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ABSTRACT

In this work, special invariance properties of a class of exact solutions of the radiative transfer equation
(RTE) pertaining to a uniform Lambertian illumination of any non-absorbing homogeneous and inhomo-
geneous volume are presented and discussed. This class of solutions of the RTE traces a reference ground
under which light propagation can be studied in a special simplified regime. Despite the difficulties to
obtain general solutions of the radiative transfer equation, the condition of Lambertian illumination de-
termines a unique regime of photon transport where quite easy and simple invariant solutions can be
obtained in all generality for homogeneous and inhomogeneous geometries. These solutions are invariant
both with respect to the geometry (size and shape of the volume) and with respect to the scattering
properties, i.e. scattering coefficient, scattering function and homogeneity of the considered domain. An-
other evident advantage of these solutions is that they are exact solutions known with arbitrary precision
and can thus be used as reference standard for photon migration studies.

Random walk
Lambertian illumination
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1. Introduction

In optics, the study of light propagation may be critical when
dealing with complex media and it involves many important prac-
tical applications, such as photovoltaic, biomedical applications or
in optimal designing detection devices. If interference effects do
not play a decisive role in the phenomenon under study, such as
in the presence of scattering, an ideal and powerful framework
is provided by the Radiative Transfer Equation (RTE) [1,2], whose
integro-differential form, however, usually leads to solutions ex-
tremely expensive to be retrieved, both by analytical and compu-
tational approaches, also in case of simple geometries [3-13]. De-
spite this fact, there is an exception for which the exact solution
of the RTE is very simple and easy to obtain: It is the case of
a non-absorbing volume with uniform and Lambertian illumina-
tion on the external surface. From now on in this paper this kind
of illumination is simply denoted as Lambertian. In this regime of
propagation, the complexity of the RTE is reduced and the solution
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of the equation can be characterized by special invariance proper-
ties.

The aim of this paper is to provide exact invariant solutions of
RTE for any non-absorbing volume with external Lambertian illu-
mination. The importance of such solutions relies on the fact that
they can be easily calculated, known with arbitrary accuracy, and
proposed as a reference for analytical models or numerical simula-
tions aimed to make predictions on radiative transport. Moreover,
these solutions help the understanding of photon migration in an
exemplary situation where the comprehension of propagation is
simple and does not require complex mathematical approaches.
Thus, these solutions may give some simple and general insights
on photon migration.

The problem of a non-absorbing medium illuminated by Lam-
bertian radiation has been recently strictly linked to a widely
known invariance property for the mean total path length (L)
spent by light propagating inside a disordered scattering medium
[14-23]. According to such property, the mean path for a random
propagation through a isotropically illuminated medium is a con-
stant value that only depends on the geometry of the probed vol-
ume, and not on its internal disorder. Let be V the volume and
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the surface, the mean path length is:

%4

(L) = 45 (M
Also known as Cauchy formula, connected to the average chord
length and also used by Dirac in the context of Nuclear physics
[24], the property has been revealed as an important invariant of
nature. In particular, in our previous work [23] Eq. (1) has been
generalized to the case where V can be decomposed into N scatter-
ing volumes with different refractive index, obtaining a new gen-
eralized expression:

N N2

>v(5,)

i Ne
=4t
where V; is the ith volume, n; its refractive index and n, refrac-
tive index of the external medium. In the elementary case of a
single volume with refractive index mismatch with the external
medium, such formula has been first introduced and used in the
paper of Savo et al. [21]. This work has provided the first experi-
mental evidence of the path length invariance property in optics.
The invariance property has been studied in very different fields,
leading to a complex scenario of different situations and points of
view [15,19,21,23,25]. However, a complete theoretical framework
able to unify the different published contributions on this subject
is still missing. Our work is meant to provide a solid basis to the
aforementioned invariance properties, by framing them in the con-
text of RTE, with a further extension to all the possible solutions
in presence of Lambertian illumination.

Indeed, here we show that the invariance of (L) derives from a
more fundamental invariance property of the solutions for the ra-
diance of the continuous wave (CW) RTE. Further, we show that
the invariance property can be extended to more general cases,
of non-scattering media and mismatched refractive index with the
external environment.

In this paper, we have reviewed the CW RTE in non-absorbing
media illuminated by Lambertian radiation. Solutions for the radi-
ance, fluence rate, photon total flux and partial flux, and for the
“crossing density” of photons’ trajectories are obtained and their
invariance properties discussed. Solutions are also provided for the
special case of a non-scattering medium with a refractive index
mismatch with the external medium. These solutions have been
analyzed in detail providing analytical expressions for the non-
scattering slab and sphere. Finally, the RTE in a non-uniform scat-
tering medium with a non-uniform discrete distribution of refrac-
tive indices is addressed and solved for the radiance, fluence rate,
photon total flux and partial flux, and for the “crossing density” of
photons’ trajectories through any internal surface of the medium.
As special examples we have considered a layered non-scattering
slab and a layered non-scattering sphere. For all the cases analyzed
analytical exact solutions are provided.

In Section 2, the CW RTE for scattering volumes with uniform
refractive index is introduced for the condition of Lambertian illu-
mination and solutions are given for radiance, radiometric quanti-
ties and total mean path length. Section 3 is dedicated to the solu-
tion of the RTE for non-scattering volumes with uniform refractive
index. Specific solutions are given for the geometries of slab and
sphere. In Section 4, the solution of the RTE for scattering volumes
with non-uniform refractive index is described. In Section 5,
solutions for non-scattering volumes with non-uniform refractive
index are presented with a special description provided for the
non-scattering layered slab and the non-scattering layered sphere.
Finally, in Section 6 the solutions obtained are discussed also by
using the results of Monte Carlo (MC) simulations and emphasizing
the counterintuitive aspects of the presented RTE solutions.

(2)
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Fig. 1. Schematic of the main symbols used for the incidence on a volume V of
external surface X. Incidence, reflection and refraction direction vectors related by
Snell’s law.

2. RTE for scattering volumes with uniform refractive index

The geometry we consider, a non-absorbing volume without in-
ternal sources, enclosed by a smooth convex surface ¥ surrounded
by a non-scattering medium, is shown in Fig. 1. The external sur-
face is uniformly illuminated by a Lambertian CW radiation of in-
tensity Iy, i.e. a uniform incident isotropic radiance distribution of
light.

The source term is thus given by the following radiance distri-
bution on X:

lesource (Fx. $) = Io [Wm™?sr™!] Vg e Zand V5| §,-G=0. (3)

thus the in-coming radiation is constant at any point on the sur-
face and in any in-coming direction. The refractive index is n; in-
side the volume V and n, outside. No restrictions are necessary for
the scattering properties of the medium: the scattering coefficient,
s () and scattering function, p(F, S, §’) can thus be expressed in
all generality.

The RTE for the non-absorbing volume illuminated with contin-
uous wave radiation can be written as [1,2]:

v. [1(?s>s] + u5(7)1(?,§)

=us(7)fp<?,§,§’>l<?,§’)d§’ VsandV reV,

4

(4)

where I(F, 5) is the radiance inside the volume. For simplicity of
notation, the direction vectors referred to the internal medium are
reported without subscript.

To solve the RTE with the source term of Eq. (3) it is necessary
to express the boundary conditions. About this point we assume a
boundary surface with mirror reflection and refraction conditions
subject to the Fresnel laws. To derive the boundary conditions we
use a phenomenological approach. Specifically, at each point on the
boundary surface we assume that locally, (I) the incident, reflected
and transmitted fields can be approximated by plane electromag-
netic waves, (II) the Fresnel laws to derive the expressions of the
reflected and transmitted fields can be used, and (III) the corre-
sponding law of energy conservation can be applied. Being the sur-
face ¥ convex (photons leaving the medium have not the possibil-
ity to re-enter inside) and smooth (reflections only depends on the
incidence angle and on the refractive index mismatch), boundary
conditions are given by the:

I(Fg. $i) = Rie (B)I(Fz. §]) + Tei(ee)(%)zlo (5)
Vis e Zand V5|0 <§; -G <1,
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= P 2 7
le(Ts. $e) = Rei(Be)lo + T (6) (%) 1(F. 5) (6)
Vis e ZandVs,| —1<$.-4<0,

where: the unitary directions vectors §, §}, S and § are related by
Snell’s laws; Rj, and T, R,; and T,; are the Fresnel reflection and
transmission coefficients for unpolarized light respectively, from
internal to external (ie) and viceversa (ei) [2]; I(Fg,s‘i) is the in-
wardly directed radiance on the boundary, and Ie(Fg,s}) the out-
wardly directed radiance on the boundary, i.e., the outgoing radi-
ance.

Equation (5) states that the power flowing in the internal
medium i in the incoming directions §; per unit surface is equal
to the sum of (I) the fraction of the power transmitted from the
external e to the internal i medium per unit surface around the
in-coming direction §, and (II) the fraction of the power reflected
in the internal medium per unit surface around the out-coming
direction §}, where for any specified direction $;, §} is the mirror
direction of §; with respect to X.

Equation (6) states that the power flowing in the external
medium e in the outcoming directions $, per unit surface is equal
to the sum of (I) the fraction of the power transmitted from the
internal i to the external e medium per unit surface around the
out-coming direction §/ and (II) the fraction of the power reflected
in the external medium per unit surface around the in-coming di-
rections §),, where for any specified direction $, §, is the mirror
direction of $, with respect to X.

2
The coefficients (%)2 and (’,’1—5) account for the different geo-

metrical extent of the light beam element at the boundary ¥ due
to refraction when passing from the external (e) to the internal
(i) medium and viceversa. Being T,;(0e) = 1 — R;j(0e), Te(6;)) =1 —
R (6;), and also T,;(0e) = T;x(6;) with 6; and 6. related by Snell’s
law, Egs. (5) and (6) can thus be rewritten as:

I(Fg, $) = Rie (B)I(75, 8)) + (1 — Rie(ei))(%)zlo 7)
Viy e Zand V5|0 <§; -4 <1,
le(Fs. Se) = Rei(Be)lo + (1 — Rei(6e)) (%) 1 (7. §)) (8)

Vis e XandVs, | —1<8,-G<0.

All the solutions that will be obtained in the next sections ex-
ploit the hypothesis of convex volume. This fact is related to the
kind of illumination of the volume used, i.e. a source distributed on
the external surface (Eq. (4)). Indeed, by selecting an external suit-
able illumination impinging over the external surface of the vol-
ume, it would be possible to have RTE solutions for no-convex vol-
umes. In this case it would be also possible to release the hypoth-
esis of non-scattering external medium. However, we have cho-
sen the source distributed on the external surface as Eq. (4) since
this approach allows an easier and well defined treatment of the
boundary conditions, accordingly to Egs. (7) and (8).

2.1. Solutions for radiance and other radiometric quantities

The solution of the RTE for the radiance, that also fulfills the
boundary conditions of Eqs. (7) and (8), is:

1(7.3) = (2)’ly [Wm™2sr-!] ¥sand VreV, (9)

le(Fs.8) =Io [Wm’zsr*‘]

Vis e XandVs| —-1<5§-4<0, (10)

where I(F, §) is the internal radiance and I, (FZ, §) the radiance out-
going the surface X. The simple substitution of the above equa-
tions into Eq. (4) proves that they are the RTE solutions with the
given boundary conditions. The first term of RTE vanishes since it
is applied to a constant term. The other two terms cancel out due
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to the normalization condition of the phase function. Moreover,
these solutions are unique due to the fact that they are RTE solu-
tions that fulfill the given boundary conditions for the radiance on
the whole external boundary of the medium for any direction [26].
It is worth to point out that for the CW RTE the stationary distribu-
tion of radiance inside the considered volume, given its geometry
and optical properties, is uniquely determined by the sources in
the volume and by the incident radiance distribution [26]. In this
specific case, since we have only external sources, the uniqueness
is guaranteed by the incident Lambertian radiance distribution re-
quested with Egs. (5) and (6).

The internal radiance I is thus uniform and isotropic and its
value is only determined by the incident radiance I, and by the
refractive index mismatch between internal and external medium.
Also the re-emitted radiation, I, is uniform and Lambertian (i.e.
with isotropic distribution) and with intensity identical to the in-
coming radiance. We point out that both the solution for the out-
going radiance, I¢(Fs,$), and the solution for the internal radi-
ance, | (F, §), are invariant both with respect to the geometry (size
and shape of the volume, provided the external surface is con-
vex and flat) and with respect to the scattering properties (scatter-
ing coefficient, scattering function, homogeneity). These solutions
can therefore be used in all generality with only one exception:
the case of non-scattering volume with n; > ne. In this case (see
Section 3) the solution for I(7,5) may depend on the shape of the
volume.

Making use of the above solution simple expressions are also
obtained for other radiometric quantities. For the fluence rate,
®(7), and the total photon flux, f(), inside the medium we have:

(1) = fir ()85 = 4m (1) 1o [Win™?], an

Ji) = [z 1(7.8)5ds =0 [Wm™?]. (12)

Equation (12) states that the net total flux through whatever
surface element inside the medium must be null. This means that
the number of photons crossing any internal surface in a specific
direction must be identical to the number of crossing in the oppo-
site one.

It may be also interesting to evaluate the normal component of
the partial flux within the semi-solid angle, since it characterizes
the passage through a surface element of photons from one side
to another. In particular, the component of the partial flux on the
external surface X along the inward normal direction g, i.e., the
incident flux J.,, is obtained integrating over the inward semi-solid
angle:

Je+ (7?) = fgﬁzo IeSnurce(fs §)§ Qd§=
=27ly [77/* cosOsinfd6 = wly [Wm™] Vre X.

Similarly for the outgoing flux, J._ (), from X:

Joo (F) = fe401e(F8)3 - qdS = —mly [Wm™?] Vi e %, (14)
for which we obviously (the medium is non-absorbing) have
Je+ () = —Je— (7). These components of the flux provide informa-
tion on the number of photons crossing the surface element in a
specific direction and thus are related to the photons’ trajectory
density. From Eq. (13) we also have that the total incident power,
Pe+Tot (f), is

PE+T0[(F) = T[I()E (15)

Similarly, the components of the partial flux across an internal
surface element, i.e., a surface element internal to V, are

Je () = fiaoo (7 5)S- GdS = 7 (2)’l [Wm™2] VreV,  (16)

ne

(13)

J-() = fige0l(.8)5- GdS = 7 (&)’ [Wm™2] VeV,  (17)
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where § is the unit vector normal to the surface element. Also for
the components of the internal flux is J. (F) = —J_ ().

It is worth to note that, if we use the energy of a photon as
the unit for energy, the partial flux can be viewed as proportional
to the number of photons crossing the unit surface per unit time:
flux J, (J-) increases (decreases) of one unit each time a trajec-
tory crosses the surface with §-§ > 0 ($- G < 0). Therefore, photons
crossing several times the surface give multiple contributions to
the flux, while photons that never cross the surface give a null
contribution.

Therefore, J, and J_ are proportional to the number of times
photons cross the surface in a direction, Nersst, Or in the opposite
one, Neross—. In other words, J, and J_ can be considered as an in-
ternal “trajectory density” or “crossing density”, i.e. proportional to
the number of crossing photons.

In a similar way, Je,, can be considered as the “trajectory den-
sity” or “crossing density” for emitted photons.

It can be also defined the total number of crossing photons
Neross = Neross+ + Neross—. By using the above Egs. (13), (16) and
(17) we have that the internal “trajectory density” or “crossing
density”, Pncross,» NUmMber of crossing photons per unit of emitted
photons is:

_ Neross _ Nerosse+Neross— _ Jo+U-| _ 2L (ﬂ)2
PNeross = N, = N, T Jer T Jer =2 ne) - (18)

e+
Wherever the internal surface element is, and whatever the scat-
tering properties are (apart the case us(f) =0, see Section 3), the
internal “trajectory density” or “crossing density” only depends on
the refractive index mismatch between medium and external envi-
ronment.

As easily predictable the invariance property observed for the
solution of the RTE also applies to the other radiometric quanti-
ties: Also the solutions shown for fluence, flux, partial flux, etc are
independent of both the geometry and the scattering properties of
the volume.

2.2. Solution for average internal path length

The solution of the RTE obtained for the fluence rate, Eq. (11),
allows us to calculate the average internal length of trajectories fol-
lowed by photons inside a non-absorbing volume with the exter-
nal surface illuminated with CW Lambertian radiation. The value
for the average total path length is obtained by calculating the
total absorbed radiation in the limit of zero absorption in two
different ways. The first way is to integrate the local absorption,
Ja(7y) P (7)diy, over the volume V of the medium:

Par = Jy ta (7)) @ (7 )dFy . (19)
that for uniform absorption and in the limit of zero absorption be-
comes:

Jimy By = 1 f, 12a(Fy) () = lim 47 1a(3) 1V, (20)
where we have used Eq. (11), i.e., the fluence for the non-absorbing
medium.

The second way to calculate the total absorbed power in V
involves the probability density function for the photons’ path
length and the microscopic Lambert-Beer law [2,27]. For pho-
tons travelling a trajectory of total length L through a volume
with uniform absorption, the probability that absorption occurs is
[1 —exp (—ual)] [2,27]. If p(L, uq = 0) is the probability density
function that photons follow a trajectory of length L for the non-
absorbing medium, and P, the total incident power, then the total
absorbed power can be calculated as:

Pa2 =P [5° P(L. pta = 0)[1 — exp (—pal)]dL, (21)
and in the limit of zero absorption:
JiTOPAZ =P fo° alp(L, pta = 0)dL = Pita(L) (ta = 0). (22)
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We point out that the probability density function p(L, qs = 0)
pertains to the totality of the incident radiation. Therefore,
p(L, ;tq = 0), when the refractive index of the medium n; is dif-
ferent from the refractive index of the external medium n,., will
also include a term Ryypgmp 8 (L) (With Ryyamp total reflection co-
efficient for Lambertian incidence and & (L) Dirac delta function of
L) which takes into account radiation reflected on the external sur-
face X. It is important to note that part of the incident radiation
reflected at the boundary, when present, gives a fundamental con-
tribution to the RTE solutions and to the related invariance prop-
erties.

According to Eq. (15), the total incident power is B = wlyX.
Thus, by equaling P4; and Py in the limit wq — 0, it is possible
to express (L) (uq = 0) as:

(L) (o= 0) = 4(2)’ ¥ = D (7 pra = 0) ¥ [m]. (23)

Equation (23) shows that the average path length (L) for the non-
absorbing medium depends on the refractive index mismatch and
on the ratio between the volume of the medium and its external
surface area, but it is invariant with respect the scattering proper-
ties (apart for s () = 0). Such invariance property is a generaliza-
tion of the mean chord length theorem, valid for ballistic prop-
agation and also used in the context of nuclear physics [14,26].
Therefore, among the invariance properties observed for the radi-
ance and other radiometric quantities (invariance with respect to
the geometry, and invariance with respect to the scattering prop-
erties) only the invariance with respect to the scattering properties
also applies to the average path length (L)(uq = 0). Anyway, the
dependence on the geometry of the illuminated medium is very
simple and only involves the ratio .

For the infinitely extended slab of thickness sg, Eq. (23) be-
comes:

2
(L)siap (ia = 0) =250 (5", (24)
for the sphere of radius Ry:

N2
<L)Sphere(,ua = O) = %RO(%) s (25)
and for the infinite cylinder with radius Ry:

\2

<L>Cylinder(/"/a = 0) = 2RO(%) . (26)

3. RTE for non-scattering volumes with uniform refractive
index

For non-scattering and non-absorbing volumes the RTE (Eq. (4))
reduces to

V- [I(7.$)3] =0 V$and VeV, (27)
that can also be written as:
Blgr‘s,s”) =0 Vsand VFeV. (28)

These equations state that the radiance does not change inside the
volume V along a fixed direction §.

Light propagation is thus determined only by the boundary con-
ditions, i.e. by Egs. (7) and (8).

Solutions for non-scattering volumes are described separately
for n; < ne and n; > ne.

3.1. Solution for n; < ne

When n; < ne, it is Ri(6;) <1 for any angle 6; < /2 and the
boundary conditions of Egs. (7) and (8) in this case are fulfilled by
the following solutions:

1(7.3) = ()’lo Vsand VeV

2 - . R (29)
le(Fs.8) = Viy e Tand V8| —1<5-4<0.
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Thus, for n; < n. the solutions for the radiance are identical to
those for ws(7) #0 (Egs. (9) and (10)), with an internal radiance
uniform and isotropic. Also the solutions for fluence rate, mean
path length, etc. will be identical to those for scattering volumes
described in Sections 2.1 and 2.2.

3.2. Solution for n; > ne

When n; > ne, it is Ri.(6;) = 1 for 6; > 6., with sinf,;, = ne/n;
and the boundary conditions can be re-written as:

1(Fs.5;) = Re(O)I(.8]) +[1 - Re(@)1(2) Io (30)
Vis € X, andV5;| cosOq. <$;-G <1, 1.e.6; <O
1(Fz.§) =1(75. 5) (31)

Vig € 3, V510 < §;- § < cosOcie, i.€.0; > Ocie

N 2005
le(Ps. o) = Rei(Be)lo + (1 — Rei (6e)) (%) 1(Fs. 5)) (32)
Viz e XandVs, | —1<8.-4<0,

where Eq. (7) has been split for 6; < 0.;, and for 6; > 6,.
Equations (30) and (32) determine the same RTE solutions
found for scattering media but only at the boundary points, 7,
and for angles 6; < 6.;. Thus, we obtain for the radiance on the
internal surface:
N )2
1(7s,8) = (7)o o (33)
Vis, € X, V5;| cosBie <5i-G <1, i.e.0; < Oje.
Similarly, from Eqs. (6) and (29), for the radiance on the external
surface the solution is

le(Fs. 3e) = Io (34)
Viz e Z, andVs,| —1<S5.-§<0.

The solutions for the radiance on the internal surface for angles
0; < 6.4, and for the external radiance are identical to those for
the volume with s (7) # 0 (Egs. (9) and (10)).

However, it must be noted that for angles 6; > 6., Eq. (31) is
not sufficient to obtain a general univocal solution for the radiance
on the internal surface. Therefore, also the solution for the radiance
I (F, §) within the volume remains undetermined: a solution can be
found only with detailed information on the shape of the external
surface X. Indeed, the solution is still unique, accordingly to the
general theorem of Ref. [26], however the RTE solution for angles
6; > 6., depends on the geometry considered, i.e. on the external
surface X. Thus, detailed characteristics of the geometry have to be
considered. As long as the geometry of the medium is not known,
it is not possible to determine the unique solution for angles 6; >
0. that in general may be different from the solution for 6; < 0.

As a general outcome, multiple internal reflections tend to ran-
domize directions of propagation and to reestablish the homogene-
ity and isotropy of internal radiance also for n; > n,. In this case,
solutions for 1(7.$), (F), J(F), Je- (P, J+ (7). J-(F), Preross and (L)
are identical to those for the scattering volume and also the in-
variance property for the average path length holds. However, for
nonergodic geometries this does not fully happen as for instance in
the plane-parallel slab and in the sphere. As noted by Yablonovitch
[28] nonergodic geometries are “unusual and exceptional” and “the
symmetry is so high that only a restricted class of angles is dynam-
ically accessible to an incoming light ray”. Moreover, whispering
gallery modes does exist in any smooth convex domain as shown
by Lazutkin [29]. These facts imply that for n; > n. there are ge-
ometries with high-symmetry for which multiple internal reflec-
tions do not reproduce the solutions for the radiance found for
n; < Ne.

Thus, for geometries like slab and sphere, due to particular
symmetries, for n; > n. there are conditions for internal guided
propagation, i.e. trapped ray trajectories. Thus, isotropic and/or
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Fig. 2. Refraction and reflection in the laterally infinitely extended slab. § is the
unitary vector normal to the sides of the slab inwardly directed.

uniform radiance inside the medium cannot be established, be-
cause the internal incidence angle remains the same for all re-
flection orders. In these cases solutions must be determined case-
by-case. In the next section, we discuss the solutions for slab and
sphere.

3.2.1. Slab geometry

Since the solutions for non-scattering volumes with n; < n, are
identical to those for scattering volumes, we consider here only
the case n; > n.. Let’s consider a non-absorbing slab of thickness
so and refractive index n; (see Fig. 2). For a non-scattering later-
ally infinitely extended slab, the trajectories of photons entering
along the same direction, during propagation always remain paral-
lel to each other anywhere they enter. The internal radiance will be
therefore identical to the radiance on the internal boundary. From
Eq. (33) we therefore have for angles smaller than the critical angle
Ocie (SiN6gje = ’;—?) that:

1(7:8) = (3)'D

. le o A (35)
VeV, V5| cos (Oce) < |5-q| < 1.
whereas for angles greater than 6,;, we have:
I(7.5) =0 (36)

Ve V, Vfl |§d| < COSQC,‘e ,9“'6 < 9,‘ <7 _gcie

since no photons can arise inside the slab with angles greater than
the critical angle. Therefore there is an angular discontinuity of ra-
diance inside the slab. Equations (35) and (36) provide the full de-
scription of the internal radiance from which solutions for fluence,
flux, etc, can be easily obtained. Consequently, it results:

@ (F) = 272 [fee (2—2)210 sinfdo = 4n(,2’é)210|:1 —\/1- (’,111)21|

(37)
J) = [y 1(F.8)8d8 =0, (38)
Jes (f) = fngo IeSnurce(Fs §)§ ng: 7lo, (39)
Jo(F) = =J-(7) = 270 f¢ (%)L cos 6 sinOdO = 40)

7 () Io(3) = 7.

PNcross = o — % =2. (41)

Nes. et
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Fig. 3. Schematic for non-scattering sphere: internal-external critical angle. The
symbol r denotes |f].

The factor 2 in Eq. (37) takes into account the incident radiance
from both sides of the slab. Since the internal fluence is uniform,
the internal average path length can be obtained in a simple way
following the procedure used in Section 2.2. Using in Eq. (20) the
fluence given by Eq. (37), and then by acting as in Section 2.2 we
obtain for the average path length (L):

(L) = 250(;};‘)2[1 ~_J1- (’;)2}. (42)

If we compare this equation with Eq. (24), we realize that (L)
is discontinuous with the scattering properties in the case of
guided propagation. For any arbitrarily small scattering value,
Eq. (24) holds, while Eq. (42) holds for us = 0. The same result has
been also obtained by Majic et al. [30] by following two different
approaches for the scattering (thermodynamic) and nonscattering
(ray optics) cases.

Solutions for the non-scattering slab with n; > n. are therefore
significantly different from those for the scattering slab. In par-
ticular, the internal radiance I(F, §) is independent of 7 but non-
isotropic. The fluence is uniform, however its value differs from the
value for the scattering slab and we have thus a discontinuity be-
tween the solution with and without scattering. Also the internal
partial flux component along the normal direction ¢ does not re-
produce the value for the scattering slab and its value is J; (¥) =
Jes (P).

Finally, also the solution for the average path length (L) is dif-
ferent from that obtained for the scattering slab (Eq. (24)) be-
cause of the internal-external critical angle. Therefore, the invari-
ance property as was presented for the scattering slab does not
apply for the non-scattering slab with n; > ne.

In Appendix, we have shown how solutions for the non-
scattering slab can also be obtained following a different approach
only based on Snell’s and Fresnel’s laws. The two procedures obvi-
ously return the same solutions.

3.2.2. Sphere geometry

Let’s consider a sphere of radius Ry with refractive index n; (see
Fig. 3). When n; > ne, the internal radiance for a non-scattering
and non-absorbing sphere with Lambertian surface illumination is
obtained from the radiance on the internal boundary. Indeed, in
absence of scattering, the radiance at the internal boundary fully

Journal of Quantitative Spectroscopy & Radiative Transfer 276 (2021) 107887

determines the radiance in the inner part of the sphere. In this
calculation it must be accounted for the contributions from all the
boundary X. From Egs. (30) and (31), taking into account that the
internal incidence angle remains unchanged regardless of the num-
ber of internal reflections that may occur at the internal boundary
of the sphere, the radiance on the internal boundary results:

LA N2
1(75.8) = () To
Vis € 3, V5| cosBeie <S-G<1,ie.60; <O
(43)
I(z.3) =0
sz € E, V§| |§ (ﬂ < COS@Cie, i.e.@,- > GCiEv
where § is the normal inwardly directed and sinf,;, = '},—f

Making reference to Fig. 3, the internal radiance can be written
as:

1(7.8) = () lo YFI T < reie, V8| —1<8-4(F) <1
1(7.5) = ()l V7|1 > 1. V§] arccos[|$-G(M)1] < 6(r)  (44)

I(7,8) = 0 V7| > ree, V8| arccos[[3-4(M] > 6.(n).

where §(7) is the inwardly directed normal to the sphere with ra-

dius 1, reje = Ro sinfje = Ro%¢, 6 (r) = arcsin [ < ], and Ry is the ra-
1

dius of the sphere. From the above internal distribution of radiance

it is possible to calculate the internal fluence rate as:

(7)) =27 [ (3)210 sinfdf = 47[(%)210, Vr <Tee

i
ne

@ () =272 [{ (%)’lysinfd6 = (45)
_ 4n(;g)210[1 _Jis (rc;e)z], —_—

For the total flux we have:

J7) = [4 1(F.8)3ds =0, (46)

and the components of the partial flux along the radial direction §
are:

Jei (F) = [fzgo1 lesource (T, §)8 - G(r)dS = mwlp, VFe X, (47)

Jo (P = —J-(F) = 270 [ (%) 1o - 4(r) sin0d6) =
= n(%)zlo, VI < Teie

Jo®) = =) (7 =27 J§© (%) Io$ - (1) sin 66 =
= ()R]t = (R) o, Vr > 1

Ne rom

(48)

Finally, we can write the solution for the “trajectory density” or
“crossing density”:

N, 2, n;\2
PNcross = 1\5:153 = _]!f = z(i) VT < Tecie

(49)

N 2 Ry )2
PNcross = ﬁ;’fs = ﬁ = 2(70) Vr > Teje.

Thus, for n; > n, the solutions are significantly different from those
for a nonscattering sphere and for a non-scattering sphere for
n; < ne. A special emphasis on the internal radiance that is uniform
and isotropic only for r <rj = RO’%. Moreover, both the fluence
and the component of the internal partial flux along the radial di-
rection are not longer uniform.

The internal average path length (L) can be obtained with
the procedure described in Section 2.2 and by using the non-
uniform fluence rate given by Eq. (45). However, the calculation
of the integral of Eq. (20) is a bit cumbersome and the results can
be more easily obtained from geometrical considerations together
with Snell’s and Fresnell’s laws. Following the alternative proce-
dure used for the slab geometry (see Appendix) we obtain for the
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Fig. 4. Direction vectors for boundary condition for adjacent subvolumes V; and
Visi: §), s‘;, Sit1s s‘gﬂ, qj, are related by Snell’s laws.

average path length (L)(6,) for radiation with incidence angle over
the sphere 6,:

(L)(6) = 2R cos 0;, (50)

i.e. the same expression as for matched refractive index. Then, for
(L) we obtain:

27 [772(L) (Be)lo cOS B, sin 6,6, /2 .
L) = 0 =4R cos 0; cos 6, sin 6,d6, =
(L) 27 [ Iy cos B, sin Bedb, 0 /0 O Oe Oed0e

= 4R, fg“'e cos Gi(g—i)z cos 6; sin 6;d6; =
4p ()2 (2172
= 4Ro() Y1 -[1- ()]
(51)

This solution is different from that for the scattering sphere and
also from that the non-scattering sphere for n; < n. (Eq. (25)) be-
cause of the internal-external critical angle. Therefore, also for the
non-scattering sphere with n; > n. the invariance property does
not apply. The same result has been also obtained by Majic et al.

[30].

4. RTE for scattering volumes with non-uniform refractive
index

The RTE solutions obtained in previous sections are for volumes
with uniform refractive index. In this section, we show how to ex-
tend solutions to volumes with non-uniform discrete distributions
of refractive index and where the scattering properties can vary in
total generality.

4.1. Solutions for radiance and other radiometric quantities

With reference to Fig. 4, we consider an inhomogeneous vol-
ume V, without internal sources, enclosed by a smooth convex sur-
face ¥ divided in a number N of discrete sub-volumes V; of refrac-
tive index n; and with not restrictions on the scattering properties
assumed inside each V;. The surfaces enclosing each sub-volume
is assumed to be smooth so that Snell’s and Fresnel’s law can be
applied. The refractive index of the external medium is n. and the
surface ¥ is illuminated by a CW Lambertian radiation.

To obtain a solution of the RTE, we have to solve the RTE in
each volume V;. Thus the radiance in each volume V;, I;(F.3), is
subjected to the CW RTE, i.e.:

V- [15(73)8] + s (D1 (7 $) =
= s(1) [4 p(7.3.9)1;(F. 8)dS (52)
Vi e V;and Vs,
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where [; is the radiance inside V;. The boundary conditions at the
external boundary ¥ are the same as Eqs. (5) and (6). Those on
the surface X; ;¢ separating the volumes V; and V; 4 are

1(7.37) = Ry 1 (0)) (7. 8)+

2
T4 (0500) (75 ) 1o (53,1 (53)
Vie Ej,j+1 and§j . q] >0,

I (7. $51) = Rj+21.j(9j+1)’f+1 (7 $j0)+
+T j41 (91) (%) I (ﬁ sj) &4

Vre Ej,j+1 andsAjH . qj < 0,

where the unitary vectors §j, sA; Sit1s s‘}ﬂ, gj are related by
Snell’s laws. With these boundary conditions, whatever the inter-
nal scattering properties are, apart for non-scattering sub-volumes
in which guided propagation can be established (see Section 3.2),
the solution for the radiance inside V; is

I(7.8) = (2)’l [Wm™] Ysand ¥FeV;, (55)

that depends on the refractive index n j internal to Vj and n, exter-
nal to V, but not on the refractive index of other sub-volumes. The
solution for the outgoing radiance on the external boundary ¥ is:

I(7.3) =Io [Wm™?] Vie TandV¥§| —1<§-G=<0. (56)

It is interesting to observe that these solutions are very sim-
ilar to those for the volume with uniform refractive index, i.e.
Egs. (9) and (10). In particular, for the outgoing radiation the two
solutions are identical, with outgoing radiance, Ie(F2,§), uniform,
Lambertian, and with intensity identical to the incoming radiance.
For the internal radiance Eq. (55) and Eq. (9) only differ for refrac-
tive index: n; for the sub-volume V; in Eq. (55), and n; for the total
volume V in Eq. (9). In both cases the radiance only depends on
the ratio between the refractive index inside the considered sub-
volume V; and the refractive index outside the volume V.

We also point out that, similarly to the solution for the volume
with uniform refractive index (Eq. (9)), also the solution for the ra-
diance inside any sub-volume V; with p; # 0 (Eq. (55)) is invari-
ant both with respect to the geometry (size and shape of V and
of all the sub-volumes in which can be decomposed), with respect
to the scattering properties (scattering coefficient, scattering func-
tion, homogeneity) of the whole volume V and also with respect
to the refractive index of all the other sub-volumes. In particular,
Eq. (10) for the outgoing radiance also holds when all or part of the
sub-volumes are non-scattering (/s () = 0) whatever the refractive
index distribution is.

From Egs. (55) and (56) we obtain:

D7) = [y 1;(F8)dS = 47 () T, [Wm™2], ¥FeV, (57)
Ji(®) = [ ;(F.8)3d5 =0, [Wm™?], VreV; (58)
Jer (F) = wly, [Wm™] VFe X, (59)
Jj(F) = i (A =7 (&)l [Wm™] ¥FeV, (60)

_ Ncmssj _ 2]j+
PNcross = Ne: — TJes

—2(%)" vrev,. (61)

As expected Eqs. (57)-(60) show that the invariance properties
observed for the radiance also apply to the other radiometric quan-
tities, i.e. solutions are invariant with respect to 1) the geometry,
2) the scattering properties of the whole volume V and 3) the dis-
tribution of internal refractive index.



E. Martelli, F. Tommasi, L. Fini et al.

4.2. Solution for average internal path length

To obtain the average path length (L;) followed inside V; we
use the procedure of Section 2.2 for uniform refractive index: radi-
ation Pj; absorbed inside V; in the limit of zero absorption is first
evaluated by integrating the local absorption jq(7j)®;(F;)dr; over
the volume V;, and with the internal fluence of Eq. (57) we obtain

JZTOPJ»A] = /ETO/VJ ta(75) @ (1) dr = llm 4nua( ) LV;. (62)
It is then calculated the absorbed radiation Pj4; in the limit of zero
absorption using the probability density function p; (Lj) for path
lengths followed inside V; by the total incoming radiation 7 lp%:

lim B =71o% [ ual;ps (1)l = Tl Btally) (o = 0). (63)
and equating Eqs. (62) and (63) the average internal path length
results :

(L) (1ta = 0) = 4(3)" . (64)

This expression is valid whatever the shape of the internal vol-
ume and whatever the internal optical properties are, apart for
non-scattering sub-volumes (,u,s(r“j) =0) when there are condi-
tions for internal guided propagation. The average total path length
(L)(1ta = 0) inside the total volume V can be evaluated from the
calculation of the total absorbed power by integrating the local ab-
sorption over the whole volume and by using the probability den-
sity function for total path length, or simply adding up the average
internal path lengths of Eq. (64), i.e

(L) (g = 0) = Z(j)(ua=0)=

N
4y (%)%%. (65)
j=1 j=1
For the average path length only the invariance with respect
to the scattering properties holds. Anyway, the dependence on the
geometry for the average partial path length (L;)(uq = 0) is very
simple and only involves the ratio between the volume V; of the
considered sub-volume and the surface ¥ of the total volume V.

5. RTE for non-scattering volumes with non-uniform discrete
refractive index distributions

For non-scattering and non-absorbing sub-volumes the RTE,
Eq. (52), reduces to

V- [I;(7.3)8] = 0 Ve V;and Vs, (66)

where [; is the radiance inside V;. The boundary conditions at the
external boundary ¥ are the same as Eqs. (5) and (6) and those
on the surface %;; ; separating the volumes V; and V;,; are the
same as Eqs. (53) and (54).

5.1. Solutions for radiance and other radiometric quantities

As for the non-scattering volume with constant refractive index,
the solution also depends on the shape of the volume V and of the
sub-volumes V;. Generally, multiple reflections are sufficient to re-
establish the isotropic distribution of the radiance inside the sub-
volumes and thus the solutions given in Section 4 are still valid.
An exception is found for those sub-volumes where guided prop-
agation can be established and thus where light can only propa-
gate with incidence angles lower than the critical angle for V;, 8;.
In consequence of this physical constrain, it will be I; (f, §) =0 for
all Ve V; and for all § for which §- §; > 6;. As examples of these
kinds of exception, in the following we address two special exam-
ples: the layered non-scattering slab and sphere.
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5.1.1. Layered non-scattering slab

The solution of the RTE for a layered non-scattering slab ex-
presses a limit physical condition where the absence of scattering
implies that the trajectories are fully determined by reflections and
refractions at the boundaries of the layers.

As for the homogeneous non-scattering slab the radiance for
the layered slab is obtained from the boundary conditions on the
external surface, Eqs. (5) and (6), and from the boundary condi-
tions for adjacent layers, Eqgs. (53) and (54). The solution for the
internal radiance is:

5(7$) = (1)l VP e V; V81154l = cos Ojuas

Ii(F.3)
where Iy is the radiance on the external surface X, § is the unit
vector perpendicular to the slab external sides inwardly directed,
0imax 1s the maximum angle with which radiation from the exter-
nal boundary can penetrate inside the jth layer:

sin ng(]X = MAX[SIH (ejMaxTop)s sin (HjMaxBot)] (68)

with Ojyaxrop and Ojyaxper Maximum angle respectively for radia-
tion from the top and from the bottom of the jth layer of the slab,
given by:

(67)
=0 VFeV; V5|5 G| < cosOjuax.

sin QJMaxTop = MIN| 1, ”171 sin (Qj—lMaxTop) (69)
sin ejMaxBot =MIN| 1, n,],*jl sin (9j+1MaxBot) s

and for the first layer (j = 1) and the last layer (j = N):

$in O1paxrop = MINF, ,ﬂ (70)

sin eNMaxBot = MIN|1, ’% .

Solutions for fluence, flux, partial flux and “crossing density”
are:

@, () = 47 () Io[1 = cos (Buar) |, WM 2] Vi eV, (71)
Ji(F) =0VreV, (72)
Jes (F) = —Je_(F) = ly, [Wm™2] VFe X, (73)

Jio (1) = =11 (F) = 7 (%) lo sin? (Ouax). [Wm2IVFeV;,  (74)

N2 ) .
Pheross = == = 2o = 2(72)” sin® (Bjuax) in layer j. (75)

The obtained solutions for the non-scattering layered slab differ
from the case of a scattering layered slab by a multiplicative term
that accounts for the maximum incidence angle on layer j.

To obtain the average path length (L;) followed inside the layer
j we follow the same procedure of Sectlon 4. With @; given by
Eq. (71), the radiation Pj4; absorbed inside the volume V; for the
layer j in the limit of zero absorption, obtained by integrating the
local absorption g (F)®;(7)dr over the volume Vj, is

llm Pis = 11m fv 4n,ug( ) Io[l — Cos (@Max)]df:
Ha—0 (76)
= l}iTO‘l”Ma(ni) loV;[1 = cos (Ojmax) |-

The formal expression for the absorbed radiation Pj4, obtained
from the probability density function for path lengths followed
inside V; by the total incoming radiation is identical to that of
Eq. (63). Equalizing Eq. (76) and Eq. (63) the average internal path
length (L;) results

(Lj) (pta = 0) = 255 (3 )[1—cos(9jMax)]. (77)
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Fig. 5. Examples of photons trajectories through a two layer non-scattering sphere. The refractive indices of the external medium and of the internal layers are shown in
the inset of the figures. The figures shows some trajectories extracted for a layered sphere of 5 mm radius in which the layers are highlighted in the figures. The boundary

of the layers are at a distance of 4 and 5 mm from the centre of the sphere.

where s; is the thickness of the jth layer. Also the mean path
length spent in the layer j differs from the case of a scattering lay-
ered slab by a multiplicative term that accounts for the maximum
incidence angle on layer j.

Solutions for non-scattering slab with layered refractive index
can be useful for instance for validating algorithms to manage re-
flections and refractions in MC codes for layered slab.

5.1.2. Layered non-scattering sphere

Let’s assume to have a layered non-scattering sphere, composed
of concentric spherical layers, with a discrete number of layers of
radius R; and refractive index n; (with the convention that R; >
Rjt1)-

Figure 5 shows examples of trajectories in a two layer sphere
for two combinations of the refractive index. The refractive indices
are shown in the inset of the figures.

As for layered non-scattering slab, the internal radiance I; (F, §)
in the layer j is obtained from the boundary conditions on the ex-
ternal surface, Eqs. (5) and (6), and from the boundary conditions
for adjacent layers, Eqs. (53) and (54). It results that the internal
radiance is:

IR ni\2 o ~ PPN
Ij(rv 5) = (,Tﬁ) Io Y7 e V; V §| arccos[[$- G(F)|] < Ojuax (1)
(78)
I;(7.8) = 0 ¥reV; V§| arccos[|$ - 4(F;)[] > Ojuax (7).

where §(7) is the inwardly directed normal to the sphere with ra-
dius r and

Ojuax (1) = arcsin [MIN(1, £)], (79)
with

Tjc = R;jsinBjy,, (80)
and

sin 6y, = MIN[1, 2],

sin O, = MIN| 1, 5t sinej_mut], (81)

sinOjoue = MIN[(], %})]

The angles 61, and 0o, represent respectively the maximum re-
fracted angle on the external surface (radius R;) and the maximum
incidence angle on the internal surface (radius Rj.q) of the jth
layer. The corresponding expressions for fluence and fluxes are:

®;(7) = 47 (1) Io[1 - cos Ojan(N)], V7 eV (82)
Ji(H =0, Viey, (83)
Jes (R)) = ly, [Wm™2] VFe =, (84)

Jio (7 = =i () = 7 (%) I sin? Ojuan (1), Vi€V, (85)

p — NCTOSS — 2.’+(r)
Ncross Ne+ Je+

The obtained solutions for the non-scattering layered sphere dif-
fer from the case of a scattering layered sphere by a multiplicative
term that accounts for the maximum incidence angle on layer j.

Also solutions for non-scattering sphere with layered refractive
index can be useful for instance for validating algorithms to man-
age reflections and refractions in MC codes.

In case that only some layers are non-scattering, solutions for
scattering layers are identical to those discussed for the layered
scattering medium (for these layers the RTE is that of Eq. (66)).
Similarly, for non-scattering layers solutions presented in this sec-
tion for the sphere and in the previous one for the slab remain
valid. Obviously in calculating €y, the maximum angle with
which radiation from the external boundary ¥ can penetrate in-
side the jth layer (Eq. (68) for the slab, Eq. (79) for the sphere),
we should take into account that the radiance inside any scatter-
ing layer is uniform and isotropic accordingly to the obtained so-
lutions.

N\ 2
= 2(%) sinZQjMax(r) Vrin layer j. (86)
e

6. Discussion

Although the invariance property is known since many years,
it is difficult to find in literature a complete presentation of this
subject. To the best of our knowledge this is the first work where
the path length invariance property of disordered scattering media
has been derived in all generality from RTE under the assumption
of uniform Lambertian illumination. More importantly, we have
shown that invariance properties can be derived for the radiance,
the fluence and the flux with a larger extent range of situations.

On this ground, we have provided in all generality the solutions
of the RTE for non-absorbing scattering volumes illuminated by
uniform Lambertian radiation. In this work we have also presented
solutions for non-scattering inhomogeneous volumes that have not
been considered in the previous literature. These solutions offer a
powerful tool to deeply understand the complexity of light propa-
gation and to realize at the same time the ease and intuitiveness
of the approach here proposed. Indeed, in many applied fields such
as tissue optics, except few cases [3-13], it is still claimed a lack of
easy tractable solutions of the RTE.

In the previous sections, we have presented the exact solution
of the RTE for the radiance and other radiometric quantities for
a non-absorbing volume illuminated with uniform and Lambertian
CW radiation on the external surface (Sections 2.1, 2.2, 4.1 and 4.2).
The solutions have been at first obtained for a volume with a uni-
form refractive index (Sections 2.1 and 2.2) and then generalized
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to a volume with a variable (discrete variations of) refractive index
(Sections 4.1 and 4.2). All solutions are obtained in a simple way
and with elementary mathematics. The only constrains for their
validity are: 1) the external surface of the illuminated volume, that
must be smooth and convex, 2) the external medium, that must be
non-scattering and with uniform refractive index, and 3) the in-
ternal scattering coefficient must be non-null for sub-volumes in
which there are conditions for guided propagation. In fact, even
though the formulas (Sections 2, 4) were derived for scattering me-
dia, they are also valid under this more general condition. In other
words, they are valid also for regions of null scattering as long as
guided propagation cannot occur. The condition of guided propaga-
tion only occurs when there are particular symmetries, as for slab
or sphere with a layered refractive index or with refractive index
mismatch with the external volume. For these geometries, often
of interest, solutions for non-scattering layers have also been ob-
tained in two different ways, solving the RTE (Sections 3.2.1 and
3.2.2) or resorting to Snell's and Fresnell's laws (see Appendix).
These invariance properties also apply to the outgoing radiation
Ie (F, §), that is always uniform and Lambertian (also in presence of
sub-volumes with ©s = 0 in which there are conditions for guided
propagation).

Solutions for all radiometric quantities inside any sub-volume
V; internal to the illuminated volume V show interesting invariance
properties. Solutions only depend on the refractive index mismatch
between the sub-volume index n; and the external medium index
ne. Solutions are therefore invariant with respect to: 1) the scatter-
ing properties, i.e. both the scattering coefficient and the scattering
function can vary in all generality (the only constrain is s # 0 for
sub-volumes with conditions for guided propagation); 2) for an in-
ternal sub-volume, the refractive index of other sub-volumes; 3)
the geometry, i.e., size and shape of the illuminated volume and of
internal sub-volumes (the only constrain is on the external surface
that must be smooth and convex).

Although the RTE has been only solved for CW sources, some
general information has been obtained also on the length of paths
followed by photons into the volume. This has been possible
thanks to the strict relationship between the internal fluence and
the mean path length followed by photons used in Sections 2.2 and
4.2. From the solutions for the fluence we have obtained the mean
path length followed by photons both in a volume with uniform
refractive index, (L), and in a sub-volume V; with refractive in-
dex nj, (Lj). The invariance properties of the radiometric quanti-
ties with respect to the scattering properties and the refractive in-
dex are also valid for the mean path length. As for the dependence
on the geometry, the mean pathlenght only depends on the ratio
between the volume V; and the area of the illuminated external
surface X.

We point out that the invariance of (L) with respect to the
scattering properties for the volume with uniform refractive index
is the well known invariance property widely investigated also
in recent years [14-20,22,23]. We also note that solutions for
(L) in homogeneous non-scattering slab, sphere, infinite cylinder,
cube and also for other 3D and 2D geometries have been recently
described in Ref. [30] using a quite general approach for the
non-scattering case. For the slab, the procedure used in Ref. [30] is
very similar to that used in the Appendix. However, it is important
to note the very different perspectives of this work compared
to Ref. [30]. Whilst Ref. [30] considers only the non-scattering
case and the information on mean path-length, the present work
addresses scattering and non scattering media, homogeneous and
inhomogeneous media, obtaining solutions not only for the mean
path length but also for all the radiometric quantities. Moreover,
our procedure is within the frame of the RTE, while Ref. [30] is
based on geometrical optics and thermodynamics considerations.
Thus, the two works overlap only in few results obtained for the
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mean path length in non-scattering media, while for all the other
aspects provide different views, approaches and investigations.
It is also worth to note that Ref. [30] discusses real physical
systems where exact zero values cannot be encountered both for
the absorption and scattering coefficients. On the contrary we
are concerned with the mathematical solutions of RTE in general
situations, including also the ideal ones of non-absorbing and
non-scattering media. The solutions described in this work, even
though obtained in ideal conditions, offer an important reference
for testing numerical and/or analytical algorithms for light prop-
agation under the validity of RTE. A practical example can be for
instance the validation of MC or finite element method (FEM)
codes for which exact reference are very few and only for very
simple and specific geometries [31,32].

In our opinion there is another important application for the
solutions here described: The invariance with respect to the scat-
tering properties, the geometry, and the refractive index implies
that the same identical results for all the radiometric quantities are
obtained in a large number of situations, with extremely different
regimes of propagation. Therefore, there is a large variety of propa-
gation regimes, each one of great complexity, that gives rise to the
same identical internal lighting conditions, all exactly described by
the same, simple, solution. Indeed, this result is counterintuitive, as
well as also important and very useful. For instance, it provides a
unique introduction to the world of light propagation through scat-
tering media that emphasizes and highlights the two-fold aspect of
the presented approach where the complexity of the propagation
regimes and the simplicity of the solutions coexist.

To give an example of the variety of physical situations with
identical RTE solutions we refer to Figs. 6-7. These figures pertain
to a sphere of radius 5 mm, with uniform optical properties (scat-
tering coefficient and scattering function) and with a layered re-
fractive index distribution (four layers, see Tables 1). The results
pertain to a unitary incident flux Jo, of 1 Wmm~2. The figures re-
fer to two profiles of refractive index, DwUp and UpDw, shown in
Tables 1. In Tables 1 the values of RTE solutions in the layers for
the profiles DwUp and UpDw and for s # 0 are summarized. Light
propagation for the two profiles is significantly different: for DwUp
we have 59.6% of the impinging radiation reflected on the external
surface and (L) = 4.296 mm; for UpDw only 6.65% of radiation is
reflected and (L) = 9.985 mm. However, predictions of the RTE so-
lutions (radiance and fluence) for layers j = 2 and j = 4 are iden-
tical for the two profiles.

Figures 6 and 7 pertain to the total path length probability dis-
tribution function, PDF(L), followed by photons respectively for the
profiles DwUp and for the UpDw (see Tables 1) obtained with MC
simulations [2,33]. To show the strong influence of scattering on
propagation, examples of path length probability distribution func-
tion (PDF) are displayed for different values of wus ranging from
0 to 2 mm~! and scattering function obtained with the Henyey
and Greenstein model with asymmetry factor g = 0. It is worth to
note that, despite the strong differences in the probability distri-
bution function, the mean value of L remains the same in scat-
tering media with the same profile of refractive index. The curves
with many spikes for us = 0 are only determined by multiple re-
flections/refractions. On the contrary, the smooth curves for us >
1 mm~1, are mainly determined by multiple scattering and thus
pertain to a diffusive regime of propagation. Curves for s = 0.01
and 0.1 mm~"! pertain to an intermediate regime in which the con-
tribution of trajectories only determined by reflections/refractions
and that of trajectories with few orders of scattering has similar
importance.

The PDF curves, for each profile of refractive index, are very dif-
ferent versus the value of the scattering coefficient ws. However, as
predicted by the RTE solutions, the corresponding overall illumina-
tions within the sphere are identical, with identical radiance dis-
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Fig. 6. Path length probability distribution function, PDF(L), versus the length L obtained with MC simulations for the profile DwUp and some values of . The right panel
is the zoomed in version of the left panel.
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Fig. 7. Path length probability distribution function, PDF(L), versus the length L obtained with MC simulations for the profile UpDw and some values of ws. The right panel
is the zoomed in version of the left panel.

Table 1

The table shows the RTE solutions in a four-layered sphere for two profiles of refractive index DwUp
and UpDw and with ps # 0 and constant. The index e indicates the external medium. Solutions of
the RTE for (L;) (total path length in layer j), I; (radiance in layer j), ®; (fluence in layer j) and
(L) (total mean path length) are reported. The average reflection coefficient for Lambertian radiation
on the external surface (R;) is also shown. The symbols R; and n; indicate the external radius and
refractive index of the layer j, respectively.

Layer j e 1 2 3 4
R; (mm) 5 4 3 2 (Ry) (L) (mm)
DwUp n; 1.5 1 1.5 1 1.5 0.5963  4.2963
(L;) (mm) 14459 19733 04504 0.4267
I; (Wmm~2) 0.1415 03183  0.1415 0.3183
®;(Wmm~2) 1.7778 4 1.7778 4
UpDw  nj 1.5 2 1.5 2 1.5 0.0665  9.9852
(L;) (mm) 57837 19733 1.8015  0.4267
I; (Wmm~2) 0.5659 0.3183  0.5659  0.3183
®;(Wmm~2) 71111 4 71111 4

1
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Fig. 8. Fluence rate for the two profiles DwUp and UpDw for pus =
fluence is plotted against the depth from the external surface of the sphere.

tribution and identical mean path length in each layer, whatever
scattering strength is considered. The only exception is for layers
j=1 and j =3 for the UpDw profile with us = 0, in which there
are conditions for internal guided propagation.

Since the two profiles have identical refractive index for the ex-
ternal medium n. and for layers j =2 and j =4, identical solu-
tions are also predicted for the two profiles in these layers. As also
shown by MC simulations (results not reported), identical results
for all CW radiometric quantities and for internal mean path length
have been obtained with different distribution both for the scatter-
ing properties and for the refractive index in spite of very different
propagation regimes with very different PDF. In Fig. 8, as an ex-
ample, it is shown the fluence for the profiles DwUp and UpDw
for ;s = 2 mm~!. In figure the results of the MC simulation and
of the RTE solution are shown. The figure offers an overview of
the expected profile from the RTE solution and MC simulations ac-
cordingly to the two profiles of refractive index DwUp and UpDw
of Tables 1.

7. Conclusions

We have examined with a quite large view the invariance prop-
erties of RTE solutions in non-absorbing media subjected to Lam-
bertian illumination. It is worth to further remind that also the so-
lution for the outgoing radiation IE(F, §) is invariant with respect
to the geometry, the scattering properties and the refractive in-
dex distribution. The outgoing radiance is uniform, Lambertian and
with intensity identical to the incoming radiance. It can be finally
noted that for the geometries of slab and sphere, given the sym-
metry of these geometries, the RTE solutions for the mean path
length are also valid for a point-like Lambertian illumination pro-
vided that the detected light is collected from the whole external
surface.

It is interesting to observe that the RTE solutions obtained for
non-absorbing volumes with non-uniform distributions of refrac-
tive index are very similar to those for volumes with uniform dis-
tributions of refractive index (Eqs. (9) and (10)). In particular, for
the outgoing radiation solutions are identical, with an outgoing
radiance Ie(f2,§), uniform, Lambertian, and with intensity identi-
cal to the incoming radiance. This fact implies that a re-emission
of Lambertian radiation is always possible from any medium illu-
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2 mm-~'. The figures shows the results of MC simulations (marks) and the RTE solution (curves). The

minated by a uniform Lambertian illumination. The solutions pre-
sented in our work implicitly provide a sufficient condition of ex-
istence of a Lambertian surface. Thus, in the light of the presented
results, we can argue that a Lambertian surface does exist whether
it is possible to illuminate a non-absorbing volume with a uniform
Lambertian light. Under the condition of uniform Lambertian illu-
mination, a non-absorbing volume at its external surface becomes
a Lambertian surface.

The solutions of the RTE and their invariance properties un-
der the conditions of Lambertian illumination emphasize that the
physical origin of this regime of propagation is the uniform and
isotropic distribution of the radiance inside the medium and the
uniform distribution of the fluence rate. Moreover, also the cross-
ing density of photons inside any internal surface of the medium
results to be a uniform quantity that only depends on the re-
fractive index mismatch between internal and external medium.
Whenever the light propagation can assure these two conditions
the invariance property holds. In case the medium is characterized
by an inhomogeneous discrete distribution of refractive index the
above physical insight remains valid inside each sub-domain where
the refractive index of the medium is constant.

The invariance properties of the obtained RTE solutions ver-
sus the scattering properties, for the reflectance and the other ra-
diometric quantities, for a non-absorbing volume illuminated with
Lambertian uniform radiation, emphasize the intrinsic difficulties
to re-construct the scattering properties of volumes from measure-
ments of radiometric quantities especially when determined in a
multiple scattering regime of propagation.

In particular, we can state that, for the case of CW Lamber-
tian illumination of a scattering medium (i.e. the incident radiance
is constant at each point of its boundary), we cannot recover its
scattering properties from measurements of radiometric quantities
taken on the surface of the medium or inside it. However, from CW
measurements of radiometric quantities inside the volume, such as
fluence, radiance and mean path length, we can retrieve the distri-
bution of the refractive index.

Only with the introduction of absorption inside the volume or
by breaking the condition of uniform illumination, it possible to
have information on the scattering properties. The presence of ab-
sorption makes all the radiometric quantities dependent from scat-
tering and establishes relations among them. Thus, in an absorbing
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medium is possible to re-construct both absorption and scattering
properties from radiometric CW measurements also when the vol-
ume is uniformly illuminated. A general intrinsic difficulty to re-
trieve the optical properties remains the lack of exact solutions of
the RTE in absorbing volumes and to the existing correlation be-
tween scattering and absorption effects, as for instance in the ap-
proximate solutions of the diffusion equation [2].

The uniform illumination can be “broken” both in time and in
space. In the first case we note that information can be gained
from time-resolved measurements. However, we point out that the
existing time-resolved solutions of RTE are complex also for regu-
larly bounded geometries. For scattering and absorbing media, the
shape of the Temporal Point Spread Function at late times is basi-
cally determined by the absorption coefficient, whilst the informa-
tion on the scattering coefficient is encoded inside the early pho-
tons. Thus, their detection may require a high temporal resolution
making this task particularly difficult.

The uniform illumination can be also “broken” by using radia-
tion uniform in time, but not in space, as for instance by illuminat-
ing the boundary of the medium with a CW pencil beam. In this
case the dependence on the scattering properties is encoded inside
the spatial distribution of the radiance, and the re-construction of
the scattering properties can be obtained from spatially resolved
CW measurements (reflectance measurements on the boundary or
fluence measurements inside the volume). However, also in this
case difficulties can be emphasized due to the lack of exact RTE
solutions for this kind of illumination and to the strong correlation
between scattering and absorption effects, particularly evident in
the solutions of the diffusion equation [2].

With the above overview we have represented the scenario of
the retrieval of the optical properties in scattering media. The con-
dition of uniform Lambertian illumination offers a clear and pow-
erful interpretation of the intrinsic difficulties to perform this task.
It is impressive how all the vision can be derived from an ini-
tial regime of propagation, the one addressed in this paper, i.e.
a uniform CW Lambertian illumination, where the uniform char-
acteristic of the illumination is maximum. This fact emphasizes
the importance of the RTE solutions presented in this paper. It is
also important to stress that the presented solutions are valid also
for Levy flight materials [34]. In fact these materials, that present
interesting properties of anomalous transport, are made with a
proper choice of inhomogeneous components and then are within
the cases presented in this work.

Finally, we observe that the presented exact solutions can find
in future a use as “reference standard” for analytical models or nu-
merical simulations aimed to make predictions on radiative trans-
port calculations. Indeed, the expanded domain of validity of the
invariance properties of the solutions of the radiative transfer in
condition of Lambertian illumination offers a unique reference
standard, known with arbitrary accuracy, for the validation of com-
putational codes used in photon migration in diffusive media, such
as Monte Carlo and finite element methods or any other numerical
and analytical method.
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Appendix

Solutions for the slab with () = 0 and n; > ne based on Snell’s
and Fresnel’s laws

It may be also interesting to show how solutions for the non-
scattering slab can be obtained following a different approach only
based on Snell’s and Fresnel’s laws. With reference to Fig. 2, the
radiance on a surface element (boundary of the slab ¥) can be ob-
tained summing the transmitted component and the multiple re-
flections components:

1(Fs. 8) = T (6e) (%) io RL(6),

where T,;(6e) is the external to internal transmission coefficient,
R;(6;) is the internal to external reflection coefficient, Iy the ra-

) N2 .
diance on the external surface and (2—;) accounts for the differ-
ent geometrical extent of the beam element inside and outside the

slab. Since the previous series is a power series,

o N 1 1
gR"E(Gl) T 1-Re(®) ~ Te(®)’

(87)

(88)

and also T (6;) = T,;(0e), we obtain for the internal radiance:

1(7.5) = ()’lo, ¥FeV. ¥§|[5-G| = cosfie (sinbeie = )
I(F, §) =0, V5| [S-q| < cosOe.

(89)
This solution is identical to the solution obtained from the bound-
ary conditions (Egs. (35) and (36)). It is interesting to observe
that for directions with 6; < c it is I(F,$) = (%)210 independent
of the incidence angle 6, despite that the transmission coefficient
T.i(fe) depends on 6. This is because the reflected radiation lost
on the external surface is exactly compensated by multiple reflec-
tions coming from other surface elements (to visualize the effect
may help Fig. 2). Because of this perfect compensation the internal
radiance is only determined by the variation of the beam element
extension passing from outside to inside.

Also the internal average path length (L) can be obtained from
geometrical considerations together with Snell's laws. We first
evaluate the average path length (L)(6,) for radiation with inci-
dence angle 6, as the weighted sum of the lengths followed by
radiation leaving the slab after multiple reflections:

(L) (0e) = 0- Rei(0e) + cgsa[re,we)ne(a-) > (n+ 1>R;z(9i)} (90)
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where the weight factor T,;(6e) T (6))RY, (6) is the fraction of radi-
ation with path length % leaving the slab after n internal re-
1

flections, i.e., probability of radiation incident at angle 6, to travel a
path length DS

"0 inside the slab. Let’s introduce the path length
Ln, and its discrete probability, P(Ln), defined as follow:

cos 0;

— (+Dso
n = cosf;

P(Ln) = TZRY,

P(Ln = 0) = R,;.
Since Ryi(fe) = R;ie(6;) and T,;(6e) = 1 — Rej(Be) = Tie (6;), we have

that P(Ln = 0) + 3" P(Ln) = 1. In fact:
n=0

(91)

R |12 R =R [0 R i) =1 92
n=|

The weights’ distribution is thus normalized. Furthermore, since

< Rie (6;
&(n+1)R&(9i):m+ﬁ, (93)
we obtain

(L)(Oe) = o (94)

similar to the expression for matched refractive index. The total
average path length (L) is obtained as

_ 27 [ (L) (Be)lo cos b sin Gedbe

(L) 27 J7 Iy cos b, sin B, d6, (95)
Then, by using Eq. (94) we can express (L) as:

Ly =sp2 J* %‘-ﬁ cos 6, sin 0,dB, =

=502 [fer g (,’:—;)2 cos 0; sin 6;d0; = (96)

= 230(%)2 [t sin 6,d6; = 250(%)2[1 — oS Oie]-

This expression is identical to that obtained with the other method
(Eq. (42)).
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