we obtain

θ‖∇f(xk)‖ ≥ ‖∇sm(xk, sk, σk)‖ =
∥∥∥∇f(xk) +∇2f(xk)sk + σksk‖sk‖

∥∥∥
≥ ‖∇f(xk)‖ − ‖∇2f(xk)‖ ‖sk‖ − σk‖sk‖2. (5.22)

We can then distinguish between two different cases. If ‖sk‖ ≥ 1, from (5.22) and (5.16)

104

we have that

θ‖∇f(xk)‖ ≥ ‖∇f(xk)‖ − ‖∇2f(xk)‖ ‖sk‖2 − σk‖sk‖2 ≥ ‖∇f(xk)‖ − (κB + σk)‖sk‖2,

which is equivalent to

‖sk‖2 ≥
(1− θ)‖∇f(xk)‖

κB + σk
.

Consequently, by (5.14) and (5.16),

‖∇f(xk)−∇f(xk)‖ ≤ κ

(
1− θ
σk

)2

‖∇f(xk)‖2 ≤ κκg(1− θ)2‖∇f(xk)‖
σ2
k‖sk‖2

‖sk‖2

≤ κκg(1− θ)
κB + σk
σ2
k

‖sk‖2 ≤ κ
κg
σmin

(
κB
σmin

+ 1

)
‖sk‖2, (5.23)

where in the last inequality we have used that θ ∈ (0, 1) and σk ≥ σmin.
If, instead, ‖sk‖ < 1, the inequalities (5.22) and (5.16) lead to

θ‖∇f(xk)‖ ≥ ‖∇f(xk)‖ − ‖∇2f(xk)‖ ‖sk‖ − σk‖sk‖ ≥ ‖∇f(xk)‖ − (κB + σk)‖sk‖,

obtaining that

‖sk‖ ≥
(1− θ)‖∇f(xk)‖

κB + σk
. (5.24)

Hence, by squaring both sides in the above inequality and using (5.14), θ ∈ (0, 1) and
σk ≥ σmin, we obtain

‖∇f(xk)−∇f(xk)‖ ≤ κ

(
1− θ
σk

)2

‖∇f(xk)‖2 =
κ(1− θ)2‖∇f(xk)‖2

σ2
k‖sk‖2

‖sk‖2

≤ κ

(
κB + σk
σk

)2

‖sk‖2 ≤ κ
(
κB
σmin

+ 1

)2

‖sk‖2. (5.25)

Inequality (5.20) then follows by virtue of (5.23) and (5.25), while (5.21) stems from (5.20),
by means of the triangle inequality.

The following Lemma is a slight modification of Lemma 20.

Lemma 44. Consider any realisation of the SARC-IGDH algorithm and assume that
c ≥ α(1− θ)κg. Then, at each iteration k such that 1M(2)

k ∩M
(3)
k

(1−1Uk,2) = 1 (successful
or unsuccessful in the sense of Step 5, with accurate Hessian and bounded inexact
derivatives), we have

‖∇2f(xk)−∇2f(xk)‖ ≤ ck ≤ ξk‖sk‖, ξk
def
= max[c, α(κB + σk)], (5.26)

and, thus,

‖(∇2f(xk)−∇2f(xk))sk‖ ≤ ξk‖sk‖2. (5.27)

Proof. Let us consider k such that 1M(2)
k ∩M

(3)
k

(1 − 1Uk,2) = 1. The SARC-IGDH algorithm
ensures that, if ‖sk‖ ≥ 1, then ck = c or

ck = α(1− θ)‖∇f(xk)‖. (5.28)

105

Therefore, (5.28), ‖sk‖ ≥ 1 and (5.16) give

‖∇2f(xk)−∇2f(xk)‖ ≤ ck ≤ max[c, α(1− θ)‖∇f(xk)‖] ≤ max[c, α(1− θ)κg] ≤ c‖sk‖, (5.29)

where we have considered the assumption c ≥ α(1 − θ)κg. On the other hand, Step 4
guarantees the choice

ck ≤ α(1− θ)‖∇f(xk)‖, (5.30)

when ‖sk‖ < 1. In this case, the inequality (5.24) still holds. Thus,

‖∇2f(xk)−∇2f(xk)‖ ≤ ck =
ck
‖sk‖

‖sk‖ ≤
ck(κB + σk)

(1− θ)‖∇f(xk)‖
‖sk‖ ≤ α(κB + σk)‖sk‖, (5.31)

where the last inequality is due to (5.30). Finally, (5.29) and (5.31) imply (5.26), while (5.27)
follows by (5.26) via the triangle inequality.

The next lemma bounds the decrease of the objective function on successful iter-
ations, irrespectively of the satisfaction of the accuracy requirements for gradient and
Hessian approximations. Its proof is very close to the one of Lemma 35 (see, also, [22,
Lemma 2.1]).

Lemma 45. Consider any realisation of the SARC-IGDH algorithm. At each iteration
k we have

T̃2(xk, 0)− T̃2(xk, sk) >
σk
3
‖sk‖3 ≥

σmin

3
‖sk‖3 > 0. (5.32)

Hence, on every successful iteration k:

f(xk)− f(xk+1) > η
σk
3
‖sk‖3 ≥ η

σmin

3
‖sk‖3 > 0. (5.33)

Proof. We first notice that, by (5.7), we have that ‖sk‖ 6= 0. Inequality (5.32) indeed directly
follows from (5.6) and (5.7). The second part of the thesis is easily proved taking into
account that, if k is successful, then (5.32) implies

f(xk)− f(xk+1) ≥ η(T̃2(xk, 0)− T̃2(xk, sk)) > η
σk
3
‖sk‖3.

As a corollary, because of the fact that xk+1 = xk on each unsuccessful iteration k, for
any realisation of the SARC-IGDH algorithm we have that

f(xk)− f(xk+1) ≥ 0.

We now show that, if the model is accurate, there exists a constant σ > 0 such that an
iteration is successful or unsuccessful in the sense of Step 4 (1Mk

(1− 1Uk,1) = 1), whenever
σk ≥ σ. In other words, it is an iteration at which the regulariser is not increased.

106

Lemma 46. Let Assumption 1.2.1 (ii) and Assumption 5.1.1 hold. Let δ be given in
(5.20), β > 1 and assume c ≥ α(1 − θ)κg. For any realisation of the SARC-IGDH algo-
rithm, if the model is accurate and

σk ≥ σ
def
= max

[
6δ + 3ακB + L

2(1− η)− 3α
,

6δ + 3c+ L

2(1− η)
, βσ0

]
> 0, (5.34)

then the iteration k is successful or a failure in the sense of Step 4 occurs.

Proof. The proof is inspired by the one of Lemma 21. Let us consider an iteration k such
that 1Mk

(1− 1Uk,1) = 1 and the definition of ρk in (5.11). Assume that a failure in the sense
of Step 4 does not occur. If ρk − 1 ≥ 0, then iteration k is successful by definition. We can
thus focus on the case in which ρk − 1 < 0. In this situation, the iteration k is successful
provided that 1 − ρk ≤ 1 − η. From (5.5) and the Taylor’s expansion of f centered at xk
with increment s it first follows that

f(xk + s) ≤ f(xk) +∇f(xk)>s+
1

2
s>∇2f(xk)s+

L

6
‖s‖3. (5.35)

Therefore, since 1Mk
= 1,

f(xk + sk)− T 2(xk, sk) ≤ (∇f(xk)−∇f(xk))>sk +
1

2
s>k (∇2f(xk)−∇2f(xk))sk +

L

6
‖sk‖3

≤ ‖∇f(xk)−∇f(xk)‖‖sk‖+
1

2
‖∇2f(xk)−∇2f(xk)‖‖sk‖2 +

L

6
‖sk‖3

≤
(
δ +

L

6
+
ξk
2

)
‖sk‖3, (5.36)

where we have used (5.20) and (5.26). Thus, by (5.36) and (5.32),

1− ρk =
f(xk + sk)− T̃2(xk, sk)

T̃2(xk, 0)− T̃2(xk, sk)
<

(6δ + 3ξk + L) ‖sk‖3

2σk‖sk‖3
=

6δ + 3ξk + L

2σk
.

Depending on the maximum in the definition of ξk in (5.26), two different cases can then
occur. If ξk = c, then 1− ρk ≤ 1− η, provided that

σk ≥
6δ + 3c+ L

2(1− η)
.

Otherwise, if c < α(κB + σk), so that ξk = α(κB + σk), then

1− ρk <
6δ + 3α(κB + σk) + L

2σk
≤ 1− η,

provided that

σk ≥
6δ + 3ακB + L

2(1− η)− 3α
.

In conclusion, the iteration k is successful if (5.34) holds. Note that σ is a positive lower
bound on σk because of the ranges for the values of η and α in (5.12).

As done in Lemma 6, we can now use some of the results from the proof of the previ-
ous lemma to prove the following, giving a crucial relation between the step length ‖sk‖
and the true gradient norm ‖∇f(xk + sk)‖ at the next iteration.

107

Lemma 47. Let Assumption 1.2.1 (ii) and Assumption 5.1.1 hold. Assume also that
c ≥ α(1 − θ)κg. For any realisation of the SARC-IGDH algorithm, at each iteration k

such that 1Mk
(1 − 1Uk,2) = 1 (accurate in which the iteration is successful or a failure

in the sense of Step 5 occurs), we have

‖sk‖ ≥
√
ζk‖∇f(xk + sk)‖, (5.37)

for some positive ζk, whenever sk satisfies (5.9). Moreover, (5.37) holds even in case
sk satisfies (5.10), provided that there exists Lg > 0 such that

‖∇f(x)−∇f(y)‖ ≤ Lg‖x− y‖, (5.38)

for all x, y ∈ Rn.

Proof. Let us consider an iteration k such that 1Mk
(1−1Uk,2) = 1. From the Taylor’s series of

∇f(x) centered at xk with increment s and the definition of the model (5.6), proceeding
as in the proof of Lemma 6, we obtain

‖∇f(xk + sk)−∇sT̃2(xk + sk)‖ ≤ ‖∇f(xk)−∇f(xk)‖+ ‖(∇2f(xk)−∇2f(xk))sk‖

+

∫ 1

0

‖∇2f(xk + τs)−∇2f(xk)‖‖sk‖ dτ

≤
(
δ + ξk +

L

2

)
‖sk‖2, (5.39)

where we have used (5.20), (5.27) and (5.5). Moreover, since ∇sm(sk) = ∇sT̃2(xk, sk) +

σk‖sk‖sk, it follows:

‖∇f(xk + sk)‖ ≤ ‖∇f(xk + sk)−∇sT̃2(xk, sk)‖+ ‖∇sm(sk)‖+ σk‖sk‖2. (5.40)

As a consequence, the thesis follows from (5.39)–(5.40) with

ζ−1
k

def
=

(
δ + ξk +

L

2
+ θ + σk

)
> 0, (5.41)

when the stopping criterion (5.9) is considered.
Assume now that (5.10) is used for Step 3 of the SARC-IGDH algorithm. Inequalities (5.20)
and (5.38) imply that

‖∇f(xk)‖ ≤ ‖∇f(xk)−∇f(xk)‖+ ‖∇f(xk)−∇f(xk + sk)‖+ ‖∇f(xk + sk)‖
≤ δ‖sk‖2 + Lg‖sk‖+ ‖∇f(xk + sk)‖. (5.42)

By using (5.39)–(5.40) and plugging (5.42) into (5.10), we finally have

‖∇f(xk + sk)‖(1− θ) ≤
[
(1 + θ)δ + ξk +

L

2
+ θLg + σk

]
‖sk‖2,

which is equivalent to (5.37), with

ζk
def
=

1− θ
(1 + θ)δ + ξk + L/2 + θLg + σk

> 0. (5.43)

Remark 9. It is worth noticing that the global Lipschitz continuity of the gradient, namely
(5.38), is needed only when condition (5.10) is used at Step 3 of the SARC-IGDH algorithm.

108

We finally report a result from [44] that will be central to carry out the complexity anal-
ysis addressed in the following two subsections.

Lemma 48. [44, Lemma 2.1] Let Nε be the hitting time defined as in (5.18). For all
k < Nε, let {Mk} be the sequence of events in Definition 5.1.1 so that (5.17) holds.
Let 1Wk

be a nonnegative stochastic process such that σ̂(1Wk
) ⊆ AMk−1, for any k ≥ 0.

Then,

E

[
Nε−1∑
k=0

1Wk
1Mk

]
≥ p∗E

[
Nε−1∑
k=0

1Wk

]
.

Similarly,

E

[
Nε−1∑
k=0

1Wk
(1− 1Mk

)

]
≤ (1− p∗)E

[
Nε−1∑
k=0

1Wk

]
.

Proof. [44, Lemma 2.1] The proof is a simple consequence of properties of expectations,
see for example [113, Property H∗ on page 216].

E[1Mk
|1Wk

] = E
[
E
[
1Mk

|AMk−1

]
|1Wk

]
≥ E[p∗|1Wk

] = p∗,

where we also used that σ̂(1Wk
) ⊆ AMk−1. Hence by the law of total expectation, we have

E[1Wk
1Mk

] = E[1Wk
E[1Mk

|1Wk
]] ≥ p∗E[1Wk

]. Similarly, we can derive E[1{k<Nε}1Wk
1Mk

] ≥
p∗E[1{k<Nε}1Wk

], because 1{k<Nε} is also determined by AMk−1. Finally,

E

[
Nε−1∑
k=0

1Wk
1Mk

]
= E

[∞∑
k=0

1{k<Nε}1Wk
1Mk

]
≥ p∗E

[∞∑
k=0

1{k<Nε}1Wk

]
= p∗E

[
Nε−1∑
k=0

1Wk

]
.

The second inequality is proved analogously.

5.2.2 Bounding the expected number of steps with Σk ≥ σ

In this section we derive an upper bound for the expected number of steps in the process
generated by the SARC-IGDH algorithm with Σk ≥ σ.

Given l ∈ {0, ..., Nε − 1}, for all 0 ≤ k ≤ l, let us define the event

Λk = {iteration k is such that Σk < σ} (5.44)

and let

NΛc
def
=

Nε−1∑
k=0

(1− 1Λk), NΛ
def
=

Nε−1∑
k=0

1Λk , (5.45)

be the number of steps, in the stochastic process induced by the SARC-IGDH algorithm,
with Σk ≥ σ and Σk < σ, before Nε is met, respectively.

In what follows we consider the validity of Assumption 1.2.1, Assumption 5.1.1, Assump-
tion 5.1.2 and the following assumption on Σ0.

By referring to Lemma 48 and some additional lemmas from [44], we can first obtain
an upper bound on E[NΛc].

In particular, rearranging [44, Lemma 2.2], given a generic iteration l, we derive a
bound on the number of iterations that are successful or unsuccessful in the sense of Step
4, with Σk ≥ σ, in terms of the overall number of iterations l + 1. At this regard, we under-
line that in case of unsuccessful iterations at Step 4, the value of Σk is not modified and
such an iteration occurs at most once between two successful iterations (not necessary

109

consecutive) with the first one having the norm of the step not smaller than one or once
before the first successful iteration of the process (since flag is initially 1). In fact, a failure in
the sense of Step 4 may occur only if flag=1; except for the first step, flag is reassigned only
at the end of a successful iteration and can be set to one only in case of successful iter-
ation with ‖sk‖ ≥ 1 (see Step 5 of the SARC-IGDH algorithm), except for the first iteration.
If the case flag = 1 and ‖sk‖ < 1 occurs, then flag is set to zero, preventing a failure in Step
4 at the subsequent iteration and it is not further changed until a subsequent successful
iteration.

Lemma 49. Given l ∈ {0, ..., Nε − 1}, for all realisations of the SARC-IGDH algorithm,

l∑
k=0

(1− 1Λk)1Sk∪Uk,2 ≤
2

3
(l + 1).

Proof. Each iteration k such that (1 − 1Λk)1Sk∪Uk,2 = 1 is an iteration with Σk ≥ σ that
can be a successful iteration, leading to Σk+1 = max[σmin,

1
γΣk] (Σk is decreased), or an

unsuccessful iteration in the sense of Step 4. In the latter case, Σk is left unchanged
(Σk+1 = Σk). Moreover, Σk in successful/unsuccessful in the sense of Step 5 iterations is
decreased/increased by the same factor γ. More in depth, since Σ0 < σ (recall (5.34)
and the fact that Σ0 = σ0), we have two possible scenarios. In the first one Σk < σ,
k = 0, . . . , l, and the thesis obviously follows. In the second scenario there exists at least
one index k such that Σk ≥ σ and at least one unsuccessful iteration j ∈ {0, . . . , k − 1} at
which Σk has been increased by the factor γ. In case 1Uk,2 = 1, Σk is left unchanged, flag
is set to 0 and 1Uk+1,2

= 0. Then, at any iteration j such that 1Uj,1 = 1 corresponds at most
one successful iteration and one unsuccessful iteration in the sense of Step 4, with Σk ≥ σ,
and this yields the thesis.

We note that in the stochastic ARC method in [44] each iteration can be successful
or unsuccessful according to the satisfaction of the decrease condition ρk ≥ η. On the
contrary, in the SARC-IGDH algorithm also failures in Step 4 may occur and this yields the
bound 2(l + 1)/3 in Lemma 49, while the corresponding bound in [44] is (l + 1)/2.

As in [44], we note that σ̂(1Λk) ⊆ AMk−1, that is the variable Λk is fully determined by the
first k − 1 iterations of the SARC-IGDH algorithm. Then, setting l = Nε − 1, we can rely on
Lemma 48 (with Wk = Λck) to deduce that

E

[
Nε−1∑
k=0

(1− 1Λk)1Mk

]
≥ p∗E

[
Nε−1∑
k=0

(1− 1Λk)

]
. (5.46)

Considering the bound in Lemma 49, together with the fact that Lemma 46 and the
mechanism of Step 4 in the SARC-IGDH algorithm ensure that each iteration k such that
1Mk

= 1 with σk ≥ σ can be successful or unsuccessful in the sense of Step 4 (i.e., 1Sk∪Uk,2 =

1), we have that
Nε−1∑
k=0

(1− 1Λk)1Mk
≤
Nε−1∑
k=0

(1− 1Λk)1Sk∪Uk,2 ≤
2

3
Nε.

Taking expectation in the above inequality and recalling the definition of NΛc in (5.45),
from (5.46) we conclude that:

E[NΛc] ≤
2

3p∗
E[Nε]. (5.47)

The remaining bound for E
[
NΛ

]
will be derived in the next section.

110

5.2.3 Bounding the expected number of steps with Σk < σ

Let us now obtain an upper bound for E
[
NΛ

]
, with NΛ defined in (5.45). To this purpose,

the following additional definitions are needed.

Definition 5.2.1. Let Uk,1, Uk,2 and Sk be as defined in (5.19). With reference to the process
(5.13) generated by the SARC-IGDH algorithm let us define:

• the event Λk = {iteration k is such that Σk ≤ σ}, i.e. Λk is the closure of Λk.

• NI =
∑Nε−1
k=0 1Λk

(1− 1Mk
): number of inaccurate iterations with Σk ≤ σ;

• NA =
∑Nε−1
k=0 1Λk

1Mk
: number of accurate iterations with Σk ≤ σ;

• NAS =
∑Nε−1
k=0 1Λk

1Mk
1Sk : number of accurate successful iterations with Σk ≤ σ;

• NAH =
∑Nε−1
k=0 1Λk

1Mk
1Uk,2 : number of accurate unsuccessful iterations, in the sense

of Step 4, with Σk ≤ σ;

• NAU =
∑Nε−1
k=0 1Λk1Mk

1Uk,1 : number of accurate unsuccessful iterations, in the sense
of Step 5, with Σk < σ;

• NIS =
∑Nε−1
k=0 1Λk

(1− 1Mk
)1Sk : number of inaccurate successful iterations, with Σk ≤

σ;

• NS =
∑Nε−1
k=0 1Λk

1Sk : number of successful iterations, with
Σk ≤ σ;

• NH =
∑Nε−1
k=0 1Uk,2 : number of unsuccessful iterations in the sense of Step 4;

• NU =
∑Nε−1
k=0 1Λk1Uk,1 : number of unsuccessful iterations, in the sense of Step 5, with

Σk < σ.

It is worth noting that an upper bound on E
[
NΛ

]
is given, once an upper bound on

E[NI] + E[NA] is provided, since

E
[
NΛ

]
≤ E

[
Nε−1∑
k=0

1Λk

]
= E

[
Nε−1∑
k=0

1Λk
(1− 1Mk

) +

Nε−1∑
k=0

1Λk
1Mk

]
= E[NI] + E[NA]. (5.48)

Following [44], to bound E[NI] we can still refer to the central Lemma 48 (withWk = Λk),
of which the result stated below is a direct consequence.

Lemma 50. [44, Lemma 2.6] With reference to the stochastic process (5.13) gener-
ated by the SARC-IGDH algorithm and the definitions of NI , NA in Definition 5.2.1,

E[NI] ≤
1− p∗
p∗

E[NA]. (5.49)

Proof. [44, Lemma 2.6] By applying subsequently both inequalities in Lemma 48 with Wk =

Λk, we obtain

E

[
Nε−1∑
k=0

1Λk
1Mk

]
≥ p∗E

[
Nε−1∑
k=0

1Λk

]

111

and

E

[
Nε−1∑
k=0

1Λk
(1− 1Mk

)

]
≤ (1− p∗)E

[
Nε−1∑
k=0

1Λk

]
,

giving

E

[
Nε−1∑
k=0

1Λk
(1− 1Mk

)

]
≤ 1− p∗

p∗
E

[
Nε−1∑
k=0

1Λk
1Mk

]
,

which is equivalent to (5.49) because of the definitions ofNI andNA in Definition 5.2.1.

Concerning the upper bound for E[NA], we observe that

E[NA] = E[NAS] + E[NAH] + E[NAU] ≤ E[NAS] + E[NAH] + E[NU]. (5.50)

In the following Lemma we provide upper bounds for NAS and NAH , given in Definition
5.2.1.

Lemma 51. Let Assumption 1.2.1 and Assumption 5.1.1 hold. Assume also that the
stopping criterion (5.9) is used to perform each Step 3 of the SARC-IGDH algorithm.
With reference to the stochastic process (5.13) induced by the SARC-IGDH algorithm,
there exists κs > 0 such that

NAS ≤ κs(f0 − flow)ε
−3/2
1 + 1. (5.51)

Moreover, in case the stopping criterion (5.10) is used in Step 3, (5.51) still holds pro-
vided that there exists Lg > 0 such that (5.38) is satisfied for all x, y ∈ Rn.
Finally, let Assumption 1.2.1 hold, independently of the stopping criterion used to
perform Step 3, there exists κu > 0 such that

NAH ≤ κu(f0 − flow). (5.52)

Proof. Taking into account that (5.33) holds for each realisation of the SARC-IGDH algo-
rithm, (5.37) is valid for each realisation of the SARC-IGDH algorithm with 1Mk

(1−1Uk,2) = 1,

recalling that f(Xk) = f(Xk+1) for all k ∈ Uk,1 ∪ Uk,2 and setting f0
def
= f(X0), it follows:

f0 − flow ≥ f0 − f(XNε) =

Nε−1∑
k=0

(f(Xk)− f(Xk+1))1Sk ≥
Nε−1∑
k=0

>0︷ ︸︸ ︷
η
σmin

3
‖Sk‖3 1Sk

≥
Nε−2∑
k=0

η
σmin

3
‖Sk‖31Sk1Mk

≥
Nε−2∑
k=0

η
σmin

3
ζ

3/2
k ‖∇f(Xk+1)‖3/21Sk1Mk

≥
Nε−2∑
k=0

η
σmin

3
ζ3/2‖∇f(Xk+1)‖3/21Sk1Mk

1Λk

≥ (NAS − 1)κ−1
s ε3/2,

in which ζk is defined in (5.41), when sk satisfies (5.9), and in (5.43), when sk satisfies (5.10),
and

κ−1
s

def
= η

σmin

3
ζ3/2, (5.53)

where
ζ

def
=

1

δ + max[c, α(κB + σ)] + L/2 + θ + σ
> 0,

112

in case (5.9) is used and

ζ
def
=

1− θ
(1 + θ)δ + max[c, α(κB + σ)] + L/2 + θLg + σ

> 0,

whenever (5.10) is adopted. Hence, (5.51) holds.
Moreover, an upper bound forNAH can be obtained taking into account that, as already
noticed, an iteration k ≥ 1 in the process such that 1Uk,2 = 1 occurs at most once between
two successful iterations with the first one having the norm of the trial step not smaller than
1, plus at most once before the first successful iteration in the process (since in the SARC-
IGDH algorithm flag is initialised at 1). Therefore, by means of (5.33),

f0 − flow ≥ f0 − f(XNε) =

Nε−1∑
k=0

(f(Xk)− f(Xk+1))1Sk ≥
Nε−1∑
k = 0

‖Sk‖ ≥ 1

(f(Xk)− f(Xk + Sk))1Sk

≥ ησmin

3

Nε−1∑
k = 0

‖Sk‖ ≥ 1

1Sk‖Sk‖3 ≥ κ−1
u NH ,

where we set κ−1
u

def
= ησmin/3 and NH denotes (see Definition 5.2.1) the number of unsuc-

cessful iterations in the sense of Step 4. Then, since NH ≥ NAH , (5.52) follows.

An upper bound for NU can be still derived using [44, Lemma 2.5].

Lemma 52. [44, Lemma 2.5] For any l ∈ {0, ..., Nε − 1} and for all realisations of the
SARC-IGDH algorithm, we have that

l∑
k=0

1Λk1Uk,1 ≤
l∑

k=0

1Λk
1Sk +

⌈
logγ

(
σ

σ0

)⌉
.

Proof. The proof of [44, Lemma 2.5] can still be applied since the process induced by
the SARC-IGDH algorithm ensures that Σk is decreased by a factor γ on successful steps,
increased by the same factor on unsuccessful ones in the sense of Step 5 and left un-
changed if an unsuccessful iteration in the sense of Step 4 occurs. Therefore, the total
number of iterations at which Σk < σ and Σk is increased is bounded by the total number
of iterations where Σk ≤ σ is decreased plus the number of iterations needed to increase
Σk from its initial value Σ0 to σ, given by

⌈
logγ

(
σ
σ0

)⌉
.

Consequently, considering l = Nε − 1 and Definition 5.2.1,

NU ≤ NS +

⌈
logγ

(
σ

σ0

)⌉
= NAS +NIS +

⌈
logγ

(
σ

σ0

)⌉
. (5.54)

We underline that the right-hand side in (5.54) involvesNIS , that has not been bounded
yet. To this aim we can proceed as in [44], obtaining that

E[NIS] ≤ 1− p∗
2p∗ − 1

(
2E[NAS] + E[NAH] +

⌈
logγ

(
σ

σ0

)⌉)
. (5.55)

113

In fact, recalling the definition of NIS and (5.50), the inequality (5.49) implies that

E[NIS] ≤ E[NI] ≤
1− p∗
p∗

E[NA] ≤ 1− p∗
p∗

(E[NAS] + E[NAH] + E[NU]) . (5.56)

Indeed, taking expectation in (5.54) and plugging it into (5.56),

E[NIS] ≤ 1− p∗
p∗

(
2E[NAS] + E[NAH] + E[NIS] +

⌈
logγ

(
σ

σ0

)⌉)
,

which yields (5.55).
The upper bound on E[NA] then follows:

E[NA] ≤ E[NAS] + E[NAH] + E[NU] ≤ 2E[NAS] + E[NAH] + E[NIS] +

⌈
logγ

(
σ

σ0

)⌉
≤

(
1− p∗
2p∗ − 1

+ 1

)(
2E[NAS] + E[NAH] +

⌈
logγ

(
σ

σ0

)⌉)
=

p∗
2p∗ − 1

(
2E[NAS] + E[NAH] +

⌈
logγ

(
σ

σ0

)⌉)
≤ p∗

2p∗ − 1

[
(f0 − flow)

(
2κsε

−3/2 + κu

)
+

⌈
logγ

(
σ

σ0

)⌉
+ 2

]
, (5.57)

in which we have used (5.50), (5.52), (5.51), (5.54) and (5.55).
Therefore, recalling (5.48) and (5.49), we obtain that

E
[
NΛ

]
≤ 1

p∗
E[NA] ≤ 1

2p∗ − 1

[
(f0 − flow)

(
2κsε

−3/2
1 + κu

)
+

⌈
logγ

(
σ

σ0

)⌉
+ 2

]
, (5.58)

where the last inequality follows from (5.57).
We are now in the position to state our final result, providing the complexity of the

stochastic method associated with the SARC-IGDH algorithm, in accordance with the
complexity bounds given by the deterministic analysis of an ARC framework with exact
[22] and inexact [41, 38, 37, 9 10] function and/or derivatives evaluations.

Theorem 53. Let Assumptions 1.2.1 and Assumption 5.1.1 hold. Assume that Assump-
tion 5.1.2 holds and that the stopping criterion (5.9) is used to perform each Step
3 of the SARC-IGDH algorithm. Then, the hitting time Nε for the stochastic process
generated by the SARC-IGDH algorithm satisfies

E[Nε] ≤
3p∗

(3p∗ − 2)(2p∗ − 1)

[
(f0 − flow)

(
2κsε

−3/2
1 + κu

)
+

⌈
logγ

(
σ

σ0

)⌉
+ 2

]
. (5.59)

Moreover, in case the stopping criterion (5.10) is used to perform Step 3, (5.59) still
holds, provided that there exists Lg > 0 such that (5.38) is satisfied for all x, y ∈ Rn.

Proof. By definition (see (5.45)), E[Nε] = E
[
NΛc

]
+ E

[
NΛ

]
. Thus, considering (5.47),

E[Nε] ≤
2

3p∗
E[Nε] + E

[
NΛ

]
,

and, hence, by (5.58),

E[Nε] ≤
3p∗

3p∗ − 2
E
[
NΛ

]
=

3p∗
(3p∗ − 2)(2p∗ − 1)

[
(f0 − flow)

(
2κsε

−3/2
1 + κu

)
+

⌈
logγ

(
σ

σ0

)⌉
+ 2

]
,

114

which concludes the proof.

5.3 Subsampling scheme for finite-sum minimisation

Similarly to Section 3.5, we now consider the solution of large-scale instances of finite-
sum minimisation problems of the form (1.108). In this context, the approximations ∇f(xk)

and ∇2f(xk) to the gradient and the Hessian used at Step 1 and Step 2 of the SARC-
IGDH algorithm, respectively, are obtained via (2.5)–(2.6) by using random and uniform
subsets selected as prescribed by (2.11)–(2.12). The aim is still to achieve the probabilistic
accuracy requirements in (2.1) (j ∈ {1, 2}), in which the absolute accuracies τ1,k and τ2,k,
used for gradient and Hessian approximations at iteration k, respectively, correspond to
the right-hand sides in (5.14) and (5.15).

We underline that assuming (2.7) in Theorem 19 is crucial to derive the lower bounds
(2.11)–(2.12). A way of enforcing (2.7) for the cases of interest (j ∈ {1, 2}) is assuming the
existence of κg > 0 and κB > 0 such that κϕ,1(x) ≤ κg and κϕ,2(x) ≤ κB , for any x ∈ Rn. We
will consider such an assumption in the remainder of this chapter.

Since the subsampling procedures used at iteration k to get Gk and Hk in (2.11)–(2.12)
are independent, it follows that when {τj,k}2j=1 are chosen as the right-hand sides in (5.14)
and (5.15), respectively, the builded model (5.6) is p∗-probabilistically sufficiently accurate
with∗ p∗ = (1−t)2. Therefore, a practical version of the SARC-IGDH algorithm is for instance
given by adding a suitable termination criterion and modifying the first three steps of the
SARC-IGDH algorithm as reported in Algorithm 13 below.

Algorithm 13 Modified Steps 0–2 of the SARC-IGDH algorithm.

Step 0: Initialisation. An initial point x0 ∈ Rn and an initial regularisation parameter σ0 > 0

are given, as well as an accuracy level ε1 ∈ (0, 1). The constants θ, α, η, γ, σmin, κ, τ0,
κτ and c are also given such that

0 < θ, κτ < 1, 0 ≤ α < 2
3 , σmin ∈ (0, σ0],

0 < η < 2−3α
2 , γ > 1, κ ∈ [0, 1), τ0 > 0, c > 0.

Compute f(x0) and set k = 0, flag = 1.

Step 1: Gradient approximation. Set i = 0 and initialise τ
(i)
1,k = τ0.

Do:

1.1 compute ∇f(xk) such that (2.5) and (2.11) are satisfied with τ1,k = τ
(i)
1,k;

1.2 if τ (i)
1,k ≤ κ(1− θ)2

(
‖∇f(xk)‖

σk

)2

, go to Step 2;

else, set τ (i+1)
1,k = κττ

(i)
1,k, increment i by one and go to Step 1.1;

Step 2: Hessian approximation (model costruction). If flag = 1, set ck = c; else, set ck =

α(1− θ)‖∇f(xk)‖.
Compute ∇2f(xk) using (2.6) and (2.12) with τ2,k = ck and form the model mk(s)

defined in (5.6).

∗Of course, different failure probabilities tj , j ∈ {1, 2}, can be considered in (2.1), resulting in replacing t by tj
in (2.11)–(2.12).

115

Concerning the gradient estimate, the scheme computes (Step 1) an approximation
∇f(xk) satisfying the accuracy criterion

‖∇f(xk)−∇f(xk)‖ ≤ κ(1− θ)2

(
‖∇f(xk)‖

σk

)2

, (5.60)

which is independent of the step computation and based on the knowable quantities κ,
θ and σk. This is done by reducing the accuracy τ (i)

1,k and repeating the inner loop at Step
1, until the fulfillment of the inequality at Step 1.2.

We underline that the condition (5.60) is guaranteed by the algorithm, since (2.11) is a
continuous and increasing function with respect to τj,k, for fixed k, t and N ; hence, there
exists a sufficiently small τ1,k such that the right-hand side term in (2.11) will reach, in the
worst-case, the full sample size N , yielding ∇f(xk) = ∇f(xk). Moreover, if the stopping
criterion ‖∇f(xk)‖ ≤ ε1 is used, the loop is ensured to terminate also whenever the pre-
dicted accuracy requirement τ (i)

1,k becomes smaller than κ(1−θ
σk

)2ε21. On the other hand,
we expect in practice to use a small number of samples in the early stage of the iterative
process, when the norm of the approximated gradient is not yet small.

To summarise, if (without loss of generality) we assume that τ1,k ≥ τ̂ at each iteration
k, we conclude that, in the worst case, Step 1 will lead to at most blog(τ̂)/ log(κττ0)c + 1

computations of ∇f(xk). The Hessian approximation ∇2f(xk) is, instead, defined at Step
2 and its computation is based on the reliable (adaptive) value of ck. We remark that at
iteration k we have that:

• ∇2f(xk) is computed only once, irrespectively of the approximate gradient compu-
tation considered at Step 1;

• a finite loop is considered at Step 1 to obtain a gradient approximation satisfying
(5.60), where the right-hand side is independent of the step length ‖sk‖, thou imply-
ing (5.20)–(5.21). Hence, the gradient approximation is fully determined at the end
of Step 1 and further recomputations due to the step calculation (see the SARC-
IGDH algorithm, Step 3) are not required.

We conclude this section by noticing that each iteration k of the SARC-IGDH algo-
rithm with the modified steps introduced in Algorithm 13 can indeed be seen as an it-
eration of the SARC-IGDH algorithm where the sequence of random models {Mk}k≥0 is
p∗-probabilistically sufficiently accurate in the sense of Definition 5.1.1, with p∗ = (1 − t)2,
and an iteration of the ARC-DH algorithm, when κ = 0 is considered in (5.14) (exact gra-
dient evaluations).

5.4 Chapter conclusion

We have proposed the stochastic iteration complexity analysis of the process generated
by an ARC algorithm for solving unconstrained, nonconvex, optimisation problems under
inexact derivatives information.

The algorithm is an extension of the ARC-DH algorithm in Chapter 3, since it employs
approximated evaluations of the gradient with the main feature of maintaining the dy-
namic rule for building Hessian approximations, introduced and numerically tested in [9].

This kind of accuracy requirement is always reliable and computable when an approx-
imation of the exact Hessian is needed by the scheme and, in contrast to other strategies
such that the one in [44], does not require the inclusion of additional inner loops to be
satisfied.

With respect to the framework in Chapter 3, where in the finite-sum setting optimal
complexity is restored with high probability, we have here provided properties of the

116

method when the adaptive accuracy requirements of the derivatives involved in the
model definition are not accomplished, with a view to search for the number of expected
steps that the process takes to reach the prescribed accuracy level.

The stochastic analysis is thus performed exploiting the theoretical framework given
in [44], showing that the expected iteration complexity bound matches the worst-case
optimal complexity of the ARC framework. The possible lack of accuracy of the model
has “just” the effect of scaling the optimal complexity we would derive from the deter-
ministic analysis of the framework (see, e.g., Theorem 23), by a factor which depends on
the probability p∗ of the model being sufficiently accurate.

117

Chapter 6

Stochastic Analysis of an Adaptive
Regularisation Methods with
Inexact Function and Derivatives
Evaluations

This chapter investigates the stochastic evaluation complexity of the adaptive regulari-
sation algorithm ARqpDA for computing approximate local minimisers of the possibly con-
strained minimisation problem (4.3), whose main characteristic is the following.

• The values of the objective function j-th derivatives∇jf are subject to random noise
and can only be computed inexactly, this is to say that only an approximation ∇jf ,
j ∈ {1, 2}, can be calculated. Inexact values of the objective function are also al-
lowed, but are assumed to follow a “dynamic accuracy” framework in which the
accuracy of these evaluations is deterministically controlled in response to the inex-
act values of the derivatives.

The analysis here presented, in which the objective function values can be computed
within a prescribed accuracy allowing randomly inexact evaluations of its derivatives,
enhances the study in [9, 10, 124] for adaptive regularisation algorithm, where it is car-
ried out under the assumption that the estimates are sufficiently accurate at every itera-
tion. Our choice of imposing the dynamic accuracy framework for the objective function
complements that of [6, 44], allowing for more inaccuracy, but in a deterministic context.
A truly stochastic approach for adaptive regularisation algorithms with random function
evaluations remains a challenging open problem, as discussed in [55, page 41], but con-
sidering dynamic accuracy on the objective function is nevertheless a realistic request in
applications such as those where the objective function value is approximated by using
smoothing operators and the derivatives are estimated by randomised finite-differences
[17, 16, 86, 93].

As in Chapter 4 (see, also, [10, 35, 34]), we propose a regularisation algorithm for the
solution of the problem, which is based on (regularised) polynomial models that can be
extended to the case of arbitrary degree (see [10]). This allows us to seek for first and
second-order critical points, but also apply for critical points of arbitrary order. In this
respect we improve upon the algorithms with stochastic models, such as [6, 10, 23, 35].

We establish, in expectation, sharp worst-case bounds on the evaluation complexity
of computing these (possibly high-order) approximate critical points, depending on the
order and on the degree of the polynomial model used. These bounds correspond in
order to the best known bounds for regularisation algorithms using exact evaluations. That

119

said, all the main results are presented, according to Chapter 4, for the case 1 ≤ q ≤ p ≤ 2

(model with up to cubic regularisation for first or second-order optimality), for a simpler
presentation and in light of a more practical application. These results are obtained by
building on the probabilistic framework of [44], and by merging approximation results in
[10] with techniques of [34], indeed proceeding as in Section 5.2.

The outline of the chapter is as follows. Section 6.1 introduces the regularisation algo-
rithm and the associated stochastic assumptions. Its evaluation complexity is then studied
in Section 6.2.

6.1 A stochastic regularisation algorithm with inexact evalu-
ations: the SARqp algorithm

We first make our framework more formal by describing our assumptions on problem (4.3).

Assumption 6.1.1. With reference to problem (1.1), given p ∈ {1, 2}, the objective function
f is assumed to be:

(i) bounded below in X , that is there exists a constant flow such that f(x) ≥ flow for all
x ∈ X ;

(ii) p-times continuously differentiable in a convex neighbourhood of X ; moreover, its j-
th order derivative is Lipschitz continuous for j ∈ {1, . . . , p} in the sense that there exist
constants Lf,j ≥ 0 such that, for all j ∈ {1, . . . , p} and all x, y in that neighbourhood,

‖∇jxf(x)−∇jxf(y)‖ ≤ Lf,j‖x− y‖. (6.1)

Note that, if X is convex, then Assumption 6.1.1(ii) can be restricted to hold in an open
neighbourhood of X .

Under Assumption 6.1.1(ii) , the p-th order Taylor’s series T fp (x, s) of f taken at a point x
and evaluated for a step s is well-defined and given by (4.5), so we still refer to the Taylor’s
increment ∆T fp (x, s) defined by (4.6).

We will also rely on Lemma 28 (with L = Lf,p) from [35, Lemma 2.1], which is an impor-
tant consequence of Assumption 6.1.1(ii).

In this context, given 1 ≤ q ≤ p, the “accuracy requests” ε = (ε1, . . . , εq) and “optimality
radiuses” δ = (δ1, . . . , δq), with

εj ∈ (0, 1] and δj ∈ (0, 1] for j ∈ {1, . . . , q},

we say that x ∈ X is a strong q-th order (ε, δ)-approximate minimiser for problem (4.3) if

φ
δj
f,j(x) ≤ εj

δjj
j!
, for j ∈ {1, . . . , q}, (6.2)

where φ
δj
f,j(x) is defined as in (4.19). It means that no significant decrease of the Taylor’s

expansions of degree 1 to q can be obtained in a ball of optimality radius δj , within the
constraint. We immediately notice that (6.2) is a slightly different requirement compared
to the criterion (4.13) adopted in Chapter 4, where the condition φδf,q(x) ≤ εχχq(δ), with
εχ a scalar in (0, 1), replaces (6.2).

The optimality measure φδf,j(x), δ > 0, is a nonnegative (continuous) function that can
be used as necessary condition to measure closeness to stationary points of order q ∈
{1, 2} (see, e.g., [34]).

120

In this respect we observe that:

• for q = 1 the condition (6.2) is equivalent to (4.13), since it reduces, by (4.14), to

φδ1f,1(x) ≤ ε1δ1 = ε1χ1(δ1);

• for q = 2, ‖∇f(x)‖ = 0 and λmin(∇2f(x)) ≥ ε2 further imply φδ2f,2(x) ≤ ε2δ2
2/2.

Moreover, in analogy with (4.10), the two points below show that (6.2) reduces to the
known first and second-order optimality conditions for unconstrained minimisation when
ε1 = ε2 = 0 and X = Rn are considered.

• Assuming that q = 1, we have from (4.10) and (6.2) with j = 1 that

φδ1f,1(x) = ‖∇xf(x)‖δ1 = 0,

for any δ1 ∈ (0, 1] (as in (4.11)).

• If q = 2, (4.10) and (6.2) further imply that

φδ2f,2(x) = globmax
‖d‖≤δ2

(
−1

2
d>∇2f(x)d

)
=

1

2
max

[
0,−λmin(∇2f(x))

]
δ2
2 ,

which is the same as requiring the semi-positive definitiveness of ∇2f(x).

The requirement (6.2) has firstly been introduced in [34] and it is extended here to the
constrained case. When thinking about generalisations in which q > 2, it is an extension
of the notion of (weak) approximate minimisers discussed in [10, 35] and given in (4.13) (if
we allow (4.13) to hold also for q > 2). That this is weaker than (6.2) for the case q ≥ 2 is
seen if one considers that χq(δ) ∈ [δ, 2δ) for q ≥ 1 and δ ∈ [0, 1] (see [8, bound (2.8)]). As a
consequence, χq(δ) is typically significantly larger than δjj/j!, for j ∈ {1, . . . , q} and q > 1.

We are now in position to describe our stochastic adaptive regularisation SARqp algo-
rithm, defined for 1 ≤ q ≤ p ≤ 2, whose purpose is to compute a (strong) q-th order
(ε, δ)-approximate minimiser for problem (4.3).

The algorithm is basically the stochastic counterpart of the ARqpDA algorithm. Given
the vector of accuracies ε and 1 ≤ q ≤ p ≤ 2, we briefly summarise here the little differ-
ences with the ARqpDA algorithm.

• At iteration k, the local model takes the form:

mk(s) = −∆T
f

p(xk, s) +
σk

(p+ 1)!
‖s‖p+1 def

= −
p∑
`=1

1

`!
∇`f(x)[s]` +

σk
(p+ 1)!

‖s‖p+1, (6.3)

still using inexact derivatives ∇`f(x) in place of the exact ones ∇`f(x), ` ∈ {1, ..., p}.
At variance with (4.1), the above definition of mk no longer includes f(xk).

• A step sk would next be computed by approximately minimising mk(s), finding a
feasible step sk in the sense that the trial point xk + sk ∈ X satifies

mk(sk) ≤ mk(0) = 0 (6.4)

and

φ
δk,j
mk,j

(sk) = globmax
xk+sk+d∈X ,‖d‖≤δk,j

∆T
mk
j (sk, d) ≤ θεj

δjk,j
j!
, (6.5)

for j ∈ {1, . . . , q}, 1 ≤ q ≤ p ≤ 2, some θ ∈ (0, 1
2) and δk ∈ (0, 1]q. We recall that,

for j ∈ {1, 2}, Tmkj (sk, d) and ∆T
mk
j (sk, d) take the form (4.30)–(4.31) in which the

121

model definition (6.3) is considered and, as usual, the corresponding quantities using
exact evaluations ∇jf(xk), j ∈ {0, 1, 2}, are denoted by Tmkq (sk, d) and ∆Tmkq (sk, d),
q ∈ {1, 2}. We thus notice that (6.5) replaces the right-hand side criterion (4.24)
considered in the ARqpDA algorithm.

• The estimates f(xk), f(xk + sk) and ∆T
f

p(xk, sk) are then used to compute the ratio
ρk, the value of which decides of the acceptance of the trial point xk + sk, and are
required to satisfy the accuracy conditions (4.25)–(4.26), with

0 < ω < min

[
1− η

3
,
η

2

]
, η ∈ (0, 1). (6.6)

• The updating rule for the regulariser σk follows the scheme at Step 4 of the ARqpDA
algorithm, with the main difference of distinguishing just between unsuccessful and
very successful iterations, at which σk is respectively increased or decreased by the
same factor.

The SARqp algorithm is detailed below as Algorithm 14.

Algorithm 14 The SARqp Algorithm, 1 ≤ q ≤ p ≤ 2.

Step 0: Initialisation. An initial point x0 ∈ X and an initial regularisation parameter σ0 > 0

are given, as well as a vector of accuracies ε ∈ (0, 1]q. The constants θ ∈ (0, 1
2),

η ∈ (0, 1), γ > 1, α ∈ (0, 1), 0 < ω < min
[

1−η
3 , η2

]
and σmin ∈ (0, σ0) are also given.

Set k = 0.

Step 1: Model construction. Compute approximate derivatives {∇`xf(xk)}`∈{1,...,p} and
form the model mk(s) defined in (6.3).

Step 2: Step calculation. Compute a step sk satisfying xk + sk ∈ X , (6.4), (6.5) for j ∈
{1, . . . , q} and some δk ∈ (0, 1]q. If ∆T

f

p(xk, sk) = 0, go to Step 4.

Step 3: Function estimates computation. Compute the approximations f(xk) and f(xk +

sk) of f(xk) and f(xk + sk), respectively, such that (4.25)–(4.26) are satisfied.

Step 4: Acceptance test. Set

ρk =


f(xk)− f(xk + sk)

∆T
f

p(xk, sk)
, if ∆T

f

p(xk, sk) > 0,

−∞, otherwise.
(6.7)

If ρk ≥ η (successful iteration), then define xk+1 = xk + sk; otherwise (unsuccessful
iteration), define xk+1 = xk.

Step 5: Regularisation parameter update. Set

σk+1 =

{
max

[
σmin,

1
γ σk

]
, if ρk ≥ η,

γσk, if ρk < η.
(6.8)

Increment k by one and go to Step 1.

We first verify that the algorithm is well-defined.

122

Lemma 54. A step sk satisfying (6.4) and (6.5) for j ∈ {1, . . . , q} and some δk ∈ (0, 1]q

always exists.

Proof. The proof is a direct extension of that of [34, Lemma 4.4] using inexact models. For
completeness, it is given in the Appendix (Section A.2).

Comments on SARqp

1. In what follows we assume that, once the model mk(s) in (6.3) is determined, then
the computation of the pair (sk, δk) (and thus of the trial point xk+sk) is deterministic.
Moreover, we assume that the mechanism which ensures (4.25)-(4.26) at Step 3 of
the algorithm is also deterministic, so that ρk and the fact that iteration k is successful
are deterministic outcomes of the realisation of the model.

2. Observe that, because we have chosen mk to be a model of the local variation in
f rather than a model of f itself, f(xk) is not needed (and not computed) at Steps
1 and 2 of the algorithm. This distinguishes the SARqp algorithm from the approaches
of [23, 49].

As in the previous chapter, all random quantities are denoted by capital letters, while
the use of small letters is reserved for their realisation. In particular, let us denote a random
model at iteration k as Mk, while we use the notation mk for its realisations. Given xk, the
source of randomness in mk comes from the random approximation of the derivatives.
Similarly, the iterates Xk, as well as the regularisation parameters Σk and the steps Sk
are random variables and xk, σk, sk denote their realisations. Moreover, δk denotes a
realisation of the random vector ∆k arising in (6.5). Hence, the SARqp Algorithm generates
a random process

{Xk, Sk,Mk,Σk,∆k} (6.9)

(X0 = x0 and Σ0 = σ0 are deterministic).

6.1.1 The stochastic setting

In view of our last comment, we now make our probabilistic assumptions on the SARqp

algorithm explicit.
As in Subsection 5.1.1, our assumption on the past is formalised, for k ≥ 0, considering

AMk−1 the σ̂-algebra induced by the random variables M0, M1,..., Mk−1, with AM−1 = σ̂(x0).
In order to formalise our probabilistic assumptions we need few more definitions. We

define, at iteration k of an arbitrary realisation,

dk,j = arg globmax
xk+sk+d∈X ,‖d‖≤δk,j

∆Tmkj (sk, d), (6.10)

the argument of the maximum in the definition of φδk,jmk,j
(xk), and

dk,j = arg globmax
xk+sk+d∈X ,‖d‖≤δk,j

∆T
mk
j (sk, d), (6.11)

that in the definition of φ
δk,j
mk,j

(sk).
We also define, at the end of Step 2 of iteration k, the events

Mk =

 M
(1)
k ∩

⋂q
j=1

(
M(2)

k,j ∩M
(3)
k,j

)
,

if q = 1 and X is convex, or
if q = 2 and X = Rn,

M(1)
k ∩M

(4)
k ∩

⋂q
j=1

(
M(2)

k,j ∩M
(3)
k,j

)
, otherwise,

(6.12)

123

with
M(1)

k =
{
|∆T fp(Xk, Sk)−∆T fp (Xk, Sk)| ≤ ω∆T

f

p(Xk, Sk)
}
,

M(2)
k,j =

{
|∆Tmkj (Sk, Dk,j)−∆Tmkj (Sk, Dk,j)| ≤ ω∆T

mk
j (Sk, Dk,j),

M(3)
k,j =

{
|∆Tmkj (Sk, Dk,j)−∆Tmkj (Sk, Dk,j)| ≤ ω∆T

mk
j (Sk, Dk,j),

M(4)
k =

{
max`∈{2,...,p} ‖∇`xf(Xk)‖ ≤ Θ},

for some Θ > 0. Note that Θ is independent of k and does not need to be known explic-
itly. Moreover, M(4)

k is not involved in the definition of Mk if q = 1 and X is convex, nor if
q = 2 and the problem is unconstrained. In what follows, we will say that iteration k is
accurate, if 1Mk

= 1, and iteration k is inaccurate, if 1Mk
= 0.

The conditions defining Mk may seem abstract at a first sight, but we now motivate
them by looking at what kind of accuracy on each derivative ∇`xf(xk) ensures that they
hold.

Lemma 55. Consider 1 ≤ q ≤ p ≤ 2. For each k ≥ 0, we have the following.

1. Let

τk
def
= max

[
‖Sk‖, max

j∈{1,...,q}
[‖Dk,j‖, ‖Dk,j‖]

]
(6.13)

and

∆T k,min
def
= min

[
∆T

f

p(Xk, Sk), min
j∈{1,...,q}

[
∆T

mk
j (Sk, Dk,j),∆T

mk
j (Sk, Dk,j)

]]
. (6.14)

ThenM(1)
k , {M(2)

k,j}
q
j=1 and {M(3)

k,j}
q
j=1 occur if

‖∇`xf(Xk)−∇`xf(Xk)‖ ≤ ω∆T k,min

6τ `k
, for ` ∈ {1, . . . , p}. (6.15)

2. Suppose that Assumption 6.1.1(ii) holds. ThenM(4)
k occurs if

‖∇`xf(Xk)−∇`xf(Xk)‖ ≤ Θ0, for ` ∈ {2, . . . , p} (6.16)

and some constant Θ0 ≥ 0 independent of k and `.

Proof. Consider the first assertion. ThatM(1)
k occurs follows from the inequalities

|∆T fp(Xk, Sk)−∆T fp (Xk, Sk)| ≤
p∑
`=1

‖Sk‖`

`!
‖∇`xf(Xk)−∇`xf(Xk)‖

≤
p∑
`=1

τ `k
`!
‖∇`xf(Xk)−∇`xf(Xk)‖

≤
p∑
`=1

ω

6`!
∆T k,min

≤
p∑
`=1

ω

6`!
∆T

f

p(Xk, Sk)

≤ 1
6χp(1)ω∆T

f

p(Xk, Sk)

< ω∆T
f

p(Xk, Sk),

where we have used (6.13), (6.15), (6.14) and the fact that χp(1) ≤ 2. The verification that

124

{M(2)
k,j}

q
j=1 and {M(3)

k,j}
q
j=1 also occur uses a very similar argument, with one additional

ingredient: employing the triangle inequality and recalling (6.3), we have that, for all
` ∈ {1, . . . , p},

∥∥∥∇`dT mk
j (Sk, 0)−∇`dT

mk
j (Sk, 0)

∥∥∥ ≤ p∑
t=`

∥∥∥∇txf(Xk)−∇txf(Xk)
∥∥∥ ‖Sk‖t−`

(t− `)!
.

Considering now D = Dk,j or D = Dk,j and using the above inequality, (6.13), (6.15), (6.14)
and the facts that χj(1) ≤ 2 and χp−`(1) ≤ 2, we have that

|∆Tmkj (Sk, D)−∆Tmkj (Sk, D)| ≤
j∑
`=1

‖D‖`

`!
‖∇`dT

mk

j
(Sk, 0)−∇`dT

mk
j (Sk, 0)‖

≤
j∑
`=1

‖D‖`

`!

p∑
t=`

∥∥∥∇txf(Xk)−∇txf(Xk)
∥∥∥ ‖Sk‖t−`

(t− `)!

≤
j∑
`=1

1

`!

p∑
t=`

∥∥∥∇txf(Xk)−∇txf(Xk)
∥∥∥ τ tk

(t− `)!

≤
j∑
`=1

1

`!

p∑
t=`

1

(t− `)!
ω

∆T k,min

6

≤ 1
6ω∆T k,min

j∑
`=1

1

`!
(1 + χp−`(1))

≤ ω∆Tmk,j(Sk, D),

as desired. To prove the second assertion, observe that Assumption 6.1.1(ii) implies that
‖∇`f(Xk)‖ ≤ Lf,`−1, for j ∈ {2, . . . , p}, and thus, using (6.16), that

‖∇`xf(Xk)‖ ≤ ‖∇`xf(Xk)‖+ ‖∇`xf(Xk)−∇`xf(Xk)‖

≤ Lf,`−1 + Θ0,

for ` ∈ {2, . . . , p}.
This gives the desired conclusion with the choice Θ = max`∈{2,...,p} Lf,`−1 + Θ0.

Of course, the conditions stated in Lemma 55 are sufficient but by no means neces-
sary to ensure Mk. In particular, they make no attempt to exploit a possible favourable
balance between the errors made on derivatives at different degrees, nor do they take
into account that M(1)

k , M(2)
k,j and M(3)

k,j only specify conditions on model accuracy in a
finite, dimension-independent, subset of directions. Despite these limitations, (6.15) and
(6.16) allow the crucial conclusion thatMk does occur if the derivatives ∇jxf(Xk) are suf-
ficiently accurate compared to the model decrease. Moreover, since one would expect
that, as an approximate minimiser is approached, ‖Sk‖, ‖Dk,j‖ and ‖Dk,j‖ (and thus τk)
become small, they also show the accuracy requirement becomes looser for derivatives
of higher degree.

We now formalise our assumption on the stochastic process generated by the SARqp

algorithm.

Assumption 6.1.2. For all k ≥ 0, the eventMk satisfies the condition

pMk
= P (Mk|AMk−1) = E[1Mk

|AMk−1] ≥ p∗ (6.17)

for some p∗ ∈ (1
2 , 1] independent of k.

We observe that, in contrast with [23, 49], the definition of Mk does not require the

125

model to be “linearly/quadratically” accurate everywhere in a ball around xk of radius at
least ‖sk‖, but merely that its variation is accurate enough along sk (as specified inM(1)

k)
and along dk,j and dk,j (as specified inM(2)

k,j andM(3)
k,j)∗ for all j ∈ {1, . . . , q}. The need to

considerM(2)
k,j andM(3)

k,j , for j ∈ {1, . . . , q}, in the definition ofMk results from our insistence
that q-th order approximate optimality must include j-th order approximate optimality
for all such j. The Assumption 6.1.2 also parallels assumptions in [23, 44, 49, 99], where
the accuracy in function values is measured using the guaranteed model decrease or
proxies given by the (p + 1)-st power of the trust-region radius or the step length. Finally,
the conditions imposed byM(2)

k,j andM(3)
k,j are only used whenever considering the value

of φ
δk,j
mk,j

(sk), that is in Lemma 56, itself only called upon in Lemma 58 in the case where
‖Sk‖ ≤ 1. As a consequence, they are irrelevant when long steps are taken (‖Sk‖ > 1).

6.2 Worst-case evaluation complexity

Having set the stage and stated our assumptions, we may now consider the worst-case
evaluation complexity of the SARqp algorithm. Our aim is to derive a bound on the ex-
pected number of iterations E(Nε) which is needed, in the worst-case, to reach an (ε, δ)-
approximate q-th-order necessary minimiser.

Specifically, given q ∈ {1, 2}, Nε is the number of iterations required until (6.2) holds for
the first time, i.e.,

Nε = inf

{
k ≥ 0 | φ∆k−1,j

f,j (Xk) ≤ εj
∆j
k−1,j

j!
for j ∈ {1, . . . , q}

}
. (6.18)

Note that φ∆k−1,j

f,j (Xk), the j-th order optimality measure at iteration k, uses the opti-
mality radius ∆k−1,j resulting from the step computation at iteration k − 1, as is the case
in [10, 35]. Now recall that the trial point Xk−1 + Sk−1 and the vector of radii ∆k−1 are de-
terministic once the inexact model at iteration k − 1 is known. Therefore, these variables
are measurable for AMk−1 and because of our deterministic assumptions on the accuracy
of f , the event {Xk = Xk−1 + Sk−1} (which occur when iteration k − 1 is successful) is also
measurable for AMk−1. As a consequence and since φ

∆k−1,j

f,j (Xk) uses exact derivatives
of f , the event {Nε = k} is measurable with respect to AMk−1. The definition (6.18) can
thus be viewed as that of a family of ε-dependent hitting times for the stochastic process
generated by the SARqp algorithm (see, e.g., [44, Section 2.3]).

For completeness, we report the standard notion of hitting time for stochastic pro-
cesses as stated in [44].

Definition 6.2.1 (Hitting time). For a give discrete time stochastic process Zt, the hitting
time for an event {Zt ∈ S} is a random variable, defined as TS = min{t ≥ 0 | Zt ∈ S},
corresponding to the first time t at which the event {Zt ∈ S} occurs. In our context S will
be a set of real numbers smaller than some given value.

6.2.1 General properties of the algorithm

We first consider properties of “accurate” iterations, in the sense that Mk occurs, and
start with the relation between φ

δk,j
mk,j

(sk) and its approximation.
The next lemma is inspired by Lemma 31, but significantly differs in that it now requires

considering both directions dk,j and dk,j .

∗A slightly stronger assumption would be to require a sufficient relative accuracy along sk and in a (typically
small) neighbourhood of sk.

126

Lemma 56. Consider any realisation of the SARqp algorithm and assume thatMk oc-
curs. Then, for j ∈ {1, . . . , q},(

1− ω
)
φ
δk,j
mk,j

(sk) ≤ φδk,jmk,j
(sk) ≤

(
1 + ω

)
φ
δk,j
mk,j

(sk). (6.19)

Proof. Let j ∈ {1, . . . , q}. Consider dk,j defined in (6.10). From (6.5), we have that

∆Tmkj (sk, dk,j) ≤ ∆T
mk
j (sk, dk,j) + |∆Tmkj (sk, dk,j)−∆Tmk,j(sk, dk,j)|

≤
(
1 + ω

)
∆Tmk,j(sk, dk,j)

≤
(
1 + ω

)
globmax

‖d‖≤δk,j ,xk+sk+d∈X
∆Tmk,j(sk, d)

=
(
1 + ω

)
∆Tmk,j(sk, dk,j),

where we used the fact thatMk occurs to derive the second inequality and considered
dk,j defined in (6.11). Therefore,

φ
δk,j
mk,j

(sk) = ∆Tmkj (sk, dk,j) ≤
(
1 + ω

)
φ
δk,j
mk,j

(sk).

This proves the rightmost inequality of (6.19). Similarly, using our assumption that Mk oc-
curs, we obtain that

∆Tmkj (sk, dk,j) ≥ ∆Tmk,j(sk, dk,j)− |∆T
mk
j (sk, dk,j)−∆Tmk,j(sk, dk,j)|

≥
(
1− ω

)
∆Tmk,j(sk, dk,j)

and, hence, from (4.10) and (6.5), that(
1− ω

)
φ
δk,j
mk,j

(sk) ≤ globmax
‖d‖≤δk,j ,xk+sk+d∈X

∆Tmkj (sk, d) = φ
δk,j
mk,j

(sk),

which concludes the proof of (6.19).

The next step is to adapt an important property of ∆k,j in the exact case to our inex-
act framework.

Lemma 57. Suppose that Assumption 6.1.1(ii) holds. Then, for any j ∈ {1, . . . , q}, 1 ≤
q ≤ 2:

1. if j = 1 and X is convex or if j = 2 and X = Rn, ∆k,j can always be chosen equal
to one;

2. in the other cases, and assuming thatMk occurs, then, either ‖sk‖ > 1 or ∆k,j ≤
1 can be chosen such that

∆k,j ≥ κδ(σk)εj , (6.20)

where κδ(σ) ∈ (0, 1) is independent of ε and decreasing with σ.

Proof. The proof broadly follows the developments of [34, Lemmas 4.3 and 4.4], except
that it now uses the model involving approximate derivatives and that Lf , the upper
bound of the derivatives of f at xk derived from Assumption 6.1.1(ii), is now replaced by
Θ, as guaranteed byM(4)

k . The details are provided in the Appendix (Section A.2).

127

In what follows, we will assume that, whenever q > 2 or X is nonconvex or q = 2 and
X ⊆ Rn, the SARqp algorithm computes a pair (sk, δk) such that, for each j ∈ {1, . . . , q}, δk,j
is always within a fraction of its maximal value, thereby ensuring (6.20).

We now prove a crucial inequality relating the step length to the accuracy require-
ments.

Lemma 58. Consider any realisation of the SARqp algorithm. Assume thatMk occurs,
that iteration k is successful and that, for some j ∈ {1, . . . , q}, (6.2) fails for (xk+1, δk,j).
Then, either ‖sk‖ > 1 or

(1− 2θ)εj
δjk,j
j!
≤ Lf,p + σk

(p− q + 1)!

j∑
`=1

δ`k,j
`!
‖sk‖p−`+1. (6.21)

Proof. See [34, Lemma 5.3] for the composite unconstrained Lipschitz continuous case.
Suppose that ‖sk‖ ≤ 1. Since (6.2) fails at (xk+1, δk,j), we must have that

φ
δk,j
f,j (xk+1) > εj

δjk,j
j!

> 0, (6.22)

for some j ∈ {1, . . . , q}. Define d to be the argument of the global minimum in the definition
of φδk,jf,j (xk+1). Hence,

0 < ‖d‖ ≤ δk,j (6.23)

and xk + d ∈ X . Using (6.22), (4.10) and the triangle inequality, we thus obtain that

φ
δk,j
f,j (xk+1) = ∆T fj (xk+1, d) ≤

∣∣∣∆T fj (xk+1, d)−∆Tmkj (sk, d)
∣∣∣+ ∆Tmkj (sk, d). (6.24)

Recalling from [35, Lemma 2.4]) that

‖∇`s‖sk‖p+1‖ =
(p+ 1)!

(p− `+ 1)!
‖sk‖p−`+1,

we may now use the fact that xk+1 = xk + sk, since the iteration k is successful, (4.9) (with
L = Lf,p in Lemma 28), the definition of Tmkj (sk, d) (see the lines below (4.30)–(4.31)), (6.23)
and the triangle inequality to obtain that

∣∣∣∆T fj (xk+1, d)−∆Tmkj (sk, d)
∣∣∣ ≤ j∑

`=1

δ`k,j
`!
‖∇`xf(xk+1)−∇`sT fp (xk, sk)‖

+ σk
(p+ 1)!

j∑
`=1

δ`k,j
`!
‖∇`s‖sk‖p+1‖

≤ Lf,p + σk
(p− q + 1)!

j∑
`=1

δ`k,j
`!
‖sk‖p−`+1.

(6.25)

Moreover, using (6.5), (6.19) and the fact that ω < 1 (see (6.6)), we deduce that

∆Tmkj (sk, d) ≤ φδk,jmk,j
(sk) ≤

(
1 + ω

)
φ
δk,j
mk,j

(sk) ≤ 2θεj
δjk,j
j!
. (6.26)

Substituting (6.25) and (6.26) into (6.24) and using (6.23) and (6.22), we obtain (6.21).

128

Lemma 59. Suppose that Assumption 6.1.1(ii) holds and consider any realisation of
the SARqp algorithm. Suppose also that Mk occurs, that iteration k is successful and
that, for some j ∈ {1, . . . , q}, (6.2) fails for (xk+1, δk,j). Then,

‖sk‖p+1 ≥ ψ(σk)επj , (6.27)

where

π =


p+ 1

p− q + 1 , if q = 1 and X is convex or if q = 2 and X = Rn,

q(p+ 1)
p , otherwise,

(6.28)

and

ψ(σ) =


min

[
1,

(
2(1− 2θ)(p− q + 1)!

3q!(Lf,p + σ)

)π]
,

if q = 1 and X is convex, or
if q = 2 and X = Rn,

min

[
1,

(
2(1− 2θ)(p− q + 1)!κδ(σ)q−1

3q!(Lf,p + σ)

)π]
, otherwise.

(6.29)

Proof. See [34, Lemma 5.4] for the unconstrained case. If ‖sk‖ > 1, the conclusion im-
mediately follows. Suppose therefore that ‖sk‖ ≤ 1 and consider j such that (6.21) holds.
Recalling the definition of χj in (4.14), (6.21) can be rewritten as

αk εj δ
j
k,j ≤ ‖sk‖

p+1χj

(
δk,j
‖sk‖

)
, (6.30)

where we have set

αk =
(1− 2θ)(p− q + 1)!

q!(Lf,p + σk)
.

In particular, from (4.15) we have that, when ‖sk‖ ≤ δk,j ,

αk εj ≤
3

2
‖sk‖p+1

(
1

‖sk‖

)j
=

3

2
‖sk‖p−j+1. (6.31)

Suppose first that q = 1 and X is convex or q = 2 and X = Rn. Then, from our assumptions
and Lemma 57, δk,j = 1 and ‖sk‖ ≤ 1 = δk,j . Thus (6.31) yields the first case of (6.28)–(6.29).
Suppose now that q > 2 or that X is not convex or that q = 2 and X ⊆ Rn. Then, our
assumptions imply that (6.20) holds. If ‖sk‖ ≤ δk,j , we may again deduce from (6.31) that
the first case of (6.28)–(6.29) holds, which implies, because κδ(σ) < 1 and 1/(p−j+1) ≤ j/p,
that the second case also holds. Consider therefore the case where ‖sk‖ > δk,j . Then,
(6.30) and (4.16) give that

αk εj δ
j
k,j ≤

3

2
‖sk‖p+1

(
δk,j
‖sk‖

)
,

which, with (6.20), implies the second case of (6.28)–(6.29), as requested.

Note that ψ(σ) is decreasing as a function of σ in both cases of (6.29). We now investi-
gate the decrease of the exact objective function values at successful iterations.

129

Lemma 60. Suppose that Assumption 6.1.1(ii) holds and consider any realisation of
the SARqp algorithm. Then,

∆T
f

p(xk, sk) ≥ σk
(p+ 1)!

‖sk‖p+1 ≥ σmin

(p+ 1)!
‖sk‖p+1 ≥ 0. (6.32)

Moreover, if iteration k is successful,

f(xk)− f(xk+1) ≥ (η − 2ω)σmin

(p+ 1)!
‖sk‖p+1> 0. (6.33)

Proof. The inequality (6.32) immediately follows from (6.3), (6.4) and (6.8). Now the fact
that iteration k is successful, together with (6.6) and (4.25)–(4.26), imply that

f(xk)− f(xk+1) ≥ f(xk)− f(xk+1)− 2ω∆T
f

p(xk, sk)

≥ η∆T
f

p(xk, sk)−2ω∆T
f

p(xk, sk),

yielding (6.33) by virtue of (6.32) and (6.6).

We finally conclude our analysis of “accurate” iterations by proving a standard achieve-
ment in the analysis of adaptive regularisation methods. A similar version of this result was
presented in [10, Lemma 4.2] for the case where both function values and models are
sufficiently accurate.

Lemma 61. Suppose that Assumption 6.1.1(ii) holds and that β > 1 is given. For any
realisation of the SARqp algorithm, if iteration k is such thatMk occurs and

σk ≥ σ
def
= max

[
βσ0,

Lf,p
1− η − 3ω

]
, (6.34)

then iteration k is successful.

Proof. The proof parallels the one of Lemma 36. Specifically, it follows from (4.64) with
L = Lf,p and η2 = η, assuming (6.34).

6.2.2 Bounding the expected number of steps with Σk ≥ σ

We now return to the general stochastic process generated by the SARqpalgorithm, aiming
at bounding from above the expected number of steps in the process generated by the
algorithm with Σk ≥ σ.

To this purpose, for all 0 ≤ k ≤ `, given ` ∈ {0, . . . , Nε − 1}, we define the events Λk as in
(5.44), Sk as in (5.19) and we again make use of NΛ and NΛc in (5.45), being the number
of steps in the stochastic process induced by the SARqp algorithm with Σk < σ and Σk ≥ σ,
before Nε in (6.18) is met, respectively.

In what follows we suppose that Assumption 6.1.1 and Assumption 6.1.2 hold.
In this case, a bound on the number of successful iterations with Σk ≥ σ in terms of

the overall number of iterations l + 1 can be obtained considering [44, Lemma 2.2]. In
fact, by the definitions of Λk and Sk we know that when 1Λck

1Sk = 1, then we have a
successful iteration and Σk ≥ σ. In this case, Σk+1 = max

[
σmin, γ

−1Σk
]
. It follows that,

among all iterations, at most half can be successful and have Σk ≥ σ, because for each
such iteration, when Σk gets reduces by a factor of γ−1 , there has to be at least one
iteration when Σk is increased by a factor γ, being Σ0 < σ (recall (6.34) and that Σ0 = σ0).

130

This result is summarised by the lemma below, which is basically [44, Lemma 2.2] written
for the mechanism of the SARqp algorithm.

Lemma 62. Given l ∈ {0, ..., Nε − 1}, for all realisations of the SARqp algorithm,

l∑
k=0

1Λck
1Sk ≤

l + 1

2
. (6.35)

We may now proceed as in Subsection 5.2.2, using [44, Lemma 2.2], to derive an upper
bound on E

[
NΛc

]
. In particular, the argument unfolds as follows.

• As in [44], we note that both σ̂(1Λk) and σ̂(1Λck
) belong to AMk−1, since the random

variable Λk is fully determined by the first k− 1 iterations of the SARqp algorithm. Then,
setting ` = Nε − 1, we can rely on Lemma 48 (with Wk = 1Λck

) and (6.17) to deduce
that

E

[
Nε−1∑
k=0

1Λck
1Mk

]
≥ E

[
Nε−1∑
k=0

pMk
1Λck

]
≥ p∗ E

[
Nε−1∑
k=0

1Λck

]
. (6.36)

• As a consequence, given that Lemma 61 ensures that each iteration k where Mk

occurs and σk ≥ σ is successful, we have that

Nε−1∑
k=0

1Λck
1Mk

≤
Nε−1∑
k=0

1Λck
1Sk ≤

Nε
2
,

in which the last inequality follows from (6.35), with ` = Nε − 1. Taking expectation in
the above inequality, using (6.36) and recalling the rightmost definition in (5.45), we
obtain that, for any realisation,

E[NΛc] ≤
1

2p∗
E[Nε], (6.37)

as in [44, Lemma 2.3].

The remaining upper bound on E[NΛ] will be the focus of the next section.

6.2.3 Bounding the expected number of steps with Σk < σ

With reference to the SARqp algorithm, the analysis of this section again considers the set
of events in Definition 5.2.1 and parallels the one of Subsection 5.2.3.

The following crucial lemma is proved according to the properties of the SARqp algo-
rithm, in order to derive an upper bound for the expectation E[NAS] of the number of
accurate successful iterations with Σk < σ.

Lemma 63. Let Assumption 6.1.1 hold. For all realisations of the SARqp algorithm we
have that

E[NAS] ≤ (f0 − flow)(p+ 1)!

(η − 2ω)σminψ(σ)

(
min

j∈{1,...,q}
εj

)−π
+ 1, (6.38)

where π, ψ(σ) and σ are defined in (6.28), (6.29) and (6.34), respectively.

Proof. For all realisations of the SARqp algorithm we have that:

• if iteration k is successful, then (6.33) holds;

131

• if iteration k is successful and accurate (i.e., 1Sk1Mk
= 1) and (6.2) fails for (xk+1, δk,j),

then (6.27) holds;

• if iteration k is unsuccessful, the mechanism of the SARqp algorithm guarantees that
xk = xk+1 and, hence, that f(xk+1) = f(xk).

Therefore, for any ` ∈ {0, ..., Nε − 1},

f0 − flow ≥ f0 − f(X`+1) =
∑̀
k=0

1Sk(f(Xk)− f(Xk+1)) ≥
∑̀
k=0

1Sk
(η − 2ω)σmin

(p+ 1)!
‖Sk‖p+1

≥
`−1∑
k=0

1Sk1Mk

(η − 2ω)σmin

(p+ 1)!
‖Sk‖p+1 (6.39)

≥
`−1∑
k=0

1Sk1Mk

(η − 2ω)σmin

(p+ 1)!
ψ(Σk)

(
min

j∈{1,...,q}
εj

)π

≥
`−1∑
k=0

1Sk1Mk
1Λk

(η − 2ω)σmin

(p+ 1)!
ψ(Σk)

(
min

j∈{1,...,q}
εj

)π

≥ (η − 2ω)σmin

(p+ 1)!
ψ(σ)

(
min

j∈{1,...,q}
εj

)π (`−1∑
k=0

1Sk1Mk
1Λk

)
, (6.40)

having set f0
def
= f(X0) and where the last inequality is due to fact that ψ(σ) is a decreasing

function. We now notice that, by Definition 5.2.1,

NAS − 1 ≤
Nε−2∑
k=0

1Λk
1Mk

1Sk .

Hence, letting ` = Nε − 1 and taking expectations in (6.40), we conclude that

f0 − flow ≥ (E[NAS]− 1)
(η − 2ω)σmin

(p+ 1)!
ψ(σ)

(
min

j∈{1,...,q}
εj

)π
,

which is equivalent to (6.38).

In light of this result, considering that the thesis of Lemma 52 and of Lemma 50 still
hold for the SARqp algorithm, we can proceed as in Subsection 5.2.3 obtaining the bounds
below.

• (5.48): E[NΛ] ≤ E[NI] + E[NA];

• (5.49): E[NI] ≤ 1− p∗
p∗ E[NA];

• (5.50): E[NA] ≤ E[NAS] + E[NU];

• (5.54): E[NU] ≤ E[NAS] + E[NIS] +
⌈
logγ

(
σ
σ0

)⌉
;

• (5.56): E[NIS] ≤ 1− p∗
p∗ (E[NAS] + E[NU]), giving (5.55): E[NIS] ≤ 1− p∗

2p∗ − 1

(
2E[NAS] +

⌈
logγ

(
σ
σ0

)⌉)
from (5.54);

• the bound:

E[NA] ≤ p∗
2p∗ − 1

[
2(f0 − flow)(p+ 1)!

(η − 2ω)σminψ(σ)

(
min

j∈{1,...,q}
εj

)−π
+

⌈
logγ

(
σ

σ0

)⌉
+ 2

]
, (6.41)

obtained starting from (5.50) and applying (5.54), (5.55), (6.38);

132

• the bound:

E[NΛ] ≤ 1

2p∗ − 1

[
2(f0 − flow)(p+ 1)!

(η − 2ω)σminψ(σ)

(
min

j∈{1,...,q}
εj

)−π
+

⌈
logγ

(
σ

σ0

)⌉
+ 2

]
, (6.42)

given by (5.48), (5.49) and (6.41).

The final evaluation complexity result is then a direct consequence of the results above.

Theorem 64. Suppose that Assumption 6.1.1 and Assumption 6.1.2 hold. Then, the
following conclusions also hold.

1. If q = 1 and X is convex or if q = 2 and X = Rn, then

E[Nε] ≤ κ(p∗)

(
2(f0 − flow)(p+ 1)!

(η − 2ω)σminψ(σs)

(
min

j∈{1,...,q}
εj

)− p+1
p−q+1

+

⌈
logγ

(
σ

σ0

)⌉
+ 2

)
;

2. If q > 2 or X is nonconvex or q = 2 and X ⊆ Rn, then

E[Nε] ≤ κ(p∗)

2(f0 − flow)(p+ 1)!

(η − 2ω)σminψ(σs)

(
min

j∈{1,...,q}
εj

)− q(p+1)
p

+

⌈
logγ

(
σ

σ0

)⌉
+ 2

 ,

with κ(p∗)
def
= 2p∗

(2p∗−1)2 and Nε, ψ(σ), σ defined as in (6.18), (6.29), (6.34), respectively.

Proof. Recalling the definitions (5.45) and the bound (6.37), we obtain that

E[Nε] = E[N c
Λ] + E[NΛ] ≤ E[Nε]

2p∗
+ E[NΛ],

which implies, using (6.42), that

2p∗ − 1

2p∗
E[Nε] ≤

1

2p∗ − 1

(
2(f0 − flow)(p+ 1)!

(η − 2ω)σminψ(σ)

(
min

j∈{1,...,q}
εj

)−π
+

⌈
logγ

(
σ

σ0

)⌉
+ 2

)
.

This bound and the inequality 1
2 < p∗ ≤ 1 (see Assumption 6.1.2) yield the desired result.

Since the SARqp algorithm requires at most two function evaluations and one evalu-
ation of the derivatives of orders 1 to p per iteration, the bounds stated in the above
theorem effectively provide an upper bound on the average evaluation complexity of
finding (ε, δ)-approximate q-th order minimisers, 1 ≤ q ≤ p ≤ 2.

Theorem 64 generalises the complexity bounds stated in [34, Theorem 5.5] to the case
where evaluations of f and its derivatives are inexact, under probabilistic assumptions on
the accuracies of the latter. As it was shown in [34, Theorems 6.1 and 6.4] that the eval-
uation complexity bounds are sharp in order of the tolerance for exact evaluations and
Lipschitz continuous derivatives of f , this is also the case for the bounds of Theorem 64.

6.3 Chapter conclusion

We have shown that the SARqp algorithm, a stochastic inexact adaptive regularisation
algorithm using derivatives of order up to p, computes an (ε, δ)-approximate q-th order
minimiser of problem (4.3) in at most O(ε−

p+1
p−q+1) iterations in expectation if q is either one

133

and X is convex, or two and the problem is unconstrained, while it may need O(ε−
q(p+1)
p)

iterations in expectation in the other cases†. The results have been fully proved for the
case 1 ≤ q ≤ p ≤ 2, but they apply in the same way for generic p > 2 and 1 ≤ q ≤ p, as
done in [8].

The proved evaluation complexity bounds are sharp in the order of ε (see [34]). We
therefore conclude that, if the probabilities pMk

in Assumption 6.1.2 are suitably large,
the evaluation complexity of the SARqp algorithm is identical (in order) to that of the exact
algorithm in [34].

†These simplified order bounds assume that εj = ε, for j ∈ {1, . . . , q}.

134

Part IV

Supervised Learning and
Numerical Tests

135

Chapter 7

Machine Learning and Real-Life
Applications

This final part is devoted to the numerical performance of the proposed methods, after
setting the context from which the problems to be solved arise.

Within the framework of supervised learning, our experimentation mainly covers non-
convex binary classification tasks on real and synthetic datasets, ill-conditioned problems
and a real-life engineering application related to the parametric design of centrifugal
pumps.

7.1 Basics of supervised learning

The aim of machine learning techniques is that of building models, usually called meta-
models, that are able to learn a task, for example to approximate a function of perfor-
mance or classify data from given examples arising from the considered application, to
take decisions.

The examples are usually N couples {(ai, yi)}Ni=1, called samples. Each couple con-
tains a da-dimensional vector ai ∈ Rda (the so-called feature vector), whose components
are called features (or attributes), and a target vector yi ∈ Rdy (it can be known or un-
known) that corresponds to the outcome of the process the model is expected to per-
form.

To start with the basic concept of “learning a task”, let us refer to the seminal definition
by T. Mitchell in [89].

A computer program (or machine) is said to learn from experience E with re-
spect to some class of tasks T and performance measure P, if its performance
at tasks in T , as measured by P, improves with experience E .

These entities T , P and E could be at a first look something abstract, so let us go a little
bit inside their meaning.

Classes of problems T

The main classes of problems addressed by machine learning strategies are the following.

• Classification. In this case, given m ≥ 2 classes (or categories), the algorithm has to
learn model which is a function

h : Rda → Y, (7.1)

137

to predict the class value y ∈ Y of the considered input vector a ∈ Rda . Classification
tasks are characterised by Y = Z, i.e. the elements in Y are discrete, corresponding
to disjoint classes, mutually exclusive and each feature vector a ∈ Rda belongs to
one and only one of these classes. In this context, the target value y is called label.
If |Y| = 2 (consider for instance Y = {0, 1}) we are in the range of binary classification.
A classical example of this task is given by the spam/anti-spam filtering for emails.
When |Y| > 2 (a common choice is Y = {1, 2, ...,m}, m > 2) we speak about multi-
class (or multi-labeled) classification.

• Regression. This class is characterised by Y = R, since the machine has to learn a
function h : Rda → R to predict a performance value y ∈ R for the input a ∈ Rda
of interest. Classical examples are given by vocal or facial recognition, automatic
translations of data into a discrete text strings, imputation of missing data from a
dataset, reconstruction of the original signal given an occurrence of it affected by
some source of noise.

Measure of performance P

It is a crucial quantitative measure to understand the capability of the machine learning
algorithm at hand in solving the given task. P is not a universal measure, but it is usually
T -dependent and corresponds to a measure of the losses from inaccurate predictions.
For instance, it can be chosen as the percentage of feature vectors uncorrectly classified
(measuring the error made by the learned model), when validating a classification task
in which the true labels of the considered feature vectors are available. Different perfor-
mance measures can also be considered in the resolution of the same problem (this will
be the case of Subsection 7.3), depending on the aspects of the phenomenon that are
more relevant for the use of the performance prediction given by the learning algorithm.

The experience E

Machine learning approaches are usually split in the following three classes.

• Supervised learning. This class is characterised by a known correspondence be-
tween inputs data and their outputs. Specifically, a set of inputs (feature vectors)
{ai ∈ Rda}Ni=1 are given along with their outputs {yi ∈ Y}Ni=1, corresponding to the la-
bels if a classification task is considered or, more in general, to target vectors. These
couples define the so-called training set. The main feature is that those outputs
yi ∈ Y are known for each input ai ∈ Rda , i ∈ {1, ..., N}. The goal is thus to use these
data to learn a function h defined as in (7.1), to (hopefully) accurately associate
each input ai ∈ Rda to its output yi ∈ Y. As we will see in the next subsection, such a
function is obtained minimising the chosen performance measure P, when such a
P is a measure of the error made predicting outputs with the learned model h. This
is with the aim of using the computed model h to predict targets of new untested
data, i.e. of feature vectors a ∈ Rda whose target vectors y ∈ Y are unknown.
Usually, before using the model h for predictions, the predictive ability of the com-
puted model h obtained by the learning algorithm is tested computing the per-
formance measure on a set {(ai, yi)}

NT
i=1 of testing samples, that form the so-called

testing set. Such examples can be given or they can be obtained by considering
a randomisation of the available dataset {(ai, yi)}Ntot=N+NT

i=1 , using the first N exam-
ples as the training data forming the training set and the remaining NT as the testing
data in the testing set.

The scheme is indeed specular with respect to standard programming. In fact, a
standard programming algorithm (see the figure below) provides output data once
input data and a given function h to link the input data to the output data are
given.

138

input data ALGORITHM

model h

output data

By contrast, the supervised machine learning framework takes input data (feature
vectors) and output data (target vectors) as its input, returning a model function h

to be use to link the input data to the output data, as represented below.

input data

output data

ALGORITHM model h

• Unsupervised learning. At variance with the supervised case, there is now no in-
formation about the correlation between the input data and their outputs in the
training set. The learning algorithm has here to find intrinsic similarities or structures
within the input data, in order to split them into classes. Examples are given by clus-
tering, in which data are grouped basing on classes of resemblance, or anomaly
detection.

• Reinforcement (or semi-supervised) learning. This third case stems from the two
above and is a sort of hybrid approach. Similar to human learning models, a small
amount of input data with the corresponding outputs are given for training, but
along with a large amount of input data with unknown outputs. The goal is now
to combine this information and avoid either discarding the untested data and do-
ing supervised learning or discarding the input data with known outputs and doing
unsupervised learning.

In the following, we will introduce the formal machine learning procedure and the un-
derlying optimisation problem, focusing on supervised binary (nonconvex) classification,
that is the framework to which our numerical tests belong.

7.1.1 The underlying optimisation problem

Our goal is to determine a prediction function (model)

h : A → Y,

from an input spaceA ⊆ Rda to an output space Y ⊆ Rdy (with da and dy positive integers)
such that, given a ∈ A, the value h(a) offers an accurate prediction of the true output y.
That is, choosing a prediction function h that avoids rote memorisation and instead gen-
eralises the concepts that can be learned from a given set of training examples. To do

139

this, one should choose the prediction function h by attempting to minimise a risk mea-
sure, i.e. a measure of the errors made by h in the predictions, over a suitably selected
family H of prediction functions.

To formalise this idea, suppose that the examples are sampled from a joint probability
distribution function P (a, y), P : A × Y → [0, 1], that simultaneously represents the distri-
bution P (a) of inputs as well as the conditional probability P (y|a) of the label y being
appropriate for an input a. One should seek to find h that yields a small expected risk
E[1h(a)6=y] of misclassification over all possible inputs. In other words, an h ∈ H that min-
imises the probability of having a wrong prediction, by minimising the so-called expected
risk

R∗(h)
def
= P ({h(a) 6= y}) =

∫
A×Y

1{h(a) 6=y}dP (a, y) = E[1{h(a)6=y}], (7.2)

over h ∈ H. Such a framework has the double difficulty of being variational, since we
are optimising over a set of functions h ∈ H, and stochastic, since the objective function
involves an expectation. Moreover, the minimisation of (7.2) is attempted to be done
without the explicit knowledge of the joint probability P . The only tractable option is
thus to construct a surrogate problem that relies solely on the known training examples
{(ai, yi)}Ni=1, (ai, yi) ∈ A× Y. Overall, there are two main issues that must be addressed:

• how to choose the parameterised family of prediction functions H;

• how to find the particular prediction function h∗ ∈ H that is optimal.

Theoretical guidelines for choosing the class of functionsH

As suggested in [28], the family of functions H should be determined with the following
three potentially competing goals in mind.

i) The classH should contain prediction functions that are able to achieve a low value
of the so-called empirical risk

R∗N (h) =
1

N

N∑
i=1

1{h(ai)6=yi},

defined over the training set, so as to avoid both rote memorisation, that can lead
to overfitting, and underfitting the data. For rote memorisation we mean a function
h that simply memorises the training samples, such as

h(a) =

{
yi, if a = ai, i ∈ {1, ..., N},
0 or 1 (arbitrarily), otherwise.

In this case h is thus extremely precise in associating the feature vectors ai of the
training set to the right labels yi, but totally inefficient in doing the same on the
testing set. On the other hand, training data could be too redundant or insufficient
to let the computed model h able to properly predict labels on the testing set. This
can be in principle achieved by selecting a rich family of functions or by using a
priori knowledge to select a well-targeted family.

ii) The gap |R∗(h)−R∗N (h)| should be small over all h ∈ H. Generally, this gap decreases
if the number of training examples increases; but, due to potential overfitting, it
increases when one uses richer families of functions (see [28]). This latter fact puts
the second goal at odds with the first.

iii) The family of functions H should be selected so that one can efficiently solve the
corresponding optimisation problem, the difficulty of which may increase when one
employs a richer family of functions and/or a larger training set.

140

The observation about the gap between expected and empirical risk can be understood
by recalling certain laws of large numbers. For instance, the Hoeffding inequality (in [74])
guarantees that, with probability at least (1− t), one has

|R∗(h)−R∗N (h)| ≤

√
1

2N
log

(
2

t

)
,

for a given h ∈ H. We note that the number N of training samples is at the denominator
and t is fixed, so this bound offers the intuitive explanation that the gap decreases as one
uses more training examples. However, this view is not enough in the context of machine
learning, since h is not a fixed function, but the functional variable over which we are
optimising. For this reason, one often turns to uniform laws of large numbers and the
concept of the Vapnik-Chervonenkis (VC) dimension of H, a measure of the capacity of
such a family of functions (see [119]), in order to get an upper bound on |R∗(h) − R∗N (h)|
that is uniform among the class function H.
Resorting to the VC dimension to measure capacity, one of the most important results in
learning theory can be established: with dH defined as the VC dimension of H, one has
with probability at least (1− t) that

sup
h∈H
|R∗(h)−R∗N (h)| ≤ O

(√
1

2N
log

(
2

t

)
+
dH
N

log

(
N

dH

))
. (7.3)

We highlight that for a fixed dH,√
1

2N
log

(
2

t

)
+
dH
N

log

(
N

dH

)
→ 0, as N →∞,

providing uniform convergence of R∗N (h) to R∗(h), when h ∈ H with fixed VC dimension
dH, as the number of training samples N increases. However, it also shows that, for a
fixed N , the gap can widen for larger dH. Indeed, to maintain the same gap, one must
increase N at the same rate if dH is increased.
The uniform convergence embodied in this result is crucial in machine learning, since one
wants to ensure that the prediction system performs well with any new data provided
to it. Interestingly, (7.3) is independent of the number of parameters that distinguish a
particular member function h of the family H. In some settings, such as logistic regression
(see, e.g. [24]), this number is essentially the same as dH, which might suggest that the task
of optimising over h ∈ H is more cumbersome as dH increases. However, this is not always
the case. Certain families of functions are amenable to minimisation despite having a
very large or even infinite number of parameters [117, Section 4.11]. For example, support
vector machines (see [53]) were designed to take advantage of this fact [117, Theorem
10.3].
While the bound in (7.3) is theoretically interesting and provides useful insight, it is rarely
directly used in practice, since it is typically easier to estimate the gap between empirical
and expected risk with cross-validation experiments. We refer to [28] for an overview on
this approach, known as structural risk minimisation and early stopping, that has proved
to be widely successful in [118, 119].

Parametrising the class of functionsH

Rather than consider a variational optimisation problem over a generic family of pre-
diction functions, as the minimisation of (7.2), we assume that the class of prediction
functions H is formed by functions h parametrised by a vector x ∈ Rn, over which the
optimisation of (7.2) has to be performed.

141

Formally, for some given h(·;x) : A × Rn → Y, we consider the parametric family of
prediction functions

H def
= {h(·;x) | x ∈ Rn} .

Therefore, the minimisation of (7.2) can be replaced by the minimisation of∫
A×Y

1{h(a;x) 6=y}dP (a, y), (7.4)

over x ∈ Rn, which is now a stochastic minimisation problem.

Expected risk

We note that the argument of the integral in (7.4) depends on the indicator function
1{h(a;x) 6=y}, leading to an optimisation problem with discontinuous objective function. This
issue can be overcome finding a prediction function h(·;x), x ∈ Rn, in the parametric
family H that minimises the losses incurred from inaccurate predictions.

For this purpose, we assume to have a given continuous loss function (also called cost
function) ` : Y × Y → R that, given a pair (a, y) ∈ A × Y, yields the loss `(h(a;x), y) when
h(a;x) and y are the predicted and true targets, respectively. The minimisation of (7.4)
can indeed be replaced by the minimisation of

R(x)
def
=

∫
A×Y

`(h(a;x), y)dP (a, y) = E[`(h(a;x), y)], (7.5)

over x ∈ Rn, which is still a stochastic optimisation problem but with continuous objective
function. We will hereafter refer to R : Rn → R as the expected risk (i.e. expected loss),
given a parameter vector x ∈ Rn, with respect to the probability distribution P .

Empirical risk

Furthermore, we highlight that while it may be desirable to minimise (7.5), such a goal
is untenable when one does not have complete information about P . In fact, only an
occurrence of such a joint probability distribution producing the training data {(ai, yi)}Ni=1

is known and it is given by the sequence of available training data itself. Thus, in practice,
one can only seek the solution of a problem that involves an estimate of the expected
risk R in (7.5).

Given the training data {(ai, yi)}Ni=1, the idea is thus to consider the empirical risk, re-
defined as

RN (x)
def
=

1

N

N∑
i=1

`(h(ai;x), yi), (7.6)

in place of the expected risk R(x) in (7.5), obtaining a (possibly nonconvex) optimisation
problem with continuous and theoretically computable objective function. Therefore,

min
x∈Rn

RN (x) = min
x∈Rn

1

N

N∑
i=1

`(h(ai;x), yi) (7.7)

may be considered the practical optimisation problem to be solved.
Last, to simplify notations, let us define

ϕi(x)
def
= `(h(ai;x), yi), i ∈ {1, .., N},

representing the loss of the i-th sample using the parameter vector x ∈ Rn. Consequently,
the minimisation problem (7.7) takes the well-known finite-sum form (1.108).

142

Usual choices for the loss function are the following.

- Square loss: `(h(ai;x), yi) = (yi − h(ai;x))2, that is one of the most common.

- ε-insensitive loss: `(h(ai;x), yi) = max[0, |h(ai;x)−yi|−ε], that has the problem of being
not derivable.

- Huber loss: `(h(ai;x), yi) =

{
1
2 (yi − h(ai;x))2, if |yi − h(ai;x)| < 1,

|yi − h(ai;x)| − 1
2 otherwise,

, that is a continu-

ous and derivable combination of the previous two.

- log loss: `(h(ai;x), yi) = log
(

1 + e−ŷix
>ai
)

, in which ŷi =

{
1, if yi = 1,

−1, if yi = 0.
The log loss induces the minimisation problem

min
x∈Rn

1

N

N∑
i=1

log
(

1 + e−ŷix
>ai
)
, (7.8)

known as logistic regression (training phase), that comes out with an optimal x∗ ∈ Rd.
The label prediction ypred(a) on a new feature vector a ∈ Rda is as follows:

ypred(a) =

{
+1, if σ(a>x∗) ≥ 0.5,

−1, if σ(a>x∗) < 0.5,

in which σ : R→ (0, 1) is the so-called sigmoid function, defined by

σ(a>x) =
1

1 + e−a>x
, a, x ∈ Rn. (7.9)

Finally, setting
x∗ = arg min

x∈Rn
RN (x), x̂ = arg min

x∈Rn
R(x),

we report from [116, Section 3.7] a bound on |R(x̂) − RN (x∗)| that holds with probability
at least (1 − 2t), providing that R and RN are bounded functions of x. In fact, under this
assumption, the triangle inequality gives

|R(x̂)−RN (x∗)| ≤ |R(x̂)−R(x∗)|+ |R(x∗)−RN (x∗)|

≤ O

√dH + log
(

1
t

)
N

+O

√ log
(

1
t

)
N

 , (7.10)

since (see [116, Section 3.7])

|R(x̂)−R(x∗)| ≤ O

√dH + log
(

1
t

)
N

+O

√ log
(

1
t

)
2N


with probability at least (1− 2t), for all x̂ ∈ Rn and x∗ ∈ Rn and

|R(x∗)−RN (x∗) ≤ O

√dH + log
(

1
t

)
N

 ,

with probability at least (1− t), for all x∗ ∈ Rn.
We conclude this paragraph saying that in the context of binary classification, the

VC dimension of a class of predictive functions h(·;x), x ∈ Rn, is the largest integer value
dH for which, given a set of feature vectors {a1, ..., adH} and labels {y1, ..., ydH}, it exists a

143

function h(·;x) able to predict all the given labels without errors.

Neural networks meta-models

We now briefly consider the case in which the function h involved with the definition of
the empirical risk (7.6) is represented by an Artificial Neural Network (ANN), formalised by
the following parametric application

ai ∈ Rda 7→ net(ai;x)
def
= h(ai;x) ∈ Rdy ,

given the parameter x ∈ Rn, as a model to compute the prediction net(ai;x) of the true
performance yi ∈ Rdy , for each feature vector ai in the training set.

The net(·;x) function belongs to a class of functions identified by the choice of the
parameter vector x and is applied to each ai as follows. Given x ∈ Rn and the i-th
training feature vector ai, i ∈ {1, ..., N}, the value of the prediction function net(ai;x) is
computed applying successive transformations, made in layers:

a
(0)
i

def
= ai 7→ a

(1)
i 7→ · · · 7→ a

(j)
i 7→ · · · 7→ a

(J)
i

def
= net(ai;x).

In particular, a canonical feed-forward fully-connected layer (see, e.g., [28]) performs
the computation as

a
(j)
i

def
= ς(j)(W (j)a

(j−1)
i + b(j)) ∈ Rdj , (7.11)

for j ∈ {1, ..., J}, in which:

• a(0)
i

def
= ai ∈ Rda represents the input layer, thus d0 = da, which is considered as layer 0

and not counted in the total number of layers;

• J ∈ N is the number of layers and (J − 1) the number of the so-called hidden layers,
representing the depth of the network;

• net(ai;x)
def
= a

(J)
i ∈ Rdy is the so-called output layer and, hence, dJ = dy;

• the matrixW (j) ∈ Rdj×dj−1 (weights), whose (k, r) component is denoted byW (j)(k, r),
and the vector b(j) ∈ Rdj (bias), whose k-th component is denoted by b(j)(k), con-
tain the parameters of the j-th layer;

• the components {a(j)
i (k)}djk=1 ⊆ R of a(j)

i ∈ Rdj constitute the neurons of the j-th layer;

• dj ∈ N is the number of neurons of the j-th layer;

• ς(j) : Rdj → Rdj is a component-wise nonlinear (otherwise the composition would
be linear) activation function associated with the layer j; ς(j) = (ς

(j)
1 , · · · , ς(j)dj

) with

ς
(j)
k : R→ R, k ∈ {1, ..., dj}, the activation function of the k-th neuron of layer j.

Classical choices for the activation functions, for z ∈ R, are:

• the sigmoid (also called logistic) function in (7.9): ς(z) = σ(z), commonly used to get
outputs in (0, 1);

• the hyperbolic tangent function: ς(z) = tanh(z) = ez−e−z
ez+e−z , ofter chosen as the acti-

vation function for the neurons of the output layer when the output range is (−1, 1)

and, more in general, throughout the hidden layers;

• the (non differentiable) Rectified Linear Unit (ReLU) function: ς(z) = max{z, 0}, usually
considered as the activation function for the neurons of the hidden layers because
of its simple expression;

144

• the Exponential Linear Unit (ELU) function: ς(z) = z1{z≥0} + (ez − 1)1{z≥0}, considered
as the differentiable version of ReLU;

• the linear function: ς(z) = z, typically used just for the output layer, in case of regres-
sion;

• the softmax (also called normalised exponential) function

ς : { v ∈ Rk } →
{
w ∈ Rk | w(i) > 0,

k∑
i=1

w(i) = 1
}
,

such that e>i ς(v) = w(i) = ev(i)∑k
r=1 e

v(r) . This function is very popular for multi-class classi-
fication, since the i-th component w(i) of ς(v) gives the probability of belonging to
the class i ∈ {1, ..., k}.

We have formally shown how a feed-forward fully-connected network works. For a
visual understanding, it is helpful to mention that this kind of network can be seen as an
acyclic directed weighted graph, where each neuron corresponds to a node and the
W (j)(k, r) represents the weight of the edge connecting the r-th neuron a

(j−1)
i (r) of layer

(j − 1) to the k-th neuron a
(j)
i (k) of layer j, for r ∈ {1, ..., dj−1}, k ∈ {1, ..., dj}, j ∈ {1, ..., J}.

We say that a network is fully-connected whether all the neurons in one layer are con-
nected to the neurons in the next layer, while a network is said to be feed-forward wherein
connections between the nodes do not form a cycle. In particular, shallow networks are
networks with a single hidden layer.

We report below a graphical representation of a feed-forward neural network with
J = 3 layers, 2 hidden layers, input layer in R4 (da = d0 = 4), first hidden layer in R5 (5
neurons), second hidden layer in R3 (3 neurons), output layer in R2 (dy = 2) and a set of
q = 51 parameters.

The value of the k-th neuron a
(j)
i (k) in the j-th level is determined by

a
(j)
i (k) = ς

(j)
k

dj−1∑
r=1

W (j)(k, r)a
(j−1)
i (r) + b(j)(k)

 ∈ R, (7.12)

corresponding to the k-th component of a(j)
i in (7.11), for k ∈ {1, ..., dj}, j ∈ {1, ..., J}.

According to (7.12), the diagram below gives a visual representation of how the k-th
neuron a

(j)
i (k) of the layer j works.

145

a
(j−1)
i (1)

a
(j−1)
i (r)

a
(j−1)
i (dj−1)

∑
ς
(j)
k a

(j)
i (k)

b(j)(k)

...

...

W (j)(k, 1)

W (j)(k, r)

W (j)(k, dj−1)

We recall that net(ai;x)
def
= a

(J)
i , where a

(J)
i ∈ Rdy (dJ = dy = 1 in the case of a

single performance output or label) is the ultimate output vector and the parameters
{(W (1), b(1)), ..., (W (J), b(J))} are compactly collected∗ in the parameter vector x ∈ Rd,
d =

∏J
j=1 dj(1 + dj−1). As an example, if the network has no hidden layers (i.e., J = 1) and

h({ai}Ni=1) ⊆ (0, 1) (so d1 = dy = 1), setting b(1) = 0 (no bias), denoting x>
def
= W (1) ∈ R1×da

(where d = da) and choosing s(1) as the sigmoid function (7.9), the scheme reduces to
net(ai;x) = σ(x>ai) ∈ R.

The value of the parameter vector x∗ needed to select the particular function net(·;x∗)
among the class of functions {net(·;x)|x ∈ Rn} is thus chosen in order to (approximately)
minimise the prediction error on the training set, i.e., problem (7.7), that takes the form of
the following unconstrained optimisation problem:

min
x∈Rn

f(x)
def
= min

x∈Rn
1

N

N∑
i=1

ϕi(x)
def
= min

x∈Rn
1

N

N∑
i=1

(yi − net(ai;x))
2
, (7.13)

if one for instance chooses the square loss as a measure of the prediction accuracy,
where the objective function to minimise can result in a possibly nonconvex overall ob-
jective f (training phase).

The optimal parameter vector x∗ obtained by the resolution of (7.13) can in turn be
used to predict performances on a the testing set {ai, yi}

NT
i=1, on which the values of the

true performances yi, i ∈ {1, ..., NT }, are known, with the aim of testing the accuracy of
the derived predictive model net(·;x∗) for its validation (testing phase).

The computed model net(·;x∗) can finally be used to get the prediction net(a;x∗) of
the performance on a new feature vector a ∈ Rda , a /∈ {ai}Ni=1 ∪ {ai}

NT
i=1, for which the

value of performance is untested (execution phase).
ANN are widely used as meta-models within machine learning applications since the

evaluation of net(ai;x) and its derivative ∂
∂xnet(ai;x), usually needed to solve the optimisa-

tion problem (7.13) numerically, can be obtained quite efficiently using the forward and
backward propagation algorithms (see, e.g., [100]), that are based on the well-known
chain rule with Leibniz’s notations. We remind that each evaluation of the network re-
quires a forward propagation. Once the output net(ai;x) of the network is evaluated, its
gradient ∂

∂xnet(ai;x) can be computed with an additional backward propagation.
Furthermore, the use of ANN also finds a theoretical foundation. This is due to a result

given by the authors of [75] in 1989, known as universal approximation theorem for neural
networks, stating that a feed-forward network with a single hidden layer, which contains
a finite number of neurons, is a universal approximator among continuous functions on
compact subsets of Rda , under mild assumptions of the activation function (non constant,
monotonically-increasing, continuous). We notice that the sigmoid function (7.9) satisfies

∗This is easily done considering x as the block vector x = (x>1 , · · · , x>J)>, with

x>j = (W (j)(1, 1), · · · ,W (j)(dj , 1), · · · ,W (j)(1, dj−1), · · · ,W (j)(dj , dj−1), b
(j)(1), · · · , b(j)(dj)) ∈ R1×dj(1+dj−1)

the row vector containing the parameters of the j-th layer, j ∈ {1, · · · , J}.

146

such assumptions. Nevertheless, the authors in [3] have proved that, in the worst-case,
the number of neurons of the hidden layer is exponential in the number of features da,
leading to challenging implementations. In addition, we have to keep in mind that the
optimisation procedure related to the training phase could fail anyway or lead to poor
predictions on the testing data. For such reasons, users have often opted for deeper
neural networks (i.e., with more hidden layers), but at a lower number of neurons per
layer, in compliance with the cost budget and the processing power.

7.2 Numerical tests for nonconvex binary classification

We now consider binary classification problems and focus on the two macro-steps, the
training and the testing phase, we adopt for our numerical experimentation.

• The training phase. Given a training set {(ai, yi)}Ni=1 of N features ai ∈ Rn and corre-
sponding binary labels yi ∈ {0, 1}, we solve the following minimisation problem:

min
x∈Rn

f(x) = min
x∈Rn

1

N

N∑
i=1

ϕi(x) = min
x∈Rn

1

N

N∑
i=1

(
yi − σ

(
a>i x

))2
. (7.14)

That is we use the sigmoid function σ : R → (0, 1) in (7.9) as the model for predicting
the values of the labels, that can be seen as the continuous counterpart of the
Heaviside step function:

H(z) =

{
1, if z ≥ 0,

0, if z < 0,

representing the values of the labels. Furthermore, the square loss is considered as a
measure of the error on such predictions, that has to be minimised by approximately
solving (7.14) in order to come out with the parameter vector x∗, to be used for label
predictions on the available testing set.
Therefore, (7.14) represents the formal minimisation problem (7.7) with:

X = Rn, Y = {0, 1}, h(ai;x) = σ(a>i x), `(h(ai;x), yi) = (h(ai;x)− yi)2.

Trivially, it has the form (1.108) and can be seen as a neural network without hidden
layers and no bias (recall, e.g., Subsection 7.1.1). Moreover, at variance with the
logistic regression (7.8), the problem (7.14) is nonconvex. We refer to f as the training
loss, which corresponds to the empirical risk RN (x) in (7.7).

• The testing phase. Once the training phase is completed, a number NT of new
data, the testing data {ai, yi}

NT
i=1, is used to validate the computed model. The

values σ(a>i x
∗) are used to predict the testing labels yi, i ∈ {1, ..., NT }, according to

σ(a>i x
∗) =

{
1, if a>i x

∗ ≥ 0,

0, if a>i x
∗ < 0,

since
σ(a>i x

∗) ≥ 1

2
⇔ a>i x

∗ ≥ 0.

The corresponding error, measured by 1
NT

∑NT
i=1

(
yi − σ

(
a>i x

∗))2 , is then computed.

147

7.2.1 Implementation issues

In this subsection we analyse the behaviour of the ARC frameworks given by the ARC-DH
algorithm and its stochastic adaptation described by the SARC-IGDH algorithm within
the context of nonconvex finite-sum binary classification.

Concerning the algorithm ARC-DH, we will show that it can be computationally more
convenient than ARC variants in literature. Our numerical validation is based on inexact
Hessians built via uniform subsampling and rule (2.12) for choosing the sample size. The re-
sults obtained indicate that suitable levels of accuracy in the Hessian approximation and
careful adaptations of the rule (2.12) improve efficiency of existing procedures exploiting
subsampled Hessians.

Turning to the SARC-IGDH algorithm, inexact gradient and Hessian evaluations are
performed as sketched in modified Steps 0–2 of Algorithm 13. The performance of the
proposed algorithm is compared with that of the corresponding version given by ARC-
DH, employing exact gradient, with the aim to provide numerical evidence that adding
a further source of inexactness in the gradient computation is beneficial in terms of com-
putational cost saving.

Implementation issues concerning the ARC-DH algorithm, the ARC variants to be com-
pared (see Subsection 7.2.2) and the SARC-IGDH algorithm (see Subsection 7.2.3) are the
object of this subsection, while statistics of our runs are discussed in Subsection 7.2.2 and
Subsection 7.2.3 for what concerns the numerical tests and comparisons on the ARC-DH
algorithm and the SARC-IGDH algorithm, respectively.

The common implementation issues of the main phases of ARC variants considered in
the three coming subsections is as follows.

Common parameters tuning for algorithms in Subsections 7.2.2–7.2.3–7.2.4.

The cubic regularisation parameter is initialised as σ0 = 10−1 and its minimum value is
σmin = 10−5. The parameters η, η1, η2, γ1, γ, γ2, γ3 and α are fixed as

η1 = 0.1, η = η2 = 0.8, γ1 = 0.5, γ2 = 1.5, γ = γ3 = 2, α = 0.5. (7.15)

The initial guess is the null vector x0 = (0, ..., 0)> ∈ Rn in all runs.

The minimisation of the cubic model at Step 3 of the ARC-DH algorithm is performed
employing a Barzilai-Borwein procedure [103, 4]. To be more precise, we follow [20] and
employ the method proposed in [71, NMS Algorithm 2]. As for the procedure in Section
1.3.3 using the Lanczos method, the major per-iteration cost of such Barzilai-Borwein pro-
cess is one Hessian-vector product for each iteration, needed to compute the gradient
of the cubic model at each iteration. The threshold used in the termination criterion (3.5)
is θk = 0.5, k ≥ 0.

We impose a maximum of 500 iterations and we declare a successful termination when
one of the two following conditions are met:

‖∇f(xk)‖ ≤ ε1, (7.16)

|f(xk)− f(xk−1)| ≤ 10−6|f(xk)|,

when considering the ARC-DH algorithm and the ARC variants in Subsection 7.2.2, and

‖∇f(xk)‖ ≤ ε1, (7.17)

when considering the SARC-IGDH algorithm and the comparisons in Subsection 7.2.3.
The values of the first-order tolerance are ε1 = 10−3, for the numerical tests in Subsec-

148

tion 7.2.2, and ε1 = 5 · 10−3, for the numerical tests in 7.2.3.
The algorithms were implemented in Fortran language and run on an Intel Core i5, 1.8

GHz × 1 CPU, 8 GB RAM.

7.2.2 Numerical tests on the ARC-DH algorithm

In this subsection we test different ARC variants and rules for choosing the sample size of
Inexact Hessians and we perform two sets of experiments.

First, in Subsection 7.2.2.1, we compare ARC variants with optimal complexity on a set
of synthetic datasets from [15].
The ARC-DH algorithm is compared with versions of ARC employing:

• exact Hessians;

• inexact Hessians ∇2f(xk) with accuracy requirement (3.3) and ck = ε1, for all k ≥ 0

[124, 123];

• inexact Hessians∇2f(xk) with accuracy requirement (3.1) implemented as suggested
in [79], i.e. the unavailable information ‖sk‖ on the right-hand side is replaced by
‖sk−1‖, for k > 0.

Second, in Subsection 7.2.2.2, we compare a suboptimal variant of our adaptive strat-
egy with an ARC procedure where inexact Hessians are built using a fixed small sample
size. These experiments are motivated by pervasiveness of prefixed small sample sizes in
practical implementations. In fact, inequality (2.12) yields to full sample when high accu-
racy is imposed, i.e. when τ2,k = ck is sufficiently small, and sample sizes |Hk| equal to a
prefixed fraction of N are often employed in literature, even though first-order complexity
becomes O(ε−2

1) (see, [5, 12, 15, 123]).
In order to measure the computational cost of the considered algorithms, we use as

in [15] the number of Effective Gradient Evaluations (EGE), that is the sum of function and
Hessian-vector product evaluations. This is a pertinent measure since the major cost in
the evaluation of each component function ϕi, 1 ≤ i ≤ N , at x ∈ Rn consists in the
computation of the scalar product a>i x. Once evaluated, this scalar product can be
reused for obtaining ∇ϕi(x), while the computation of ∇2ϕi(x) times a vector v ∈ Rn

requires the scalar product a>i v and it is as expensive as one ϕi(x) evaluation (see Table
2.1). Consequently, each full Hessian-vector product costs as one function or gradient
evaluation. When |Hk| samples are used for the Hessian approximation ∇2f(xk), the cost
of one matrix-vector product of the form ∇2f(xk)v is counted as |Hk|/N EGE.

7.2.2.1 Synthetic datasets

The first class of databases we consider is a set of synthetic datasets from [15], firstly pro-
posed in [92]. These datasets have been constructed so that Hessians have condition
numbers of order up to 107, a wide spectrum of eigeinvalues and allow testing on mod-
erately ill-conditioned problems. We scaled them, in order to have entries in the interval
[0, 1], as follows. Let D ∈ R(N+NT)×d be the matrix containing the training and testing
features of the original dataset, that is

e>i D = a>i for i ∈ {1, ..., N}, e>N+iD = a>i for i ∈ {1, ..., NT },

and let mj = mini∈{1,...,N+NT }Dij and Mj = maxi∈{1,...,N+NT }Dij , for j = 1, . . . , d. Then, the
matrix D is scaled as

Dij
def
=

Dij −mj

Mj −mj
, for i ∈ {1, ..., N +NT }, j ∈ {1, . . . , d}.

149

The computation of the matrix ∇2f(xk) according to (2.12) involves the constant

κϕ,2(xk) = max
i∈{1,...,N}

{
2e−a

T
i xk

(
1 + e−a

T
i xk
)−4

∣∣∣∣yi((e−aTi xk)2

− 1

)
+ 1− 2e−a

T
i xk

∣∣∣∣ ‖ai‖2} .
(7.18)

Since the values a>i xk, 1 ≤ i ≤ N , are available from the exact computation of f(xk), we
evaluated κϕ,2(xk) at the (offline) extra cost of computing ‖ai‖2, 1 ≤ i ≤ N .

In our implementation of the ARC-DH algorithm, the value of c used in (3.10) whenever
‖sk‖ ≥ 1 is such that |D0| computed via (2.12) with τ2,0 = c0 = c satisfies |H0|/N = 0.1. The
failure probability t in (2.12) is set equal to 0.2.

We shall hereafter refer to the implementation of the ARC-DH algorithm as ARC-Dynamic.
The numerical tests in this section compare ARC-Dynamic with the following variants.

• ARC-Full: the ARC-DH algorithm employing exact Hessians;

• ARC-Sub: the ARC-DH algorithm with inexact Hessian∇2f(xk) and accuracy ck = ε1,
for all k ≥ 0, i.e.

‖∇2f(xk)−∇2f(xk)‖ ≤ ε1, ∀k ≥ 0, (7.19)

as suggested in [124, 123];

• ARC-KL: the ARC-DH algorithm employing inexact Hessian ∇2f(xk) and accuracy
ck = χ‖sk−1‖, for all k ≥ 1. In other words, we use the accuracy requirement (3.1)
replacing, as suggested in [79], the unavailable information ‖sk‖ at the righthand
side of (3.1) with the norm of the step sk−1 at the previous iteration, i.e.,

‖∇2f(xk)−∇2f(xk)‖ ≤ χ‖sk−1‖, ∀k ≥ 1. (7.20)

To make a fair comparison with ARC-Dynamic, the sample size |H0| is set equal to
10% of the number of samples, since the first step has not been computed yet.
Moreover, χ is chosen so that the sample size |H1| resulting from (2.12) with τ2,1 =

c1 = χ‖s0‖ is 10% of the total number of samples.

The synthetic datasets are listed in Table 7.1. For each dataset, the number N of
training samples, the feature dimension da and the testing size NT are reported. We also
display the 2-norm condition number cond of the Hessian matrix at the approximate first-
order optimal point (computed with ARC method, exact Hessian and stopping tolerance
ε1 = 10−3) and the value of the scalar c selected.

Dataset Training N da Testing NT cond c

Synthetic1 9000 100 1000 2.5 · 104 1.0101
Synthetic2 9000 100 1000 1.4 · 105 1.0343
Synthetic3 9000 100 1000 4.2 · 107 1.0406
Synthetic4 90000 100 10000 4.1 · 104 0.2982
Synthetic6 90000 100 10000 5.0 · 106 0.3184

Table 7.1: Synthetic datasets. Number of training samples (N), feature dimension (da), number of
testing samples (NT), 2-norm condition number of the Hessian matrix at the computed
solution (cond), scalar c used in forming Hessian estimates (c).

In Table 7.2 we report the results on all the synthetic datasets obtained with ARC-
Dynamic and values c as in Table 7.1. Since the selection of the subset Hk is made ran-
domly (and uniformly) at each iteration, statistics in the forthcoming tables are averaged

150

over 20 runs. We display: the total number of iterations (n-iter), the value of EGE at ter-
mination (EGE), the worst (Save-W), best (Save-B) and mean (Save-M) percentages of
savings obtained by ARC-Dynamic with respect to ARC-Sub and ARC-KL in terms of EGE.

To give more insights, in what follows we focus on Synthetic1 and Synthetic6, as they
are representative of what we have observed in our experimentation. In Tables 7.3 and
7.4 we report statistics for these problems solved with our algorithm and constant c dif-
ferent from the default value in Table 7.1; we refer to such runs as ARC-Dynamic(c). We
duplicate the results given in Table 7.2 for sake of readibility.

In Figures 7.1–7.2 we additionally show the decrease of the training loss and the testing
loss among all the synthetic datasets against the number of EGE and in Figure 7.3 we
plot the gradient norm versus EGE. In all the figures we consider ARC-Dynamic, ARC-
Dynamic(c), ARC-Sub and ARC-KL. A representative run is considered for each method;
in Figures 7.1–7.2 we do not plot ARC-Dynamic(1.00) as it overlaps with ARC-Dynamic.

Dataset ARC-Dynamic ARC-Sub ARC-KL
n-iter EGE Save-W Save-B Save-M Save-W Save-B Save-M

Synthetic1 17.2 103.7 38% 53% 44% −5% 43% 20%
Synthetic2 16.7 89.5 47% 63% 55% −33% 50% 18%
Synthetic3 17.1 94.6 46% 61% 51% −11% 47% 20%
Synthetic4 15.6 85.3 58% 62% 60% −21% 22% 5%
Synthetic6 15.2 67.4 60% 66% 63% −5% 36% 16%

Table 7.2: The columns are divided in three different groups. ARC-Dynamic: average number of
iterations (n-iter) and EGE at termination. ARC-Sub: worst (Save-W), best (Save-B) and
mean (Save-M) percentages of saving obtained by ARC-Dynamic over ARC-Sub on the
synthetic datasets. ARC-KL: worst (Save-W), best (Save-B) and mean (Save-M) percent-
ages of saving obtained by ARC-Dynamic over ARC-KL on the synthetic datasets.

Method n-iter EGE Save-W Save-B Save-M

ARC-Dynamic 17.2 103.7 38% 53% 44%
ARC-Dynamic(0.50) 15.4 145.4 9% 29% 21%
ARC-Dynamic(0.75) 16.5 112.6 27% 46% 39%
ARC-Dynamic(1.00) 16.8 104.0 36% 53% 43%
ARC-Dynamic(1.25) 18.7 115.1 26% 54% 37%

Table 7.3: Synthetic1 dataset. Average number of iterations (n-iter), EGE, and worst (Save-W), best
(Save-B) and mean (Save-M) percentages of saving obtained by ARC-Dynamic over
ARC-Sub.

Method n-iter EGE Save-W Save-B Save-M

ARC-Dynamic 15.2 67.4 60% 66% 63%
ARC-Dynamic(0.25) 15.1 78.9 53% 59% 57%
ARC-Dynamic(0.50) 15.9 58.5 57% 70% 68%
ARC-Dynamic(0.75) 16.6 61.5 54% 73% 66%
ARC-Dynamic(1.00) 16.8 64.1 46% 74% 65%

Table 7.4: Synthetic6 dataset. Average number of iterations (n-iter), EGE, and worst (Save-W), best
(Save-B) and mean (Save-M) percentages of saving obtained by ARC-Dynamic over
ARC-Sub.

151

Some comments are in order:

• The condition (7.19) in ARC-Sub yields a too high sample size at each iteration. The
adaptive strategies ARC-Dynamic and ARC-KL outperform ARC-Sub, as in the latter
algorithm the cost for computing the Hessians is not compensated by the gain in
the convergence rate.

• Focusing on the two adaptive strategies ARC-Dynamic and ARC-KL, Table 7.2 shows
that on average the former is less expensive than the latter. Figures 7.1–7.2 show that
ARC-KL is fast in the first stage of the convergence history, becoming progressively
slower as the norm of the step starts changing significantly from an iteration to the
other (see Figure 7.4). In fact, the implementation of ARC-KL relies on the assump-
tion that ‖sk‖ is well approximated by ‖sk−1‖ and this is not always true. In particular,
Figure 7.4 shows that the norm of the step changes slowly initially, yet in the remain-
ing iterations it oscillates and successive values differ by some orders of magnitude.
This behaviour affects the Euclidean norm of the gradient as shown in Figure 7.3. We
observe that such a norm, depicted against EGE, oscillates in ARC-KL, while this is
not the case for ARC-Dynamic and ARC-Dynamic(c).

• Focusing on our proposed adaptive strategy, Figures 7.5–7.6 show that ARC-Dynamic
uses sets Hk whose cardinality varies adaptively through iterations and it is consider-
ably smaller than N in most of them. Moreover, the performance of ARC-Dynamic
appears to be quite insensitive to the choice of the scalar c. In fact, computa-
tional savings of ARC-Dynamic over ARC-Sub are achieved with various values of c,
including those reported in Table 7.1.

Method Synthetic1 Synthetic2 Synthetic3 Synthetic4 Synthetic6

ARC-Dynamic 98.00% 96.80% 97.10% 97.85% 97.98%
ARC-Dynamic(0.25) — — — 98.09% 98.08%
ARC-Dynamic(0.50) 97.60% 96.40% 96.90% 98.19% 98.23%
ARC-Dynamic(0.75) 98.10% 96.60% 97.20% 98.02% 98.11%
ARC-Dynamic(1.00) 97.20% 96.60% 96.10% 98.15% 97.96%
ARC-Dynamic(1.25) 98.00% 96.60% 96.90% — —
ARC-Sub 97.50% 96.60% 97.00% 98.13% 97.87%
ARC-KL 97.80% 96.60% 96.70% 98.13% 97.98%

Table 7.5: Synthetic datasets. Binary classification rate on the testing set employed by ARC-
Dynamic, ARC-Dynamic(c), c ∈ {0.25, 0.5, 0.75, 1, 1.25}, ARC-KL and ARC-Sub; mean val-
ues over 20 runs.

The synthetic datasets used provide moderately ill-conditioned problems and moti-
vate the use of second-order methods. Indeed, second-order methods show their strength
since all the tested procedures manage to reduce the norm of the gradient and pro-
vide a small classification error. This is shown in Table 7.5, where the average accuracy
achieved by the methods under comparison is reported. We outline that the difference
between the percentages reported in each column and their mean value ranges from
0.20% (best case) to 0.74% (worst case), with an average of 0.38%. Thus, all the ARC vari-
ants reach a high accuracy in the testing phase and the preferable one is the variant
requiring the lowest number of EGE at termination.

As a final comment, our experiments show that, despite ill-conditioning, an accurate
approximation of the Hessian is not required and accuracies dynamically chosen along it-
erations work well in practice. Adaptive thresholds for the Hessian approximations yield to

152

procedures computationally more convenient than those using constant and tiny thresh-
olds and do not lack ability in solving the problems.

7.2.2.2 Real datasets

In this subsection we present our second set of numerical results, performed on the ma-
chine learning datasets using subsampled ARC variants with deterministic suboptimal
complexity of order O(ε−2

1). More in depth, we compare our adaptive strategy with the
version of ARC considered in [123] where, at each iteration, the Hessian is approximated
via subsampling on a set with prefixed and small cardinality.

Our adaptive choice of |Hk| is implemented by introducing safeguards in (2.12) (τ2,k =

ck). Whenever ‖sk‖ < 1, we choose the cardinality of Hk according the following rule:

|Hk| = max

{
d0.05Ne,min

{
d0.1Ne,

⌈
4ρ

ck

(
2ρ

ck
+

1

3

)
log

(
2n

t

)⌉}}
, k ≥ 0, (7.21)

with ρ > 0. Clearly, |Hk|/N varies in the range [0.05, 0.1] for all k ≥ 0, allowing us to com-
pare our adaptive strategy with strategies employing fixed small sample sizes. The failure
probability t = 0.2 is still considered. The scalar ρ is chosen so that |Hk| = d0.1Ne when
ck = α(1 − θ)ε

2/3
1 , i.e. the value of ck corresponding to ‖∇f(xk)‖ = ε

2/3
1 , and ‖sk‖ < 1.

Whenever ‖sk‖ ≥ 1, the scalar c used in (3.10) is fixed so that |Hk| = d0.05Ne.
Guidelines for our rule are: the sample size d0.05Ne is used when ‖sk‖ ≥ 1, larger sample

sizes, up to 0.1N , are eventually used. Clearly, under this rule the Hessian sample size
depends on the ratio ρ/ck.

We compare ARC-Dynamic with the above choice of |Hk| against its variant using
Hessian approximations obtained by subsampling on a small constant fraction of exam-
ples. We will refer to the latter algorithm as ARC-Fix(p) where p ∈ (0, 1) is the prefixed
constant fraction of the N examples used for building the Hessian approximations.

In Table 7.6 we list the specifics of the used datasets and, for sake of completeness,
the value of the ratio ρ/c determining the Hessian sample size whenever ‖sk‖ ≥ 1 is used.
In the same table, in the column with header ε1, we report the used stopping tolerance.

We report below a brief description of each dataset below and the applicative con-
text from which it arises.

• Mushroom. This data set includes descriptions of hypothetical samples correspond-
ing to 23 species of gilled mushrooms in the Agaricus and Lepiota family. Each
species is identified as edible or poisonous on the basis of a certain number of char-
acteristics, ranging from the color and the odor to the habitat or the cap shape.

• HTRU2. It is a data set which describes a sample of pulsar stars candidates. Pul-
sars are a rare type of Neutron stars that produce radio emission detectable here
on Earth. They are of considerable interest as probes of space-time, the interstellar
medium, and states of matter. Since their detections are caused by radio frequency
interference (RFI) and noise, making legitimate signals hard to find, machine learn-
ing tools are welcome to automatically detect pulsar candidates from possible out-
liners.

• Cina0 and a9a. In both cases, the causal discovery task is to uncover the socio-
economic factors affecting high income (the target value indicates whether the
income exceeds 50K). Among all, attributes include age, workclass, marital status
and education.

• Gisette. The aim is to detect the highly confusable handwritten digits “4” and “9”.

153

• MNIST. The MNIST dataset, usually considered for classifying the 10 handwritten digits,
is here used to discard even digits (labelled by 1) from odd digits (labelled by 0).

• Ijcnn1. It has been introduced in 2001, for a challenge during the International Joint
Conference on Neural Networks (IJCNN) conference. The attributes relate to the
physical aspects of an internal combustion engine and aim at forecasting whether
an regular ignition will occur or not.

• Reged0. It is a genomics dataset to find genes which could be responsible of lung
cancer. From the causal discovery point of view, it is in fact very important to sepa-
rate genes whose activity cause lung cancer from those whose activity is a conse-
quence of the disease.

All test problems have been solved with ε1 = 10−3, except for Cina0 and HTRU2,
where the tolerance has been increased to 10−2, since for lower values of ε1 we had
no longer improvements on the decrease of the training and the testing loss, regardless
of the method in use. By contrast, Mushroom was also solved using the tighter tolerance
ε1 = 10−5, as below the threshold ε1 = 10−3 further reduction in the training and testing
loss was observed and the percentage of failures in the classification on the testing set
dropped from 1% to zero. This can be observed in Table 7.7, where we report the average
percentage of correctly classified testing data.

We underline that the gap between the percentages reported in each column of
Table 7.7 and their mean value varies from 0% (best case) to 0.89% (worst case), for an
average of 0.20%. Therefore, the different ARC methods considered achieve a high level
of accuracy in the testing phase.

Dataset Training N da Testing NT ε1 ρ/c

Mushroom [83] 6503 112 1621 10−3 2.3241
10−5 2.3241

HTRU2 [83] 10000 8 7898 10−2 3.6942
Cina0 [45] 10000 132 6033 10−2 2.8671
Gisette [83] 5000 5000 1000 10−3 1.6182
MNIST [81] 60000 784 10000 10−3 6.3841
a9a [83] 22793 123 9768 10−3 4.3922
Ijcnn1 [47] 49990 22 91701 10−3 7.5283
Reged0 [47] 400 999 100 10−3 0.4443

Table 7.6: Real datasets. Size of the training set (N), problem dimension (da), size of the testing set
(NT), tolerance ε for approximate optimality (ε1) and the ratio ρ/c used for sample sizes
computations.

Method Mushroom HTRU2 Cina0 Gisette MNIST a9a Ijcnn1 Reged0
ε1 = 10−3 ε1 = 10−5

ARC-Dynamic 99.38% 100% 98.20% 91.88% 97.40% 89.92% 84.81% 91.76% 96.00%
ARC-Fix(0.01) 99.07% 100% 98.21% 91.80% 97.60% 89.84% 84.83% 91.95% 96.00%
ARC-Fix(0.05) 98.83% 100% 98.19% 91.84% 97.50% 89.83% 84.76% 91.75% 96.00%
ARC-Fix(0.1) 99.32% 100% 98.20% 91.88% 97.50% 89.77% 84.78% 91.69% 96.00%
ARC-Fix(0.2) 99.20% 100% 98.24% 92.76% 97.30% 89.82% 84.83% 91.70% 96.00%
ARC-Full 98.77% 100% 98.27% 93.10% 97.50% 89.82% 84.87% 91.67% 96.00%

Table 7.7: Real datasets. Binary classification rate on the testing set employed by ARC-Dynamic,
ARC-Fix(p), p ∈ {0.01, 0.05, 0.1, 2} and ARC-Full; mean values over 20 runs.

154

In Table 7.8 we report, for each considered test problem and for each method under
comparison, the average number of EGE performed over 20 runs. We compare the per-
formance of ARC-Dynamic with that of ARC-Full and ARC-Fix(p), p ∈ {0.01, 0.05, 0.1, 0.2}.

Method Mushroom HTRU2 Cina0 Gisette MNIST a9a Ijcnn1 Reged0
ε1 = 10−3 ε1 = 10−5

ARC-Dynamic 29.8 75.3 52.2 260.5 195.9 53.4 24.1 26.6 395.6
ARC-Fix(0.01) 41.5 140.1 87.0 405.2 397.3 136.1 37.0 28.4 600.3
ARC-Fix(0.05) 35.5 88.7 86.2 335.6 221.0 101.5 26.2 28.7 503.2
ARC-Fix(0.1) 39.6 92.1 76.1 340.7 231.0 72.8 28.2 31.3 796.3
ARC-Fix(0.2) 38.1 110.7 69.1 453.4 268.8 73.5 34.5 36.1 1353.5
ARC-Full 92.0 264.0 158.0 2300.0 836.0 173.0 87.0 78.0 6932.0

Table 7.8: Real datasets. Number of EGE employed by ARC-Dynamic, ARC-Fix(p), p ∈
{0.01, 0.05, 0.1, 2} and ARC-Full; mean values over 20 runs.

Focusing on the strategies employing a prefixed sample size, Table 7.8 shows that there
is not a clear winner, as their performances depend on the specific dataset. However, all
of them are clearly preferable to ARC with full Hessian, confirming that uniformly sampling
the Hessian on a low number of example is enough and there is no point to compute the
full Hessian within these applications. On the other hand, ARC-Dynamic always termi-
nates with the lowest number of EGE and the gains over the most effective runs with
ARC-Fix(p) range from 11% to 27% in 7 out of 9 test problems and are larger than 20% in
the solution of HTRU2, Cina0, MNIST, Reged0.

This is confirmed by the performance profile displayed in Figure 7.7. Denoting by T the
set of test problems in Table 7.6, by S = {ARC-Dynamic, {ARC-Fix(p)}p∈{0.01,0.05,0.1,0.2}} the
set of the considered methods and by Et,s the number of EGE (at termination) to solve
the problem pt ∈ T by the solver s ∈ S, the performance profile [59] for each s ∈ S is
defined as the fraction

ρs(τ) =
1

|T |

∣∣∣∣{ pt ∈ T : rt,s =
Et,s

min{Et,s : s ∈ S}
≤ τ

}∣∣∣∣ , τ ≥ 1,

of problems in T solved by the method s with a performance ratio rt,s within a fraction τ

of the best solver. Comparing the values of ρs(1), s ∈ S, it can be seen that ARC-Dynamic
outperforms the other solvers in the solution of all the test problems. As already com-
mented, the performances of the ARC-Fix(p) methods are instead more controversial.
More specifically, ARC-Fix(0.01) and ARC-Fix(0.2) seem to be overall less efficient, even if
ARC-Fix(0.01) is within a fraction τ = 1.08 from the best solver on about 11% of the prob-
lems. ARC-Fix(0.05) solved all the problems within τ = 1.9 while, within such a value of τ ,
ARC-Fix(0.1) and ARC-Fix(0.2) solved 89% of the problems and ARC-Fix(0.01) solved 78%

of the problems. Moreover, ARC-Fix(0.2) method requires a number of EGE which is within
τ = 3.4 from the best one to solve all the problems.

Finally, in all the runs we observe that the decreases of the training and testing loss
with ARC-Dynamic is either comparable or faster than with ARC-Fix(p). This features is
displayed in Figures 7.8–7.11 where the training and testing loss are plotted versus the
number of EGE; representative runs reported concern datasets MNIST and Gisette.

155

7.2.3 Numerical tests on the SARC-IGDH algorithm

Before presenting our numerical results on the SARC-IGDH algorithm, let us go a little
bit further in the actual implementation of gradient and Hessian approximations to be
computed at Step 1 and Step 2 of Algorithm 13 and describe the cost measure in use for
comparisons.

Preliminary, we note that if (7.17) holds and the model is accurate (recall Definition
5.1.1), then, by (5.14),

‖∇f(xk)‖ ≤ ‖∇f(xk)‖+ ‖∇f(xk)−∇f(xk)‖ ≤ ε1 := ε1 + κ[(1− θ)/σmin]2ε21

and, hence, xk is an ε1-approximate first-order optimality point. Since the model is accu-
rate with probability at least p∗, the iterate xk is an ε1-approximate first-order optimality
point with probability at least p∗. For the numerical tests of this subsection the failure
probability t in (2.11)–(2.12) is set equal to 0.18, therefore the probability of success p∗ in
Definition 5.1.1 corresponds to (1− t)2 ' 0.67 > 2/3.

We further note that the exact gradient and the Hessian of the component functions
ϕi(x), i ∈ {1, ..., N}, are given in Table 2.1. Then, the gradient and the Hessian approxi-
mations ∇jf(xk), j ∈ {1, 2}, computed at Step 1 and Step 2 of Algorithm 13 according to
(2.5)–(2.6), (2.11)–(2.12), involve the constant κϕ,2(xk) in (7.18) and

κϕ,1(xk) = max
i∈{1,...,N}

{
2e−a

>
i xk

(
1 + e−a

>
i xk
)−2

∣∣∣∣yi − (1 + e−a
>
i xk
)−1

∣∣∣∣ ‖ai‖} ,
whose computations can indeed be an issue in theirselves. Nevertheless, reasoning as
in Subsection 7.2.2.1 for the ARC-DH algorithm, the exactness and the specific form (see
(7.14)) of the function evaluation f(xk) imply that the values a>i xk, 1 ≤ i ≤ N , are available
at iteration k and, hence, κϕ,j(xk), j ∈ {1, 2}, can be determined at the (offline) extra cost
of computing ‖ai‖j , j ∈ {1, 2}, for 1 ≤ i ≤ N .

As in Subsection 7.2.2.1, the value of c used in (5.1), in order to reduce the iteration
computational cost whenever ‖sk‖ ≥ 1, is such that |H0| computed via (2.12), with τ2,0 = c

(first approximation of the Hessian), satisfies |H0|/N = 0.1. We indeed start using the 10%

of the examples to approximate the Hessian.
Concerning the gradient approximation performed at Step 1 of Algorithm 13, the

value of τ0 is chosen in order to use a prescribed percentage of the number of train-
ing samples N to obtain ∇f(x0). In all runs, such a percentage has been set to 0.4. Then,
we proceeded as follows. We computed ∇f(x0) via (2.5), with |G0|/N = 0.4. Then, we
compute τ0 so that (2.11), with τ1,0 = τ0, is satisfied as an equality. Finally, the value of
κ at Step 1.2 of Algorithm 13 has been correspondingly set to 4τ

(0)
1,0

(
σ0/‖∇f(x0)‖

)2
, with

τ
(0)
1,0 = τ0. This way, the acceptance criterion of Step 1.2 is satisfied without further inner

iterations (i.e., for i = 0), when k = 0, and τ0 is indeed considered as the starting accuracy
level for the gradient approximation at each execution of Step 1 of Algorithm 13.

We will hereafter refer to such implementation of the SARC-IGDH algorithm coupled
with Algorithm 13 as SARC.

The numerical tests of this section compare SARC with ARC-Dynamic, that employs
exact gradient evaluations, with γ1 = 1/γ, γ2 = γ3 = γ and η1 = η2 = η.

We have already noticed that the problem (7.14) arises in the training of an artificial
neural network with no hidden layers and no bias. Nevertheless, to cover the general
situation where SARC algorithm is applied to more complex neural networks, we have
followed the approach in [123] for what concerns the cost measure. Going into more de-
tails, at the generic iteration k, we count theN forward propagations needed to evaluate
the objective in (7.14) at xk as a unit Cost Measure (CM), while the evaluation of the ap-
proximated gradient at the same point requires |Gk| additional backward propagations at

156

the weighed cost |Gk|/N CM. Moreover, each vector-product ∇2f(xk)v, v ∈ Rn, needed
at each iteration of the Barzilai-Borwein method used to minimise the cubic model at Step
3 of the SARC-IGDH algorithm, is performed via finite-differences (see Subsection 1.3.3).
Then it has to be computed ∇f(xk + hv), (h ∈ R+), leading to additional |Hk| forward and
backward propagations, at the price of the weighted cost 2|Hk|/N CM, and a potential
extra-cost of |Hkr(Gk∩Hk)|/N CM to compute∇ϕi(xk), for all i ∈ Hkr(Gk∩Hk). This latter
approximation is computed once at the beginning of the Barzilai-Borwein procedure. De-
noting by r the number of Barzilai-Borwein iterations at iteration k, the increase of the CM
at the k-th iteration of ARC-Dynamic and SARC related to the derivatives computation is
reported in Table 7.9.

ARC-Dynamic SARC

1 + 2|Hk|r/N (|Gk|+ 2|Hk|r + |Hk r (Gk ∩Hk)|) /N
Table 7.9: Increase of the CM at the k-th iteration of ARC-Dynamic and SARC related to the deriva-

tives computation; r denotes the number of performed Barzilai-Borwein iterations.

We will refer to the Cost Measure at Termination (CMT) as the main parameter to evaluate
the efficiency of the method within the numerical tests.

We finally report statistics of the numerical tests performed by SARC and ARC-Dynamic
on the set of synthetic datasets from Subsection 7.2.2.1, listed in Table 7.1, together with
the corresponding value of c used to build the Hessian approximation.

In Table 7.10 we report, for both SARC and ARC-Dynamic, the total number of itera-
tions (n-iter), the value of Cost Measure at Termination (CMT) and the mean percentage
of saving (Save-M) obtained by SARC with respect to ARC-Dynamic. Since the selection
of the subsets Gk, Hk in (2.11)–(2.12) is uniformly and randomly made at each iteration of
the method, statistics in the forthcoming tables are averaged over 20 runs.

Dataset ARC-Dynamic SARC
n-iter CMT n-ter CMT Save-M

Synthetic1 11.1 130.84 10.0 95.27 27%
Synthetic2 10.6 109.56 10.2 93.08 15%
Synthetic3 11.2 109.64 10.0 97.52 11%
Synthetic4 11.0 124.07 10.4 100.48 19%
Synthetic6 10.0 84.18 10.1 106.31 −26%

Table 7.10: Synthetic datasets. The columns are divided in two different groups. ARC-Dynamic: av-
erage number of iterations (n-iter) and CMT. SARC: average number of iterations (n-iter),
CMT and mean percentage of saving (Save-M) obtained by SARC over ARC-Dynamic.
Mean values over 20 runs.

Method Synthetic1 Synthetic2 Synthetic3 Synthetic4 Synthetic6

ARC-Dynamic 94.34% 92.68% 94.64% 95.52% 93.82%
SARC 93.18% 92.44% 93.62% 94.61% 93.70%

Table 7.11: Synthetic datasets. Binary classification rate at termination on the testing set employed
by ARC-Dynamic and SARC; mean values over 20 runs.

Table 7.10 shows that the novel adaptive strategy employed by SARC results more
efficient than ARC-Dynamic, reaching an ε1-approximate first-order stationary point at a

157

lower CMT, in all cases except from Synthetic6.
This is obtained without affecting the classification accuracy on the testing sets, as it is

shown in Table 7.11, where the average binary accuracy on the testing sets achieved by
the methods under comparison is reported. Note that the resolution via SARC is cheaper
for the Synthetic6 (see Table 7.10), but the classification rate at termination is slightly worst
(see Table 7.11).

To give more evidence of the gain in terms of CMT provided by SARC on the syn-
thethic datasets along the iterative process, we display in Figures 7.12–7.13 the decrease
of the training and the testing loss versus the adopted cost measure CM, while Figure
7.14 is reserved to the plot of the computed gradient norm versus CM. For such figures,
a representative plot is considered among each series of 20 runs obtained by SARC and
ARC-Dynamic on each of the considered dataset.

In all cases, except from Synthetic6, Figures 7.12–7.13 show the savings gained by
SARC in terms of the overall computational cost, as well as the improvements in the
training phase and the testing accuracy under the same cost measure.

More in general, we stress that second-order methods show their strength on these
ill-conditioned datasets, since all the tested procedures manage to reduce the norm of
the gradient and reach high accuracies in the classification rate. Even if we believe that
reporting binary classifications accuracy obtained by each of the considered methods
at termination is relevant in itself, we remark that the higher accuracy obtained at ter-
mination by ARC-Dynamic (see Table 7.11) is just due to the fact the SARC stops earlier.
This should not be confused with a better performance of ARC-Dynamic, since Figures
7.12–7.13 for Synthetic1–Synthetic4 highlights that, along all datasets, when SARC stops
its testing loss is sensibly below the corresponding one performed by ARC-Dynamic at the
same CMT value.

We finally analyse the adaptive choices of the sample sizes |Gk| and |Hk| given by
(2.11)–(2.12) in Figure 7.15. As expected, the two strategies are more or less comparable
when selecting the sample sizes for Hessian approximations, while the number of samples
used to compute gradient approximations by SARC oscillates across all iterations, always
remaining far below the full sample size.

In so doing, we outline that too small values of τ0 seem to have a bad influence on
the performance of SARC, while as τ0 increases it generally produces frequent saving in
the CMT, once that it is above a certain threshold value. In support of this observation,
we report in Figure 7.16 the variation of CMT against τ0 on Synthetic1 and Synthetic4.

We finally notice that, except for few iterations at the first stage of the iterative process,
the sample size for the Hessian approximation is lower than that used for the gradient ap-
proximation. This is in line with the theoretical expectations, as the gradient is eventually
required to be more accurate than the Hessian. In fact, the error in the gradient approxi-
mation has to be of the order of ‖sk‖2, while that in the Hessian approximation has to be
of the order of ‖sk‖ (recall Lemma 43 and 44).

7.2.4 Preliminary numerical tests on the AR1DA algorithm

In this section we consider some preliminary tests on algorithm AR1DA, defined by Algo-
rithm 11. Specifically, in Subsection 7.2.4.1, we report the numerical results given by AR1DA
on the Mushroom dataset, with and without an ANN models.

For the numerical tests of this section the algorithm has been run until CM=80. There-
fore, differently from the previous numerical experimentation, we also consider models
arising from ANN and compare the quality of the approximation obtained with a fixed
amount of work corresponding to 80 CM.

158

In addition to the specifications listed in the box on page 148, the following settings
are considered:

κε = γε = 5 · 10−1, ω =
η1

4
= 2.5 · 10−2.

Moreover, the estimates for the objective function in (7.14) and its gradient needed by
the AR1DA algorithm at iteration k are provided using (2.10) with τ0,k = ω|∆T (xk, sk)| and
(2.11) with τ1,k = ε1,ik , being ik the last index considered in the inner loop for i at Step 1 of
the ARqpDA algorithm. In both (2.10)–(2.11) the failure probability t is set equal to 0.2 and
a constant κϕ is considered in place of κϕ,1(xk) and κϕ,2(xk), for all k ≥ 0. The theoretical
guideline for this is that if

κϕ ≥ max

[
sup
x∈Rn

[
max

i∈{1,...,N}
|ϕi(x)|

]
, sup
x∈Rn

[
max

i∈{1,...,N}
‖∇ϕi(x)‖

]]
,

then Theorem 19 holds with κϕ,j(xk) = κϕ, for j ∈ {1, 2} and k ≥ 0.

The value of κϕ has been chosen experimentally on each of the considered datasets,
in order to get reasonable cardinalities |Dk,`|, ` ∈ {1, 2}, and Gk throughout the running of
the algorithm. Subsection 7.2.4.1 considers κϕ = 3 · 10−3, while κϕ = 10−6 is used for the
numerical tests of Section 7.3.

Also for the tests of this section, the CM used in Subsection 7.2.3 is kept as the cost
measure. At this regard we note that each computation of the approximate objective
function at xk (i.e. f(xk)) via the left-hand side equation in (2.4) requires the weighted
cost |Dk,1|/N CM, while each evaluation of the inexact gradient at the same point using
(2.5) with a sample Gk ⊆ Dk,1 needs the extra cost of |Gk|/N CM. More in general, once
f(xk) is computed, the evaluation of ∇f(xk) costs (2|Gk r (Gk ∩ Dk,1)|+ |Gk ∩ Dk,1|) /N CM.

7.2.4.1 Binary classification of the Mushroom dataset via neural networks

We now solve the binary classification task on the Mushroom and the MNIST datasets.

The training phase considers the numerical optimisation of problem (7.13) on the train-
ing data {(ai, yi)}Ni=1 of each dataset, with meta-models net(·;x), x ∈ Rq, given by feed-
forward fully-connected ANN, formally given by the string

(d0 = da, d1, · · · , dJ = dy),

describing the number of neurons of each of the layers, where the notations are inherited
by Section 7.1.

We report in the first two columns of Table 7.12 the considered ANN and the respective
total number of parameters n. For all layers, the sigmoid activation function (7.9) has
been adopted when dealing with the Mushroom dataset, while MNIST is solved using the
hyperbolic tangent function (tanh) and the sigmoid as the activations for all the hidden
layers and the the output layer, respectively.

Thinking about the basic networks (112, 1) and (784, 1), we stress that q = 112 = da,
for the Mushroom, and q = 784, for the MNIST (and not q = dady + dy = 113, q = 785,
respectively), since in these cases a zero bias (b(1) = 0) is considered, so that (7.13) re-
duces to (7.14). Moreover, for a better understanding, let us focus on the shallow network
(112, 10, 1) considered within the Mushroom dataset. We notice that the problem (7.13)
takes the specific form:

min
x∈Rn

f(x)
def
= min

x∈Rn
1

N

N∑
i=1

ϕi(x)
def
= min

x∈Rn
1

N

N∑
i=1

(zi − net(ai;x))
2
,

159

Dataset ANN n ACC

Mushroom (112, 1) 112 97.41%
(112, 10, 1) 1141 95.37%

(112, 10, 5, 1) 1191 99.07%
(112, 10, 10, 1) 1251 96.55%
(112, 50, 20, 1) 6691 31.28%

MNIST (784, 1) 784 87.37%
(784, 15, 1) 11791 88.42%

(784, 15, 2, 1) 11810 89.23%

Table 7.12: Mushroom and MNIST datasets. List of the considered architectures (ANN) with the re-
lated number of parameters (n) and the binary classification rate (ACC) on the testing
set via AR1DA; mean values over 20 runs.

in which, given the weights W (j) ∈ Rdj×dj−1 and the bias b(j) ∈ Rdj , j ∈ {1, 2},

net(ai;x) = a
(2)
i = σ

(
10∑
r=1

W (2)(1, r)

(
σ

(
112∑
s=1

W (1)(r, s)ai(s) + b(1)(r)

))
︸ ︷︷ ︸

=a
(1)
i (r)

+b(2)

)
∈ (0, 1),

x ∈ Rn, n =

2∑
j=1

dj(1 + dj−1) = 1141,

for i ∈ {1, ..., N}, where we make use of the notations introduced in Subsection 7.1.1 and
σ is here component-wise applied.

For each of the two datasets under consideration, each architecture in Table 7.12,
coupled with the corresponding optimal parameter vector x∗ ∈ Rq coming from the
training phase, is then used as the predictive model for the labels yi of the feature vectors
ai, i ∈ {1, ..., NT }, of the corresponding testing set. The performance in terms of the binary
classification rate (ACC) on the testing set is reported in the fourth column of Table 7.12,
considering the mean value over 20 runs.

These values immediately reveal two important features of ANN.

• The first is that using an ANN is not synonym of improving performances, since there
are no universal rules to decide the particular structure of the network, establishing
the number of hidden layers and of neurons per layers, but this has to be calibrated
depending on the specific problem to solve. For instance, the shallow network con-
sidered for the Mushroom dataset seems to be a useless complication of the simpler
model (112, 1) with no hidden layers, since the classification rate undergoes a slight.
This does not happen for the MNIST dataset, in which the accuracy increases with
the growth of the number of layers within the considered ANN structures. On the
other hand, adding a second hidden layer with a small amount of neurons seems to
be particularly effective for the Mushroom dataset, giving the best performance of
AR1DA in terms of classification on the testing set. This result is also competitive with
the rates achieved by the ARC-DH algorithm in Table 7.7.

• The second is that one has to be careful in increasing the number of parameters of
the model. In fact, when the number of parameters approaches the number N =

6503 (recall Table 7.6) of training data, overfitting can easily occur. This is because in
such a situation the model is close to interpolate the data of the training set, resulting
in a low ability of generalisation on the testing set. We have shown this phenomenon
by progressively increasing the number of neurons in the second hidden layer. The

160

classification rate starts letting down even with (112, 10, 10, 1), but it drops drastically
to 31.28% when the network (112, 50, 20, 1) with 6691 parameters is considered. As
one may easily verify by looking at Tables 7.12 and 7.6, this is not the case of the
MNIST dataset, where the number of parameters n related to the ANN structures in
use is always far away from the number N = 60000 of training samples.

To get more insight, Figures 7.17–7.19 on pages 188–190 show that the decrease of
the training and testing loss against CM goes down to more or less the same values at
termination, meaning that the training phase has been particularly effective and thus
the method is able of generalising the ability of predicting labels learnt on the training
phase when the testing data are considered. The only one exception is, as expected,
the ANN (112, 50, 20, 1) (Mushroom dataset), for which the training loss gets down to a
higher value and the behaviour of the corresponding testing loss is more erratic.

Finally, we report in Figures 7.20–7.21, pages 191–192, the sample sizes (in percentage)
for computed function and gradient against CM.

For what concerns the Mushroom dataset (Figure 7.20), the graphs show that sample
size for estimating the objective function oscillates for a while, flattening on the full sample
size eventually in (112, 1) and (112, 10, 1). The same is true for the corresponding gradients
estimations, even if the growth toward the full sample is slower. The trends are even more
fluctuating with (112, 10, 5, 1), (112, 50, 20, 1) and (112, 10, 10, 1), where full sample can still
be touched for both function and gradient approximations, but they are often below this
limit. In particular, the sample size for computing the gradient always remains below 30%

of the total samples with respect to (112, 10, 10, 1), with a huge fractions of the compu-
tations under 10%, while this threshold is about 25% for (112, 10, 5, 1) and (112, 50, 20, 1). An
analogous behaviour is reflected by Figure 7.21 for MNIST.

Transversely, we note that at the same value of CM, the sample size needed for func-
tion approximation is not smaller than the corresponding sample size for computing the
gradient, according with the tighter accuracy required on the function with respect to
its gradient, suggesting a sort of hierarchy between function and its first-order derivative
information. At this regard, we remind that an absolute accuracy requirement is con-
sidered for function estimates, while gradient approximations are requested to fulfill a
relative accuracy condition.

7.3 A real-life machine learning application: the parametric
design of centrifugal pumps

In recent years, the approach of designers to the aerodynamic and mechanical redesign
of turbomachinery components has changed with respect to some decades ago [73].
Often, customer requirements lead to analyse the performance of a component with
complex geometry and to extend this investigation to different operating conditions si-
multaneously, with the aim of optimising the performance under tight constraints.

The design process considered in this section is described in [48, 105]. That is an ex-
tension of the scheme commonly used for the design of a component of a single pump.
It is based on the fact that the customer is usually provided with a catalogue of sample
pumps and the one that is closest to his requirements is individuated among them. Then,
starting from this baseline configuration the new pump is built, optimising the parame-
ters describing its geometry. When a whole family of pumps is considered, the designer
provides the customer the possibility of choosing a pump with characteristics that are
intermediate among the ones of the pumps already in the catalogue. Then, a baseline
configuration is not available and the design starts from scratch. During the design, some
objective functions are associated to the different pumps and correspond to measures

161

of performance of the pump or of the manufactural constraints for the pump to be built.
Their evaluations are indeed crucial.

Nowadays, coping with that is in principle possible evaluating the performance ob-
jective functions through Computational Fluid Dynamics (CFD) analysis (see [101]), due
to the exponential increase of computational power, but these calculations are based
on the solution of partial differential equations and can result in a computationally expen-
sive process, that can take more time than the limit allowed by the production needs. In
fact, even if reliability is still the most important aspect that guides the choice of the final
geometry, the business competitiveness requires the design process to be as short and
less expensive as possible, creating the need of meeting all customer requirements by
accepting a compromise between reliability, low-cost manufacturing and high aerody-
namic efficiency.

The research in this field is currently active, providing a wide range of different strate-
gies for the end user to handle the optimisation procedure of a machine component.
The most common techniques in this field are: gradient methods, methods based on
the response surface approximation, e.g. Artificial Neural Networks (ANN), Support Vec-
tor Machines (SVM), Design of Experiment (DOE) methods, exploratory techniques, e.g.
Genetic Algorithms (GA), simulated annealing, particle swarm optimisation algorithms,
adjoint methods or a combination of these and have been investigated in a series of
research papers, among others [101, 109, 25, 46, 61, 85, 121].

The challenge of all these frameworks and future developments is to make the reso-
lution of the underlying dynamics needed for performance evaluation compatible with
the production needs, designing a set of mathematical tools which can help evaluating
the performance in a faster way, requiring less CFD evaluations compared to usual sim-
ulations. The aim is to gain a possible increase (or at least a no significant loss) of the
prediction accuracy and no significant increase (in the worst-case) of the overall com-
putational cost.

A key point is then to preserve a data-driven approach, in order to let the scheme
rely only on the system output, without the necessity of any information regarding the
model or equations used. In this light, an idea could be employing machine learning
frameworks in the crucial phases of the parametric design, aimed at predicting the value
of performance every time that such a pipeline requires an approximate evaluation of
the performance on a new point of the design space (i.e., on an untested parametric
pump). In this context, methods based on the response surface have reached a good
level of maturity and represent a good compromise in terms of time consumption and
prediction accuracy. Regression meta-models are employed to predict values of the
functions describing the component performance and to build the response surface, in
order to reduce the number of CFD computations required and speed up the overall
optimisation process (see, [48, 110, 109]).

Generally (see [90]), a new design starts from scratch and relies on a quick and flexible
design tool, capable of describing in a continuous manner the parametrisation of the
pumps of a given family. The design space investigated to meet customer requirements
becomes really vast, so that a large number of points is required to cover it adequately,
and a very large number of computations is needed to accurately train the meta-model.
Moreover, it is difficult to estimate the required number of computations, as it will be higher
than what could be expected by the designer. In fact, no matter how robust the tool is,
it is extremely difficult to take into account a priori all the manufacturing or geometrical
constraints.

Thus, a designer could experience that many of the analysed geometries result in
unfeasible solutions from a manufacturing point of view, leading to pumps that cannot
be produced in practice. In the following, these geometries will be called unfeasible,
while all the others will be called feasible. As an outcome, the resulting training set will be

162

strongly unbalanced, in the sense that the unfeasible geometries are generally expected
to be many more than the feasible ones. Consequently, the use of such a database
to train the meta-model could lead to poor accuracy, or even to failure, of the meta-
model training. As a result, the number of computations necessary to generate a suitably
performing database, with enough feasible features, can increase exponentially, and the
time needed to perform the computations could thus be too much high compared to
the production needs.

Before outlining the specific design process, following the framework in [104], let us
consider a brief subsection about the historical background on centrifugal pumps, their
composition and main characterisation.

7.3.1 Centrifugal pumps: historical background and characterisation

The first centrifugal pump, in the modern sense of the word, dates back to the late 17-
th century, when Thomas Savery, a British engineer, Denis Papin, a French physicist, and
Thomas Newcomen, a British blacksmith and inventor, developed a water pump that
used the steam to power the pump piston. This pump was firstly used to pump the water
out of mines.

The first centrifugal impeller, whose origin is attributed to Denis Papin (1689), was char-
acterised by straight vanes. Only after 150 years, following Papin’s theory, Combs pub-
lished a paper in which he presented curved vanes and the effect of the curvature in the
design of impellers. The introduction of proper volute casing is then due to W. H. Andrews
in 1839, who also was the first to make use of a fully shrouded impeller. In the same year,
W. H. Johnson constructed the first three-stage centrifugal pump (see [62]).

The most important feature of these pumps is that the compression derives from the
centrifugal effect of the impeller. In fact, the impeller moves the fluid transforming the
mechanical energy from an external motor into kinetic energy and, then, into pressure.
Such a motor can be electrical, steam powered or an internal combustion engine (ICE).

We now list the essential components of a centrifugal pump.

• Impeller: it is the mobile part, with the function of transforming energy into pressure.
There are different types of impellers, especially based on the presence or the ab-
sence of the covers and shroud. We distinguish the following three different types.

- Closed: the impeller has radial vanes that are enclosed by two discs, named
“shrouds”.

- Semi-open: this type of impeller is generally more efficient due to the elimination
of the disk friction from the front shroud and a preferred choice when the liquid
used may contain suspended particles or fibres.

- Open: in this case the impeller can have three different types of back shrouded.
The first one is the fully scalloped open impeller, whose reduction of the back
shroud decreases massively the axial thrust, caused by the hydraulic pressure.
The second is the partially open impeller that has higher efficiency and head
characteristics, and the last is the fully back shrouded impeller.

• Volute (or pump casing): it is the channel at the impeller outlet that guides the un-
compressible flow, firstly in the suction and then in the delivery. Even this component
can have different shapes, as listed below.

- Vaneless guide ring: it consists of two smooth discs and it is used in pumps where
the liquid speed is low, as well as its heads. For large heads, the outlet diameter
of the ring would become too larger and thus it may be unpractical.

163

- Concentric casing: this structure is used with single stage pumps or the last
stage of multistage pumps. Since the casing and impeller centers are the same,
the flow pressure will not increase in the casing but only in the volutes.

- Volute casing: the main peculiarity of this casing is that it is eccentric. In fact, as
mentioned above, a part of the kinetic energy is converted into pressure head
inside the casing. This kind of volute can be used as single or double volute
casing.

- Vaned diffuser ring: it consists of the symmetrical installation of several vanes,
gradually widening, in the pump casing. The number of diffuser vanes must be
higher than the impeller vanes, otherwise pressure increase will not take place.
At the same time, if the diffuser vanes are too many, this will cause a pressure
drop.

• Shaft: it is the key element of the rotary movement of the impeller, through which it
is connected to the motor.

To be specific, this section considers the parametric design of the components of
a whole family of pumps with horizontal suction duct, single-shaft centrifugal impeller,
vertical discharge diffuser and volute, at a wide range of specific speeds, similar to that
depicted on the left-hand side of Figure 7.22 on page 192.

Following [109], each centrifugal pump can be identified by a set of da features (also
addressed as the degree of freedoms of the pump), related to the geometrical shape
and to some performance parameters of the pump. These components are compactly
stored in a vector (the feature vector). The choice of these features depends on the
specific problem at hand. We here report the main of them for the datasets we are going
to consider in Subsection 7.3.3. As suggested by [109], a three-dimensional cylindrical
coordinate system (x, r, θ) is used for the blade description and parametrisation, whose
x-axis corresponds to the pump shaft, while the r-axis and θ-axis refer to the radial and
angular position, respectively.

• Characterisation of the impeller.

- Main dimensions: the exit diameter, the maximum axial size, the outlet width,
the inlet shroud and hub diameters.

- Meridional channel layout: the shroud and hub contours are described in the
(x, r) plane.

- Blade turning angle: the camber line of a single section is parametrised in terms
of the turning angle along the meridional abscissa and takes back to azimuthal
angle for building the blade in three dimensions.

- Blade thickness: the thickness distribution is described along the curvilinear ab-
scissa along the blade.

- Stacking law: it is determined by a B-spline that describes the curve of the
azimuthal angle along the span.

• Characterisation of the volute.

- Main dimensions: the cut water diameter, the inlet width and the tongue thick-
ness.

- Volute type: the section type along the (x, r) plane; it can be trapezoidal, rect-
angular or circular.

- Area: the distribution area from the inlet to the outlet of the given volute.

164

These are the main parameters, used to define the geometry of the centrifugal pump
components.

In addition, a fluid dynamical parameter that strongly affects the pumps efficiency is
considered: the back pressure. It is defined as the resistance or the force opposing the
desired flow through pipes, due to friction loss and pressure drop. This effect is caused
also by different high or low pressure regions than intended, which implicate a reduction
of the discharge.

7.3.2 Pipelines for the parametric design: an industrial application

The industrial application considered in this section is here presented. It concerns the
parametric design of a whole family of centrifugal pumps following the pipeline in [104,
48], which is based on coupling a geometry parameterisation tool, CFD computations for
solving the Reynolds Averaged Navier-Stokes (RANS) equations and (feed-forward) ANN
as a regression meta-model (see, [72]). It is assumed that the machine performance is
evaluated through h scalar performance functions: pf1, ..., pfh and pf = (pf1, ..., pfh)> ∈
Rh.

The first phase of the procedure regards the ANN training and is described below. In
Phase 1, h ANN models, one for each performance function, are trained and will be used
in Phase 2 to build the response surface.

Pipeline 7.3.1: Parametric design of a family of turbomachinery components,
coupling CFD and ANN.
Phase 1: ANN training.

Step 1: Geometry parametrisation. Choose n parameters (degrees of freedom) to
describe the machine geometry, such that the i-th machine will be identified by a
vector ai = (ai(1), ..., ai(n))> ∈ Rn (feature or sample vector).

Step 2: Sampling of the design space. Taking into account the range of variation
of each parameter, the design space is built. Assuming that for each machine i,
amin
i (k) ≤ ai(k) ≤ amax

i (k), for k ∈ {1, ..., n}, the resulting space is defined as

L = [amin
i (1), amax

i (1)]× · · · × [amin
i (n), amax

i (n)] ⊆ Rn.

The design space is randomly sampled to generate a dataset D0 = {a1, ..., am}.

Step 3: CFD simulations. CFD computations are performed on D0 to split the features
in the sets F ′ of feasible samples and U ′ of unfeasible samples, where usually
|F ′| � |U ′|. The machine performance functions of feasible samples are evaluated:
pf(ai) = (pf1(ai), ..., pfh(ai))

> ∈ Rh for ai ∈ F ′ and a performance database DF ′ to
be used as a training set in the next stage is built, which can be thought of as a set
of pairs: DF ′ = {(ai, pf(ai)) | ai ∈ F ′}.

Step 4: ANN training. The performance database is used to train the ANN models
that, learning from the examples in DF ′ , build their own functions p̃f1, ..., p̃fh that
approximate the true measures of performance pf1, ..., pfh.

In Phase 2, the meta-models are then used to predict performance functions of new
geometries, aiming at reducing the amount of CFD computations required for the design.
On the response surface, a multi-objective algorithm is then run to find the set of optimal
configurations.

165

Pipeline 7.3.2: Parametric design of a family of turbomachinery components,
coupling CFD and ANN.
Phase 2: Research of an optimal solution set.

Step 1: Sampling of the design space. The design space is sampled again producing
a new dataset D1.

Step 2: ANN execution. ANN models are used to predict the function
pf = (pf1, ..., pfh)> on all the new samples in D1 through the function
p̃f = (p̃f1, ..., p̃fh)> built at Step 4 of Phase 1 (Pipeline 7.3.1), thus producing
the response surface.

Step 3: Multi-objective algorithm. A multi-objective algorithm is run to find the set of
optimal solutions D∗.

Step 4: CFD validation of the optimal solutions set. The found solutions set D∗ is vali-
dated through CFD computations to discard the unfeasible samples, arising from the
sampling at Step 1.

Comments on Pipelines 7.3.1–7.3.2

There are mainly two drawbacks arising in the outlined procedure.

• The first drawback arises at Steps 2–3 of Phase 1 (Pipeline 7.3.1). Even if particular
attention is dedicated to the implementation of the parameterisation tool and to
correlate the tens of degrees of freedom, when sampling the design space a wide
percentage of the samples in D0 (usually more than 70%) turn out to be unfeasible.
This is an intrinsic aspect of the nature of a parametric design, in which the same ge-
ometrical parameters and ranges of variation are applied to pump geometries with
very different characteristics, such as a wide range of specific speeds and manu-
facturing constraints. As a consequence, most of the CFD computations performed
to build the training set D0 are useless. Therefore, to obtain an accurate prediction
of the performance functions related to feasible pumps, the meta-model has to be
trained on a set F ′ ⊆ D0 of just feasible samples, but this has the disadvantage of
requiring a too large number of CFD computations to discard the feasible from the
unfeasible ones, as most of the samples will yield unfeasible geometries. Moreover,
even admitting that this discarding process would be sustainable, the number of the
feasible pumps in the training set F ′ could be too small for the meta-model to be
effective and the number of computations necessary to regenerate a training set
with enough feasible features generally increase exponentially (together with the
time needed to perform CFD computations).

• Similarly, in Phase 2 (Pipeline 7.3.2), the trained meta-model is used to predict the
objective functions of new randomly selected geometries. The sampling is per-
formed within the whole design space, so the most part of the geometries pro-
vided as meta-model input D1 are again expected to be unfeasible. The predicted
performance functions values will then be meaningless and it cannot be excluded
that Step 3 of Phase 2 yields a set of optimal solutions consisting of just unfeasible
samples, leading to the need of restarting the whole procedure. This outcome is
generally independent of the chosen meta-model, leading to the conclusion that
the considered approach may not be effective for a parametric design.

In this light, authors in [104] made the approach given in Pipelines 7.3.1–7.3.2 more
practical by including the use of a binary classifier with the aim of discarding the unfeasi-

166

ble pumps in D0 and in D1, obtained at Step 2 of Phase 1 and at Step 1 of Phase 2, in a
cheaper and faster way. This would help both to avoid a useless large amount of expen-
sive CFD calculations to form the ANN training set and to restrict the regression process
to a set mainly composed by feasible geometries, to reduce the presence of unfeasible
ones in the optimal solution set, also making the gaining of the response surface at Step
3 of Phase 2 less expensive. In so doing, due to the fact that the employment of binary
classification can lead to false positive and false negative predictions, the use of CFD
computations is still considered to be sure of removing the possible outliners (unfeasible
pumps) among the pumps classified as feasible. For such a reason, we will refer to this
novel approach as "the hybrid approach".

The tool chosen as a classifier in [104] was SVM (Support Vector Machine, see [111, 53]
for details), but the framework can in principle be stated independently of the specifi-
cation of the classifier. Hence, the novel Pipeline 7.3.3–7.3.4 are reported addressing the
classifier as BC (Binary Classifier).

Pipeline 7.3.3: Hybrid approach: Parametric design of a family of turbomachinery
components, coupling CFD, ANN and BC.
Phase 1: ANN training.

Step 1: Geometry parametrisation. Choose n parameters (degrees of freedom) to
describe the machine geometry, such that the i-th machine will be identified by a
vector ai = (ai(1), ..., ai(n))> ∈ Rn (feature or a sample vector).

Step 2: Sampling of the design space. Taking into account the range of variation
of each parameter, the design space is built. Assuming that for each machine i,
amin
i (k) ≤ ai(k) ≤ amax

i (k) for k ∈ {1, ..., n}, the resulting space is defined as

L = [amin
i (1), amax

i (1)]× · · · × [amin
i (n), amax

i (n)] ⊆ Rn.

The design space is randomly sampled to generate a dataset D0 = {a1, ..., am}.

Step 3: Binary classification. The samples in D0 are given in input to the binary
classifier which divides them into the two classes: F (classified as feasible) and U

(classified as unfeasible). Features in U are no longer taken into account and just
those in F are considered in the next steps.

Step 4: CFD simulations. CFD computations are performed on the samples in F . The
outliers are eliminated obtaining a subset F ′ of just feasible features for which the
machine performance functions are evaluated: pf(ai) = (pf1(ai), ..., pfh(ai))

> ∈ Rh

and ai ∈ F ′. The performance database DF ′ to be used as a training set in the next
stage is built, which is a set of pairs: DF ′ = {(ai, pf(ai)) | ai ∈ F ′}.

Step 5: ANN training. The performance database is used to train the ANN models
that, learning from the examples in DF ′ , build their own functions p̃f1, ..., p̃fh that
approximate the true measures of performance pf1, ..., pfh.

167

Pipeline 7.3.4: Hybrid approach: Parametric design of a family of turbomachinery
components, coupling CFD, ANN and BC.
Phase 2: Research of an optimal solution set.

Step 1: Sampling of the design space. The design space is sampled again producing
a new dataset D1.

Step 2: Binary classification. Samples in D1 are given in input to the binary classifier
which divides them into the two classes F ′′ (classified as fasible) and U ′′ (classified
as unfeasible). Features in U ′′ are no longer taken into account and just those in F ′′

are considered in the next step.

Step 3: ANN execution. The ANN model is used to predict pf = (pf1, ..., pfh)> of the
samples in F ′′.

Step 4: Multi-objective algorithm. A multi-objective algorithm is run to find the set of
optimal solutions D∗.

Step 5: CFD validation of the optimal solutions set. The found solutions set D∗ is vali-
dated through CFD computations to eliminate possible outliers (unfeasible samples).

Comments on Pipelines 7.3.3–7.3.4

The classification procedures added at Step 3 of Phase 1 and at Step 2 of Phase 2 are
intended to mitigate the drawbacks sketched in the comments after Pipelines 7.3.1–7.3.2.
Its benefit is summarised below.

• The first classification allows the CFD computations performed at Step 4 of Phase 1
to be restricted to only the set F of features classified as feasible by the classifier in
use, with the aim of eliminating outliers (i.e. false positives). This produces a great
saving in CFD computations, as usually |F | � |D0| and CFD performed on samples
in U would be of no use.

• The second process allows function values to be predicted on only samples in F ′′,
collecting pumps classified as feasible and, hopefully, mainly composed by feasible
features. However, some outliers could still be present in the set, so Step 5 of Phase
2 is still necessary, but, due to the detection already performed by the classifier, it
is expected to be much less expensive than the corresponding Step 4 of Phase 2
(Pipeline 7.3.2).

7.3.3 Numerical resolution of the classification task

In this last subsection we consider the practical training of a classifier to be used at Step
3 of Phase 1 and at Step 2 of Phase 2 (Pipelines 7.3.3–7.3.4) to discard the unfeasible
(unmanufacturable) configurations from the feasible (manufacturable) ones. This issue
has been successfully addressed in [104] on a set of three different datasets. We here
consider the two of them listed in Table 7.13 (page 169), gently provided by the TRAF-
group of the Department of Industrial Engineering of the “Università degli Studi di Firenze”.
In addition to the number of features da, the number of training samples N , the number
of testing samples NT , also the approximate ratio ρu between unfeasible and feasible
samples in the training set are reported.

As it can be easily noticed by looking at Table 7.13, the two datasets are characterised
by a different proportion between unfeasible and feasible samples in the training set.

168

Dataset Training N da Testing NT ρu

PUMPSU 50000 40 32000 3:1
PUMPSVU 61600 44 15400 7:1

Table 7.13: Pumps datasets. Size of the training set (N), problem dimension da (number of features),
size of the testing set (NT) and the ratio ρu between unfeasible and feasible pumps in
the training set.

We will hereafter refer to datasets in which the number of unfeasible and feasible
pumps is almost the same (ρu ' 1) as balanced, while datasets where the number of un-
feasible pumps is much larger than the number of feasible ones as unbalanced. Hence,
the two datasets in Table 7.13 can be both considered as unbalanced (PUMPSU stands
for PUMPS Unbalanced, PUMPSVU stands for PUMPS Very Unbalanced).

In presence of unbalanced training datasets, the classifier can have very little informa-
tion about the minority class and this is expected to result into major difficulties in learning
the recognition of such features on the testing set, making predictions on feasible con-
figurations more uncertain. It is thus easy to have many feasible features misclassified.
For the testing dataset {(ai, yi)}

NT
i=1 the exact labels yi are known, so the errors in such

predictions can be computed. Let C ∈ RNT be the vector with the correct features clas-
sification, i.e. C (i) = 1 if the i-th feature ai in the testing set is feasible (yi = 1) and C (i) = 0

if ai is unfeasible (yi = 0), i ∈ {1, ..., NT }, and PC ∈ RNT the result of the classification
process, i.e. PC (i) is the predicted value of C (i), i ∈ {1, ..., NT }.

For each feature, the following four different situations can occur.

• TP = True Positive: C (i) = 1, PC (i) = 1, the feature is feasible and is correctly classi-
fied;

• FP = False Positive: C (i) = 0, PC (i) = 1, the feature is unfeasible but is misinterpreted,
since it is classified as feasible;

• TN = True Negative: C (i) = 0, PC (i) = 0, the feature is unfeasible and is correctly
classified;

• FN = False Negative: C (i) = 1, PC (i) = 0, the feature is feasible but is misinterpreted,
since it is classified as unfeasible.

It is easy to note that when the training dataset is balanced, the probability of misin-
terpreting a feature is the same for the two classes (the probability of a false positive is
expected to be more or less the same as that of a false negative), then the fraction of
features correctly classified (binary classification rate),

ACC =
TP + TN

TN + TP + FN + FP
(7.22)

represents a good measure of accuracy. On the other hand, when dealing with training
datasets dominated by the fraction of unfeasible features, the probability of getting a
false negative can be much higher than the probability of a false positive. Therefore, the
ratio (7.22) is not so meaningful, being

ACC ' TN

TN + FN

and thus it is possible to achieve a high accuracy level even if all the features in the
minority class are misinterpreted.

169

For this reason, a proper choice of the parameters to evaluate the performance of
the classification process has to be made, taking into account that the datasets can be
unbalanced, as it is the case in the parametric design of centrifugal pumps. The two sets
of parameters reported below and considered for the numerical tests are the one in [104,
98]. The first set are the TP , FP , TN and FN in percentage form and are listed below.

• TPR = TP
TP+FN True Positive Rate or sensitivity or recall, fraction of positive samples

correctly classified over all positive samples available in the test;

• FPR = FP
TN+FP False Positive Rate, fraction of unfeasible features misinterpreted over

all negative samples available in the test;

• TNR = TN
TN+FP True Negative Rate or specificity, fraction of negative samples cor-

rectly classified over all negative samples available in the test;

• FNR = FN
TP+FN False Negative Rate, fraction of feasible features misinterpreted over

all positive samples available in the test.

The second set of parameters that is of interest for a designer is as follows.

• PPV = TP
TP+FP Positive Predictive Value, the fraction of true positives in the set of

features classified as positive;

• FDR = FP
TP+FP False Discovery Rate, the fraction of false positives in the set of fea-

tures classified as positive;

• NPV = TN
TN+FN Negative Predictive Value, the fraction of true negatives in the set

of features classified as negative;

• FOR = FN
TN+FN False Omission Rate, the fraction of false negatives in the set of

features classified as negative.

By definition, the couples (TPR,FNR), (TNR,FPR), (PPV, FDR) and (NPV,FOR)

sum up to one, so only one parameter for each couple can be shown.
We highlight that, in addition to ACC in (7.22), TPR and FPR, we will concentrate

on the following to interpret the numerical resolution of the classification problem, due to
their significant meaning in the context of parametric pumps design.

• PPV : it interests the designer as it gives a measure of the quality of set F , telling how
many features are actually feasible, meaning that FDR = 1 − PPV indicates the
percentage of useless CFD computations performed at Step 4 of Phase 1 (Pipeline
7.3.3) and how many outliers could be part of the optimal solutions set at Steps 4–5
of Phase 2 (Pipeline 7.3.4).

• FOR: it gives the percentage of feasible features that are lost owing to the classifi-
cation process, as they are incorrectly considered as unfeasible.

We will refer to the sequence of ratios TPR, FPR, PPV , FDR, FOR on the testing set
as the performance rates.

As already mentioned, the classifier used in Pipelines 7.3.3–7.3.4 by the authors in [104]
was the SVM. In this case, by making strongly use of a careful setting of the method free
parameters, their nonlinear classification task on the two datasets in Table 7.13 gives, in
the best case, the results in Table 7.14 on the next page (see [104], Tables 2–3).

As one may easily see, a large percentage of true positive is achieved in correspon-
dence of a relatively small percentage of false positive (see the values of TPR and FPR).
The values of FDR, in turn, indicate that the fraction of false positives within the set of
of features classified as positive is still not neglectable, specially in the PUMPSVU dataset,

170

Dataset TPR FPR PPV FDR FOR

PUMPSU 78.3% 23.0% 50.8% 49.2% 7.9%
PUMPSVU 83.0% 19.8% 39.4% 60.6% 3.1%

Table 7.14: Pumps datasets. Performance rates (testing set) via SVM in [104].

where only 39.4% of the features classified as positive corresponds to true positives. This will
lead to a remaining effort in terms of CFD evaluations when considering Step 4 in Phase
1 and Steps 4–5 in Phase 2 of Pipelines 7.3.3–7.3.4, to be sure of eliminating the remaining
false positives. Last, the FOR rate is particularly low on the PUMPSVU dataset, meaning
that just 3.1% of the feasible features are lost during the classification process, due to their
wrong classification, while this percentage is more than doubled for the PUMPSU dataset.

To sum up, the SVM strategy seems to be particularly capable of detecting true pos-
itives and this feature appears to be quite robust to the unbalance of the training set.
To our knowledge, this is currently a characteristic that has not been overcome by other
tested methods on this specific class of centrifugal pumps datasets. On the other hand,
some drawbacks are still in place. For instance, one could wonder whether a larger gain
in terms of CFD savings measured by FDR, hopefully with a lower loss of feasible feature
among the classification process, i.e. with lower values of FOR. Moreover, the imple-
mentation of the code considered in [104] is far from being smart and its execution is
generally expensive in terms of computational time. This could be a limit when dealing
with the needs of the overall industrial process. Therefore, alternative resolutions based
on innovative methods could be of interest, at least when dealing with moderately un-
balanced datasets as the PUMPSU.

A first effort in this direction was made by the first author in [104], using two second-
order strategies based on the Levenberg-Marquardt method, namely the FLM and the
LMN method in [105]. We report the resulting set of performance rates on the testing set
in Table 7.15 below.

Method TPR FPR PPV FDR FOR

FLM [105] 76% 20% 36% 64% 5%
LMN [105] 77% 23% 34% 66% 4%

Table 7.15: PUMPSU dataset. Performance rates (testing set) via the FLM and the LMN methods in
[105].

The outcomes are comparable with the one in Table 7.14 for the PUMPSU dataset for what
concerns the TPR and the FPR and a little reduction of FOR is achieved, but show a
degradation in terms of PPV and FDR. Hence, no improvements are obtained when
looking at the use of the classifier in Pipelines 7.3.3-7.3.4 in terms of possible gain in CFD
computations.

Our contribution attempts to take a step further about this practical aspect. To this
purpose, we solve the nonconvex minimisation problem (7.14) (with σ defined in (7.9)),
consisting in a least-squares minimisation with sigmoid prediction in which labels 1 corre-
spond to feasible pumps, while labels 0 denote unfeasible configurations. For the training
and testing phase, the datasets in Table 7.13 have been considered. In order to give an
innovative investigation of the problem resolution, the AR1DA algorithm (see Algorithm
11) and the ARC-Dynamic (see Subsection 7.2.2) have been tested. The implementa-
tion follows the specifications in Subsection 7.2.4, with the only difference of consider-
ing κ = 10−6, the stopping criterion (7.17) for AR1DA and (7.16) for ARC-Dynamic with

171

ε1 = 10−4, in order to compare with the results in Table 7.15.
To present the results we first consider the PUMPSU dataset and plot in Figure 7.23 on

page 193 the testing losses computed by AR1DA and ARC-Dynamic with respect to the
cost measure CM defined in Subsection 7.2.3 and in Figure 7.24 the sample size (percent-
age) used by AR1DA for estimating function and gradient against CM, while the perfor-
mance rates on the testing set are reported in Table 7.16 below (mean values over 20 runs
are considered).

Method TPR FPR PPV FDR FOR ACC

ARC-Dynamic 73.2% 30.9% 64.4% 35.6% 22.9% 70.8%
AR1DA 72.8% 31.3% 64.1% 35.9% 23.3% 70.5%

Table 7.16: PUMPSU dataset. Performance rates and binary classification rate (ACC) on the testing
set via ARC-Dynamic and AR1DA; mean values over 20 runs.

We highlight that the accuracy in the overall binary classification is around 71%, with
TPR values close to the ones obtained by the methods in Table 7.15. The Levenberg-
Marquardt methods considered in Table 7.15 produce preferable FPR and FOR rates,
but our experimentation significantly lowers the percentage of useless CFD evaluations
involved in the design process, producing a cost saving of at least 44% (compare the
FDR values in Tables 7.15–7.16). Moreover, the computational time switches from minutes
to seconds, since both the ARC-Dynamic and AR1DA algorithm terminate in at most
10 seconds, while the elapsed time reported in [105] for the results in Table 7.15 via the
FLM method is 15 minutes and all the algorithms in Tables 7.15–7.16 result in a very smart
implementation when comparing to SVM.

Interestingly, Figure 7.24 shows that the sample size for gradient approximation is almost
always below 8% of the full sample size, without never reaching it, and it remains much
lower than the corresponding sample size for evaluating the function estimate, according
to the behaviour of the method in the numerical tests of Subsection 7.2.4.1.

We also notice that the performances of AR1DA and ARC-Dynamic are very close,
even thought ARC-Dynamic outperforms AR1DA as it can be also seen from Figure 7.23,
comparing the decrease of the testing losses generated by the two methods.

Analogous, but less favorable, performance and accuracy rates are obtained when
solving the problem with other two well-known first-order methods, the Mini-Batch Gra-
dient Descent (MBGD) method and the Stochastic Variance Reduced Gradient (SVRG)
method. The null vector is still considered as the starting point and, following [27, 78, 76],
the step size 5 · 10−3 and the mini-batch size 27 is considered for MBGD, while the imple-
mentation of SVRG considers a step size of 10−1 and 5N inner iterations for each outer
iteration. The performance rates and the accuracy in binary classification when (7.17) is
reached are reported in Table 7.17.

Method TPR FPR PPV FDR FOR ACC

MBGD 71.7% 31.4% 63.6% 36.4% 24.0% 69.9%
SVRG 72.5% 32.1% 63.4% 36.6% 23.7% 69.9%

Table 7.17: PUMPSU dataset. Performance rates and binary accuracy (ACC) on the testing set via
MBGD and SVRG; mean values over 20 runs.

Interestingly, the best performing of ARC-Dynamic with respect to first-order methods
is even much more evident when dealing with the very unbalanced dataset PUMPSVU,
as it can bee seen below from Table 7.18.

172

Method TPR FPR PPV FDR FOR ACC

ARC-Dynamic 20.6% 2.0% 59.3% 40.7% 10.0% 88.7%
AR1DA, MBGD, SVR 0% 0% undefined undefined 12.1% 87.9%

Table 7.18: PUMPSVU dataset. Performance rates and binary accuracy (ACC) on the testing set via
ARC-Dynamic and the set of first-order methods: AR1DA, MBGD and SVR; mean values
over 20 runs.

With this dataset, the main difficulty in the classification process is that the set of data
the ARC-Dynamic algorithm has to be trained on, and that have to be classified, is very
unbalanced, owing to the strong predominance of unfeasible geometries over feasible
ones. Consequently, as might be expected, the performance rates in Table 7.18 com-
puted by ARC-Dynamic show that the method is very affordable in the recognition of
unfeasible pumps (the FPR drops to 2% improving also the corresponding value given in
Table 7.14 by the SVM), but suffers from an intrinsic deficit in learning the classification of
feasible pumps.

This characteristic is also evident looking at the decrease of the training and the testing
loss in Figure 7.23, since at termination both the curves are totally flat and, hence, the
learning process do not manage to go further. Accordingly, this is an example in which
the high accuracy (ACC value) in the overall binary classification is not so representative,
being just a reflection of the fact that the number of unfeasible pumps in the training set,
that are correctly classified by ARC-Dynamic, is much larger than the number of feasible
one (recall that ρu ' 7).

Remark 10 (Effectiveness of second-order curvature information). The difficulty of detect-
ing feasible pumps is extremely more marked when solving the problem with the first-order
methods in Table 7.18, where all the pumps in the testing set are classifies as unfeasible
(thus PPV and FDR are undefined). Remarkably, this feature does not change also al-
lowing full gradient and function evaluations in AR1DA and exact gradient evaluations in
MBGD, SVRG, so this seems a real-life example in which second-order information play a
crucial role.

Nevertheless, even if the use of ARC-Dynamic on the PUMPSVU dataset allows a wide
percentage of false positives in the classified set, the general advantage gained by the
use of the classification procedure is that it lowers the ratio between unfeasible and feasi-
ble pumps in the testing set, corresponding to F ′ and F ′′ in Pipelines 7.3.3–7.3.4, that has
to be checked by expensive CFD computations. This new ratio is given by FDR/PPV and
it is definitely lower using ARC-Dynamic and AR1DA with respects to the other reported
methods, among both the pumps dataset at hand, as evident from Table 7.19 on the
next page. In particular, the original ratio ρu = 7 between unfeasible and feasible pumps
in the training set is reduced by a factor 10 using ARC-Dynamic on the PUMPSVU dataset,
giving FDR/PPV = 0.69.

173

Dataset ρu FDR/PPV
SVM FLM LMN MBGD SVRG AR1DA ARC-Dynamic

PUMPSU 3 0.97 1.78 1.94 0.57 0.58 0.56 0.55
PUMPSVU 7 1.54 n.a. n.a. und. und. und. 0.69

Table 7.19: Pumps datasets. Ratio FDR/PPV computed by the considered methods on the
PUMPSU and the PUMPSVU datasets. The values of ρu on both datasets are also re-
ported. The notation “n.a.” and “und.” stand for “not available" and “undefined”,
respectively.

20 40 60 80 100 120 140 160 180

Effective Gradient Evaluations

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
ra

in
in

g
 l
o
s
s

SYNTHETIC1

20 40 60 80 100 120 140 160 180

Effective Gradient Evaluations

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
e
s
ti
n
g
 l
o
s
s

SYNTHETIC1

20 40 60 80 100 120 140 160 180 200

Effective Gradient Evaluations

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
ra

in
in

g
 l
o
s
s

SYNTHETIC2

20 40 60 80 100 120 140 160 180 200

Effective Gradient Evaluations

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
e
s
ti
n
g
 l
o
s
s

SYNTHETIC2

20 40 60 80 100 120 140 160 180

Effective Gradient Evaluations

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
ra

in
in

g
 l
o
s
s

SYNTHETIC3

20 40 60 80 100 120 140 160 180

Effective Gradient Evaluations

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
e

s
ti
n

g
 l
o

s
s

SYNTHETIC3

Figure 7.1: Comparison of ARC-Dynamic (continuous line), ARC-Dynamic(c) with c = 0.5 (dashed
line with circles), c = 0.75 (dashed line with asterisks), c = 1.25 (dashed line with plus
symbols), ARC-KL (dashed line with diamonds) and ARC-Sub (dashed line with triangles)
against EGE. Each row corresponds to a different synthetic dataset. Training loss (left)
and testing loss (right) against EGE, logarithmic scale on the y axis.

174

20 40 60 80 100 120 140 160 180 200

Effective Gradient Evaluations

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
ra

in
in

g
 l
o
s
s

SYNTHETIC4

20 40 60 80 100 120 140 160 180 200

Effective Gradient Evaluations

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
e
s
ti
n
g
 l
o
s
s

SYNTHETIC4

20 40 60 80 100 120 140 160 180

Effective Gradient Evaluations

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
ra

in
in

g
 l
o
s
s

SYNTHETIC6

20 40 60 80 100 120 140 160 180

Effective Gradient Evaluations

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
e
s
ti
n
g
 l
o
s
s

SYNTHETIC6

Figure 7.2: Comparison of ARC-Dynamic (continuous line), ARC-Dynamic(c) with c = 0.25 (dashed
line with squares), c = 0.5 (dashed line with circles), c = 0.75 (dashed line with asterisks),
c = 1 (dashed line with crosses), ARC-KL (dashed line with diamonds) and ARC-Sub
(dashed line with triangles) against EGE. Each row corresponds to a different synthetic
dataset. Training loss (left) and testing loss (right) against EGE, logarithmic scale on the
y axis.

175

20 40 60 80 100 120 140 160 180

Effective Gradient Evaluations

10
-3

10
-2

E
u
c
li
d
e
a
n
 G

ra
d
ie

n
t
N

o
rm

SYNTHETIC1

20 40 60 80 100 120 140 160 180 200

Effective Gradient Evaluations

10
-3

10
-2

E
u
c
li
d
e
a
n
 G

ra
d
ie

n
t
N

o
rm

SYNTHETIC2

20 40 60 80 100 120 140 160 180

Effective Gradient Evaluations

10
-3

10
-2

E
u
c
li
d
e
a
n
 G

ra
d
ie

n
t
N

o
rm

SYNTHETIC3

20 40 60 80 100 120 140 160 180 200

Effective Gradient Evaluations

10
-3

10
-2

E
u
c
li
d
e
a
n
 G

ra
d
ie

n
t
N

o
rm

SYNTHETIC4

20 40 60 80 100 120 140 160 180

Effective Gradient Evaluations

10
-3

10
-2

E
u
c
li
d
e
a
n
 G

ra
d
ie

n
t
N

o
rm

SYNTHETIC6

Figure 7.3: Synthetic datasets, Euclidean norm of the gradient against EGE (training set), logarith-
mic scale on the y axis. ARC-Dynamic (continuous line), ARC-Dynamic(c) with c = 0.25
(dashed line with squares), c = 0.5 (dashed line with circles), c = 0.75 (dashed line with
asterisks), c = 1 (dashed line with crosses), c = 1.25 (dashed line with plus symbols), ARC-
KL (dot line with diamonds) and ARC-Sub (dashed line with triangles).

176

5 10 15 20 25

Iteration

10
-2

10
-1

10
0

E
u
c
lid

e
a
n
 n

o
rm

 o
f
th

e
 s

te
p

SYNTHETIC1

5 10 15 20 25

Iteration

10
-2

10
-1

10
0

10
1

E
u
c
lid

e
a
n
 n

o
rm

 o
f
th

e
 s

te
p

SYNTHETIC2

5 10 15 20 25

Iteration

10
-2

10
-1

10
0

E
u
c
lid

e
a
n
 n

o
rm

 o
f
th

e
 s

te
p

SYNTHETIC3

2 4 6 8 10 12 14 16 18

Iteration

10
-2

10
-1

10
0

10
1

E
u
c
lid

e
a
n
 n

o
rm

 o
f
th

e
 s

te
p

SYNTHETIC4

2 4 6 8 10 12 14 16

Iteration

10
-2

10
-1

10
0

E
u
c
lid

e
a
n
 n

o
rm

 o
f
th

e
 s

te
p

SYNTHETIC6

Figure 7.4: Synthetic datasets, 2-norm of the step against iterations via ARC-KL. Logarithmic scale
on the y-axis.

177

2 4 6 8 10 12 14 16 18

Iterations

1000

2000

3000

4000

5000

6000

7000

8000

9000

S
a
m

p
le

 s
iz

e

SYNTHETIC1

2 4 6 8 10 12 14 16 18

Iterations

1000

2000

3000

4000

5000

6000

7000

8000

9000

S
a
m

p
le

 s
iz

e

SYNTHETIC2

2 4 6 8 10 12 14 16

Iterations

1000

2000

3000

4000

5000

6000

7000

8000

9000

S
a
m

p
le

 s
iz

e

SYNTHETIC3

2 4 6 8 10 12 14

Iterations

1

2

3

4

5

6

7

8

9

S
a

m
p

le
 s

iz
e

10
4 SYNTHETIC4

2 4 6 8 10 12 14

Iterations

1

2

3

4

5

6

7

8

9

S
a

m
p

le
 s

iz
e

10
4 SYNTHETIC6

Figure 7.5: Synthetic datasets. Sample size for Hessian approximations against iterations.

178

6 7 8 9 10 11 12 13 14 15 16 17

Iterations

1150

1200

1250

1300

1350

S
a
m

p
le

 s
iz

e

SYNTHETIC1

6 8 10 12 14 16 18

Iterations

1180

1200

1220

1240

1260

1280

1300

1320

1340

S
a
m

p
le

 s
iz

e

SYNTHETIC2

6 7 8 9 10 11 12 13 14 15

Iterations

1150

1200

1250

1300

1350

S
a
m

p
le

 s
iz

e

SYNTHETIC3

7 8 9 10 11 12 13 14 15

Iterations

1.26

1.27

1.28

1.29

1.3

1.31

1.32

1.33

1.34

1.35

1.36

S
a
m

p
le

 s
iz

e

10
4 SYNTHETIC4

5 6 7 8 9 10 11 12 13 14 15

Iterations

1.26

1.28

1.3

1.32

1.34

1.36

S
a
m

p
le

 s
iz

e

10
4 SYNTHETIC6

Figure 7.6: Synthetic datasets. Portions of the corresponding graphs in Figure 7.5 showing the itera-
tions associated to low sample sizes.

179

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

s
(

)
fr

a
c
ti
o
n
 o

f
p
ro

b
le

m
s
 f
o
r

w
h
ic

h
 m

e
th

o
d
 i
s
 w

it
h
in

 o

f
b
e
s
t

PERFORMANCE PROFILE

ARC-Dynamic

ARC-Fix(0.01)

ARC-Fix(0.05)

ARC-Fix(0.1)

ARC-Fix(0.2)

Figure 7.7: Performance profile (EGE count) on [1, 3.4] for real datasets.

5 10 15 20 25 30 35 40 45 50

Effective Gradient Evaluations

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
ra

in
in

g
 l
o

s
s

MNIST

5 10 15 20 25 30 35 40 45 50

Effective Gradient Evaluations

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
e

s
ti
n

g
 l
o

s
s

MNIST

20 40 60 80 100 120 140 160 180

Effective Gradient Evaluations

10
-3

10
-2

10
-1

T
ra

in
in

g
 l
o

s
s

GISETTE

20 40 60 80 100 120 140 160 180

Effective Gradient Evaluations

10
-1

T
e

s
ti
n

g
 l
o

s
s

GISETTE

Figure 7.8: MNIST dataset (top), Gisette dataset (bottom), training loss (left) and testing loss (right)
against EGE, logarithmic scale on the y axis. ARC-Dynamic (continuous line), ARC-Fix(p)
with p = 0.2 (dashed line with crosses), p = 0.1 (dashed line with asterisks), p = 0.05
(dashed line with circles), p = 0.01 (dashed line with squares) and ARC-Full (dashed line
with triangles).

180

5 10 15 20 25 30 35 40 45 50

Effective Gradient Evaluations

10
-2

10
-1

T
ra

in
in

g
 l
o
s
s

MUSHROOM (=1e-3)

5 10 15 20 25 30 35 40 45 50

Effective Gradient Evaluations

10
-2

10
-1

T
e
s
ti
n
g
 l
o
s
s

MUSHROOM (=1e-3)

20 40 60 80 100 120 140

Effective Gradient Evaluations

10
-4

10
-3

10
-2

10
-1

T
ra

in
in

g
 l
o

s
s

MUSHROOM (=1e-5)

20 40 60 80 100 120 140

Effective Gradient Evaluations

10
-3

10
-2

10
-1

T
e

s
ti
n

g
 l
o

s
s

MUSHROOM (=1e-5)

Figure 7.9: Mushroom dataset, training loss (left) and testing loss (right) against EGE, logarithmic
scale on the y axis. ARC-Dynamic (continuous line), ARC-Fix(p) with p = 0.2 (dashed
line with crosses), p = 0.1 (dashed line with asterisks), p = 0.05 (dashed line with circles),
p = 0.01 (dashed line with squares) and ARC-Full (dashed line with triangles).

181

5 10 15 20 25 30 35 40 45 50

Effective Gradient Evaluations

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
ra

in
in

g
 l
o
s
s

HTRU2

5 10 15 20 25 30 35 40 45 50

Effective Gradient Evaluations

10
-1

T
e

s
ti
n

g
 l
o

s
s

HTRU2

50 100 150 200 250 300 350 400 450 500 550 600

Effective Gradient Evaluations

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
ra

in
in

g
 l
o
s
s

CINA0

50 100 150 200 250 300 350 400 450 500 550 600

Effective Gradient Evaluations

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
e
s
ti
n
g
 l
o
s
s

CINA0

5 10 15 20

Effective Gradient Evaluations

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
ra

in
in

g
 l
o

s
s

A9A

5 10 15 20

Effective Gradient Evaluations

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
e

s
ti
n

g
 l
o

s
s

A9A

Figure 7.10: HTRU2 dataset (top), Cina0 dataset (mid), a9a dataset (bottom), training loss (left) and
testing loss (right) against EGE, logarithmic scale on the y axis. ARC-Dynamic (contin-
uous line), ARC-Fix(p) with p = 0.2 (dashed line with crosses), p = 0.1 (dashed line with
asterisks), p = 0.05 (dashed line with circles), p = 0.01 (dashed line with squares) and
ARC-Full (dashed line with triangles).

182

5 10 15 20 25 30 35 40 45 50

Effective Gradient Evaluations

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
ra

in
in

g
 l
o
s
s

IJCNN1

5 10 15 20 25 30 35 40 45 50

Effective Gradient Evaluations

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
e
s
ti
n
g
 l
o
s
s

IJCNN1

100 200 300 400 500 600 700 800 900 1000

Effective Gradient Evaluations

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

T
ra

in
in

g
 l
o
s
s

REGED0

100 200 300 400 500 600 700 800 900 1000

Effective Gradient Evaluations

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
e
s
ti
n
g
 l
o
s
s

REGED0

Figure 7.11: Ijcnn1 dataset (top), Reged0 dataset (bottom), training loss (left) and testing loss (right)
against EGE, logarithmic scale on the y axis. ARC-Dynamic (continuous line), ARC-
Fix(p) with p = 0.2 (dashed line with crosses), p = 0.1 (dashed line with asterisks), p = 0.05
(dashed line with circles), p = 0.01 (dashed line with squares) and ARC-Full (dashed line
with triangles).

183

20 40 60 80 100 120

Cost Measure

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
ra

in
in

g
 l
o
s
s

SYNTHETIC1

ARC-Dynamic

SARC

20 40 60 80 100 120

Cost Measure

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
e
s
ti
n
g
 l
o
s
s

SYNTHETIC1

ARC-Dynamic

SARC

10 20 30 40 50 60 70 80 90 100

Cost Measure

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
ra

in
in

g
 l
o
s
s

SYNTHETIC2

ARC-Dynamic

SARC

10 20 30 40 50 60 70 80 90 100

Cost Measure

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
e
s
ti
n
g
 l
o
s
s

SYNTHETIC2

ARC-Dynamic

SARC

10 20 30 40 50 60 70 80 90 100

Cost Measure

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
ra

in
in

g
 l
o
s
s

SYNTHETIC3

ARC-Dynamic

SARC

10 20 30 40 50 60 70 80 90 100

Cost Measure

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
e
s
ti
n
g
 l
o
s
s

SYNTHETIC3

ARC-Dynamic

SARC

Figure 7.12: Synthetic datasets. Comparison of SARC (continuous line with asterisks) and ARC-
Dynamic (dashed line with triangles) against the considered cost measure CM. Each
row corresponds to a different synthetic dataset. Training loss (left) and testing loss
(right) against CM with logarithmic scale on the y axis.

184

20 40 60 80 100 120

Cost Measure

0.1

0.15

0.2

0.25

T
ra

in
in

g
 l
o
s
s

SYNTHETIC4

ARC-Dynamic

SARC

20 40 60 80 100 120

Cost Measure

0.1

0.15

0.2

0.25

T
e
s
ti
n
g
 l
o
s
s

SYNTHETIC4

ARC-Dynamic

SARC

10 20 30 40 50 60 70 80 90 100

Cost Measure

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
ra

in
in

g
 l
o
s
s

SYNTHETIC6

ARC-Dynamic

SARC

10 20 30 40 50 60 70 80 90 100

Cost Measure

0.1

0.15

0.2

0.25

T
e
s
ti
n
g
 l
o
s
s

SYNTHETIC6

ARC-Dynamic

SARC

Figure 7.13: Synthetic datasets. Comparison of SARC (continuous line with asterisks) and ARC-
Dynamic (dashed line with triangles) against the considered cost measure CM. Each
row corresponds to a different synthetic dataset. Training loss (left) and testing loss
(right) against CM with logarithmic scale on the y axis.

185

20 40 60 80 100 120

Cost Measure

10
-2

E
u
c
lid

e
a
n
 N

o
rm

 o
f
C

o
m

p
u
te

d
 G

ra
d
ie

n
t

SYNTHETIC1

ARC-Dynamic

SARC

10 20 30 40 50 60 70 80 90 100

Cost Measure

10
-2

E
u
c
lid

e
a
n
 N

o
rm

 o
f
C

o
m

p
u
te

d
 G

ra
d
ie

n
t

SYNTHETIC2

ARC-Dynamic

SARC

10 20 30 40 50 60 70 80 90 100

Cost Measure

10
-2

E
u
c
lid

e
a
n
 N

o
rm

 o
f
C

o
m

p
u
te

d
 G

ra
d
ie

n
t

SYNTHETIC3

ARC-Dynamic

SARC

20 40 60 80 100 120

Cost Measure

0.006

0.008

0.01

0.012

0.014

0.016

0.018

E
u
c
lid

e
a
n
 N

o
rm

 o
f
C

o
m

p
u
te

d
 G

ra
d
ie

n
t

SYNTHETIC4

ARC-Dynamic

SARC

10 20 30 40 50 60 70 80 90 100

Cost Measure

0.005

0.01

0.015

0.02

0.025

0.03

E
u
c
lid

e
a
n
 N

o
rm

 o
f
C

o
m

p
u
te

d
 G

ra
d
ie

n
t

SYNTHETIC6

ARC-Dynamic

SARC

Figure 7.14: Synthetic datasets. Euclidean norm of the computed gradient against CM (training
set) with logarithmic scale on the y axis. SARC (continuous line with asterisks), ARC-
Dynamic (dashed line with triangles).

186

1 2 3 4 5 6 7 8 9 10 11

Iterations

10

20

30

40

50

60

70

80

90

100

S
a
m

p
le

 s
iz

e
 (

p
e
rc

e
n
ta

g
e
)

SYNTHETIC1

ARC-Dynamic (Hessian)

SARC (Hessian)

SARC (gradient)

1 2 3 4 5 6 7 8 9 10 11

Iterations

10

20

30

40

50

60

70

80

90

100

S
a
m

p
le

 s
iz

e
 (

p
e
rc

e
n
ta

g
e
)

SYNTHETIC2

ARC-Dynamic (Hessian)

SARC (Hessian)

SARC (gradient)

1 2 3 4 5 6 7 8 9 10 11

Iterations

10

20

30

40

50

60

70

80

90

100

S
a
m

p
le

 s
iz

e
 (

p
e
rc

e
n
ta

g
e
)

SYNTHETIC3

1 2 3 4 5 6 7 8 9 10 11

Iterations

10

20

30

40

50

60

70

80

90

100

S
a
m

p
le

 s
iz

e
 (

p
e
rc

e
n
ta

g
e
)

SYNTHETIC4

ARC-Dynamic (Hessian)

SARC (Hessian)

SARC (gradient)

1 2 3 4 5 6 7 8 9 10

Iterations

10

20

30

40

50

60

70

80

90

100

S
a
m

p
le

 s
iz

e
 (

p
e
rc

e
n
ta

g
e
)

SYNTHETIC6

ARC-Dynamic (Hessian)

SARC (Hessian)

SARC (gradient)

Figure 7.15: Synthetic datasets. Sample size (percentage) for Hessian approximations employed
by ARC-Dynamic (dashed line with triangles) and SARC (dashed line with asterisks),
together with the sample size (percentage) for gradient approximations considered by
SARC (dotted dashed line with asterisks) against iterations.

187

20 30 40 50 60 70 80 90 100

0

90

100

110

120

130

140

150

160

170

180

190

C
M

T

SYNTHETIC1

ARC-Dynamic

SARC

20 30 40 50 60 70 80 90 100

0

100

150

200

250

C
M

T

SYNTHETIC4

ARC-Dynamic

SARC

Figure 7.16: Cost Measure at Termination (CMT) against τ0 among SARC (continuous line) and
ARC-Dynamic (dashed line) on Synthetic1 and Synthetic4.

Figure 7.17: Mushroom dataset. Each row corresponds to a different ANN architecture within the
AR1DA method. Training loss (left) and testing loss (right) against CM.

188

Figure 7.18: Mushroom dataset. Each row corresponds to a different ANN architecture within the
AR1DA method. Training loss (left) and testing loss (right) against CM.

189

0 10 20 30 40 50 60 70 80
Cost Measure

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Tr
ai

ni
ng

 lo
ss

MNIST

0 10 20 30 40 50 60 70 80
Cost Measure

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Te
st

in
g

lo
ss

MNIST

0 10 20 30 40 50 60 70 80
Cost Measure

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Tr
ai

ni
ng

 lo
ss

MNIST

0 10 20 30 40 50 60 70 80
Cost Measure

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Te
st

in
g

lo
ss

MNIST

0 10 20 30 40 50 60 70 80
Cost Measure

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Tr
ai

ni
ng

 lo
ss

MNIST

0 10 20 30 40 50 60 70 80
Cost Measure

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Te
st

in
g

lo
ss

MNIST

Figure 7.19: MNIST dataset. Each row corresponds to the performance of AR1DA with a different
ANN architecture: (784, 1) (first row), (784, 15, 1) (second row) and (784, 15, 2, 1) (third
row). Training loss (left) and testing loss (right) against CM.

190

Figure 7.20: Mushroom dataset. Each row corresponds to a different ANN architecture within the
AR1DA method. Sample size (percentage) for computed objective and gradient
against CM.

191

0 10 20 30 40 50 60 70 80
Cost Measure

0

50

100

%
 sa

m
pl

e
siz

e
fo

r f

MNIST

0 10 20 30 40 50 60 70 80
Cost Measure

0

50

100

%
 sa

m
pl

e
siz

e
fo

r g

0 10 20 30 40 50 60 70 80
Cost Measure

0

50

100

%
 sa

m
pl

e
siz

e
fo

r f

MNIST

0 10 20 30 40 50 60 70 80
Cost Measure

0

50

100

%
 sa

m
pl

e
siz

e
fo

r g

0 10 20 30 40 50 60 70 80
Cost Measure

0

50

100

%
 sa

m
pl

e
siz

e
fo

r f

MNIST

0 10 20 30 40 50 60 70 80
Cost Measure

0

50

100

%
 sa

m
pl

e
siz

e
fo

r g

Figure 7.21: MNIST dataset. Sample sizes performed by AR1DA with different ANN architectures
against CM: (784, 1) (top-left), (784, 15, 1) (top-right) and (784, 15, 2, 1) (bottom).

Figure 7.22: Single-shaft centrifugal impeller (left) and 3D view of impeller grid (right).

192

0 5 10 15 20 25 30 35 40 45 50

Cost Measure

0.19

0.2

0.21

0.22

0.23

0.24

0.25

T
e

s
ti
n

g
 l
o

s
s

PUMPSU

5 10 15 20 25 30

Cost Measure

0.1

0.15

0.2

0.25

T
ra

in
in

g
 /
 T

e
s
ti
n
g
 l
o
s
s

PUMPSVU

Figure 7.23: Left: PUMPSU dataset, comparison of ARC-Dynamic (continuous line) and AR1DA
(dashed line) against Cost Measure. Right-hand side.
Right: PUMPSVU dataset, training loss (dashed line) and testing loss (continuous line)
against Cost Measure via ARC-Dynamic.

0 5 10 15 20 25 30 35 40 45 50

Cost Measure

0

20

40

60

80

100

S
a
m

p
le

 s
iz

e
 o

f

 c
o
m

p
u
te

d
 f
u
n
c
ti
o
n
 (

%
)

AR1DA

0 5 10 15 20 25 30 35 40 45 50

Cost Measure

0

5

10

15

20

25

30

S
a
m

p
le

 s
iz

e
 o

f

c
o
m

p
u
te

d
 g

ra
d
ie

n
t
(%

)

AR1DA

Figure 7.24: PUMPSU dataset. Sample size (percentage) for gradient and Hessian approximations
employed by AR1DA against Cost Measure.

193

Conclusions and Perspectives

In this thesis we have ideated, analysed and tested novel variants of adaptive regu-
larisation methods, allowing for inexactness in function and/or derivatives evaluations,
able to reduce the per-iteration cost of their exact counterparts while preserving optimal
complexity. This latter result has been the common thread to perform a deterministic,
probabilistic and stochastic complexity analysis.

We conclude summarising our main research contributions and highlighting future per-
spectives.

We have started ideating an ARC algorithm with inexact Hessian computations in
which the accuracy requirement (3.3) is totally reliable and implementable, without re-
quiring inner loops subject to the step computation, that is the ARC-DH algorithm. This is
a relevant improvement in itself, since to our knowledge all the methods based on the
classical (implicit) agreement (1.31) (see, e.g. [44]) call for inner loops to approximate
the Hessian, since the level of resemblance ‖∇2f(xk) − ∇2f(xk)‖ at iteration k depends
on the norm of the step ‖sk‖ that is unknown when computing ∇2f(xk). In fact, just con-
sider the basic ARC algorithm (Algorithm 2), we notice that ‖sk‖ can be determined only
once the step computation (Step 2) is performed, while the Hessian approximation is re-
quired for the model definition already at Step 1. In this respect, the trick of using ‖sk−1‖
in place of ‖sk‖ to fulfill (1.31) before the step computation, used in [79], is not always
licit, as highlighted in the numerical tests of Subsection 7.2.2.1. On this we notice that the
vicious circle related to (1.31) is eluded by our accuracy requirement (3.3) for the Hessian
approximation. That allows us to get rid off inner loops for Hessian estimation and only
results in at most an unsuccessful iteration in the sense of Step 4 of the ARC-DH algorithm.

The approach also enhances on the ones that use an absolute accuracy requirement
for Hessian approximation of the form ‖∇2f(xk)−∇2f(xk)‖ ≤ µ, with µ = O(ε1), as the main
advantage of our adaptive strategy in Chapter 3 is that the accuracy requirement ck for
Hessian approximation (recall (3.3)) can be arbitrary large to reduce, when ‖sk‖ ≥ 1, the
per-iteration cost and it approaches the first-order tolerance ε1 only when ‖∇f(xk)‖ ' ε1
and ‖sk‖ < 1. This adaptive selection formalises the intuition that the accuracy on the
inexact Hessian does not need to be stringent from the beginning, but it can be loose
when starting the iterative process, it is allowed to oscillate adaptively during the execu-
tion, becoming more stringent only when the norm of the step falls below the threshold 1

and a first-order critical point is approached. A quantification of the criticality that could
be reached if the Hessian accuracy is quantised, with a finite number of accuracy levels,
could also be an interesting point for future investigation.

We have also showed that in the case of sums of strictly convex functions the com-
plexity bound is improved in terms of component Hessian evaluations over schemes that
do not employ adaptive rules.

We tested the new algorithm in Subsection 7.2.2 on a large number of problems and
compared its outcome with the performance of its exact counterpart, ARC variants with
optimal complexity and of ARC variants employing a prefixed small Hessian sample size
with suboptimal complexity properties. The former comparison was carried out on syn-
thetic datasets coming from moderately ill-conditioned problems, while the latter com-

195

parison considers machine learning datasets coming from the literature.
Numerical results within the context of supervised learning highlight that adaptiveness

allows to reduce the overall computational effort without affecting the resolution of the
nonconvex binary classification tasks and that the performance of the proposed method
is quite problem independent, while strategies taking a prefixed fraction of samples re-
quire a trial and error procedure to set the most efficient sample size.

We remark that the real-life application to the parametric design of centrifugal pumps
in Section 7.3 reveals the occurrence of a concrete problem in which second-order infor-
mation seems to give a crucial contribution, since the resolutions with the main classical
first-order methods, also allowing exact function and gradient computations, are totally
unsuccessful.

The optimal complexity bounds derived by the deterministic analysis and retrieved in
probability have then been investigated stochastically in Chapter 5, introducing inexact-
ness in gradient computations.

For what concerns Hessian estimations, the adaptive criterion (3.3) is maintained. On
the other hand, to avoid linking the accuracy requirement for gradient approximation
to the norm of the step (as done in [44, 79]), the sort of relative criterion (5.4) (recall also
(5.14)) for gradient estimations is introduced. We underline that the criterion is completely
free from the knowledge on the norm of the step, yet its implementation requires the in-
troduction of an inner loop, since (5.4) is an implicit requirement. Anyway, its practical im-
plementation remains independent of the step computation and the desired accuracy
can be always fulfilled in the context of nonconvex finite-sum minimisation subsampling
schemes, as stated in Subsection 5.3.

The stochastic complexity analysis of the resulting SARC-IGDH algorithm is thus carried
on assuming that the accuracy conditions for gradient and Hessian approximations are
fulfiled within a pre-fixed (iteration independent) probability of success, building on some
useful results from [44]. The analysis of course covers the particular case of the ARC-
DH algorithm. From this perspective, we remark that the eventuality of having iterations
in which the desired accuracies in the inexact gradient and/or Hessian computations
are not satisfied results only in scaling the optimal complexity bound derived from the
deterministic and probabilistic analysis by a factor involving the probability p of the model
being accurate (see (5.59)).

The numerical tests of Subsection 7.2.3 are in continuity with the ones for the ARC-DH
algorithm and confirm the theoretical achievements, highlighting the improvements of
the novel strategy on the computational cost in most of the tests with no worsening of the
accuracy rates. We underline that the gain in terms of the computational savings with
respect to the considered methods in literature and the exact version of the method is
less pronounced compared to the savings we had when passing from the exact version
to the variant of the ARC-DH algorithm with just inexact Hessian information, as one would
have expected due to the more significant cost of Hessian-vector products than gradient
evaluations.

Future developments on the algorithmic aspects could include the employment of
variance reduction techniques, as well as extensions of the SARC-IGDH algorithm to the
case where the objective function is also evaluated with adaptive accuracy, avoiding
(hopefully) the inclusion of inner loops to check for the accuracy requirements them-
selves, that is currently not an obvious issue.

Meanwhile, we have proposed in Chapter 4 an extension of the framework in [35]
for unconstrained or inexpensively-constrained problems (see (4.3)) under approximate
function and derivatives evaluations, in which the approximation of the model (4.2) at
iteration k is done via an absolute accuracy requirement for function estimations (recall
(4.25)–(4.26)), while the accuracy request on the Taylor’s increment ∆T

f

p appearing in
(4.2) and containing the approximate derivatives up to order p is relative and ensured

196

providing that the derivatives satisfy the absolute accuracy conditions (4.29).
The extended framework is optimal with respect to complexity and the evaluation

complexity results, presented for a model of order p + 1 to reach an optimality point of
order q with 1 ≤ q ≤ p ≤ 2, can be generalised to the case 1 ≤ q ≤ p, p > 2, i.e. to arbitrary
order model degree for arbitrary order optimality, supporting all possible combinations
of exact and inexact objective functions and derivatives. At this regard we have to say
that the given specialisations for lower orders (1 ≤ q ≤ p ∈ {1, 2}) of the ARqpDA algorithm
are reliable in practical implementations of the method, while the case q > 2 remains at
the moment more interesting from a theoretical/investigative perspective. An improved
complexity has even been derived at the price of more stringent accuracy requirements
on {∇jf}pj=1, while, as for the framework in Chapter 3, sample size rules for addressing the
context of subsampling methods for machine learning have been derived. We also note
that the full power of Assumption 6.1.1(ii) is only required for Lemma 57, while Lipschitz
continuity of ∇pf(x) is sufficient for all subsequent derivations of Chapter 6.

While the complexity bounds are restored in probability, the stochastic complexity
analysis is performed under randomly inexact derivatives evaluations, but prescribing a
deterministically controlled accuracy requirement on function approximations (from here
the informal name of semi-stochastic approach). Nevertheless, the imposed dynamic
accuracy framework for the objective function complements that of [17], while unbi-
ased estimates are not assumed, extending the probabilistic assumptions with respect to
[23]. The established sharp worst-case expected bounds on the evaluation complexity of
computing these (possibly high-order) approximate critical points correspond in order to
the best known bounds for regularisation algorithms using exact evaluations and, as for
the stochastic analysis of the ARC-DH algorithm, they are scaled by a term related to the
probability of success of having an accurate model.

Preliminary numerical tests for the AR1DA algorithm (case q = p = 1) have been per-
formed in Subsection 7.2.4, also employing ANN models, and seem to be quite promising
in light of the use of the method for dealing with machine learning applications. It would
be interesting to further explore the numerical experimentation, also including the imple-
mentation and the testing of ARq2DA (q ∈ {1, 2}). At this regard, a nontrivial question to
answer is whether experiment could currently be made using ARpqDA with p > 2, starting
from the p = 3 case, and whether the consequent increasing cost (per nonlinear iteration)
might pay off.

That said, there are of course many ways in which Algorithm ARqpDA might be im-
proved. For instance, the central calculation of the relatively accurate Taylor’s increments
may possibly be made more efficient by updating the absolute accuracies for different
degrees separately. Further techniques to avoid unnecessary derivatives computations,
without affecting optimal complexity, could also be investigated. Another interesting av-
enue is the application of the new results to multi-precision optimisation in the context
of very high performance computing. In this context, it is of paramount importance to
limit energy dissipation in the course of an accurate calculation; this may be obtained
by varying the accuracy of the most crucially expensive of its parts, see e.g. [66] for un-
constrained quadratic optimisation and [67] for unconstrained nonconvex optimisation.
The discussion above again provides guidance at what level of arithmetic accuracy is
needed to achieve overall performance while maintaining optimal complexity.

For future work, we should say that the current study on these frameworks does not
cover the case of noisy functions (see [51, 49, 99]), as well as the second-order stochastic
complexity analysis. The stochastic second-order complexity analysis of ARC methods
with derivatives and function estimates will be a challenging line of investigation. Con-
cerning the latter point, we remark that a recent advance in [10], based on properties
of supermartingales, has tackled with the second-order convergence rate analysis of a
stochastic trust-region method.

197

Moreover, the performed analysis deliberately considers evaluation complexity (some-
times called oracle complexity), which measures the number of calls to user-supplied
outer procedures for computing approximate function and derivatives values, irrespec-
tive of internal computations within the algorithm itself. This is motivated by the obser-
vation that these often dominate the total cost of the computation in practical appli-
cations. We are fully aware that total computational iteration or evaluation complexity
remains a challenge for upcoming investigation. Fortunately, the difference is well un-
derstood at least when searching for first or second-order approximate minimisers, in that
moderately costly methods are available for handling the algorithm internal calculations
(see [33, 37, 108]).

All in all, we go forward trusting that some of the hints embedded in the proposed
strategies could play their own role to effectively reinforce the simulation of a real ap-
plication, with the compass given by the theoretical foundation of innovative research
numerical methods.

198

Appendix A

Appendix

A.1 Computing the global minimiser of the model (1.14)

As done in the proof of Theorem 15, throughout this subsection we omit for readability
purposes the iteration subscript k. With reference to (1.84)–(1.86), we notice that the
solution s(λ) we are looking for depends upon the nonlinear equality ‖s(λ)‖ = λ/σ. To
examine ‖s(λ)‖ in details, let us define ψ(λ)

def
= ‖s(λ)‖2, satisfying

ψ(λ) = ‖U>(Λ + λIn)−1U∇f(x)‖2 = ‖(Λ + λIn)−1U∇f(x)‖2 =

n∑
i=1

(e>i U∇f(x))2

(λi + λ)2
.

We can thus distinguish three different cases.

• ∇2f(x) is positive semidefinite. In this case, the solution is given by the single positive
root to either of the equivalent univariate nonlinear equations

θ2(λ)
def
= ψ(λ)− λ2

σ2
= 0 or θ1(λ)

def
=
√
ψ(λ)− λ

σ
= 0, (A.1)

since the left-hand sides in (A.1) are strictly decreasing functions of λ, for λ ≥ max[0,−λ1] =

0 and range between some positive value and −∞. See Figure A.1 below for an il-
lustration of the graphs of θ1(λ) and θ2(λ).

• ∇2f(x) is indefinite and e>1 U∇f(x) 6= 0. The solution is likewise the root larger than −λ1

of the same equations and as in the previous point the model mk(s) has a unique
global minimiser.

• ∇2f(x) is indefinite and e>1 U∇f(x) = 0.

Figure A.1: Graphs of the functions θ1(λ) (left) and θ2(λ) (right) from (A.1) when ∇f(x) = (0.25, 1)>,
∇2f(x) = diag(−1, 1) and σ = 2.

The latter case is analogous to those for the hard case in [52, Section 7.3.1.3] for the
trust-region subproblem in which the required solution s∗ is made up as a suitable linear
combination of u1 and lims→−λ1 s(λ).

199

To determine the values of the coefficients of this linear combination, in place of the
trust-region constraint, we employ the constrains in (1.84) and find a value of α ∈ R such
that

−λ1 = σ‖s(−λ1) + αu1‖.

As for the trust-region case, it is in practice preferable to solve one of the following
equations

ϕ2(λ)
def
=

1

ψ(λ)
− σ2

λ2
= 0, ϕ1(λ)

def
=

1√
ψ(λ)

− σ

λ
= 0,

β2(λ)
def
=

λ2

ψ(λ)
− σ2 = 0 or β1(λ)

def
=

λ√
ψ(λ)

− σ = 0,

(A.2)

instead of (A.1). In Figures A.2–A.3 on this page we report their graphical representations.

Figure A.2: Graphs of the functions ϕ1(λ) (left) and ϕ2(λ) (right) from (A.2) when ∇f(x) = (0.25, 1)>,
∇2f(x) = diag(−1, 1) and σ = 2.

Figure A.3: Graphs of the functions β1(λ) (left) and β2(λ) (right) from (A.2) when ∇f(x) = (0.25, 1)>,
∇2f(x) = diag(−1, 1) and σ = 2.

To find the required root of whichever of the functions in (A.2), a safeguarded uni-
variated Newton’s iteration can be considered. This, in turn, leads to the resolution of a
sequence of linear systems

B(λ(j))s = (∇2f(x) + λ(j)In)s = −∇f(x),

for selected λ(j) > max[0,−λ1], in which the use of the derivatives of ψ(λ) is obtained once
a factorisation of∇2f(x)+λ(j)In is known. To this aim, we report the following useful results,
proved in [52, Lemma 7.3.1].

200

Lemma 65. [40, Lemma 6.1] Suppose that s(λ) satisfies (1.86), ψ(λ)
def
= ‖s(λ)‖2 and

λ > λ1. Then,
ψ′(λ) = 2s(λ)>∇λs(λ) and ψ′′(λ) = 6‖∇λs(λ)‖2,

where, recalling the definition (1.85),

∇λs(λ) = −B(λ)−1s(λ).

Moreover, given the Cholesky factorisation B(λ) = L(λ)L(λ)> (L lower triangular with
positive diagonal components), it follows that

s(λ)>∇λs(λ) = −‖ω(λ)‖2,

in which L(λ)L(λ)>s(λ) = −∇f(x) and L(λ)ω(λ) = s(λ).

Corollary 66. Suppose that ∇f(x) 6= 0. The function ϕ1(λ) in (A.2) is strictly increasing,
when λ > max[0,−λ1] = 0, and concave. Its first two derivatives are

ϕ′1(λ) =
−s(λ)>∇λs(λ)

‖s(λ)‖3
+

σ

λ2
> 0

and

ϕ′′1(λ) =
3
(
s(λ)>∇λs(λ)2 − ‖s(λ)‖2‖∇λs(λ)‖2

)
‖s(λ)‖5

− 2σ

λ3
< 0.

The basic Newton’s iteration to numerically solve ϕ1(λ) = 0 is as follows.

Algorithm 15 [40, Algorithm 6.1].

Let λ > max[0,−λ1] be given.

Step 1. Factorise B(λ) = LL>.

Step 2. Solve LL>s = −∇f(x).

Step 3. Solve Lω = s.

Step 4. Compute the Newton correction ∆λN =
λ(‖s‖−λσ)

‖s‖+λ
σ

(
λ‖ω‖2
‖s‖2

) .

Step 5. Replace λ by λ+ ∆λN .

As in the case of the trust-region method, various safeguards should be added to gain
and speed up convergence of Algorithm 15 from an arbitrary λ (see, e.g., [52, Sections
7.3.4–7.3.8]). The idea in [40, Section 6.1] for improving the speed of global convergence
is to only linearise the term ω(λ)

def
= 1/

√
ψ(λ) of ϕ1 in (A.2) instead of the σ/λ term, as

done in the Newton’s method when computing a correction ∆λc to the estimate λ of the
required root of ϕ1. The resulting correction satisfies the equation

ω(λ) + ω′(λ)∆λc =
1√
ψ(λ)

− 1

2

ψ′(λ)√
ψ(λ)3

∆λc =
σ

λ+ ∆λc
, (A.3)

which corresponds to a quadratic equation for the correction ∆λc. In this context, we
report the result from [40] showing a case in which Algorithm 15 with the variant (A.3) is
globally convergent.

201

Theorem 67. [40, Theorem 6.3] Suppose λ > −λ1 and ϕ1(λ) < 0. Then, both the
Newton iterate λ+∆λN and alternative λ+∆λc inherits these properties and converge
monotonically towards the required root λ∗. The convergence is globally linear with
factor at least 1− ϕ′1(λ∗)/ϕ

′
1(λ) < 1 and is ultimately quadratic. Moreover, λ+ ∆λN ≤

λ+ ∆λc ≤ λ∗.

Proof. The proof follows the one in [40, Theorem 6.3] which is, in turn, inherited from [52,
Lemma 7.3.2]. Since ω(λ) is a concave function of λ, (A.2) and (A.3) give that

ϕ1(λ+ ∆λc) = ω(λ+ ∆λc)− σ

λ+ ∆λc
≤ ω(λ) + ω′(λ)∆λc − σ

λ+ ∆λc
= 0.

The Newton’s iteration then satisfies the linearised equation

ω(λ) + ω′(λ)∆λN =
σ

λ
− σ

λ2
∆λN . (A.4)

But, as σ/λ is a convex function of λ,

σ

λ+ ∆λc
≥ σ

λ
− σ

λ2
∆λc,

and, hence,
ω(λ) + ω′(λ)∆λc ≥ σ

λ
− σ

λ2
∆λc,

from (A.3). Combining this with (A.4) we obtain that

ϕ′1(λ)(∆λc −∆λN) =
(
ω′(λ) +

σ

λ2

)
(∆λc −∆λN) ≥ 0

and, hence, ∆λc ≥ ∆λN > 0, since Corollary 66 gives ϕ′1(λ) > 0. The alternative iterate
indeed improves the Newton’s one.

It is worth noting that similar results can be derived for the other roots in (A.1)–(A.2) that
we will not report here. Let us instead conclude with the following theorem, concerning
the global minimiser of s(σ) of the cubic model mk(s) in (1.14).

Theorem 68. [40, Theorem 6.4] Suppose that s(σ) 6= 0 is a global minimiser of the
model mk(s) in (1.14). Then, the length of the minimiser ν(σ)

def
= ‖s(σ)‖ is a non-

increasing function of σ.

Proof. We consider the proof in [40], instead of considering the more complicated proof
given by Griewank in [70]. From Theorem 15 we have that

(∇2f(x) + σ‖s(σ)‖In)s(σ) = −∇f(x) (A.5)

and that ∇2f(x) + σ‖s(σ)‖In and thus ∇2f(x) + σ‖s(σ)‖In + σ‖s(σ)‖−1s(σ)s(σ)> are positive
semidefinite. We consider the derivative ν′(σ) = ‖s(σ)‖−1s(σ)>∇σs(σ). Differentiating (A.5)
with respect to σ reveals that

(∇2f(x) + σ‖s(σ)‖In)∇σs(σ) + ‖s(σ)‖s(σ) + σ‖s(σ)‖−1s(σ)s(σ)>∇σs(σ) = 0

and thus that(
∇2f(x) + σ‖s(σ)‖In + σ‖s(σ)‖−1s(σ)s(σ)>

)
∇σs(σ) = −‖s(σ)‖s(σ).

202

Left-multiplication by s(σ)> and dividing by ‖s(σ)‖ give that

ν′(σ) = −
∇σs(σ)>

(
∇2f(x) + σ‖s(σ)‖In + σ‖s(σ)‖−1s(σ)s(σ)>

)
∇σs(σ)

‖s(σ)‖2
≤ 0,

since we have seen that ∇2f(x) + σ‖s(σ)‖In + σ‖s(σ)‖−1s(σ)s(σ)> is positive semidefinite.
Consequently, ν′(σ) is a non-increasing function of σ.

A.2 Proofs

We here report the proof of Lemma 18 in Chapter 1, Lemma 54 and of Lemma 57 con-
sidered in Chapter 6.

Proof of Lemma 18
[52, Proof of Lemma 5.2.1] Firstly, by definition of the Krylov’s spaces and assumption (1.93),

span{q0, ..., qi, qi+1} = K(∇2f(xk), q0, i+ 1)

= span{K(∇2f(xk), q0, i), (∇2f(xk))i+1q0}

= span{q0, ..., qi, (∇2f(xk))i+1q0},

for i ∈ {0, ..., t}. Thus,
qi+1 ∈ span{q0, q1, ..., qi, (∇2f(xk))i+1q0} (A.6)

and
(∇2f(xk))i+1q0 ∈ span{q0, q1, ..., qi+1}, (A.7)

for i ∈ {0, ..., t}. The relationship (1.94) is trivially true when i = 0. Now assume, inductively,
that

qi ∈ span{q0, q1, ..., qi−1,∇2f(xk)qi−1}, (A.8)

for i ∈ {0, ..., r}. It then follows that

∇2f(xk)qi−1 ∈ span{q0, q1, ..., qi}, (A.9)

for i ∈ {0, ..., r}, as the qi are mutually orthonormal. Then, following (A.6),

qr+1 ∈ span{q0, q1, ..., qr, (∇2f(xk))r+1q0}

= span{q0, q1, ..., qr,∇2f(xk)[(∇2f(xk))rq0]}

= span{q0, q1, ..., qr,∇2f(xk)q0, ...,∇2f(xk)qr−1,∇2f(xk)qr}

= span{q0, q1, ..., qr,∇2f(xk)qr},

in which the last two equalities follow from (A.7) and (A.9), respectively. Thus, (A.8) holds
for r ∈ {0, ..., t}, which concludes the proof.

Proof of Lemma 54
Let s∗k be a global minimiser of mk(s) in X . By Taylor’s theorem, we have that, for all d such

203

that xk + s∗k + d ∈ X ,

0 ≤ mk(s∗k + d)−mk(s∗k) =

p∑
`=1

1

`!
∇`sT

f

p(xk, s
∗
k)[d]`

+ σk
(p+ 1)!

[
p∑
`=1

1

`!
∇`s
(
‖s∗k‖p+1

)
[d]` +

1

(p+ 1)!
∇p+1
s

(
‖s∗k + τd‖p+1

)
[d]p+1

]
,

(A.1)

for some τ ∈ (0, 1). We may now use the expression of ∇`s
(
‖s∗k‖p+1

)
given by [35, Lemma

2.4] in (A.1) and deduce that, for any j ∈ {1, . . . , q} and all d such that xk + s∗k + d ∈ X ,

−
j∑
`=1

1

`!
∇`sT

f

p(xk, s
∗
k)[d]` − σk

(p+ 1)!

j∑
`=1

∇`s‖s∗k‖p+1[d]`

≤
p∑

`=j+1

1

`!
∇`sT

f

p(xk, s
∗
k)[d]` +

σk
(p+ 1)!

[
p∑

`=j+1

1

`!
∇`s‖s∗k‖p+1[d]` + ‖d‖p+1

]
.

(A.2)

It is now possible to choose δk,j ∈ (0, 1] such that, for every d with ‖d‖ ≤ δk,j ,

p∑
`=j+1

1

`!
∇`sT

f

p(xk, s
∗
k)[d]` +

σk
(p+ 1)!

[
p∑

`=j+1

1

`!
∇`s‖s∗k‖p+1[d]` + ‖d‖p+1

]
≤ 1

2
θεj

δjk,j
j!
. (A.3)

We therefore obtain that if δk,j is small enough to ensure (A.3), then (A.2) implies that

−
j∑
`=1

1

`!
∇`sT

f

p(xk, s
∗
k)[d]` − σk

(p+ 1)!

j∑
`=1

∇`s‖s∗k‖p+1[d]` ≤ 1

2
θεj

δjk,j
j!
. (A.4)

and therefore that, for all j ∈ {1, . . . , q},

max
xk+s∗k+d∈X ,‖d‖≤δk,j

∆Tmk,j(s
∗
k, d) ≤ 1

2
θεj

δjk,j
j!
.

Hence, the pair (s∗k, δk) is acceptable for Step 2 of the algorithm. If we now assume
that xk + s∗k is not an isolated feasible point, the above inequality and the continuity
of T

f

p(xk, s) and its derivatives with respect to s then ensure the existence of a feasible
neighbourhood N ∗k of s∗k in which

globmax
xk+s+d∈X ,‖d‖≤δk,j

∆T
mk
j (s, d) ≤ θεj

δjk,j
j!
, (A.5)

for all s ∈ N ∗k . We may then choose any sk in N ∗k such that, in addition to satisfy (A.5) and
being such that xk + sk is feasible, (6.4) also holds. Thus, the definition of φ

δk,j
mk,j

(sk) in (6.5)
gives that

φ
δk,j
mk,j

(sk) ≤ θεj
δjk,j
j!

(A.6)

and every such (sk, δk) is also acceptable for Step 2 of the algorithm.

Proof of Lemma 57 Let s∗k be a global minimiser of mk(s). We first consider the case
where q = 1 and X is convex or q = 2 and X = Rn. Then, it can be verified that, for
each j ∈ {1, . . . , q}, the optimisation problem involved in the definition of φ

δk,j
mk,j

(s∗k) (in
(6.5)) is convex and therefore that δk,j can be chosen arbitrarily in (0, 1]. The first case of
Lemma 57 then follows from the continuity of φ

δk,j
mk,j

(s) with respect to s.

204

In order to prove the second case, we now pursue the reasoning of the proof of Lemma 54.
We start by supposing that ‖s∗k‖ > 1. We may then reduce the neighbourhood of s∗k in
which sk can be chosen to guarantee that ‖sk‖ ≥ 1, which then gives the desired result
because of (A.5). Suppose therefore that ‖s∗k‖ ≤ 1. The triangle inequality then implies
that

‖∇`sT
f

p(xk, s
∗
k)‖ ≤

p∑
i=`

1

(i− `)!
‖∇ixf(xk)‖ ‖s∗k‖i−`,

for ` ∈ {q + 1, . . . , p}, and thus, using, AS.1 and [35, Lemma 2.4], we deduce that

p∑
`=j+1

1

`!
∇`sT

f

p(xk, s
∗
k)[d]` +

σk
(p+ 1)!

[
p∑

`=j+1

∇`s‖s∗k‖p+1[d]`

]

≤
p∑

`=j+1

‖d‖`

`!

[
p∑
i=`

‖s∗k‖i−`

(i− `)!
‖∇ixf(xk)‖+

σk‖s∗k‖p−`+1

(p− `+ 1)!

]
.

We now call upon the fact that, since q ≥ 3 or X is not convex or q = 2 and X ⊂ Rn and
Mk occurs by assumption,M(4)

k also occurs. Thus,

p∑
`=j+1

1

`!
∇`sT

f

p(xk, s
∗
k)[d]` +

σk
(p+ 1)!

[
p∑

`=j+1

∇`s‖s∗k‖p+1[d]`

]

≤
p∑

`=j+1

‖d‖`

`!

[
Θ

p∑
i=`

‖s∗k‖i−`

(i− `)!
+
σk‖s∗k‖p−`+1

(p− `+ 1)!

]
.

We therefore obtain from (A.3) that any pair (s∗k, δs,j) satisfies (A.4) for ‖d‖ ≤ δs,j if

p∑
`=j+1

δ`s,j
`!

[
Θ

p∑
i=`

1

(i− `)!
‖s∗k‖i−` +

σk‖s∗k‖p−`+1

(p− `+ 1)!

]
+ σk

δp+1
s,j

(p+ 1)!
≤ 1

2
θεj

δjs,j
j!

; (A.7)

which, because ‖s∗k‖ ≤ 1, is in turn ensured by the inequality

p∑
`=j+1

δ`s,j
`!

[
Θ

p∑
i=`

1

(i− `)!
+ σk

]
+ σk

δp+1
s,j

(p+ 1)!
≤ 1

2
θεj

δjs,j
j!
. (A.8)

Observe now that, since δs,j ∈ [0, 1], δ`s,j ≤ δj+1
s,j for ` ∈ {j + 1, . . . , p}. Moreover, we have

that,
p∑
i=`

1

(i− `)!
≤ e < 3, (` ∈ {j + 1, . . . , p+ 1}),

p+1∑
`=j+1

1

`!
≤ e− 1 < 2

and therefore (A.8) is guaranteed by the condition

j!(6Θ + 2σk) δs,j ≤
1

2
θεj , (A.9)

which means that the pair (s∗k, δs) satisfies (A.4) for all j ∈ {1, . . . , q}, whenever

δs,j ≤
1

2
δmin,k

def
=

θεj
2q!(6Θ + 2σk)

.

As in the proof of Lemma 54, we may invoke the continuity of the derivatives of mk(s) with
respect to s to deduce that there exists a neighbourhood N ∗k of s∗k such that (A.5) holds
for every s ∈ N ∗k and every δk,j ≤ δmin,k. Choosing now sk to ensure (6.4) and xk + sk ∈ X

205

in addition to (A.5), we obtain that the pair (sk, δk,j) satisfies both (6.4) and

φ
δk,j
mk,j

(sk) ≤ θεj
δjk,j
j!
.

The desired conclusion then follows with

κδ(σ) =
νθ

q!(6Θ + 2σ)

for any constant ν ∈ (0, 1). Moreover, κδ(σ) is clearly a decreasing function of σ.

206

Coauthorship of publications
related to the thesis

Much of the work presented in this thesis has been the object of recent advances in re-
search papers and communications to the scientific community, as reported below.

Submitted papers

• S. Bellavia, G. Gurioli, B. Morini, Ph. L. Toint. Adaptive Regularization for Nonconvex
Optimization Using Inexact Function Values and Randomly Perturbed Derivatives.
Preprint on arXiv, 2020 (https://arxiv.org/abs/2005.04639).

Published papers
• S. Bellavia, G. Gurioli. Stochastic Analysis of an Adaptive Cubic Regularisation Method

under Inexact Gradient Evaluations and Dynamic Hessian Accuracy. Optimization,
2021 (https://doi.org/10.1080/02331934.2021.1892104).

• S. Bellavia, G. Gurioli, B. Morini, Ph. L. Toint. A Stochastic Cubic Regularisation
Method with Inexact Function Evaluations and Random Derivatives for Finite Sum
Minimisation. International Conference on Machine Learning (ICML), Conference
Paper, 2020 (https://drive.google.com/file/d/1HpfInwNMv72B2cu0zNW_FILKhxtL3RpJ/
view).

• S. Bellavia, G. Gurioli, B. Morini. Adaptive Cubic Regularization Methods with Dy-
namic Inexact Hessian Information and Applications to Finite-Sum minimisation. IMA
Journal of Numerical Analysis 41(1), 764–799, 2021.

• S. Bellavia, G. Gurioli, B. Morini, Ph. L. Toint. Adaptive Regularization Algorithms
with Inexact Evaluations for Nonconvex Optimization. SIAM Journal on Optimization
29(4), 2281–2915, 2019.

Related talks at conferences and during visiting
• Adaptive Cubic Regularisation Methods under Dynamic Inexact Hessian Informa-

tion for Nonconvex Optimisation. University of Oxford (UK), February 11, 2020. Talk
given within my visiting research period at the University of Oxford (“Numerical Anal-
ysis Group Internal Seminar”) under the guidance of Prof. Coralia Cartis∗.

∗Prof. Coralia Cartis, Associate Professor in Numerical Optimisation, Mathematical Institute and Balliol Col-
lege, University of Oxford (UK), email: coralia.cartis@maths.ox.ac.uk.

207

• Finite-Sum Minimisation via Adaptive Cubic Regularisation Methods. University of
Novi Sad, (Serbia), December 3, 2019. Talk given during my one week visit at the
University of Novi Sad, within the mobility project: “Second order methods for opti-
mization problems in machine learning” - Executive program of scientific and tech-
nologic cooperation between Italy and Serbia for the years 2019-2021, Ministry of
Foreign Affairs.

• Cubic Regularisation Methods for Optimisation Problems in Machine Learning. Talk
given at the 9-th International Congress of Industrial and Applied Mathematics (ICIAM
2019), July 15, 2019, Universitat de València (ES).

• Cubic Regularisation Methods with Dynamic Inexact Hessian Information. Talk given
at the conference: “2nd IMA OR Society Conference on Mathematics of Opera-
tional Research”, April 26, 2019, Aston University, Birmingham (UK).

Other published papers
Last, but not least, I would like to report a series of published papers on the research topic
I started after graduation, thanks to a valuable collaboration with Prof. Luigi Brugnano†,
concerning the design, analysis and development of energy-preserving numerical meth-
ods for solving Hamiltonian PDEs based on the discrete line integral framework.

• L. Brugnano, G. Gurioli, C. Zhang. Spectrally Accurate Energy-preserving Methods
for the Numerical Solution of the “Good" Boussinesq Equation. Numerical Methods
for Partial Differential Equations 35(4), 1343–1362, 2019.

• L. Brugnano, G. Gurioli, Y. Sun. Energy-conserving Hamiltonian Boundary Value Meth-
ods for the numerical solution of the Korteweg-de Vries equation. Journal of Com-
putational and Applied Mathematics 351, 117–135, 2019.

• L. Brugnano, G. Gurioli, F. Iavernaro. Predictor-corrector implementation of EQUIP
methods. AIP Conference Proceedings 1978(1),120004, 2018.

• L. Brugnano, G. Gurioli, F. Iavernaro. Analysis of Energy and QUadratic Invariant
Preserving (EQUIP) methods. Journal of Computational and Applied Mathematics
335, 51–73, 2018.

• L. Brugnano, G. Gurioli, F. Iavernaro, E. B. Weinmüller. Line Integral Solution of Hamil-
tonian Systems with Holonomic Constraints. Applied Numerical Mathematics 127,
56–77, 2018.

†Prof. Luigi Brugnano, Full Professor in Numerical Analysis, Dipartimento di Matematica e Informatica (DIMAI)
“Ulisse Dini”, Università degli Studi di Firenze (Italy), email: luigi.brugnano@unifi.it.

208

Bibliography

[1] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, T. Ma. Finding approximate local minima
faster than gradient descent. Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing, 1195–1199, 2017.

[2] A. Bandeira, K. Scheinberg, L. Vicente. Convergence of trust-region methods based
on probabilistic models. SIAM Journal on Optimization 24, 1238–1264, 2014.

[3] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal func-
tion. IEEE Transactions on Information Theory 39(3), 930–945, 1993.

[4] J. Barzilai, J. M. Borwein. Two-Point Step Size Gradient Methods. IMA Journal of Nu-
merical Analysis 8, 14–148, 1988.

[5] S. Bellavia, N. Krejic, N. Krklec Jerinkic. Subsampled Inexact Newton methods for
minimizing large sums of convex functions. IMA Journal of Numerical Analysis 40(4),
2309–2341, 2020.

[6] S. Bellavia, G. Gurioli. Stochastic Analysis of an Adaptive Cubic Regularisation
Method under Inexact Gradient Evaluations and Dynamic Hessian Accuracy. Op-
timization, 2021 (https://doi.org/10.1080/02331934.2021.1892104).

[7] S. Bellavia, G. Gurioli, B. Morini, Ph. L. Toint. A Stochastic Cubic Regularisation Method
with Inexact Function Evaluations and Random Derivatives for Finite Sum Minimisa-
tion. International Conference on Machine Learning (ICML), Conference Paper,
2020 (https://drive.google.com/file/d/1HpfInwNMv72B2cu0zNW_FILKhxtL3RpJ/view).

[8] S. Bellavia, G. Gurioli, B. Morini, Ph. L. Toint. Adaptive Regularization for Noncon-
vex Optimization Using Inexact Function Values and Randomly Perturbed Derivatives.
Submitted for publication, 2020 (https://arxiv.org/abs/2005.04639).

[9] S. Bellavia, G. Gurioli, B. Morini. Adaptive Cubic Regularization Methods with Dy-
namic Inexact Hessian Information and Applications to Finite-Sum minimisation. IMA
Journal of Numerical Analysis 41(1), 764–799, 2021.

[10] S. Bellavia, G. Gurioli, B. Morini, Ph. L. Toint. Adaptive Regularization Algorithms with
Inexact Evaluations for Nonconvex Optimization. SIAM Journal on Optimization 29(4),
2281–2915, 2019.

[11] S. Bellavia, T. Bianconcini, N. Krejić, B. Morini. Subsampled first-order optimization
methods with applications in imaging. Handbook of Mathematical Models and Al-
gorithms in Computer Vision and Imaging. Springer, to appear.

[12] S. Bellavia, N. Krejic, B. Morini. Inexact restoration with subsampled trust-region meth-
ods for finite-sum minimization. Computational Optimization and Applications 73,
701–736, 2020.

209

[13] S. Bellavia, S. Gratton, E. Riccietti. A Levenberg-Marquardt method for large nonlin-
ear least-squares problems with dynamic accuracy in functions and gradients. Nu-
merische Mathematik 140, 791–825, 2018.

[14] Y. Bengio. Practical Recommendations for Gradient-based Training of Deep Archi-
tectures. Neural networks: Tricks of the trade. Springer, Berlin, Heidelberg, 437–478,
2012.

[15] A. S. Berahas, R. Bollapragada, J. Nocedal. An investigation of Newton-sketch and
subsampled Newton methods. Optimization Methods and Software 35(4), 661–680,
2020.

[16] A. Berahas, L. Cao, K. Choromanski, K. Scheinberg. A theoretical and empirical
comparison of gradient approximations in derivative-free optimization. Preprint on
arXiv, 2020 (https://arxiv.org/abs/1905.01332).

[17] A. Berahas, L. Cao, K. Scheinberg. Global convergence rate analysis of a generic
line search algorithm with noise. Preprint on arXiv, 2019
(https://arxiv.org/abs/1910.04055).

[18] E. Bergou, Y. Diouane, V. Kungurtsev, C. W. Royer. A subsampling line-search method
with second-order results. Preprint on arXiv, 2018
(https://arxiv.org/abs/1810.07211).

[19] E. Bergou, S. Gratton, L. N. Vicente. Levenberg-Marquardt Methods Based on Proba-
bilistic Gradient Models and Inexact Subproblem Solution, with Application to Data
Assimilation. SIAM/ASA Journal on Uncertainty Quantification 4(1), 924–951, 2016.

[20] T. Bianconcini, G. Liuzzi, B. Morini, M. Sciandrone. On the use of iterative methods
in cubic regularization for unconstrained optimization. Computational Optimization
and Applications 60(1), 35–57, 2015.

[21] E. G. Birgin, J. M. Martínez. A Newton-like method with mixed factorizations and
cubic regularization for unconstrained minimization. Computational Optimization
and Applications 73(3), 707–753, 2019.

[22] E. G. Birgin, J. L. Gardenghi, J. M. Martínez, S. A. Santos, Ph. L. Toint. Worst-case eval-
uation complexity for unconstrained nonlinear optimization using high-order regular-
ized models. Mathematical Programming, Ser. A, 163(1-2), 359-368, 2017.

[23] J. Blanchet, C. Cartis, M. Menickelly, K. Scheinberg. Convergence rate analysis of a
stochastic trust region method via supermartingales. INFORMS Journal on Optimiza-
tion 1(2), 92–119, 2019.

[24] R. Bollapragada, R. Byrd, J. Nocedal. Exact and inexact subsampled Newton meth-
ods for optimization. IMA Journal of Numerical Analysis 39(2), 545–578, 2019.

[25] D. Bonaiuti, A. Arnone, M. Ermini, L. Baldassarre. Analysis and Optimization of Tran-
sonic Centrifugal Compressor Impellers Using the Design of Experiments Technique.
Journal of Turbomachinery 128(4), 786–797, 2006.

[26] T. Bonniot. Convergence and complexity of unconstrained optimization methods
with inexact gradients. Master’s thesis, ENSEEIHT, Toulouse, France, 2018 (supervised
by S. Gratton, D. Orban and Ph. L. Toint).

[27] L. Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent. Pro-
ceedings of COMPSTAT’2010, 177–186, 2010.

210

[28] L. Bottou, F. E. Curtis, J. Nocedal. Optimization Methods for Large-Scale Machine
Learning. SIAM Review 60(2), 223-311, 2018.

[29] C. P. Brás, J. M. Martínez, M. Raydan. Large-scale unconstrained optimization using
separable cubic modeling and matrix-free subspace minimization. Computational
Optimization and Applications 75(1), 169–205, 2020.

[30] R. H. Byrd, G. M. Chin, W. Neveitt, J. Nocedal. On the Use of Stochastic Hessian Infor-
mation in Optimization Methods for Machine Learning. SIAM Journal on Optimization
21, 977–995, 2018.

[31] Y. Carmon, J. C. Duchi, O. Hinder, A. Sidford. Lower bounds for finding stationary
points I. Mathematical Programming, Series A, 184 71–120, 2020.

[32] Y. Carmon, J. C. Duchi, O. Hinder, O. A. Sidford. Accelerated methods for nonconvex
optimization. SIAM Journal on Optimization, 28(2), 1751–1772, 2018.

[33] Y. Carmon, J. C. Duchi. Gradient descent efficiently finds the cubic-regularized non-
convex Newton step. Preprint on arXiv, 2016 (https://arxiv.org/abs/1612.00547).

[34] C. Cartis, N. I. M. Gould, Ph. L. Toint. Strong evaluation complexity bounds
for arbitrary-order optimization of nonconvex nonsmooth composite functions.
arXiv:2001.10802, 2020.

[35] C. Cartis, N. I. M. Gould, Ph. L. Toint. Sharp worst-case evaluation complexity bounds
for arbitrary-order nonconvex optimization with inexpensive constraints. SIAM Journal
on Optimization 30(1), 513–541, 2020.

[36] C. Cartis, N. I. M. Gould, Ph. L. Toint. Worst-case evaluation complexity and optimality
of second-order methods for nonconvex smooth optimization. Proceedings of the
2018 International Conference of Mathematicians (ICM 2018), 3711–3750, 2019.

[37] C. Cartis, N. I. M. Gould, Ph. L. Toint. An adaptive cubic regularisation algorithm for
nonconvex optimization with convex constraints and its function-evaluation com-
plexity. IMA Journal of Numerical Analysis 32, 1662–1695, 2012.

[38] C. Cartis, N. I. M. Gould, Ph. L. Toint. Complexity bounds for second-order optimality
in unconstrained optimization. Journal of Complexity 28, 93–108, 2012.

[39] C. Cartis, N. I. M. Gould, Ph. L. Toint. On the oracle complexity of first-order and
derivative-free algorithms for smooth nonconvex minimization. SIAM Journal on Op-
timization 22(1), 66–86, 2012.

[40] C. Cartis, N. I. M. Gould, Ph. L. Toint. Adaptive cubic overestimation methods for
unconstrained optimization. Part I: motivation, convergence and numerical results.
Mathematical Programming, Ser. A, 127, 245–295, 2011.

[41] C. Cartis, N. I. M. Gould, Ph. L. Toint. Adaptive cubic overestimation methods for un-
constrained optimization. Part II: worst-case function and derivative-evaluation com-
plexity. Mathematical Programming, Ser. A, 130(2), 295–319, 2011.

[42] C. Cartis, N. I. M. Gould, Ph. L. Toint. On the complexity of steepest descent, Newton’s
and regularized Newton’s method for nonconvex unconstrained optimization. SIAM
Journal on Optimization 20(6), 2833–2852, 2010.

[43] C. Cartis, N. I. M. Gould, Ph. L. Toint. Trust-region and other regularization of linear
least-squares problems. BIT Numerical Mathematics 49(1), 21–53, 2009.

211

[44] C. Cartis, K. Scheinberg. Global convergence rate analysis of unconstrained opti-
mization methods based on probabilistic models. Mathematical Programming, Ser.
A, 169, 337–375, 2018.

[45] Causality workbench team, A marketing dataset, 2008
(http://www.causality.inf.ethz.ch/data/CINA.html).

[46] C. Chahine, J. R. Seume, T. Verstraete. The Influence of Metamodeling Techniques
on the Multidisciplinary Design Optimization of a Radial Compressor Impeller. Pro-
ceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition,
1951–1964, 2012.

[47] C. C. Chang, C. J. Lin. LIBSVM : a library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology 2(3), 27, 2011
(http://www.csie.ntu.edu.tw/~cjlin/libsvm).

[48] M. Checcucci, A. Schneider, M. Marconcini, F. Rubechini, A. Arnone, L. De Franco,
M. Coneri. A novel approach to parametric design of centrifugal pumps for a wide
range of specific speeds. Proceedings of 12th International Symposium on Experi-
mental and Computational Aerother-modynamics of Internal Flows, ISAIF 12 paper
nr.121, 2015.

[49] R. Chen, M. Menickelly, K. Scheinberg. Stochastic optimization using a trust-region
method and random models. Mathematical Programming, Series A, 169(2), 447–
487, 2018.

[50] X. Chen, B. Jiang, T. Lin, S. Zhang. Adaptively Accelerating Cubic Regularized New-
ton’s Methods for Convex Optimization via Random Sampling. Preprint on arXiv, 2019
(https://arxiv.org/abs/1802.05426).

[51] R. Chen. Stochastic Derivative-Free Optimization of Noisy Functions. Theses and
Dissertations, Lehigh University, 2015.

[52] A. R. Conn, N. I. M. Gould, Ph. L. Toint. Trust-Region Methods. SIAM, Philadelphia,
2000.

[53] C. Cortes, V. N. Vapnik. Support-Vector Networks. Machine Learning 20(3), 273–297,
1995.

[54] F. E. Curtis, K. Scheinberg. Optimization Methods for Supervised Machine Learning:
From Linear Models to Deep Learning. Leading Developments from INFORMS Com-
munities, 89–114, 2017.

[55] F. E. Curtis, K. Scheinberg. Adaptive stochastic optimization: a framework for analyz-
ing stochastic optimization algorithms. IEEE Signal Processing Magazine 37(5), 32–42,
2000.

[56] J. E. Dennis, R. B., Schnabel. Numerical methods for unconstrained optimization
and nonlinear equations. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1983.
Reprinted as Classics in Applied Mathematics SIAM 16, Philadelphia, USA, 1996.

[57] J. E. Dennis, J. J. Moré. A characterization of superlinear convergence and its appli-
cation to quasi-Newton methods. Mathematics of Computation 28, 549–560, 1974.

[58] P. Deuflhard. Newton Methods for Nonlinear Problems. Affine Invariance and Adap-
tive Algorithms. Springer Series in Computational Mathematics 35, Springer, Berlin,
2004.

212

[59] E. D. Dolan, J. J. Moré. Benchmarking optimization software with performance pro-
files. Mathematical Programming 91(2), 201–213, 2002.

[60] J. P. Dussault. Simple unified convergence proofs for the trust-region and a new ARC
variant. Technical report, University of Sherbrooke, Sherbrooke, Canada, 2015.

[61] L. Ellbrant, L. Eriksson, H. Martensson. Design of Compressor Blades Considering Effi-
ciency and Stability using CFD Based Optimization. Proceedings of ASME Turbo Expo
2012: Turbine Technical Conference and Exposition, 371–382, 2012.

[62] P. Girdhar, O. Moniz Octo. Practical centrifugal pumps: design, operation and main-
tenance. Newnes Oxford, 2005.

[63] G. H. Golub, C. F. Van Loan. Matrix Computations. The Johns Hopkins University
Press,Baltimore, 3rd ed., 1996.

[64] G. H. Golub, D. P. O’Leary. Some history of the conjugate gradient methods and the
Lanczos algorithms: 1948–1976. SIAM Review 31(1), 50–100, 1989.

[65] N. I. M. Gould, S. Lucidi, M. Roma, Ph. L. Toint. Solving the trust-region subproblem
using the Lanczos method. SIAM Jouenal on Optimization 9(2), 504–525, 1999.

[66] S. Gratton, E. Simon, Ph. L. Toint. An algorithm for the minimization of nonsmooth
nonconvex functions using inexact evaluations and its worst-case complexity. Math-
ematical Programming, Series A, 2020
(https://link.springer.com/article/10.1007/s10107-020-01466-5).

[67] S. Gratton, Ph. L. Toint. A note on solving nonlinear optimization problems in variable
precision. Computational Optimization and Applications 76, 917–933, 2020.

[68] S. Gratton, A. Sartenaer, Ph. L. Toint. Recursive trust-region methods for multiscale
nonlinear optimization. SIAM Journal on Optimization 19(1), 414–444, 2008.

[69] S. Gratton. Second-order convergence properties of trust-region methods using in-
complete curvature information, with an application to multigrid optimization. Jour-
nal of Computational Mathematics 24(6), 676–692, 2006.

[70] A. Griewank. The modification of Newton’s method for unconstrained optimization
by bounding cubic terms. Technical Report NA/12. Department of Applied Mathe-
matics and Theoretical Physics, University of Cambridge, 1981.

[71] L. Grippo, M. Sciandrone. Nonmonotone Globalization Techniques for the Barzilai-
Borwein Gradient Method. Computational Optimization and Applications 23(2),
143–169, 2002.

[72] S. Haykin. Neural Networks: A Comprehensive Foundation. 2nd edition. Macmillan,
New York, 1998.

[73] P. Hergt. Pump Research and Development: Past, Present, and Future. Journal of
Fluids Engineering 121(2), 248–253, 1999.

[74] W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Jour-
nal of the American Statistical Association 58(301), 13–30, 1963.

[75] K. Hornik, M. Stinchcombe, H.White. Multilayer feed- forward networks are universal
approximators. Neural Networks 2(5), 359–366, 1989.

[76] R. Johnson, Z. Tong. Accelerating Stochastic Gradient Descent using Predictive Vari-
ance Reduction. Advances in Neural Information Processing Systems, 315–323, 2013.

213

[77] C. T. Kelley. Iterative methods for linear and nonlinear equations. Society for Industrial
and Applied Mathematics, 1995.

[78] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P. T. P. Tang. On large-batch
training for deep learning: generalization gap and sharp minima. Preprint on arXiv,
2016 (https://arxiv.org/abs/1609.04836v2).

[79] J. M. Kohler, A. Lucchi. Subsampled cubic regularization for nonconvex optimization.
34th International Conference on Machine Learning (ICML 2017), 1895–1904, 2017.

[80] D. P. Kouri, M. Heinkenscloss, D. Rizdal, B. G. van Bloemen-Waanders. Inexact objec-
tive function evaluations in a trust-region algorithm for PDE-constrained optimization
under uncertainty. SIAM Journal on Scientific Computing 36(6), A3011–A3029, 2014.

[81] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE 86, 2278–2324, 1998.

[82] J. D. Lee, M. Simchowitz, M. I. Jordan, B. Recht. Gradient Descent Only Converges
to minimizers. Journal of Machine Learning Research: Workshop and Conference
Proceedings 49, 1–12, 2016.

[83] M. Lichman. UCI machine learning repository. (https://archive.ics.uci.edu/ml/
index.php), 2013.

[84] L. Liu, X. Liu, C. J. Hsieh, D. Tao. Stochastic second-order methods for nonconvex
optimization with inexact Hessian and gradient. Preprint on arXiv, 2018
(https://arxiv.org/abs/1809.09853).

[85] H. Liu, K. Wang, S. Yuan, M. Tan, Y. Wang, L. Dong. Multicondition Optimization and
Experimental Measurements of a Double-blade Centrifugal Pump Impeller. Journal
of Fluids Engineering 135(1), 2013.

[86] A. Maggiary, A. Wachter, I. Dolinskaya, J. Staumz. A derivative-free trust-region al-
gorithm for the optimization of functions smmothed via Gaussian convolution using
adaptive multiple importance sampling. SIAM Journal on Optimization 28(2), 1478–
1507, 2018.

[87] J. M. Martínez, M. Raydan. Cubic-regularization counterpart of a variable-norm trust-
region method for unconstrained minimization. Journal of Global Optimization 68(2),
367–385, 2017.

[88] J. M. Martínez, M. Raydan. Separable cubic modeling and a trust-region strategy
for unconstrained minimization with impact in global optimization. Journal of Global
Optimization 63(2), 319–342, 2015.

[89] T. Mitchell. Machine Learning. New York: McGraw-Hill, 1997.

[90] J. Monodero. Parametric Design: A Review and Some Experiences. Automation in
Construction 9(4), 369–377, 2000.

[91] J. J. Moré, D. C. Sorensen. Computing a trust region step. SIAM Journal on Scientific
and Statistical Computing 4, 553–572, 1983.

[92] I. Mukherjee, K. Canini, R. Frongillo, Y. Singer. Parallel Boosting with Momentum.
Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer Berlin Heidelberg, 17–32, 2013.

[93] Y. Nesterov, V. Spokoiny. Random Gradient-Free Minimization of Convex Functions.
Foundations of Computational Mathematics 17, 527–566, 2017

214

[94] Y. Nesterov. Accelerating the cubic regularization of Newton’s method on convex
problems. Mathematical Programming 112(1), 159–181, 2008.

[95] Y. Nesterov, B. T. Polyak. Cubic regularization of Newton method and its global per-
formance. Mathematical Programming, Ser. A, 108, 177–205, 2006.

[96] Y. Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic Pub-
lishers, Dordrecht, 2004.

[97] J. Nocedal, S. Wright. Numerical optimization. Springer Science & Business Media,
2006.

[98] D. L. Olson, D. Delen. Advanced data mining techniques. Berlin: Springer-Verlag,
2008.

[99] C. Paquette, K. Scheinberg. A Stochastic Line Search Method with Expected Com-
plexity Analysis. SIAM Journal on Optimization 30(1), 349–376, 2020.

[100] B. A. Pearlmutter. Fast exact multiplication by the Hessian. Neural computation 6(1),
147–1660, 1994.

[101] S. Pierret. Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial
Neural Network. ASME Journal of Turbomachinery 121 (3), 326–332,1999.

[102] M. Pilanci, M. J. Wainwright. Newton sketch: A near linear-time optimization algo-
rithm with linear-quadratic convergence. SIAM Journal on Optimization 27, 205–245,
2017.

[103] M. Raydan. The Barzilai and Borwein Gradient Method for the Large Scale Uncon-
strained Minimization Problem. SIAM Journal on Optimization 7(1), 26–33, 1997.

[104] E. Riccietti, J. Bellucci, M. Checcucci, M. Marconcini, A. Arnone. Support Vec-
tor Machine classification applied to the parametric design of centrifugal pumps.
Engineering Optimization 50(8), 1304–1324, 2017.

[105] E. Riccietti. Levenberg-Marquardt methods for the solution of noisy nonlinear least
squares problems. PhD thesis, Università degli Studi di Firenze, Italy, 2017 (supervised
by Prof. S. Bellavia).

[106] H. Robbins, S. Monro. A Stochastic Approximation Mehod. Tha Annals of Mathe-
matical Statistics 22(3), 400–407, 1951.

[107] F. Roosta-Khorasani, M.W. Mahoney. Sub-Sampled Newton Methods. Mathematical
Programming 174, 293–326, 2019.

[108] C. W. Royer, M. O’Neill, S. J. Wright. A Newton-CG algorithm with complexity guar-
antees for smooth unconstrained optimization. Mathematical Programming 180,
451–488, 2020.

[109] F. Rubechini, A. Schneider, A. Arnone, F. Daccá, C. Canelli, P. Garibaldi. Aerody-
namic redesigning of an industrial gas turbine. Proceedings of ASME Turbo Expo
2011, 1387–1394, 2011.

[110] F. Rubechini, A. Schneider, A. Arnone, S. Cecchi, and F. A. Malavasi. A redesign
strategy to improve the efficiency of a 17-stage steam turbine. Proceedings of ASME
Turbo Expo 2009, 1463–1470, 2009.

[111] B. Schölkopf, A. J. Smola. Learning with kernels: Support vector machines, regular-
ization, optimization, and beyond. Cambridge, MA: MIT Press, 2001.

215

[112] N. N. Schraudolph. Fast curvature matrix-vector products for second-order gradient
descent. Neural computation 14(7), 1723–1738, 2002.

[113] A. Shiryaev. Probability, Graduate Texts on Mathematics. Springer, New York, 1995.

[114] N. Tripuraneni, M. Stern, J. Regier, M. I. Jordan. Stochastic cubic regularization for
fast nonconvex optimization. Advances in neural information processing systems,
2899–2908, 2018.

[115] J. Tropp. An Introduction to Matrix Concentration Inequalities. Number 8,1-2 in
Foundations and Trends in Machine Learning. Now Publishing, Boston, USA, 2015.

[116] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer New York, 2000

[117] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[118] V. N. Vapnik, A. Y. Chervonenkis. Theory of Pattern Recognition. Nauka, Moscow,
1974.

[119] V. N. Vapnik, A. Y. Chervonenkis. On the uniform convergence of relative frequen-
cies of events to their probabilities. Proceedings of the USSR Academy of Sciences
181(4), 781–783, 1968.

[120] S. A. Vavasis. Black-box complexity of local minimization. SIAM Journal on Optimiza-
tion, 3(1), 60–80, 1993.

[121] A. Veress, R. Van den Braembussche. Inverse design and optimization of a return
channel for a multistage centrifugal compressor. Journal of Fluids Engineering 126(5),
799–806, 2004.

[122] M. Weiser, P. Deuflhard, B. Erdmann. Affine conjugate adaptive Newton methods
for nonlinear elastomechanics. Optimization Methods and Software 22(3), 413–431,
2007.

[123] P. Xu, F. Roosta-Khorasani, M. W. Mahoney. Second-Order Optimization for noncon-
vex Machine Learning: An Empirical Study. Proceedings of the 2020 SIAM Interna-
tional Conference on Data Mining, 199-207, 2020.

[124] P. Xu, F. Roosta-Khorasani, M. W. Mahoney. Newton-Type Methods for nonconvex
Optimization Under Inexact Hessian Information. Mathematical Programming 184,
35–70, 2020.

[125] Z. Yao, P. Xu, F. Roosta-Khorasani, M. W. Mahoney. Inexact nonconvex Newton-type
methods. (arXiv:1802.06925), 2018.

[126] X. Zhang, C. Ling, L. Qi. The best rank-1 approximation of a symmetric tensor and
related spherical optimization problems. SIAM Journal on Matrix Analysis 33(3), 806–
821, 2012.

[127] D. Zhou, P. Xu, Q. Gu. Stochastic Variance-Reduced Cubic Regularization Methods.
Journal of Machine Learning Research 20, 1–47, 2019.

216

