
10 November 2024

Derivation of linear elasticity for a general class of atomistic energies / Alicandro R.; Lazzaroni G.;
Palombaro M.. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - ELETTRONICO. -
53:(2021), pp. 5060-5093. [10.1137/21M1397179]

Original Citation:

Derivation of linear elasticity for a general class of atomistic energies

Conformità alle politiche dell'editore / Compliance to publisher's policies

Published version:
10.1137/21M1397179

Terms of use:

Publisher copyright claim:

Questa versione della pubblicazione è conforme a quanto richiesto dalle politiche dell'editore in materia di
copyright.
This version of the publication conforms to the publisher's copyright policies.

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1247629 since: 2024-04-09T15:58:15Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:



DERIVATION OF LINEAR ELASTICITY

FOR A GENERAL CLASS OF ATOMISTIC ENERGIES

ROBERTO ALICANDRO, GIULIANO LAZZARONI, AND MARIAPIA PALOMBARO

Abstract. The purpose of this paper is the derivation, in the framework of Gamma-
convergence, of linear elastic continuum theories from a general class of atomistic models,
in the regime of small deformations. Existing results are available only in the special
case of one-well potentials accounting for very short interactions. We consider here the
general case of multi-well potentials accounting for interactions of �nite but arbitrarily
long range. The extension to this setting requires a novel idea for the proof of the
Gamma-convergence which is interesting in its own right and potentially relevant in
other applications.

Keywords: Nonlinear elasticity, Linearised elasticity, Discrete to continuum limits, Geometric rigidity,
Gamma-convergence.

MSC2020: 74B20, 70G75, 74G65, 74Q05, 49J45.

Introduction

The passage from atomistic models to continuum theories has been the object of extensive
research in the last decades. In particular, many variational tools for the mathematical analysis
of discrete systems have been developed, with the objective of describing the macroscopical
properties of systems whose microscopical behaviour is governed by interactions between their
particles.

Within this framework, in this paper we focus on the problem of deriving linear elastic contin-
uum theories from a general class of atomistic models in the regime of small deformations. We
assume that the reference con�guration of a system of particles is the portion Lη of a Bravais
lattice lying inside a bounded open set Ω of RN , where η denotes the interatomic distance. The
energy associated to a deformation v : Lη → RN is of the form

Eη(v) =
∑
Q

ηNW (D′v|Q) + surface terms, (0.1)

where the sum runs over lattice cells Q ⊂ Ω of Lη of size ηM , where M ∈ N is �xed, and
D′v|Q consists of all �nite di�erences of v between points in Q. The surface terms account for
interactions between particles close to ∂Ω. Energies of the form (0.1) are rather general and
include in particular �nite range pairwise interaction energies. The pre-factor ηN corresponds
to a bulk scaling; indeed, under suitable growth assumptions, the asymptotic behaviour of Eη

as η → 0 is described by a continuum limit of the form
´

Ω f(∇v) dx de�ned on some Sobolev
space [3]. The computation of f accounts in particular for oscillations at the atomic scale and
is connected to the validity or failure of the so-called Cauchy-Born rule, which holds when each
atom follows the macroscopic deformation Ax, implying, roughly speaking, that f(A) = W (A).
This problem has been studied in [13, 9], where it has been proved that for functionals of the
form (0.1) minimised on a single well the Cauchy-Born rule holds for deformations close to the
well.
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Within the theory of Continuum Mechanics, a variational approach for the derivation of lin-
earised models from non linear functionals of the form

´
Ω f(∇v) dx consists in looking at mini-

mum problems for suitable scalings of the energies when the deformations are small perturbations
of an equilibrium (which without loss of generality we may assume to be the identity deforma-
tion). Speci�cally, let us write v(x) = x+ εu(x), where εu is the displacement, and assume that
f is smooth. Then, for a �xed u, a Taylor expansion of ε 7→ f(I + ε∇u) leads to a quadratic
principal part of the form 1

2ε
2D2f(I)[∇u]2. Hence, one expects that the limit as ε → 0 of the

rescaled energies

ε−2

ˆ
Ω
f(I + ε∇u) dx (0.2)

is given by the linear elastic functional

1

2

ˆ
Ω
D2f(I)[∇u]2 dx ,

which turns out to depend only on the symmetric part of the gradient, if the initial non linear
energy is frame invariant. A rigorous asymptotic analysis in terms of Γ-convergence of the
rescaled energies (0.2) has been �rst performed in [10], ensuring, through compactness properties,
the convergence of related boundary value problems. In [10] f is assumed to be minimised on a
single well and to grow quadratically in terms of the distance from the well. This result has been
later generalised to the case of mixed growth in [2]. Further generalisations have been obtained
when f is minimised on more than one well and the distance between the wells is of order ε (see
[1, 20]). It is worth mentioning that, for one-well energy densities f(x,∇u) that are periodic
with respect to x, the homogenisation and the linearisation processes commute [19]; see also
[14] for a generalisation to a stochastic setting. The reader is also referred to [18] for a rigorous
justi�cation in terms of Γ-convergence of the classical linearisation approach in plasticity. More
recently the case of multiple wells whose relative distance is �xed has been considered in [6]; in
this context linear elasticity can be derived by adding to the multi-well energy a singular higher
order term which penalises jumps from one well to another. In the continuum setting, such a
perturbation turns out to be crucial to guarantee good compactness properties of minimising
sequences of displacements.

Similarly to the continuum approach, in the discrete setting one studies the asymptotic be-
haviour of

ε−2Eη(x+ εu)

as ε, η → 0. In contrast to the continuum setting, in the discrete analysis one has to take
into account the interplay between the two parameters η and ε. Indeed, a suitable scaling of
η with respect to ε is required in some cases (see [21]) . This approach has been followed in
[8, 21] in very special cases. Namely, [8] studies the case of harmonic springs between nearest
neighbours minimised on a single well. In [21] such analysis has been later extended to single well
energies of the form (0.1) with M = 1, namely accounting for very short interactions, possibly
including cases when individual pair interactions are not equilibrated in the reference lattice. We
emphasise that the assumptions on the potentials considered in [8] and [21] ensure the validity of
the Cauchy-Born rule for deformations close to the equilibria and this turns out to be crucial in
their analysis. Indeed, it rules out the possibility of oscillations at the atomic scale and leads in
the limit to the linearised elastic functional associated to the Hessian D2W (I) of the cell energy.
This is in line with the results proved in [19] for homogenisation. We also refer to [11] for the
derivation of linearised Gri�th theories from pairwise interaction potentials of Lennard-Jones
type in the context of fracture mechanics.

The results of [8, 21] leave open the problem of deriving linear elasticity from more general
models of interest in applications, including long-range interactions and multi-well potentials. In
fact, their analysis cannot be easily adapted to such cases. The aim of the present paper is to �ll
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this gap by considering only minimal assumptions on energies of the form (0.1). Speci�cally, we
extend the results to the case of interactions of �nite but arbitrarily long range, namely, the case
when the parameter M in (0.1) is an arbitrary integer number; second, to the case of multi-well
potentials, i.e., when W is minimised on the union of a �nite number of disjoint wells, in the
spirit of [6]. Our main assumptions on the potential W are the following: frame invariance,
minimality on the wells, mixed growth with respect to the distance of the deformation gradient
from the wells, and an energetic penalisation of transitions between di�erent wells.

The multi-well structure of the potential poses some di�culties in the proof of compactness
of sequences of displacements with equibounded energy. This relies on the well-known rigidity
estimate of Friesecke, James, and Müller [12], which could be directly applied in [8, 21]. In
contrast, in our context it is crucial to �rst prove a lower bound ensuring that the energy is
bounded from below by the distance of the deformation gradient from a single energy well (see
Theorem 3.1). The continuum counterpart of this result was proved in [6, Theorem 2.3]. The
key assumption on W coming to play in this analysis is the penalisation of transitions between
di�erent wells (see assumption (H1c) in Section 1); in particular, for pairwise potentials, such
penalisation is played by interactions beyond nearest neighbours (see also [5]), which to some
extent represent the discrete counterpart of the singular perturbation in [6]. The reader is also
referred to [16] for the compactness of discrete multi-well energies with surface scaling.

As for the proof of the Γ-convergence, the main technical problem arising in our analysis
comes from the assumption that in (0.1) M be arbitrary, in particular larger than one, which
leads to new di�culties, compared to [8, 21]. A standard approach in the discrete to continuum
analysis amounts to identify discrete deformations with their piecewise a�ne interpolations with
respect to a triangulation of the domain. This allows one to represent the discrete energies in
an integral form depending on gradients. In fact, such approach fails in the present setting. In
order to overcome such di�culty we develop a completely new strategy, which we think may be
relevant for other applications. Roughly speaking, it amounts to decompose the energy into the
sum of integrals depending on suitable vector �elds whose components are �nite di�erences of
the discrete deformation and that are piecewise constant on lattice cells of size ηM . Despite
such vector �elds are not gradients, we show that the average of the limiting vector �elds can be
written in terms of the gradient of the limiting deformation (see Lemma 4.2). This allows us to
use a convexity argument to obtain the desired lower bound.

We prove that, under a suitable scaling of η with respect to ε, which we prove to be optimal in
Example 7.4, the limit functional is still determined by the Hessian D2W (I) of the cell energy.
However, in the case of more than one well, the validity of the Cauchy-Born rule for deformations
close to the equilibria is not guaranteed, in contrast with [8, 21]. Indeed, in the bulk scaling
regime, deformations lying in di�erent wells can be arbitrarily mixed at a mesoscale with a
negligible cost, but such oscillations are strongly penalised in our scaling regime. Hence, in
contrast with the one-well model, in the case of more than one well the discrete to continuum
and the linearisation processes do not commute.

We stress that the most general class of discrete energies whose continuum limit is a local
functional of the form

´
Ω f(∇u) dx includes cases where all the particles of the system interact.

Such cases are not covered by our model. However, the locality of the limiting energy is guaran-
teed only if the interaction potentials decay very fast in terms of the relative distance between
the particles (see [3]). In this respect, the assumption that M be �nite does not seem a strong
restriction and our model can thus be regarded as an approximation of those potentials.

We complement the analysis with several examples of pairwise interaction energies arising in
di�erent models, including cases when individual pair interactions are not equilibrated in the
reference lattice (see in particular Example 7.3). Nonetheless, the generality of our model can
also cover problems involving more general multi-body interaction energies.
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The paper is organised as follows. Section 1 contains the de�nitions and the set of assumptions
on the energy functional and speci�es the conditions on the boundary data and the external
loading. The main results are stated in Section 2 and proved in Section 4. The main tool to
prove compactness is contained in Section 3 (see Theorem 3.1). In Section 5 we discuss the case
when the boundary data are prescribed only on a subset of ∂Ω. In Section 6 we show that our
analysis applies to a rather general class of pairwise interaction energies and we specialise the
limit functional in terms of the pairwise potentials. Finally, Section 7 is devoted to examples.

Notation. For N ≥ 2, MN×N denotes the set of real N×N matrices and SO(N) the set of
rotations. We denote by I the identity matrix and and by Id the identity map Id : RN 3 x 7→ x.
For each s > 1 we denote by s′ its conjugate exponent, i.e., s′ := s

s−1 .
In the paper, the same letter C stands for positive constants whose value may change from

line to line.

1. Setting of the problem

In this section we introduce the reference con�guration of the system, the admissible defor-
mations and their discrete gradients, the mechanical energy, the boundary conditions, and the
energy rescaling. We remark that our analysis applies to any Bravais lattice; by an a�ne change
of variables, we may reduce to the lattice ZN .
Decomposition of RN . We use the so-called Kuhn decomposition, which is a partition of RN
into N -simplices (where N ≥ 1). We partition the unit cube (0, 1)N into N -simplices in the
following way: we consider simplices T whose vertices are of the type

{0, ei1 , ei1 + ei2 , . . . , ei1 + ei2 + · · ·+ eiN } for

(
1 2 · · · N
i1 i2 · · · iN

)
∈ SN ,

where SN is the set of permutations of N elements; see Figure 1. We denote by T0 the partition
determined by such simplices. Next, we extend T0 by periodicity to all of RN and denote by T
its periodic extension.
Admissible deformations. Let Ω be an open bounded Lipschitz subset of RN . Given η > 0
we set

Lη := ηZN ∩ Ωη , (1.1)

where Ωη is the union of all closed hypercubes of the form η(x + [0, 1]N ), x ∈ ZN , that have
non-empty intersection with Ω; see Figure 2. We identify every deformation v : Lη → RN by its
piecewise a�ne interpolation with respect to the rescaled triangulation ηT . By a slight abuse of

Figure 1. A three-dimensional cube partitioned into six tetrahedra according
to the Kuhn decomposition.
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Figure 2. We represent some notation used in Section 1. We choose M = 3.
The domain Ω is the open region contained inside the ellipse, displayed in grey.
In light grey the (closed) set Ωη; recall that Lη consists of all lattice points in

Ωη. In dark grey the (closed) set Ωb
η; points in Lbη are represented by white dots.

Recall that Lbη ⊂ LMη . The points of LMη \ Lbη are represented by black dots.

notation, such extension is still denoted by v. We de�ne the domain of the functional as

Aη :=
{
v ∈ C0(Ωη;RN ) : v piecewise a�ne,

∇v constant on Ωη ∩ ηT ∀T ∈ T
}
.

We remark that all results below are independent of the choice of the interpolation. Indeed,
all that follows still holds if one identi�es the deformations with their piecewise constant inter-
polation instead of their piecewise a�ne interpolation, provided one uses a suitable notion of
convergence; see for example [21].
Discrete gradients. Given M ∈ N, let x1, . . . , x(M+1)N be an enumeration of the set CM :=

{0, . . . ,M}N . Given x ∈ ηZN and v : x+ηCM → RN , we de�ne the discrete gradient D′ηv(x) of v
in x+ηCM as the vector composed of all the di�erence quotients of the function v corresponding
to every two points in the cell x+ ηCM . Speci�cally,

D′ηv(x) :=

(
v(x+ ηxl)− v(x+ ηxk)

η|xl − xk|

)
1≤k 6=l≤(M+1)N

. (1.2)

Note that D′ηv(x) ∈ Rd(M), where

d(M) := N(M + 1)N
(

(M + 1)N − 1
)
.

We will also need a localised version of (1.2) on subsets of x + ηCM . Speci�cally, for I ⊂
{1, . . . , (M + 1)N} we de�ne the discrete gradient D′η|Iv(x) of v in I as

D′η|Iv(x) =

(
v(x+ ηxl)− v(x+ ηxk)

η|xl − xk|

)
k,l∈I
k<l

. (1.3)

We will employ the following notation for 1 ≤ k < l ≤ (M + 1)N :(
D′ηv(x)

)
kl

:=
v(x+ ηxl)− v(x+ ηxk)

η|xl − xk|
.
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Moreover, we set, for ζ ∈ ZN and x ∈ Lη,

Dζ
ηv(x) :=

v(x+ ηζ)− v(x)

η|ζ|
. (1.4)

In the case η = 1 we drop the subscript 1 and for x = 0 we simply write D′v instead of D′1v(0)
and D′|Iv instead of D′1|Iv(0).
The energy functional. We consider energies Eη : Aη 7→ [0,+∞] of the form

Eη(v) :=
∑
x∈LMη

ηN Wη

(
x,D′η|Iη(x)v(x)

)
, (1.5)

where

LMη := {x ∈ ηZN : (x+ ηCM ) ∩ Ω 6= Ø} , (1.6)

Iη(x) = {l ∈ {1, . . . , (M + 1)N} : x+ ηxl ∈ Ω} , (1.7)

and

Wη(x,D
′
η|Iη(x)v(x)) =

{
W (D′ηv(x)) if x+ ηCM ⊂ Ω ,

Wsurf(Iη(x), D′η|Iη(x)v(x)) otherwise.
(1.8)

Here W : ZD ⊂ Rd(M) → [0,+∞] and ZD is the vector subspace of Rd(M) de�ned by

ZD := {Z ∈ Rd(M) : Z = D′v for some v : CM → RN} , (1.9)

while Wsurf : R → [0,+∞], where R := {(I, Z) : I ⊂ {1, . . . (M + 1)N}, Z ∈ ZD(I)} and

ZD(I) := {Z ∈ Rd(I) : Z = D′|Iv for some v : CM → RN} , (1.10)

with

d(I) :=
N

2
#(I)

(
#(I)− 1

)
.

In what follows, given A ∈ MN×N and b ∈ RN , we will denote by vA,b the a�ne function

vA,b : ZN → RN de�ned by

vA,b(y) := Ay + b, y ∈ ZN . (1.11)

In the case when A = I and b = 0 we simply denote it by Id . Moreover, for Q ∈ SO(N) the
symbol Qv denotes the function x 7→ Qv(x).

Let l ∈ N, let U1, . . . , Ul be invertible matrices in RN×N , and set

K :=

l⋃
i=1

Ki , Ki := SO(N)Ui .

We assume that the sets Ki, i = 1, . . . , l, are all disjoint, namely, that UiU
−1
j 6∈ SO(N) for each

i 6= j. For simplicity, we only consider the case where U1 = I, the identity matrix; up to a
change of variables one can recover the general case where U1 is any invertible matrix, which
is of interest, e.g., to study systems whose equilibrium con�guration is an a�ne deformation of
ZN .

We consider the following set of hypotheses on the interaction potential W :

(H0) (frame invariance) For each function v : CM → RN

W (D′v) = W (D′Qv) ∀Q ∈ SO(N) .

(H1) (rigidity and coercivity of the cell energy)

(H1a)

0 = min
v
W (D′v) = W (D′vA,b) ∀A ∈ K and b ∈ RN ;
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(H1b) For each function v : CM → RN (identi�ed with its piecewise a�ne interpolation
with respect to T ), it holds

W (D′v) ≥ C
ˆ

(0,M)N
min{dist2(∇v,K),distp(∇v,K)} dx ,

for some constant C > 0 and some p ∈ (1, 2];
(H1c) There exist 0 < σ < 1

2 minl1 6=l2 dist(Kl1 ,Kl2) and C0 > 0 such that, whenever
dist(∇v|S ,Kl1) ≤ σ and dist(∇v|T ,Kl2) ≤ σ for two neighbouring simplices S, T ⊂
[0,M ]N and two integers l1, l2 ∈ {1, . . . l}, with l1 6= l2, then

W (D′v) ≥ C0 .

(H2) (C2-regularity in a neighbourhood of the identity) W is of class C2 in a neighbourhood of
D′Id and in such a neighbourhood the second derivatives are uniformly bounded.

Remark 1.1. Observe that assumption (H1c) makes sense only in the case of two or more wells,
that is when l ≥ 2.

Boundary conditions and external loading. We prescribe a Dirichlet boundary condition
on the admissible deformations on the whole boundary ∂Ω. (For Dirichlet conditions only on a

subset of the boundary, see Section 5 below.) More precisely, given ε > 0 and g ∈W 1,∞
loc (RN ;RN ),

we assume that v ∈ Aη satis�es
v(x) = x+ εg(x) ∀x ∈ Lη such that dist(x,Ωc

η) ≤ δη ,
where

lim
η→0

δη = 0, δη ≥
√
NMη , (1.12)

i.e., δη is larger than the diameter of the cell ηCM . If we write the deformation v in terms of the
displacement

v(x) = x+ εu(x) ,

the Dirichlet boundary condition reads

u(x) = g(x) ∀x ∈ Lη such that dist(x,Ωc
η) ≤ δη . (1.13)

We denote by Agη the set of such displacements, that is

Agη := {u ∈ Aη : (1.13) holds} .

In what follows we will identify each displacement u ∈ Agη with its extension to ηZN by assuming
u(x) = g(x) on ηZN \ Lη. Setting

Lbη := {x ∈ Lη : x+ ηCM ⊂ Ω} ,
by (1.12) and (1.13) we can write for u ∈ Agη

Eη(Id + εu) =
∑
x∈Lbη

ηN W
(
D′ηId + εD′ηu(x)

)
+ Eηsurf(Id + εg) ,

where
Eηsurf(Id + εg) =

∑
x∈LMη \Lbη

ηNWsurf

(
Iη(x), D′η|Iη(x)(Id + εg)(x)

)
, (1.14)

see (1.6) for the de�nition of LMη and cf. Figure 2. Since the latter term does not depend on u,
it can be neglected, as far as we are interested in minimising displacements.

In our analysis we also include a small loading term, assuming that the total energy of the
system is Eη(v)− εFη(v), where

Fη(v) :=
∑
x∈Lη

fη(x) · v(x) ,
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with fη : Lη → RN . We identify fη with its piecewise constant interpolation and we assume that
fη ⇀ f in Lq(Ω;RN ), as η → 0, for some q > 1 which will be speci�ed later on. We set

F(v) :=

ˆ
Ω
f(x) · v(x) dx for v ∈ L2(Ω;RN ) .

Note that

Eη(Id + εu)− εFη(Id + εu) = Eη(Id + εu)− ε2Fη(u)− εFη(Id) .

Since the last term does not depend on u, it can be neglected in our variational analysis.
Energy rescaling. In order to study the asymptotic behaviour of the minimisers of (1.5) sub-
ject to the Dirichlet boundary condition (1.13), we then express the energies in terms of the
displacement �elds and properly renormalise and rescale them, by setting for u ∈ Agη

Eηε (u) :=
1

ε2

(
Eη(Id + εu)− Eηsurf(Id + εg)

)
=

1

ε2

∑
x∈Lbη

ηN W
(
D′ηId + εD′ηu(x)

)
. (1.15)

In the case of external loads, we will provide convergence results for the solutions of

min
u
{Eη(ε)

ε (u)−Fη(ε)(u)} .

The heuristic argument which allows one to identify the elastic energy associated with Eηε as ε
and η go to 0, consists in computing the pointwise limit of Eηε (u) for a �xed smooth function u.
Indeed, by a Taylor expansion of W about D′ηId as ε→ 0 we get

Eηε (u) =
1

2

∑
x∈Lbη

ηN D2
ZW

(
D′Id)[D′ηu(x)]2 + o(1) ,

whereD2
ZW denotes the matrix of second derivatives ofW with respect to the argument Z ∈ ZD,

recall (1.9)�(1.10). We observe that Eηε (u) converges, as ε and η tend to 0, toˆ
Ω
φ(∇u) dx ,

where

φ(A) :=
1

2
D2
ZW (D′Id)[D′vA,0]2 ∀A ∈MN×N . (1.16)

By frame invariance, the quadratic form A 7→ D2
ZW (D′Id)[D′vA,0]2 depends only on 1

2(A+AT ),
the symmetric part of A, hence ˆ

Ω
φ(∇u) dx =

ˆ
Ω
φ(e(u)) dx .

The above argument will be rigorously justi�ed in terms of Γ-convergence [7] and complemented
with a compactness result. In the case of two or more wells, that is l ≥ 2, the compactness result
will be proved under a suitable scaling of η = η(ε). Precisely, given r ∈ (1, p], the following scaling
assumption on η = η(ε) will ensure compactness of minimising sequences in W 1,r(Ω;RN ):

lim
ε→0

η(ε) = 0 , η(ε) ≥ Cε2− r(N−1)
N . (1.17)

In the case l = 1, we only assume lim
ε→0

η(ε) = 0, which yields compactness in W 1,p(Ω;RN ). We

�nally de�ne

Eε(u) :=

{
Eη(ε)
ε (u) if u ∈ Agη(ε) ,

+∞ if u ∈ L1(Ω;RN ) \ Agη(ε)

(1.18)

and

Eε(v) :=
1

ε2

(
Eη(ε)(v)− Eη(ε)

surf (Id + εg)
)
, v ∈ Aη(ε) . (1.19)
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For later use, we introduce the set consisting of the union of all cells contained in Ω,

Ωb
η :=

⋃
x∈Lbη

(
x+ [0,Mη]N

)
. (1.20)

By (H1b), it follows that

Eε(v) = Eε(u) ≥ C 1

ε2

ˆ
Ωb
η(ε)

min{dist2(∇v,K),distp(∇v,K)} dx , (1.21)

where v = Id + εu.

2. Main results

Theorem 2.1 (Compactness). Let W satisfy (H0) and (H1) and let g ∈ W 1,∞
loc (RN ;RN ). Let

η(ε)→ 0; if l ≥ 2, assume in addition that η(ε) satis�es (1.17) for a given r ∈ (1, p]. Let s = p
for l = 1 and s = r for l ≥ 2. Then there is a sequence αε → 0 such that the following hold.

(i) (Case of zero loading) If {uε} is a sequence in Agη(ε) such that Eε(uε) is uniformly bounded,

then there exists a positive constant C > 0 such thatˆ
Ω
|∇uε|s dx ≤ C

(
(Eε(uε))

s
2 +

ˆ
∂Ω
|g|s dHN−1

)
+ αε . (2.1)

In particular,

‖uε‖W 1,s(Ω;RN ) ≤ C , (2.2)

for some positive constant C independent of ε.
(ii) (Case of nonzero loading with l = 1) Assume l = 1 and let fη(ε) be bounded in Ls

′
(Ω;RN ).

If {uε} is a sequence in Agη(ε) such that Eε(uε) − Fη(ε)(uε) is uniformly bounded, then

there exists a positive constant C > 0 such thatˆ
Ω
|∇uε|s dx ≤ C

(
(Eε(uε))

s
2 + ε2−sEε(uε) +

ˆ
∂Ω
|g|s dHN−1

)
+ αε . (2.3)

Moreover (2.2) holds true and Eε(uε) is uniformly bounded.

(iii) (Case of nonzero loading with l ≥ 2) Assume l ≥ 2 and let fη(ε) be bounded in Ls
′
(Ω;RN ).

If {uε} is a sequence in Agη(ε) such that Eε(uε) − Fη(ε)(uε) is uniformly bounded, then

there exists a positive constant C > 0 such thatˆ
Ω
|∇uε|s dx ≤ C

(
(Eε(uε))

s
2 + ε2−sEε(uε) + (Eε(uε))

N
N−1 +

ˆ
∂Ω
|g|s dHN−1

)
+ αε . (2.4)

Moreover, if s > N
N−1 or η(ε)� ε, then (2.2) holds true and Eε(uε) is uniformly bounded.

Theorem 2.2 (Γ-convergence). LetW satisfy (H0), (H1a), and (H2) and let g ∈W 1,∞
loc (RN ;RN ).

Let s ∈ (1, 2] and let η = η(ε) → 0. Then, as ε → 0+ the sequence of functionals {Eε} Γ-
converges, with respect to the weak topology of W 1,s(Ω;RN ), to the functional

E(u) :=


ˆ

Ω
φ(e(u)) dx if u ∈ H1

g (Ω;RN ) ,

+∞ otherwise,
(2.5)

where φ is de�ned in (1.16).

The proofs of Theorems 2.1 and 2.2 will be given in Section 4. As a direct consequence of such
results, we deduce the convergence of minima and minimisers stated in the following corollary.
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Corollary 2.3. Under the assumptions of Theorems 2.1 and 2.2, let fη ⇀ f in Ls
′
(Ω;RN ),

mε := inf{Eε(u)−Fη(ε)(u) : u ∈ Agη(ε)} ,

and let uε ∈ Agη(ε) be such that

Eε(uε)−Fη(ε)(u) ≤ mε + o(1) .

Then {uε} weakly converges in W 1,s(Ω;RN ) to the unique solution of

min{E(u)−F(u) : u ∈ H1
g (Ω;RN )} =: m,

where s ∈ (1, p] is as in Theorem 2.1. Moreover mε → m.

Analogous results with Dirichlet conditions prescribed only on a subset of the boundary are
presented in Section 5 below.

Remark 2.4. It is possible to prove the optimality of the scaling (1.17) in the case l ≥ 2, by
providing examples of sequences with equibounded energy that are unbounded in W 1,r(Ω;RN ) if

η(ε)� Cε2− r(N−1)
N , see Example 7.4 below.

In the case r > N
N−1 , the scaling (1.17) implies η(ε)� ε. This might suggest that linearisation

occurs when the scale of the displacement is much smaller than the interatomic distance. In fact,
this would actually hold only if we assumed that uε be bounded in L∞, which is not implied by
our hypotheses. We highlight here the crucial role played by assumption (H1c) in the case of
two or more wells: indeed, even in the case η(ε) � ε, one can provide examples of two-well
nearest-neighbour interaction energies such that (H1c) is not satis�ed and the compactness result
stated in Theorem 2.1 does not hold; see the last remark in Example 7.1.

3. A rigidity result

In the present section we prove a one-well lower bound that will play a key role in the proof of
the main theorems: it ensures that con�gurations with equibounded energy lie close to a certain
energy well in most of the domain. We remark that the results of this section are independent
of both the boundary condition and the external loading.

The following rigidity result provides a lower bound on the functional (1.19) in terms of the
distance of the deformation gradient from a single energy well and it will be the main tool in
proving Theorem 2.1.

Theorem 3.1. Let W satisfy assumptions (H0) and (H1). For a given η = η(ε), assume that
vε ∈ Aη(ε) is a sequence such that lim

ε→0
ε2Eε(vε) = 0, where Eε is de�ned in (1.19). Then there

exists C > 0 such that

(a) if l = 1, then

1

εp

ˆ
Ωb
η(ε)

distp(∇vε, SO(N)) dx ≤ C
((
Eε(vε)

) p
2 + ε2−pEε(vε)

)
; (3.1)

(b) if l ≥ 2 and r ∈ (1, p], then for ε su�ciently small there is iε ∈ {1, . . . , l} such that

1

εr

ˆ
Ωb
η(ε)

distr(∇vε,Kiε) dx ≤ C

((
Eε(vε)

) r
2 + ε2−rEε(vε) + ε−r

(
ε2

η

) N
N−1 (

Eε(vε)
) N
N−1

)
. (3.2)

Remark 3.2. For later use notice that, under assumption (1.17), in (3.2) ε−r
(
ε2

η

) N
N−1 ≤ C.
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Proof. To ease notation we write Ωb
ε in place of Ωb

η(ε), cf. (1.20). Recalling that ε2Eε(vε) → 0,

(1.21) in turn yields

|Ωb
ε \ Ω̂ε| → 0 , (3.3)

where
Ω̂ε := {dist(∇vε,K) < σ̂} , (3.4)

with σ̂ := σ ∧ 1 and σ de�ned in assumption (H1c). Set Ωi
ε := {dist(∇vε,Ki) < σ̂}, i = 1, . . . , l,

and note that, since Ω̂ε =
⋃l
i=1 Ωi

ε, by (3.3) there exists iε ∈ {1, . . . , l} such that for ε su�ciently
small

|Ωiε
ε | > C , (3.5)

for some positive constant C independent of ε. Given 1 < s ≤ 2, we writeˆ
Ωbε

dists(∇vε,Kiε) dx =

ˆ
Ωiεε

dists(∇vε,Kiε) dx+

ˆ
Ωbε\Ω

iε
ε

dists(∇vε,Kiε) dx . (3.6)

We estimate the �rst term in the right hand side using Hölder's inequality and the quadratic
growth of the functional near the wells to obtainˆ

Ωiεε

dists(∇vε,Kiε) dx ≤ C
( ˆ

Ωiεε

dist2(∇vε,Kiε) dx
) s

2 ≤ Cεs
(
Eε(vε)

) s
2 . (3.7)

Observe that if l = 1 we have Ωiε
ε = Ω̂ε and in Ωb

ε \ Ω̂ε

min{dist2(∇vε, SO(N)),distp(∇vε, SO(N))} ≥ C distp(∇vε, SO(N)) (3.8)

for some constant C depending on σ̂. Then (3.1) follows from (1.21), (3.6), (3.7) with s = p, and
(3.8).

In the case l ≥ 2 we take s = r in (3.6) and (3.7) and we split the integral on Ωb
ε \ Ωiε

ε into
two parts:ˆ

Ωbε\Ω
iε
ε

distr(∇vε,Kiε) dx =

ˆ
(Ωbε\Ω

iε
ε )∩{|∇vε|≤ρ}

distr(∇vε,Kiε) dx+

ˆ
(Ωbε\Ω

iε
ε )∩{|∇vε|>ρ}

distr(∇vε,Kiε) dx ,

where ρ > 0. Choosing ρ su�ciently large, one has that dist(∇vε,K) is bounded away from zero
whenever |∇vε(x)| > ρ. Hence, for ρ su�ciently large, the second term in the right hand side
can be estimated as follows:ˆ

(Ωbε\Ω
iε
ε )∩{|∇vε|>ρ}

distr(∇vε,Kiε) dx ≤ C
ˆ

(Ωbε\Ω
iε
ε )∩{|∇vε|>ρ}

distp(∇vε,K) dx ≤ Cε2Eε(vε) .

In order to estimate the �rst term, we provide a bound on the perimeter Per(Ωiε
ε ) after noticing

that ˆ
(Ωbε\Ω

iε
ε )∩{|∇vε|≤ρ}

distr(∇vε,Kiε) dx ≤ C |Ωb
ε \ Ωiε

ε | . (3.9)

Set

Tε := {T ∈ ηT :

T ⊂ Ωiε
ε and there exists a neighbouring simplex S ∈ ηT with S ⊂ Ωb

ε \ Ωiε
ε } ,

and notice that
1

C
Per(Ωiε

ε ) ≤ ηN−1#Tε ≤ C Per(Ωiε
ε ) . (3.10)

Let T ∈ Tε and let S be a neighbouring simplex lying in Ωb
ε \ Ωiε

ε . Fix x ∈ Lη such that

T ∪ S ⊂ x+ ηCM . Then, using assumption (H1b) if S ⊂ Ωb
ε \ Ω̂ε and (H1c) if S ⊂ Ω̂ε \ Ωiε

ε ,

W (D′ηvε(x)) ≥ C > 0 .
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The above inequality, in combination with (3.10), yields

Per(Ωiε
ε ) ≤ C ε

2

η
Eε(vε) , (3.11)

where the constant C accounts for the fact that each cell contains a �xed number of simplices.
In view of (3.11) and of the isoperimetric inequality we have

min{|Ωiε
ε |, |Ωb

ε \ Ωiε
ε |} ≤ C Per(Ωiε

ε )
N
N−1 ≤ C

(ε2

η
Eε(vε)

) N
N−1

. (3.12)

Suppose now that min{|Ωiε
ε |, |Ωb

ε \ Ωiε
ε |} = |Ωb

ε \ Ωiε
ε |. Then, from (3.9) we deduce the following

estimate ˆ
(Ωbε\Ω

iε
ε )∩{|∇vε|≤ρ}

distr(∇vε,Kiε) dx ≤ C
(ε2

η
Eε(vε)

) N
N−1

. (3.13)

If on the contrary min{|Ωiε
ε |, |Ωb

ε \ Ωiε
ε |} = |Ωiε

ε |, then from (3.5) and (3.12) we deduce that(ε2

η
Eε(vε)

) N
N−1 ≥ C

and therefore, since the left-hand side of (3.13) is bounded, we again �nd that (3.13) holds. �

4. Proof of the main results

4.1. Proof of compactness.

Proof of Theorem 2.1. As in the proof of Theorem 3.1, Ωb
ε stands for Ωb

η(ε), cf. (1.20). Let

vε = x+ εuε and set gε := g|η(ε)ZN , both identi�ed with their piecewise a�ne interpolations. By

(1.12) and (1.13), uε = gε in Ω \ Ωb
ε.

In order to apply Theorem 3.1, we �rst show that ε2Eε(vε)→ 0. This is trivial in the case of
zero loading (i), since Eε(vε) is assumed to be equibounded in ε. In the case of nonzero loading
(ii)�(iii), the proof follows the steps of the proof of [6, Theorem 1.8 (ii)], that we brie�y detail

here for the reader's convenience. Assuming Eε(uε)−Fη(ε)(uε) ≤M , by Poincaré inequality we
get

Eε(uε) ≤M + Fη(ε)(uε) ≤ C(1 + ‖∇uε‖Ls(Ω;Rd×d)) ≤ C (1 + ‖∇uε‖Lp(Ω;Rd×d)) . (4.1)

Moreover, by assumption (H1b), see (1.21), we getˆ
Ωbε\Ω̂ε

|∇uε|p dx ≤ C

εp

ˆ
Ωbε\Ω̂ε

distp(∇vε,K) dx

≤ C 1

ε2

ˆ
Ωbε

min{dist2(∇vε,K),distp(∇vε,K)}dx ≤ CEε(uε) ,

where Ω̂ε is as in (3.4). On the other hand, in Ω̂ε we have |∇vε| ≤ C, thus |∇uε| ≤ C
ε , a.e.;

�nally, in Ω \ Ωb
ε we have |∇uε| ∼ |∇g| ≤ C. Therefore, for any κ < 1 there exists Cκ such that

‖∇uε‖pLp(Ω;Rd×d)
≤ C

εp
+ CEε(uε) ≤

Cκ
εp

+ κ‖∇uε‖pLp(Ω;Rd×d)
,

where in the last inequality we employed (4.1) in combination with Young's inequality. We obtain
that ‖∇uε‖Lp(Ω;Rd×d) ≤ C

ε and, by using again (4.1), that Eε(vε) = Eε(uε) ≤ C
ε , in particular

ε2Eε(vε)→ 0.
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In all cases (i)�(iii), we may now apply Theorem 3.1, hence there is iε ∈ {1, . . . , l} such thatˆ
Ω

dists(∇vε,Kiε) dx =

ˆ
Ωbε

dists(∇vε,Kiε) dx+

ˆ
Ω\Ωbε

dists(I + ε∇gε,Kiε) dx

≤ C εs
((
Eε(vε)

) s
2 + ε2−sEε(vε) + τε

(
Eε(vε)

) N
N−1

)
+ C |Ω \ Ωb

ε| ,
(4.2)

where τε = 0 if l = 1 and τε = ε−s( ε
2

η )
N
N−1 if l ≥ 2. Observe that |Ω \ Ωb

ε| → 0. We next prove

that dist(∇vε,Kiε) → 0 in Ls(Ω). This follows in case (i) because Eε(vε) is equibounded and
τε ≤ C, cf. (1.17) if l ≥ 2, so the right-hand side of (4.2) tends to zero. In cases (ii)�(iii) we have
already proved that Eε(vε) ≤ C

ε . Hence, in case (ii), or in case (iii) if s > N
N−1 , the conclusion

follows as in case (i). In case (iii) with s = N
N−1 , by the assumption η(ε)� ε one has τε → 0, so

again the right-hand side of (4.2) tends to zero. In particular this implies dist(∇vε,Kiε)→ 0 in
Ls(Ω) also for s < N

N−1 .
We now show that iε = 1 for ε su�ciently small. Suppose on the contrary that there is

ı̄ ∈ {2, . . . , l} such that iε = ı̄ for a subsequence ε → 0 (not relabelled). Recall the sets
Ωi
ε = {dist(∇vε,Ki) < σ̂} de�ned in the proof of Theorem 3.1, with σ̂ = σ∧1 and σ as in (H1c).

By (1.13), Ω1
ε ⊃ {dist(x,Ωc

η) ≤ δη} for ε su�ciently small. Let Ω̃ε be the connected component

of Ω \ Ωı̄
ε containing {dist(x,Ωc

η) ≤ δη} and observe that Per({dist(x,Ωc
η) ≤ δη}) ≥ C for some

C > 0. Since dist(∇vε,Kı̄)→ 0 in Ls(Ω), we deduce that |Ω\Ωı̄
ε| → 0 and in particular |Ω̃ε| → 0,

which yields Per(Ω̃ε) ≥ C. On the other hand, by (3.11) we have Per(Ωiε
ε ) ≤ C ε2

η Eε(vε) → 0,

giving a contradiction since Per(Ωiε
ε ) ≥ Per(Ω̃ε).

We then proceed as in the proof of [10, Proposition 3.4], cf. also the proof of [6, Theorem 1.8
(i)]: by means of the rigidity estimate [12, Theorem 3.1] we obtain

1

εs

ˆ
Ω
|∇vε−I|s dx ≤ C

((
Eε(vε)

) s
2 +ε2−sEε(vε)+τε

(
Eε(vε)

) N
N−1 +

ˆ
∂Ω
|g|s dHN−1

)
+αε , (4.3)

where αε = C
´

Ω\Ωbε
|∇gε|s dx → 0. Hence (2.1), (2.3) and (2.4) follow; we obtain also (2.2) in

case (i). Finally, by (4.1) and (4.3) we have

‖∇uε‖sLs ≤ C
(
‖∇uε‖

s
2
Ls + ε2−s‖∇uε‖Ls + τε‖∇uε‖

N
N−1

Ls + 1
)
.

This readily implies that (2.2) holds also in cases (ii)�(iii). (Notice that in case (iii) with s ≤ N
N−1

we use the assumption η(ε) � ε to get τε → 0, as above.) The uniform boundedness of Eε(uε)
follows from (4.1). �

4.2. Proof of Γ-convergence. For a �xed a sequence εj → 0+, we introduce the functionals

E ′(u) := Γ- lim inf Eεj = inf
{

lim inf
j→+∞

Eεj (uj) : uj ⇀ u in W 1,s(Ω;RN )
}
,

E ′′(u) := Γ- lim sup Eεj = inf
{

lim sup
j→+∞

Eεj (uj) : uj ⇀ u in W 1,s(Ω;RN )
}
.

In order to prove Theorem 2.2, we will show that E ′′(u) ≤ E(u) ≤ E ′(u) for every function
u ∈W 1,s(Ω;RN ). We set ηj := η(εj) .
Strategy of the proof of the Γ-liminf inequality. Before providing the proof of the Γ-liminf
inequality we �rst comment on the strategy. A standard approach in discrete-to-continuum
analysis amounts to give an optimal lower bound on discrete energies by integrals depending on
gradients of suitable a�ne interpolations of the discrete �elds. Such approach cannot be followed
in the case M > 1 due to the nontrivial dependence of the cell energy W on di�erence quotients
of the discrete �elds, see also Remark 6.3.
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We adopt a di�erent strategy. The idea is to partition the lattice ηjZN into sublattices Lmj ,
m = 1, . . . ,MN , with elementary lattice cells of size ηjM , and identify D′ηju with a set of vector

�elds U1
j , . . . , U

MN

j that are piecewise constant on each cell of the corresponding sublattice.
Accordingly, the total interaction energy is decomposed into a sum of discrete energies Emj ,

where, for every m, Emj can be written as an integral depending on Umj , see (4.13) below.

If uj → u inW 1,s, the corresponding vector �elds Umj , converge to limits that may be singularly
not related to ∇u. In contrast, in the crucial Lemma 4.2 we prove that, for a.e. x, the average of
the limiting vector �elds, evaluated at x, is uniquely determined by ∇u(x), see (4.7). Finally, the
previous decomposition of the energy, Jensen's inequality, and a lower semicontinuity argument
allow us to obtain the desired lower bound by applying the linearisation process to each of the
integrals Emj .

In order to clarify the construction of the vector �elds Umj and the result of Lemma 4.2 we
provide the following one-dimensional example.

Example 4.1. Let N = 1, Ω = (0, 1), M = 2, and u(x) = zx with z ∈ R. Given z1, z2 ∈ R
such that 1

2(z1 + z2) = z, let w be the 1-periodic function de�ned by w(x) = z1 if x ∈ (0, 1
2) and

w(x) = z2 if x ∈ (1
2 , 1). Then let uj ∈ Aηj (identi�ed with its piecewise a�ne interpolation) be

determined by the following conditions: uj(0) = 0, u′j(x) = w( x
2ηj

). Clearly uj
∗
⇀ u weakly∗ in

W 1,∞(0, 1). Then one has, for every j and x, U1
j (x) ≡ (z1, z2, z), U

2
j (x) ≡ (z2, z1, z),

1
2(U1

j (x) +

U2
j (x)) ≡ (z, z, z) = D′(vz,0) = D′(vu′(x),0) (recall (1.11) for the notation vz,0). Therefore

1
2(U1

j (x) + U2
j (x)) is uniquely determined by z = ∇u(x), while neither U1

j (x) nor U2
j (x) is.

Before stating Lemma 4.2 we introduce some notation. Recall the integer M ∈ N introduced
in the de�nition of Eη; see (1.5)�(1.10). Notice that we may partition ZN as

ZN =
MN⋃
m=1

(
ym +MZN

)
,

where

{y1, . . . , yMN } = ZN ∩ [0,M)N . (4.4)

Set

Lmj := ηj(ym +MZN ) . (4.5)

Given u ∈ Aηj , for every m ∈ {1, . . . ,MN} we introduce the piecewise constant vector �elds

Um : Ωb
ηj → Rd(M) de�ned by

Um(y) := D′ηju(x), where x ∈ Lmj is the only point such that y ∈ x+ ηj [0,M)N . (4.6)

Lemma 4.2. Let uj ∈ Aηj be a sequence such that uj ⇀ u in W 1,s(Ω;RN ) and let Umj be the

associated sequence of vector �elds de�ned by (4.6) for m ∈ {1, . . . ,MN}. Given Ω′ ⊂⊂ Ω, if

Umj ⇀ Um in Ls(Ω′;Rd(m)) for every m ∈ {1, . . . ,MN}, then

1

MN

MN∑
m=1

Um(y) = D′(v∇u(y),0) for a.e. y ∈ Ω′, (4.7)

where v∇u(y),0 is as in (1.11).

Proof. One can easily see that

1

MN

MN∑
m=1

Umj (·+ ηjym) ⇀
1

MN

MN∑
m=1

Um weakly in Ls(Ω′;Rd(M)) . (4.8)
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x

y

P
Q

Figure 3. Idea of the proof of (4.17) for N = 2, M = 3. Given y, the point
x is chosen as in (4.9). The lattice L1

j is represented by the intersections of the
bold lines. The nine short arches displayed in the picture connect the pairs of
points involved in the �nite di�erences appearing in (4.10) for i = 1, xk = (1, 2),
xl = (2, 2), y′ varying in the set {(0, 0), (0, 1), (0, 2)}, and h = 0, 1, 2. The �nite
di�erence between the points P = x+ηjxk and Q = x+ηjxl is obtained for y′ =
(0, 0) and h = 0. For each y′ ∈ {(0, 0), (0, 1), (0, 2)}, the sum of the corresponding
three �nite di�erences divided by 3 gives the �nite di�erence corresponding to
the long arch. The sum in (4.10) is the average of the three �nite di�erences
corresponding to the three long arches. Each of such �nite di�erences is regarded
as the derivative with respect to the vector 3e1 of the piecewise a�ne interpolation
of uj with respect to the Kuhn decomposition of the lattice (y1 +y′+xk) +MZN
(with y1 de�ned by (4.4)). Dashed lines represent the lattice (y1 + xk) +MZN .

Note that, by de�nition (4.6), for a �xed x ∈ L1
j each summand in the left-hand side above is

constant on x + ηj [0,M)N . Next we rewrite such sum in a more convenient form. To this end,
for any i ∈ {1, . . . , N}, let Πi

M be the facet of the discrete cell ZN ∩ [0,M)N orthogonal to ei,
that is

Πi
M := ZN ∩ [0,M)N ∩ {x ∈ RN : x · ei = 0} .

We have #Πi
M = MN−1. Observe that

{ym : m = 1, . . . ,MN} = {y′ + hei : y
′ ∈ Πi

M , h = 0, . . . ,M − 1} .

For any i ∈ {1, . . . , N} we can thus regroup the sum in the left-hand side of (4.8) as

1

MN

MN∑
m=1

Umj (y + ηjym) =
1

MN−1

∑
y′∈ΠiM

1

M

M−1∑
h=0

D′ηjuj(x+ ηj(y
′ + hei)) , (4.9)
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where x ∈ L1
j is the only point such that y ∈ x + ηj [0,M) (see Figure 3). Next �x k, l in (1.2)

such that xl = xk + ei for some i = 1, . . . , N . We explicitly write the kl-th component of (4.9): 1

MN

MN∑
m=1

Umj (y + ηjym)


kl

=
1

MN−1

∑
y′∈ΠiM

1

M

M−1∑
h=0

(
D′ηjuj(x+ ηj(y

′ + hei))
)
kl

=
1

MN−1

∑
y′∈ΠiM

1

M

M−1∑
h=0

uj(x+ ηj(y
′ + xk + (h+ 1)ei))− uj(x+ ηj(y

′ + xk + hei))

ηj

=
1

MN−1

∑
y′∈ΠiM

DMei
ηj uj

(
x+ ηj(y

′ + xk)
)
, (4.10)

where we have employed the notation (1.4). Denote by T ′ the triangulation of the lattice (y1 +
y′ + xk) + MZN associated to the Kuhn decomposition of the elementary cells of the lattice;
then the sequence of the piecewise a�ne interpolations of uj on ηjT ′ still converges to u weakly
in W 1,s(Ω;RN ), see [4, Appendix A]. Therefore, for any y′ �xed,∑

x∈L1j∩Ω

DMei
ηj uj

(
·+ηj(y′ + xk)

)
χx+ηj [0,M)N ⇀ ∇u · ei weakly in Ls(Ω′;RN ) . (4.11)

Finally, notice that all the other components of 1
MN

∑MN

m=1 U
m
j (y+ηjym) are linear combinations

of those considered in (4.10). The thesis then follows from (4.8), (4.10), and (4.11). �

We are now in a position to prove the Γ-liminf inequality, which is the �rst step of the proof
of Theorem 2.2. The second step is the proof of the Γ-limsup inequality, which follows from the
discretisation argument detailed below.

Proof of Theorem 2.2. Step 1: E(u) ≤ E ′(u). Let uj ⇀ u in W 1,s(Ω;RN ). Upon passing to a
subsequence, it is not restrictive to assume that Eεj (uj) is uniformly bounded. Recall (4.5) and
notice that

Eεj (uj) =

MN∑
m=1

Emεj (uj) , (4.12)

where

Emεj (uj) =
1

ε2
j

∑
x∈Lmj

x+ηjCM⊂Lηj

ηNj W
(
D′ηj Id + εjD

′
ηjuj(x)

)
.

For every m ∈ {1, . . . ,MN} let Umj be the sequence of piecewise constant vector �elds de�ned

by (4.6) associated to uj . Fix Ω′ ⊂⊂ Ω. From the boundedness in W 1,s(Ω;RN ) of (uj)j (see

Theorem 2.1) we deduce that (Umj )j is bounded in Ls(Ω′;Rd(M)) for every m ∈ {1, . . . ,MN}.
Indeed, all �nite di�erences contained in Umj (y) can be bounded in terms of �nite di�erences of

uj between nearest neighbours. Hence, up to passing to a further subsequence (not relabelled),

we may assume that, for every m ∈ {1, . . . ,MN}, Umj ⇀ Um weakly in Ls(Ω′;Rd(M)) for some

Um ∈ Ls(Ω′;Rd(M)). Note that, if x ∈ Lmj and x+ ηj [0,M)N ⊂ Ω, then

ηNj W
(
D′ηj Id + εjD

′
ηjuj(x)

)
=

1

MN

ˆ
x+ηj [0,M)N

W (D′Id + εjU
m
j (y)) dy .

In particular, we have for j su�ciently large

Emεj (uj) ≥
1

ε2
j

1

MN

ˆ
Ω′
W (D′Id + εjU

m
j (y)) dy . (4.13)
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By a Taylor expansion of W about D′Id with Lagrange remainder, we get

1

ε2
j

ˆ
Ω′
W (D′Id + εjU

m
j (y)) dy =

1

2

ˆ
Ω′
D2
ZW (D′Id + tjεjU

m
j (y))[Umj (y)]2 dy , (4.14)

for some tj ∈ (0, 1). For δ > 0, let

ω(δ) := sup
‖Z‖≤δ

‖D2
ZW (D′Id + Z)−D2

ZW (D′Id)‖ .

By the regularity assumption (H2), we know that limδ→0+ ω(δ) = 0. Let γj → +∞ such that

lim
j→+∞

ω(εjγj)γ
2
j = 0 (4.15)

and set

Bm
j := {y ∈ Ω′ : ‖Umj (y)‖ ≤ γj} , Ûmj = χBmj U

m
j .

By the Chebyshev inequality and the Ls-boundedness of Umj we get that

|Ω′ \Bm
j | ≤

C

γsj
→ 0 ,

hence Ûmj ⇀ Um weakly in Ls(Ω′;Rd(M)). By (4.14), we then get

1

ε2
j

ˆ
Ω′
W (D′Id + εjU

m
j (y)) dy ≥ 1

2

ˆ
Ω′
D2
ZW (D′Id)[Ûmj (y)]2 dy − Cω(εjγj)γ

2
j .

By (4.15) and the convexity of ZD 3 Z 7→ D2
ZW (D′Id)[Z]2 we have

lim inf
j→+∞

1

ε2
j

ˆ
Ω′
W (D′Id + εjU

m
j (y)) dy ≥ 1

2

ˆ
Ω′
D2
ZW (D′Id)[Um(y)]2 dy . (4.16)

By Lemma 4.2 we �nd that

1

MN

MN∑
m=1

Um(y) = D′(v∇u(y),0) for a.e. y ∈ Ω′. (4.17)

Then, by (4.12), (4.13), (4.17), (4.16), and again by the convexity of ZD 3 Z 7→ D2
ZW (D′Id)[Z]2

we infer that

lim inf
j
Eεj (uj) ≥

1

2

ˆ
Ω′

MN∑
m=1

1

MN
D2
ZW (D′Id)[Um(y)]2 dy

≥ 1

2

ˆ
Ω′
D2
ZW (D′Id)[D′(v∇u(y),0)]2 dy =

ˆ
Ω′
φ(e(u)) dy .

This concludes the proof of E(u) ≤ E ′(u) upon letting Ω′ ↗ Ω and noticing that, by the continuity
of the trace, u ∈ H1

g (Ω;RN ).

Step 2: E ′′(u) ≤ E(u). Assume �rst that u ∈ g + C∞c (Ω;RN ). By a convolution and a cut-
o� argument, we can �nd a sequence (un)n such that un → u strongly in H1(Ω;RN ) and
un ∈ (g + C∞c (Ω;RN )) ∩ C∞(Ω\Sn;RN ), where Sn := {x ∈ Ω: dist(x,Ωc) < δn}, with δn → 0.
De�ne unj = un|Lηj . For every x ∈ Lηj set

Unj (y) := D′ηju
n
j (x), y ∈ x+ ηj [0,M)N .



18 ROBERTO ALICANDRO, GIULIANO LAZZARONI, AND MARIAPIA PALOMBARO

Then, using the C2 regularity of W , a Taylor expansion about D′Id gives

ηNj
ε2
j

W
(
D′Id + εjD

′
ηju

n
j (x)

)
=

1

MN

1

ε2
j

ˆ
x+ηj [0,M)N

W
(
D′Id + εjU

n
j (y)

)
dy

=
1

MN

ˆ
x+ηj [0,M)N

1

2
D2
ZW (D′Id)[Unj (y)]2 dy + ηNj o(1) .

(4.18)

If x+ ηj [0,M)N ⊂ Ω \ Sn, from (4.18) it follows

ηNj
ε2
j

W
(
D′Id + εjD

′
ηju

n
j (x)

)
=

1

MN

ˆ
x+ηj [0,M)N

1

2
D2
ZW (D′Id)[D′(v∇un(y),0)]2 dy + ηNj o(1) ,

(4.19)
where we used the Lipschitz regularity of ∇un in Ω \ Sn. If instead (x + ηj [0,M)N ) ∩ Sn 6= Ø,
we use the Lipschitz regularity of un and get from (4.18)

ηNj
ε2
j

W
(
D′Id + εjD

′
ηju

n
j (x)

)
≤ ηNj C + ηNj o(1) . (4.20)

Summing over x ∈ Lηj and combining (4.19) and (4.20), we obtain

E ′′(un) ≤ lim sup
j→+∞

Eεj (unj ) ≤
ˆ

Ω

1

2
D2
ZW (D′Id)[D′(v∇un(y),0)]2 dy + Cδn = E(un) + Cδn .

Hence, upon letting n→ +∞, by the lower semicontinuity of E ′′ and the strong H1-convergence
of un to u, we get

E ′′(u) ≤ E(u) . (4.21)

In the general case u ∈ H1
g (Ω;RN ), we can �nd a sequence (uk)k in g + C∞c (Ω;RN ) such that

uk → u strongly in H1(Ω;RN ), so that limk→+∞ E(uk) = E(u). Then, we conclude by (4.21)
with uk in place of u and again by the lower semicontinuity of E ′′. �

5. Partial Dirichlet boundary data

The aim of the present section is to brie�y discuss the case of Dirichlet boundary conditions
assigned only on a subset of ∂Ω. We will see that in such a case the surface term appearing in
(1.5)�(1.8) cannot be neglected and that its presence will in fact a�ect the choice of the scaling.
We assume that Ω is a connected open bounded set of RN with Lipschitz boundary and consider
an open subset γ ⊂ ∂Ω such that HN−1(γ) > 0 where the Dirichlet condition is prescribed.
The derivation of linear elasticity for pure traction problems, corresponding to γ = Ø, has been
recently considered in continuum settings e.g. in [17]. We assume that γ has Lipschitz boundary
in ∂Ω according to [2, De�nition 2.1]. Such assumption is needed for a density result employed
in the proof of the Γ-limsup inequality in Theorem 5.6, but weaker regularity conditions may be
required as done in [6].

Given ε > 0 and g ∈W 1,∞
loc (RN ;RN ), we assume that v ∈ Aη satis�es

v(x) = x+ εg(x) ∀x ∈ Lη such that dist(x, γ) ≤ δη ,

where δη satis�es (1.12). We denote by Agη(γ) the set of corresponding displacements, that is

Agη(γ) := {u ∈ Aη : u(x) = g(x) ∀x ∈ Lη such that dist(x, γ) ≤ δη} . (5.1)

In contrast with the case of boundary conditions assigned on the whole boundary, here the
surface energy (1.14) depends on u and not only on g and therefore the total energy cannot
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be renormalised as in (1.15). We will then study the following rescaled functionals de�ned for
u ∈ Agη(γ) by

Eηε (u) :=
1

ε2

(
Eη(Id + εu)

)
=

1

ε2

∑
x∈Lbη

ηN W
(
D′ηId + εD′ηu(x)

)
+

1

ε2

∑
x∈LMη \Lbη

ηNWsurf

(
Iη(x), D′η|Iη(x)(Id + εu)(x)

)
.

The surface term in the above sum will play a role in the choice of η(ε); with such a choice the
Γ-limit will be only determined by the bulk term. The scaling of η = η(ε) will depend on a
compatibility condition according to the following de�nition.

De�nition 5.1. We say that Wsurf is compatible with W if there exists σ > 0 such that

Wsurf

(
I, D′|I (v)

)
≤ CW (D′v) (5.2)

for each I ⊂ {1, . . . , (M + 1)N}, and for each v : CM → RN such that dist(∇v,K) ≤ σ (where
∇v denotes the gradient of the piecewise a�ne interpolation of v).

Remark 5.2. Note that in the case of pairwise interactions, the compatibility of Wsurf with W
holds if the system is not frustrated (see Remark 6.3).

In the case of compatibility the scaling assumptions on η(ε) will be the same as in Sections
1�2, while in the case of incompatibility our analysis applies only to the case of a single well
under the more restrictive assumption that η(ε) � ε2. Indeed in the case of multiple wells the
latter assumption is incompatible with (1.17). Set

Eε(u, γ) :=

{
Eη(ε)
ε (u) if u ∈ Agη(ε)(γ) ,

+∞ if u ∈W 1,r(Ω;RN ) \ Agη(ε)(γ) .

In this section, we assume for simplicity that there is no volume force, that is fη ≡ 0. In fact,
the di�culties related to partial boundary data a�ect the proofs of Theorems 5.4 and 5.6, which
extend Theorems 3.1 and 2.2 and are independent of the presence of forces. Recall the de�nition
(1.20) for the set Ωb

η(ε).

Theorem 5.3 (Compactness). Let W satisfy (H0) and (H1) and let g ∈ W 1,∞
loc (RN ;RN ). Let

η(ε)→ 0; if l ≥ 2, assume in addition that η(ε) satis�es (1.17) for a given r ∈ (1, p]. Let s = p
for l = 1 and s = r for l ≥ 2. Then there is a sequence αε → 0 such that, if {uε} is a sequence in
Agη(ε)(γ) with Eε(uε, γ) uniformly bounded, then there exist a positive constant C and a sequence

ûε satisfying ûε = uε in Ωb
η(ε) andˆ

Ω
|∇ûε|s dx ≤ C

(
(Eε(uε))

s
2 +

ˆ
γ
|g|s dHN−1

)
+ αε . (5.3)

In particular,

‖ûε‖W 1,s(Ω;RN ) ≤ C , (5.4)

for some positive constant C independent of ε.

The proof of Theorem 5.3 follows from Theorem 5.4 exactly as Theorem 2.1 follows from
Theorem 3.1.

Theorem 5.4. Let W satisfy (H0) and (H1). For a given η = η(ε), assume that vε ∈ Aη(ε) is a

sequence such that lim
ε→0

ε2Eε(vε) = 0, where Eε is de�ned in (1.19). Then there exist C > 0 and

a sequence v̂ε such that v̂ε = vε in the set Ωb
η(ε) and
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(a) if l = 1, then

1

εp

ˆ
Ω

distp(∇v̂ε, SO(N)) dx ≤ C
((
Eε(v̂ε)

) p
2 + ε2−pEε(v̂ε)

)
; (5.5)

(b) if l ≥ 2, then for ε su�ciently small there is iε ∈ {1, . . . , l} such that

1

εr

ˆ
Ω

distr(∇v̂ε,Kiε) dx ≤ C
((
Eε(v̂ε)

) r
2 + ε2−rEε(v̂ε) + ε−r

(
ε2

η

) N
N−1 (

Eε(v̂ε)
) N
N−1

)
. (5.6)

Proof. Neglecting the surface term in the functional, one can argue as in the proof of Theorem
3.1 and prove estimates (5.5)-(5.6) with Ω replaced by Ωb

η(ε). The conclusion follows from Lemma

5.5 below. �

The next lemma is a slight generalisation of [21, Lemma 3.2] and we refer the reader to [21]
for its proof.

Lemma 5.5. Let q > 1 and i ∈ {1, . . . , l}. There exists C > 0 such that for each v ∈ Aη(ε) one
can �nd v̂ ∈ Aη(ε) that satis�es the following conditions:

(i) v̂ = v in Ωb
η(ε) ;

(ii)

ˆ
Ω

distq(∇v̂, Ki) dx ≤ C
ˆ

Ωb
η(ε)

distq(∇v,Ki) dx .

The existence of the Γ-limit depends on the validity of the compatibility condition (5.2).
Precisely, in the case when (5.2) is satis�ed, Theorem 2.2 still holds. If (5.2) is not satis�ed, then
Theorem 2.2 holds only in the case l = 1 and under the additional assumption that η(ε) � ε2.
This is formalised in the next theorem, where we use the notation

H1
g,γ(Ω;RN ) := {u ∈ H1(Ω;RN ) : u = g HN−1-a.e. on γ} .

Theorem 5.6 (Γ-convergence). LetW satisfy (H0), (H1a), and (H2) and let g ∈W 1,∞
loc (RN ;RN ).

Let s ∈ (1, 2] and let η = η(ε) → 0. Suppose that (5.2) is satis�ed, or l = 1 and η(ε) � ε2.
Then, as ε → 0+, the sequence of functionals {Eε(·, γ)} Γ-converges, with respect to the weak
topology of W 1,s(Ω;RN ), to the functional

E(u, γ) :=


ˆ

Ω
φ(e(u)) dx if u ∈ H1

g,γ(Ω;RN ) ,

+∞ otherwise,
(5.7)

where φ is de�ned in (1.16).

Proof. The proof of the Γ-liminf inequality is exactly as in Theorem 2.2, since it involves only the
bulk term of the energies. As long as the Γ-limsup inequality is concerned, it su�ces to prove it
for a dense subset of H1

g,γ(Ω;RN ), speci�cally, for the set of functions u ∈ g+C∞c (RN\γ;RN ); by
the regularity assumption on γ, the density is guaranteed by [2, Proposition A.2] or [6, Lemma
A.2]. As in Step 2 in the proof of Theorem 2.2, by a convolution and a cut-o� argument, for a
given u in such a class we can �nd a sequence (un)n such that un → u strongly in H1(Ω;RN )
and un ∈ (g + C∞c (RN\γ;RN )) ∩ C∞(Ω\Sn;RN ), where Sn := {x ∈ RN : dist(x, γ) < δn}, with
δn → 0. Let, then, unj = un|Lηj . We estimate the bulk term of Eεj (unj , γ) as in the proof of

Theorem 2.2. Therefore, it su�ces to show that the surface contribution vanishes in the limit as
εj → 0. In the case when the compatibility condition (5.2) is satis�ed, a Taylor expansion of W
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about the identity yields

1

ε2
j

∑
x∈LMηj \L

b
ηj

ηNj Wsurf

(
Iηj (x), D′ηj |Iηj (x)(Id + εju

n
j )(x)

)
≤ C 1

ε2
j

∑
x∈LMηj \L

b
ηj

ηNj W
(
D′ηj (Id + εju

n
j )(x)

)
≤ C 1

ε2
j

ε2
j η

N
j ](LMηj \ L

b
ηj ) ≤ C ηj → 0 .

In the case when l = 1 and η(ε) � ε2, using that Wsurf is bounded in a neighbourhood of the
identity, we get

1

ε2
j

∑
x∈LMηj \L

b
ηj

ηNj Wsurf

(
Iηj (x), D′ηj |Iηj (x)(Id + εju

n
j )(x)

)
≤ C

ηNj
ε2
j

](LMηj \ L
b
ηj ) ≤ C

ηj
ε2
j

→ 0 .

This concludes the proof. �

Remark 5.7 (Convergence of minima and minimisers). Observe that the analogue of Theorem
2.3 still holds up to replacing the sequence of almost minimisers uε by

1
ε (v̂ε−x), where vε = x+εuε

and v̂ε is the modi�cation introduced in Theorem 5.3. This is a consequence of Theorems 5.3 and
5.6 and of the fact that the Γ-liminf inequality involves only the bulk term of the energies.

6. Pairwise interactions

In this section we show how the analysis and the results established so far apply in particular
to the class of pairwise discrete energies. Namely, we consider energies (Êpw)η : Aη 7→ [0,+∞]
of the form

(Êpw)η(v) :=
∑
ξ∈ZN

∑
x∈Lη

x+ηξ∈Lη

ηN ψ
(
ξ,
|v(x+ ηξ)− v(x)|

η

)
, (6.1)

where ψ : ZN × Rn → R and we assume that there exists R > 0 such that

ψ(ξ, ρ) = 0 if |ξ| > R .

By introducing a cell energy that suitably weights the interactions in a �xed periodic cell of the
lattice, we can rewrite such energies in the form (1.5) up to an additive constant. Precisely, given
M ∈ N with M ≥ R, de�ne for a function v : CM → RN

Ŵ (D′v) :=
∑
ξ∈ZN

∑
y∈CM
y+ξ∈CM

λM (y, ξ)ψ
(
ξ, |v(y + ξ)− v(y)|

)
, (6.2)

where D′v = D′1v(0) is de�ned in (1.2) and λM : CM × ZN → [0,+∞) satis�es∑
y∈CM
y+ξ∈CM

λM (y, ξ) = 1 ∀ ξ ∈ ZN . (6.3)

Moreover, given I ⊂ {1, . . . , (M + 1)N} and recalling that x1, . . . , x(M+1)N is an enumeration of

CM , let A(I) := {xl : l ∈ I} and set

Ŵsurf(I, D′|Iv) :=
∑
ξ∈ZN

∑
y∈A(I)
y+ξ∈A(I)

λM (y, ξ)ψ
(
ξ, |v(y + ξ)− v(y)|

)
,
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where D′|Iv is de�ned in (1.3). Abusing notation, we set for v ∈ Aη and x ∈ Lη

Ŵ (D′ηv(x)) := Ŵ

(
D′

1

η
v(η ·+x)

)
,

Ŵsurf(I, D′η|Iv(x)) := Ŵsurf

(
I, D′|I

1

η
v(η ·+x)

)
.

Finally, de�ne LMη and Iη(x) by (1.6) and (1.7), respectively, and

Ŵη(x,D
′
η|Iη(x)v(x)) =

{
Ŵ (D′ηv(x)) if Iη(x) = {1, . . . , (M + 1)N} ,
Ŵsurf(Iη(x), D′η|Iη(x)v(x)) otherwise.

Hence, we can see that

(Êpw)η(v) =
∑
x∈LMη

ηN Ŵη

(
x,D′η|Iη(x)v(x)

)
. (6.4)

Note that the coe�cients λM are chosen in such a way that, in the �nal sum, boundary interac-
tions and internal interactions have the same weight.

Setting

mη(x) := min
v
Ŵη(x,D

′
η|Iη(x)v(x)) ,

we renormalise the functionals (Êpw)η by setting

(Epw)η(v) := (Êpw)η −
∑
x∈LMη

ηNmη(x) =
∑
x∈LMη

ηN
(
Ŵη

(
x,D′η|Iη(x)v(x)

)
−mη(x)

)
,

which is of the form (1.5) with

Wη

(
x,D′η|Iη(x)v(x)

)
:= Ŵη

(
x,D′η|Iη(x)v(x)

)
−mη(x) .

Note that mη(x) does not depend on x if x+ ηCM ⊂ Ω. We can thus set

m := min
v
Ŵη(x,D

′
η|Iη(x)v(x)) = min

v
Ŵ
(
D′v

)
for every x s.t. x+ ηCM ⊂ Ω (6.5)

and

W
(
D′(x)v(x)

)
:= Ŵ

(
D′v(x)

)
−m. (6.6)

Then, if assumptions (H0)�(H2) are satis�ed by the cell energyW de�ned by (6.6), we can apply
Theorem 2.2 to derive the linear elastic energy associated to the family of scaled and renormalised
functionals de�ned as in (1.15) by

(Epw)ηε =
1

ε2

∑
x∈Lbη

ηN W
(
D′ηId + εD′ηu(x)

)
, u ∈ Agη .

Remark 6.1. Note that (H0) is always satis�ed by any cell energy W de�ned by (6.2)�(6.6),
since the pair potential ψ depends on the distance between points in the deformed con�guration.
Moreover, (H1)�(H2) are satis�ed whenever the following hold:

• W is minimised exactly on K,
• (H1c) holds with σ = 0,
• ρ 7→ ψ(ξ, ρ) is smooth for every ξ,
• ψ(ξ, ρ) ≥ C(ρ− |Uiξ|)2 for every i = 1, . . . , l and every ρ in a neighbourhood of |Uiξ|,
• there is p > 1 such that ψ(ξ, ρ) ≥ Cρp for every ξ ∈ {e1, . . . , en} and for ρ su�ciently
large.

Finally, we underline that the validity of (H1c) is usually implied by the energetic penalisation
due to the interactions beyond nearest neighbours (see the examples in Section 7).
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For the reader's convenience we restate Theorem 2.2 in this speci�c case, providing an explicit
formula for the Γ-limit.

Theorem 6.2 (Γ-convergence). Let the function W de�ned in (6.6) satisfy (H0), (H1a), and

(H2) and let g ∈ W 1,∞
loc (RN ;RN ). Let s ∈ (1, 2] and let η = η(ε) → 0. Then, as ε → 0+ the

sequence of functionals {Eε} de�ned by (1.18) with Eη(ε)
ε = (Epw)

η(ε)
ε , Γ-converges, with respect

to the weak topology of W 1,s(Ω;RN ), to the functional

Epw(u) :=


ˆ

Ω
φpw(e(u)) dx if u ∈ H1

g (Ω;RN ) ,

+∞ otherwise,
(6.7)

where φpw is de�ned by

φpw(A) :=
1

2

∑
ξ∈ZN

(
D2
ρψ(ξ, |ξ|)− Dρψ(ξ, |ξ|)

|ξ|

)(
ξ ·Aξ
|ξ|

)2

for every A ∈ RN×N . (6.8)

Proof. By Theorem 2.2, the conclusion of the Theorem holds true with φpw given by (1.16) and
W de�ned by (6.6). Hence, it only remains to prove that (6.8) holds true. To this end, observe
that, given A ∈MN×N and setting

h(t) :=
1

2
W (D′Id + tD′uA,0) ,

where uA,0 is de�ned by (1.11), we have

φpw(A) = h′′(0) . (6.9)

Note, moreover, that

h(t) =
1

2

∑
ξ∈ZN

gξ(t) , (6.10)

where

gξ(t) := ψ(ξ, |ξ + tAξ|) .
Using the regularity assumption (H2), for su�ciently small t one �nds

g′ξ(t) = Dρψ(ξ, |ξ + tAξ|) (ξ + tAξ) ·Aξ
|ξ + tAξ|

and

g′′ξ (t) =D2
ρψ(ξ, |ξ + tAξ|)

(
(ξ + tAξ) ·Aξ
|ξ + tAξ|

)2

+Dρψ(ξ, |ξ + tAξ|) |Aξ|
2|ξ + tAξ|2 − ((ξ + tAξ) ·Aξ)2

|ξ + tAξ|3
.

(6.11)

In particular,

g′ξ(0) = Dρψ(ξ, |ξ|) ξ ·Aξ
|ξ|

and

g′′ξ (0) = D2
ρψ(ξ, |ξ|)

(
ξ ·Aξ
|ξ|

)2

+Dρψ(ξ, |ξ|) |Aξ|
2|ξ|2 − (ξ ·Aξ)2

|ξ|3
.

Assumption (H1a) yields the following equilibrium condition:∑
ξ∈ZN

Dρψ(ξ, |ξ|) ξ ·Aξ
|ξ|

= 0 for every A ∈MN×N .
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In particular, replacing A with ATA, the equilibrium condition reads∑
ξ∈ZN

Dρψ(ξ, |ξ|) |Aξ|
2

|ξ|
= 0 for every A ∈MN×N . (6.12)

From (6.10) and (6.11) we infer that

h′′(0) =
1

2

∑
ξ∈ZN

(
D2
ρψ(ξ, |ξ|)

(
ξ ·Aξ
|ξ|

)2

+Dρψ(ξ, |ξ|) |Aξ|
2|ξ|2 − (ξ ·Aξ)2

|ξ|3

)
. (6.13)

Plugging equation (6.12) into (6.13) yields

h′′(0) =
1

2

∑
ξ∈ZN

(
D2
ρψ(ξ, |ξ|)

(
ξ ·Aξ
|ξ|

)2

−Dρψ(ξ, |ξ|) (ξ ·Aξ)2

|ξ|3

)

=
1

2

∑
ξ∈ZN

(
D2
ρψ(ξ, |ξ|)− Dρψ(ξ, |ξ|)

|ξ|

)(
ξ ·Aξ
|ξ|

)2

,

which in turn, combined with (6.9), yields the conclusion. �

Remark 6.3 (Frustrated systems). We say that the system is not frustrated if the identity
con�guration Id minimises each interaction, otherwise we say that the system is frustated. Notice
that, in the �rst case, the term Dρψ(ξ, |ξ|) in (6.8) is zero for every ξ.

Remark 6.4 (Orientation-preserving constraint). In some models, pairwise discrete energies are
restricted to admissibile deformation subject to additional constraints. For instance it is possible
to enforce an orientation-preserving constraint by requiring that the deformation determinant
(i.e., the Jacobian determinant of the piecewise a�ne interpolation of the discrete deformation)
is a.e. positive. Our analysis applies also to this case.

Speci�cally, let A+
η := {v ∈ Aη : det∇v > 0 a.e.} and (Ê+

pw)η(v) be de�ned by (6.1) if v ∈ A+
η ,

(Ê+
pw)η(v) = +∞ otherwise. Then, the cell energy Ŵ (D′v) is de�ned as in (6.2) if v : CM → RN

is such that det∇v > 0 a.e., Ŵ (D′v) = +∞ otherwise. For such a choice of Ŵ , if the function
W de�ned in (6.6) satis�es (H0), (H1a), and (H2), then the conclusion of Theorem 6.2 still
holds.

7. Examples

The present section is devoted to examples. In the �rst three we exhibit pairwise potentials
to which our analysis applies. The last example shows the optimality of the scaling (1.17).

Example 7.1. We present a two-dimensional example showing that our assumptions include a
model for laminates. We refer to [15] for another discrete model for laminates.

Here it will be convenient to use a triangular reference lattice, namely the Bravais lattice
T 2 = spanZ{w1, w2} generated by the vectors

w1 := (1, 0) and w2 = (1
2 ,
√

3
2 ) .

Let

w3 := w2 − w1 = (−1
2 ,
√

3
2 ) .

By an a�ne change of variables we could map T 2 to Z2 so as to conform to the notation of
Section 1; however we choose to work directly on T 2 to ease notation, in particular we are going
to de�ne an energy minimised at the identity map and linearise around the identity as in the
previous sections. For each point in the lattice, its nearest neighbours are those at distance 1,
while its next-to-nearest neighbours are those at distance

√
3. See Figure 4.
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w1

w2w3

Figure 4. A portion of triangular lattice. The vectors w1, w2, w3 are displayed.
The point marked with the black dot has six nearest and six next-to-nearest
neighbours, marked with grey and white dots, respectively. See Example 7.1.

In the triangular lattice we will de�ne an interaction energy minimised on SO(2) ∪ SO(2)U ,
where

U :=

(
1 0
0 b

)
, with b ≥

√
5 .

It turns out that in the deformed con�guration UT 2 nearest neighbours are mapped into points
whose mutual distance is either 1 or `b := 1

2

√
1 + 3b2, while next-to-nearest neighbours are mapped

into points whose mutual distance is either
√

3b or 1
2

√
9 + 3b2. See Figure 5.

We now de�ne a pairwise interaction energy (Êpw)η as in (6.1), where we replace the square
lattice Z2 with the triangular lattice T 2; the set Lη is rede�ned accordingly. Speci�cally, we
consider the sets of nearest and next-to-nearest neighbour bonds

B1 := {ξ ∈ T 2 : |ξ| = 1} , B2 := {ξ ∈ T 2 : |ξ| =
√

3} .

P0

P6

P1

P2 P4

P7

P3 P5

Figure 5. A deformation of the triangular lattice displayed in Figure 4. In
the deformed con�guration, the distances between the displayed points are the
following: |P0−P1| = |P0−P2| = 1, |P0−P3| = `b, |P0−P4| = |P0−P6| =

√
3,

|P0−P5| = 1
2

√
9 + 3b2, |P0−P7| =

√
3b. All nearest-neighbour interactions are

at equilibrium. Next-to-nearest neighbour interactions across the interface (bold
line) are not at equilibrium (for example P2, P3), which results into an energy
contribution proportional to the length of the interface. See Example 7.1.
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As in (6.1) we de�ne

(Êpw)η(v) :=
∑

ξ∈B1∪B2

∑
x∈Lη

x+ηξ∈Lη

ηN ψ
(
ξ,
|v(x+ ηξ)− v(x)|

η

)
for v ∈ A+

η , (7.1)

setting (Êpw)η(v) = +∞ otherwise, where A+
η denotes the deformations v ∈ Aη with det∇v > 0

a.e., see Remark 6.4. The pairwise interaction is de�ned as follows:

ψ(ξ, ρ) =


(ρ− 1)2 if ξ = ±w1 ,

(ρ− 1)2 ∧ (ρ− `b)2 if ξ ∈ B1 \ {±w1} ,
(ρ−

√
3)2 ∧ (ρ−

√
3b)2 if ξ = ±(0,

√
3) ,

(ρ−
√

3)2 ∧
(
ρ− 1

2

√
9 + 3b2

)2
if ξ ∈ B2 \ {±(0,

√
3)} .

Notice that the resulting energy depends both on the elongation of the bonds in the deformed
con�guration and on their direction in the reference con�guration.

Under the previous assumptions, if a deformation has zero total interaction energy, then its
gradient is a constant matrix belonging to SO(2) ∪ SO(2)U . Indeed, assume that a triangular
cell in T 2 with sides of length 1 is deformed in such a way that the nearest-neighbour energy is
zero. Then the deformed triangle may have either three sides of length one (so, up to a rotation
it is a cell of T 2) or one side of length one and two sides of length `b (so, up to a rotation it is a
cell of UT 2); the third possibility, i.e. two sides of length one and one side of length `b, is ruled
out by the triangle inequality if b >

√
5, and by the positive determinant constraint in the case

b =
√

5: in fact, `√5 = 2. Next, assuming that all next-to-nearest neighbour interactions are at
equilibrium, one sees that the gradient has to be constant.

We may then apply the analysis of Section 6 by de�ning a cell energy as in (6.2), but taking
into account that we are working directly in T 2. Speci�cally, we choose M = 2 and replace the
unit cell C2 with the rhomboid discrete cell, de�ned as {2t1w1 + 2t2w2 : t1, t2 ∈ [0, 1]} ∩ T 2. In
this case, the coe�cients λ2(y, ξ) in (6.2) can be de�ned by any choice such that the sum (6.3)
holds. Notice that the minimum cell energy m de�ned in (6.5) is zero and is attained for instance
by the identity deformation. Recalling Remark 6.1, it can be seen that:

• Assumptions (H0) and (H1a) are satis�ed by construction.
• Assumptions (H1b) and (H2) are satis�ed by the regularity and the quadratic growth of
ρ 7→ ψ(ξ, ρ).
• If S, T are two neighbouring simplices in T 2 such that ∇v|S ∈ SO(2) and ∇v|T ∈
SO(2)U , then the distance between the next-to-nearest neighbours contained in S ∪ T
is not in equilibrium. By continuity, (H1c) holds.

Therefore, the conclusion of Theorem 6.2 holds. Since D2
ρψ(ξ, |ξ|) = 2 and Dρψ(ξ, |ξ|) = 0 for

every ξ ∈ B1 ∪B2, an explicit computation shows that the limiting energy density (6.8) is

φpw(A) =
2√
3

∑
ξ∈B1∪B2

(
ξ ·Aξ
|ξ|

)2

for every A ∈ R2×2, (7.2)

where the factor 2√
3
takes into account that the measure of the elementary cell of the lattice T 2

is
√

3
2 .
Remark that if in (7.1) we remove interactions between next-to-nearest neighbours, namely

the sum runs only over ξ ∈ B1, then assumption (H1c) does not hold. In this case, since we
can mix gradients lying in the two wells at zero cost (see Figure 5), one can readily see that the
compactness result given in Theorem 2.1 does not hold.



DERIVATION OF LINEAR ELASTICITY FOR ELASTIC ATOMISTIC ENERGIES 27

Figure 6. A deformation whose gradient lies in the wells of Example 7.2: left, a
portion of the lattice in the reference con�guration; right, deformed con�guration.
Atoms have been displayed in di�erent colours in order to highlight their position
in the deformed con�guration. The (piecewise constant) deformation gradient
takes four values: the bold line separates the corresponding phases. Next-to-
nearest neighbour interactions across the interface are out of equilibrium, which
amounts to an energy penalisation depending on the length of the interface and
on the wells that are connected across the interface.

Example 7.2. We modify the previous example by de�ning an interaction energy on nearest and
next-to-nearest neighbours that depends only on their distance in the deformed con�guration, re-
gardless of the direction of the bonds in the reference con�guration. We employ the notation above
and refer again to the total interaction energy de�ned as in (7.1), with the pairwise interaction
energy given by

ψ(ξ, ρ) =

{
(ρ− 1)2 ∧ (ρ− `b)2 if ξ ∈ B1 ,

(ρ−
√

3)2 ∧ (ρ−
√

3b)2 ∧
(
ρ− 1

2

√
9 + 3b2

)2
if ξ ∈ B2 .

As in the previous example we assume that b ≥
√

5. Since (Êpw)η only depends on distances in
the deformed con�guration, then using the symmetries of T2 we see that

(Êpw)η(v) = (Êpw)η(v ◦Hj) for j = 0, . . . , 5 ,

where Hj is the rotation of angle 1
3jπ. Therefore, the matrices UHj are in the set of wells. Since

Hj = −Hj+3, we have SO(2)UHj = SO(2)UHj+3. Arguing as in Example 7.1 it follows that, if
a deformation has total interaction energy zero, then its gradient is a constant matrix belonging
to

SO(2) ∪ SO(2)U ∪ SO(2)UH1 ∪ SO(2)UH2 .

Notice that the four energy wells are mutually rank-one connected, see Figure 6. We can now
repeat the steps of the previous example in order to de�ne a cell energy as in (6.2) and show that
it still satis�es assumptions (H0)�(H2). The conclusion of Theorem 6.2 holds also in this case.
Since the energy agrees with the energy of Example 7.1 for small perturbation of the equilibria,
the limiting energy density is given again by (7.2).
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Figure 7. Square lattice displaying the interactions active in Example 7.3: the
point in the centre of the picture (black dot) is bonded with its �rst, second, third,
and �fth neighbours (represented with dark grey, grey, light grey, and white dots,
respectively). Notice that interactions between third and �fth neighbours can
be regarded as interactions between nearest and next-to-nearest neighbours in a
sublattice with lattice distance 2.

Example 7.3. We construct an example of frustrated model in dimension two. We employ a
square lattice as in Section 1 and we assume a positive-determinant constraint as in the examples
above. The interaction energy is the sum of two contributions,

(Êpw)η(v) := (Êpw)η1(v) + (Êpw)η2(v) for v ∈ A+
η ,

and (Êpw)η(v) = +∞ otherwise. The �rst contribution includes nearest and next-to-nearest
neighbour interactions and is given by

(Êpw)η1(v) :=
1

2

∑
ξ∈Z2

|ξ|=1

∑
x∈Lη

x+ηξ∈Lη

K1 η
2
( |v(x+ ηξ)− v(x)|

η
− a1

)2

+
1

2

∑
ξ∈Z2

|ξ|=
√

2

∑
x∈Lη

x+ηξ∈Lη

K2 η
2
( |v(x+ ηξ)− v(x)|

η
− a2

)2
,

where a1,2, K1,2 are �xed positive numbers, see (1.1) for the de�nition of Lη. The second con-
tribution with longer range interactions is

(Êpw)η2(v) :=
1

2

∑
ξ∈Z2

|ξ|=2

∑
x∈Lη

x+ηξ∈Lη

K3 η
2
( |v(x+ ηξ)− v(x)|

η
− a3

)2

+
1

2

∑
ξ∈Z2

|ξ|=2
√

2

∑
x∈Lη

x+ηξ∈Lη

K4 η
2
( |v(x+ ηξ)− v(x)|

η
− a4

)2
,

where ai, Ki, i = 3, 4, are �xed positive numbers. Note that (Êpw)η includes interactions over
�rst, second, third, and �fth neighbours (Figure 7); due to the geometry of the square lattice, one

can recast (Êpw)η into the form (6.4) choosing cells with size M = 2. Precisely, we choose a cell
energy of the form (6.2) as follows:

Ŵ (D′v) = W 1
(0,0) +W 1

(1,0) +W 1
(1,1) +W 1

(0,1) +W 2,

where

W 1
(i,j) =

1

4
Ecell(v(i, j), v(i+1, j), v(i+1, j+1), v(i, j+1); 1) ,
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W 2 = Ecell(v(0, 0), v(2, 0), v(2, 2), v(0, 2); 3) ,

Ecell(y1, y2, y3, y4;m) =
1

2

4∑
h=1

Km(|yh+1−yh| − am)2 +

2∑
h=1

Km+1(|yh+2−yh| − am+1)2,

where we use the convention that y5 = y1. The terms W 2
(i,j) contribute to (Êpw)η1 and contain

interactions over �rst and second neighbours; the term W 2 contributes to (Êpw)η2(v) and contains
interactions over third and �fth neighbours, corresponding to interactions over �rst and second
neighbours in a square lattice with lattice distance 2.

By choosing a1 = 1, a2 =
√

2, a3 = 2, and a4 = 2
√

2, it turns out that the minimal energy is
zero and the only energy well is SO(2), independently of the choice of Ki. In contrast, by choosing
di�erent values for the parameters, one may observe frustration, i.e., there is no deformation
such that the total interaction energy is zero; equivalently, there is no deformation such that all
interactions are simultaneously at equilibrium.

On the other hand, it is possible to �nd an open range U ⊂ R8 of values for ai and Ki,
i = 1, 2, 3, 4, such that the only minimising well of Ŵ is still SO(2). This follows by an application
of the results of [13]. Indeed, Ecell(y1, y2, y3, y4;m) is of the form [13, formula (3.3)] and is
minimised only by a�ne maps of the form yi = Rxi+c with R ∈ SO(2) and c ∈ R2. This property
corresponds to assumption (i) in [13, Theorem 5.1], which is satis�ed by Ecell as proved in [13,
Section 6]. It is now easy to see that, when the parameters are in the range U , then conditions

(H0)�(H2) are satis�ed and, if (a1, a2, a3, a4) 6= (1,
√

2, 2, 2
√

2), the system is frustrated.
If the positive-determinant constraint v ∈ A+

η is removed, the lattice may be folded, e.g. along
the sides of the bonds. However, folding is penalised by interactions beyond nearest neighbours.
Indeed, it can be easily checked that in such a case the energy is bounded from below by a positive
constant (see for example [5, Lemma 3.3]). Moreover, by continuity, if the parameters (ai,Ki) ∈
U and (a1, a2, a3, a4) is su�ciently close to (1,

√
2, 2, 2

√
2), then the minimum value of the energy

is close to zero. It turns out that global minimisers are a�ne maps with gradients in the set of
orthogonal matrices O(2) = SO(2) ∪ (O(2) \ SO(2)). This shows that our results apply to a
frustrated model with two wells. Applying Theorem 6.2 we can explicitly compute the limiting
energy density, which is given by

φpw(A) =
1

2

4∑
i=1

∑
ξ∈Bi

Ki
ai
`i

(
ξ ·Aξ
`i

)2

for every A ∈ R2×2,

where (`1, `2, `3, `4) := (1,
√

2, 2, 2
√

2) and Bi := {ξ ∈ Z2 : |ξ| = `i}.

Example 7.4. The following example shows that the scaling in (1.17) is optimal, in a model
with two wells and zero volume forces. For similar examples with a Dirichlet condition on the
whole boundary and with external loading, one may argue as done in [6, Examples 3.2 and 3.3]
in the continuum setting.

Let U = I+e⊗(1, . . . 1), where e ∈ RN . Assume that K = SO(N)∪SO(N)U . Let Ω = (0, 1)N .
For every ν ∈ (0, 1] let Ων = Ω ∩ {x ∈ RN : x · (1, . . . , 1) ≤ ν} and set γ = ∂Ω\Ων̄ for some
ν̄ ∈ (0, 1). Let vν ∈ W 1,∞(Ω;Rd) be the piecewise a�ne deformation such that vν(x) = x in
Ω\Ων and ∇vν = U in Ων . We identify vν with its restriction on Lη. We may also assume
that Eη(vν) is uniformly bounded, where Eη is de�ned in (1.5). (Note that all previous examples
satisfy this property.) For ε > 0 let uνε := 1

ε (vν − Id). Observe that for every ν ≤ ν̄ the Dirichlet
condition is satis�ed in a neighbourhood of γ with g = 0, cf. (5.1).

For any r ∈ (1, 2], we show that for η = η(ε) � ε2− r(N−1)
N there is a choice of ν = ν(ε) such

that Eε(uνε) is uniformly bounded but ‖uνε‖W 1,r(Ω;RN ) → ∞ as ε → 0. Since ∇uνε = 0 in Ω\Ων
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and ∇uνε = 1
ε (U − I) in Ων , whose volume has the same order as νN , it turns out that

‖uνε‖W 1,r(Ω;RN ) ≥ C
νN

εr
.

This diverges for ν � ε
r
N . On the other hand, the only cells where the cell energy is di�erent

from zero are those that intersect the interface ∂Ων \ ∂Ω. Their number has the same order as
(νη )N−1, therefore

Eε(uνε) ≤ Cη
N

ε2

(
ν

η

)N−1

=
ηνN−1

ε2
.

This is bounded if ν ≤ C
(
ε2

η

) 1
N−1 . We then set ν(ε) :=

(
ε2

η(ε)

) 1
N−1 ∧ 1. For η ≤ Cε2, ν has order

one, Eε(uνε) is uniformly bounded and ‖uνε‖W 1,r(Ω;RN ) →∞ as ε→ 0. For ε2 � η � ε2− r(N−1)
N we

get ν(ε)→ 0 and ε
r
N �

(
ε2

η

) 1
N−1 , thus again Eε(uνε) is uniformly bounded and ‖uνε‖W 1,r(Ω;RN ) →

∞ as ε→ 0. This proves the optimality of (1.17).
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