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a b s t r a c t 

In this work, special invariance properties of a class of exact solutions of the radiative transfer equation 

(RTE) pertaining to a uniform Lambertian illumination of any non-absorbing homogeneous and inhomo- 

geneous volume are presented and discussed. This class of solutions of the RTE traces a reference ground 

under which light propagation can be studied in a special simplified regime. Despite the difficulties to 

obtain general solutions of the radiative transfer equation, the condition of Lambertian illumination de- 

termines a unique regime of photon transport where quite easy and simple invariant solutions can be 

obtained in all generality for homogeneous and inhomogeneous geometries. These solutions are invariant 

both with respect to the geometry (size and shape of the volume) and with respect to the scattering 

properties, i.e. scattering coefficient, scattering function and homogeneity of the considered domain. An- 

other evident advantage of these solutions is that they are exact solutions known with arbitrary precision 

and can thus be used as reference standard for photon migration studies. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In optics, the study of light propagation may be critical when 

ealing with complex media and it involves many important prac- 

ical applications, such as photovoltaic, biomedical applications or 

n optimal designing detection devices. If interference effects do 

ot play a decisive role in the phenomenon under study, such as 

n the presence of scattering, an ideal and powerful framework 

s provided by the Radiative Transfer Equation (RTE) [1,2] , whose 

ntegro-differential form, however, usually leads to solutions ex- 

remely expensive to be retrieved, both by analytical and compu- 

ational approaches, also in case of simple geometries [3–13] . De- 

pite this fact, there is an exception for which the exact solution 

f the RTE is very simple and easy to obtain: It is the case of

 non-absorbing volume with uniform and Lambertian illumina- 

ion on the external surface. From now on in this paper this kind 

f illumination is simply denoted as Lambertian. In this regime of 

ropagation, the complexity of the RTE is reduced and the solution 
∗ Corresponding author. 

E-mail address: fabrizio.martelli@unifi.it (F. Martelli). 
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f the equation can be characterized by special invariance proper- 

ies. 

The aim of this paper is to provide exact invariant solutions of 

TE for any non-absorbing volume with external Lambertian illu- 

ination. The importance of such solutions relies on the fact that 

hey can be easily calculated, known with arbitrary accuracy, and 

roposed as a reference for analytical models or numerical simula- 

ions aimed to make predictions on radiative transport. Moreover, 

hese solutions help the understanding of photon migration in an 

xemplary situation where the comprehension of propagation is 

imple and does not require complex mathematical approaches. 

hus, these solutions may give some simple and general insights 

n photon migration. 

The problem of a non-absorbing medium illuminated by Lam- 

ertian radiation has been recently strictly linked to a widely 

nown invariance property for the mean total path length 〈 L 〉 
pent by light propagating inside a disordered scattering medium 

14–23] . According to such property, the mean path for a random 

ropagation through a isotropically illuminated medium is a con- 

tant value that only depends on the geometry of the probed vol- 

me, and not on its internal disorder. Let be V the volume and �
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Schematic of the main symbols used for the incidence on a volume V of 

external surface �. Incidence, reflection and refraction direction vectors related by 

Snell’s law. 
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he surface, the mean path length is: 

 L 〉 = 4 

V 

�
. (1) 

lso known as Cauchy formula, connected to the average chord 

ength and also used by Dirac in the context of Nuclear physics 

24] , the property has been revealed as an important invariant of 

ature. In particular, in our previous work [23] Eq. (1) has been 

eneralized to the case where V can be decomposed into N scatter- 

ng volumes with different refractive index, obtaining a new gen- 

ralized expression: 

 L 〉 = 4 

N ∑ 

i 

V i 

(
n i 

n e 

)2 

�
, (2) 

here V i is the i th volume, n i its refractive index and n e refrac-

ive index of the external medium. In the elementary case of a 

ingle volume with refractive index mismatch with the external 

edium, such formula has been first introduced and used in the 

aper of Savo et al. [21] . This work has provided the first experi-

ental evidence of the path length invariance property in optics. 

he invariance property has been studied in very different fields, 

eading to a complex scenario of different situations and points of 

iew [15,19,21,23,25] . However, a complete theoretical framework 

ble to unify the different published contributions on this subject 

s still missing. Our work is meant to provide a solid basis to the 

forementioned invariance properties, by framing them in the con- 

ext of RTE, with a further extension to all the possible solutions 

n presence of Lambertian illumination. 

Indeed, here we show that the invariance of 〈 L 〉 derives from a 

ore fundamental invariance property of the solutions for the ra- 

iance of the continuous wave (CW) RTE. Further, we show that 

he invariance property can be extended to more general cases, 

f non-scattering media and mismatched refractive index with the 

xternal environment. 

In this paper, we have reviewed the CW RTE in non-absorbing 

edia illuminated by Lambertian radiation. Solutions for the radi- 

nce, fluence rate, photon total flux and partial flux, and for the 

crossing density” of photons’ trajectories are obtained and their 

nvariance properties discussed. Solutions are also provided for the 

pecial case of a non-scattering medium with a refractive index 

ismatch with the external medium. These solutions have been 

nalyzed in detail providing analytical expressions for the non- 

cattering slab and sphere. Finally, the RTE in a non-uniform scat- 

ering medium with a non-uniform discrete distribution of refrac- 

ive indices is addressed and solved for the radiance, fluence rate, 

hoton total flux and partial flux, and for the “crossing density” of 

hotons’ trajectories through any internal surface of the medium. 

s special examples we have considered a layered non-scattering 

lab and a layered non-scattering sphere. For all the cases analyzed 

nalytical exact solutions are provided. 

In Section 2 , the CW RTE for scattering volumes with uniform 

efractive index is introduced for the condition of Lambertian illu- 

ination and solutions are given for radiance, radiometric quanti- 

ies and total mean path length. Section 3 is dedicated to the solu- 

ion of the RTE for non-scattering volumes with uniform refractive 

ndex. Specific solutions are given for the geometries of slab and 

phere. In Section 4 , the solution of the RTE for scattering volumes 

ith non-uniform refractive index is described. In Section 5 , 

olutions for non-scattering volumes with non-uniform refractive 

ndex are presented with a special description provided for the 

on-scattering layered slab and the non-scattering layered sphere. 

inally, in Section 6 the solutions obtained are discussed also by 

sing the results of Monte Carlo (MC) simulations and emphasizing 

he counterintuitive aspects of the presented RTE solutions. 
2 
. RTE for scattering volumes with uniform refractive index 

The geometry we consider, a non-absorbing volume without in- 

ernal sources, enclosed by a smooth convex surface � surrounded 

y a non-scattering medium, is shown in Fig. 1 . The external sur- 

ace is uniformly illuminated by a Lambertian CW radiation of in- 

ensity I 0 , i.e. a uniform incident isotropic radiance distribution of 

ight. 

The source term is thus given by the following radiance distri- 

ution on �: 

 eSource 

(
�
 r �, ̂  s ′ e 

)
= I 0 

[
Wm 

−2 sr −1 
] ∀ 

�
 r � ∈ � and ∀ ̂

 s ′ e | ˆ s ′ e · ˆ q ≥ 0 , (3) 

hus the in-coming radiation is constant at any point on the sur- 

ace and in any in-coming direction. The refractive index is n i in- 

ide the volume V and n e outside. No restrictions are necessary for 

he scattering properties of the medium: the scattering coefficient, 

s ( � r ) and scattering function, p 
(
�
 r , ̂  s , ̂  s ′ 

)
, can thus be expressed in 

ll generality. 

The RTE for the non-absorbing volume illuminated with contin- 

ous wave radiation can be written as [1,2] : 

 ·
[ 

I 

(→ 

r , ̂  s 

)
ˆ s 

] 
+ μs 

(→ 

r 

)
I 

(→ 

r , ̂  s 

)

= μs 

(→ 

r 

)∫ 
4 π

p 

(→ 

r , ̂  s , ̂  s ′ 
)

I 

(→ 

r , ̂  s ′ 
)

d ̂  s ′ ∀ ̂

 s and ∀ 

→ 

r ∈ V, 
(4) 

here I 
(
�
 r , ̂  s 

)
is the radiance inside the volume. For simplicity of 

otation, the direction vectors referred to the internal medium are 

eported without subscript. 

To solve the RTE with the source term of Eq. (3) it is necessary 

o express the boundary conditions. About this point we assume a 

oundary surface with mirror reflection and refraction conditions 

ubject to the Fresnel laws. To derive the boundary conditions we 

se a phenomenological approach. Specifically, at each point on the 

oundary surface we assume that locally, (I) the incident, reflected 

nd transmitted fields can be approximated by plane electromag- 

etic waves, (II) the Fresnel laws to derive the expressions of the 

eflected and transmitted fields can be used, and (III) the corre- 

ponding law of energy conservation can be applied. Being the sur- 

ace � convex (photons leaving the medium have not the possibil- 

ty to re-enter inside) and smooth (reflections only depends on the 

ncidence angle and on the refractive index mismatch), boundary 

onditions are given by the: 

 

(
�
 r �, ̂  s i 

)
= R ie ( θi ) I 

(
�
 r �, ̂  s ′ 

i 

)
+ T ei ( θe ) 

(
n i 
n e 

)2 
I 0 

∀ 

�
 r � ∈ � and ∀ ̂

 s i | 0 ≤ ˆ s i · ˆ q ≤ 1 , 
(5) 
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 e 

(
�
 r �, ̂  s e 

)
= R ei ( θe ) I 0 + T ie ( θi ) 

(
n e 
n i 

)2 
I 
(
�
 r �, ̂  s ′ 

i 

)
∀ 

�
 r � ∈ � and ∀ ̂

 s e | − 1 ≤ ˆ s e · ˆ q ≤ 0 , 
(6) 

here: the unitary directions vectors ˆ s i , ˆ s ′ 
i 
, ˆ s e and ˆ q are related by 

nell’s laws; R ie and T ie , R ei and T ei are the Fresnel reflection and

ransmission coefficients for unpolarized light respectively, from 

nternal to external (ie) and viceversa (ei) [2] ; I 
(
�
 r �, ̂  s i 

)
is the in- 

ardly directed radiance on the boundary, and I e 
(
�
 r �, ̂  s e 

)
the out- 

ardly directed radiance on the boundary, i.e., the outgoing radi- 

nce. 

Equation (5) states that the power flowing in the internal 

edium i in the incoming directions ˆ s i per unit surface is equal 

o the sum of (I) the fraction of the power transmitted from the 

xternal e to the internal i medium per unit surface around the 

n-coming direction ˆ s ′ e and (II) the fraction of the power reflected 

n the internal medium per unit surface around the out-coming 

irection ˆ s ′ 
i 
, where for any specified direction ˆ s i , ˆ s ′ 

i 
is the mirror 

irection of ˆ s i with respect to �. 

Equation (6) states that the power flowing in the external 

edium e in the outcoming directions ˆ s e per unit surface is equal 

o the sum of (I) the fraction of the power transmitted from the 

nternal i to the external e medium per unit surface around the 

ut-coming direction ˆ s ′ 
i 

and (II) the fraction of the power reflected 

n the external medium per unit surface around the in-coming di- 

ections ˆ s ′ e , where for any specified direction ˆ s e , ˆ s ′ e is the mirror 

irection of ˆ s e with respect to �. 

The coefficients 
( n i 

n e 

)2 
and 

(
n e 
n i 

)2 

account for the different geo- 

etrical extent of the light beam element at the boundary � due 

o refraction when passing from the external (e) to the internal 

i) medium and viceversa. Being T ei ( θe ) = 1 − R ei ( θe ) , T ie ( θi ) = 1 −
 ie ( θi ) , and also T ei ( θe ) = T ie ( θi ) with θi and θe related by Snell’s 

aw, Eqs. (5) and (6) can thus be rewritten as: 

 

(
�
 r �, ̂  s i 

)
= R ie ( θi ) I 

(
�
 r �, ̂  s ′ 

i 

)
+ ( 1 − R ie ( θi ) ) 

(
n i 
n e 

)2 
I 0 

∀ 

�
 r � ∈ � and ∀ ̂

 s i | 0 ≤ ˆ s i · ˆ q ≤ 1 , 
(7) 

 e 

(
�
 r �, ̂  s e 

)
= R ei ( θe ) I 0 + ( 1 − R ei ( θe ) ) 

(
n e 
n i 

)2 
I 
(
�
 r �, ̂  s ′ 

i 

)
∀ 

�
 r � ∈ � and ∀ ̂

 s e | − 1 ≤ ˆ s e · ˆ q ≤ 0 . 
(8) 

All the solutions that will be obtained in the next sections ex- 

loit the hypothesis of convex volume. This fact is related to the 

ind of illumination of the volume used, i.e. a source distributed on 

he external surface ( Eq. (4) ). Indeed, by selecting an external suit- 

ble illumination impinging over the external surface of the vol- 

me, it would be possible to have RTE solutions for no-convex vol- 

mes. In this case it would be also possible to release the hypoth- 

sis of non-scattering external medium. However, we have cho- 

en the source distributed on the external surface as Eq. (4) since 

his approach allows an easier and well defined treatment of the 

oundary conditions, accordingly to Eqs. (7) and (8) . 

.1. Solutions for radiance and other radiometric quantities 

The solution of the RTE for the radiance, that also fulfills the 

oundary conditions of Eqs. (7) and (8) , is: 

 

(
�
 r , ̂  s 

)
= 

(
n i 
n e 

)2 
I 0 

[
Wm 

−2 sr −1 
] ∀ ̂

 s and ∀ 

�
 r ∈ V, (9) 

 e 

(
�
 r �, ̂  s 

)
= I 0 

[
Wm 

−2 sr −1 
]

∀ 

�
 r � ∈ � and ∀ ̂

 s | − 1 ≤ ˆ s · ˆ q ≤ 0 , 
(10) 

here I 
(
�
 r , ̂  s 

)
is the internal radiance and I e 

(
�
 r �, ̂  s 

)
the radiance out- 

oing the surface �. The simple substitution of the above equa- 

ions into Eq. (4) proves that they are the RTE solutions with the 

iven boundary conditions. The first term of RTE vanishes since it 

s applied to a constant term. The other two terms cancel out due 
3 
o the normalization condition of the phase function. Moreover, 

hese solutions are unique due to the fact that they are RTE solu- 

ions that fulfill the given boundary conditions for the radiance on 

he whole external boundary of the medium for any direction [26] . 

t is worth to point out that for the CW RTE the stationary distribu- 

ion of radiance inside the considered volume, given its geometry 

nd optical properties, is uniquely determined by the sources in 

he volume and by the incident radiance distribution [26] . In this 

pecific case, since we have only external sources, the uniqueness 

s guaranteed by the incident Lambertian radiance distribution re- 

uested with Eqs. (5) and (6) . 

The internal radiance I is thus uniform and isotropic and its 

alue is only determined by the incident radiance I 0 and by the 

efractive index mismatch between internal and external medium. 

lso the re-emitted radiation, I e , is uniform and Lambertian (i.e. 

ith isotropic distribution) and with intensity identical to the in- 

oming radiance. We point out that both the solution for the out- 

oing radiance, I e 
(
�
 r �, ̂  s 

)
, and the solution for the internal radi- 

nce, I 
(
�
 r , ̂  s 

)
, are invariant both with respect to the geometry (size 

nd shape of the volume, provided the external surface is con- 

ex and flat) and with respect to the scattering properties (scatter- 

ng coefficient, scattering function, homogeneity). These solutions 

an therefore be used in all generality with only one exception: 

he case of non-scattering volume with n i > n e . In this case (see

ection 3 ) the solution for I 
(
�
 r , ̂  s 

)
may depend on the shape of the 

olume. 

Making use of the above solution simple expressions are also 

btained for other radiometric quantities. For the fluence rate, 

( � r ) , and the total photon flux, � J ( � r ) , inside the medium we have: 

( � r ) = 

∫ 
4 π I 

(
�
 r , ̂  s 

)
d ̂  s = 4 π

(
n i 
n e 

)2 
I 0 

[
Wm 

−2 
]
, (11) 

 

 ( � r ) = 

∫ 
4 π I 

(
�
 r , ̂  s 

)
ˆ s d ̂  s = 0 

[
Wm 

−2 
]
. (12) 

Equation (12) states that the net total flux through whatever 

urface element inside the medium must be null. This means that 

he number of photons crossing any internal surface in a specific 

irection must be identical to the number of crossing in the oppo- 

ite one. 

It may be also interesting to evaluate the normal component of 

he partial flux within the semi-solid angle, since it characterizes 

he passage through a surface element of photons from one side 

o another. In particular, the component of the partial flux on the 

xternal surface � along the inward normal direction ˆ q , i.e., the 

ncident flux J e + , is obtained integrating over the inward semi-solid 

ngle: 

 e + ( � r ) = 

∫ 
ˆ s · ˆ q ≥0 I eSource 

(
�
 r , ̂  s 

)
ˆ s · ˆ q d ̂  s = 

 2 π I 0 
∫ π/ 2 

0 cos θ sin θdθ = π I 0 
[
Wm 

−2 
] ∀ 

�
 r ∈ �. 

(13) 

imilarly for the outgoing flux, J e −( � r ) , from �: 

 e −( � r ) = 

∫ 
ˆ s · ˆ q ≤0 I e 

(
�
 r , ̂  s 

)
ˆ s · ˆ q d ̂  s = −π I 0 

[
Wm 

−2 
] ∀ 

�
 r ∈ �, (14) 

or which we obviously (the medium is non-absorbing) have 

 e + ( � r ) = −J e −( � r ) . These components of the flux provide informa- 

ion on the number of photons crossing the surface element in a 

pecific direction and thus are related to the photons’ trajectory 

ensity. From Eq. (13) we also have that the total incident power, 

 e + Tot ( � r ) , is 

 e + Tot ( � r ) = π I 0 �. (15) 

Similarly, the components of the partial flux across an internal 

urface element, i.e., a surface element internal to V , are 

 + ( � r ) = 

∫ 
ˆ s · ˆ q ≥0 I 

(
�
 r , ̂  s 

)
ˆ s · ˆ q d ̂  s = π

(
n i 
n e 

)2 
I 0 

[
Wm 

−2 
] ∀ 

�
 r ∈ V, (16) 

 −( � r ) = 

∫ 
ˆ s · ˆ q ≤0 I 

(
�
 r , ̂  s 

)
ˆ s · ˆ q d ̂  s = −π

(
n i 
n 

)2 
I 0 

[
Wm 

−2 
] ∀ 

�
 r ∈ V, (17) 
e 
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b

t

I

I

here ˆ q is the unit vector normal to the surface element. Also for 

he components of the internal flux is J + ( � r ) = −J −( � r ) . 

It is worth to note that, if we use the energy of a photon as

he unit for energy, the partial flux can be viewed as proportional 

o the number of photons crossing the unit surface per unit time: 

ux J + ( J −) increases (decreases) of one unit each time a trajec- 

ory crosses the surface with ˆ s · ˆ q ≥ 0 ( ̂ s · ˆ q ≤ 0 ). Therefore, photons 

rossing several times the surface give multiple contributions to 

he flux, while photons that never cross the surface give a null 

ontribution. 

Therefore, J + and J − are proportional to the number of times 

hotons cross the surface in a direction, N cross + , or in the opposite 

ne, N cross −. In other words, J + and J − can be considered as an in-

ernal “trajectory density” or “crossing density”, i.e. proportional to 

he number of crossing photons. 

In a similar way, J e + , can be considered as the “trajectory den- 

ity” or “crossing density” for emitted photons. 

It can be also defined the total number of crossing photons 

 cross = N cross + + N cross −. By using the above Eqs. (13) , (16) and

17) we have that the internal “trajectory density” or “crossing 

ensity”, ρNcross , number of crossing photons per unit of emitted 

hotons is: 

Ncross = 

N cross 

N e + 
= 

N cross + + N cross −
N e + 

= 

J + + | J −| 
J e + 

= 

2 J + 
J e + 

= 2 

(
n i 
n e 

)2 
. (18) 

herever the internal surface element is, and whatever the scat- 

ering properties are (apart the case μs ( � r ) = 0 , see Section 3 ), the

nternal “trajectory density” or “crossing density” only depends on 

he refractive index mismatch between medium and external envi- 

onment. 

As easily predictable the invariance property observed for the 

olution of the RTE also applies to the other radiometric quanti- 

ies: Also the solutions shown for fluence, flux, partial flux, etc are 

ndependent of both the geometry and the scattering properties of 

he volume. 

.2. Solution for average internal path length 

The solution of the RTE obtained for the fluence rate, Eq. (11) , 

llows us to calculate the average internal length of trajectories fol- 

owed by photons inside a non-absorbing volume with the exter- 

al surface illuminated with CW Lambertian radiation. The value 

or the average total path length is obtained by calculating the 

otal absorbed radiation in the limit of zero absorption in two 

ifferent ways. The first way is to integrate the local absorption, 

a ( � r V ) �( � r V ) d � r V , over the volume V of the medium: 

 A 1 = 

∫ 
V μa ( � r V ) �( � r V ) d � r V , (19) 

hat for uniform absorption and in the limit of zero absorption be- 

omes: 

lim 

a → 0 
P A 1 = lim 

μa → 0 

∫ 
V μa ( � r V ) �( � r V ) d � r V = lim 

μa → 0 
4 πμa 

(
n i 
n e 

)2 
I 0 V, (20) 

here we have used Eq. (11) , i.e., the fluence for the non-absorbing 

edium. 

The second way to calculate the total absorbed power in V 

nvolves the probability density function for the photons’ path 

ength and the microscopic Lambert-Beer law [2,27] . For pho- 

ons travelling a trajectory of total length L through a volume 

ith uniform absorption, the probability that absorption occurs is 

1 − exp ( −μa L ) ] [2,27] . If p ( L, μa = 0 ) is the probability density 

unction that photons follow a trajectory of length L for the non- 

bsorbing medium, and P I the total incident power, then the total 

bsorbed power can be calculated as: 

 A 2 = P I 
∫ ∞ 

0 p ( L, μa = 0 ) [1 − exp ( −μa L ) ] dL, (21) 

nd in the limit of zero absorption: 

lim 

a → 0 
P A 2 = P I 

∫ ∞ 

0 μa Lp ( L, μa = 0 ) dL = P I μa 〈 L 〉 ( μa = 0 ) . (22) 
4 
We point out that the probability density function p ( L, μa = 0 ) 
ertains to the totality of the incident radiation. Therefore, 

p ( L, μa = 0 ) , when the refractive index of the medium n i is dif- 

erent from the refractive index of the external medium n e , will 

lso include a term R TotLamb δ( L ) (with R TotLamb total reflection co- 

fficient for Lambertian incidence and δ( L ) Dirac delta function of 

 ) which takes into account radiation reflected on the external sur- 

ace �. It is important to note that part of the incident radiation 

eflected at the boundary, when present, gives a fundamental con- 

ribution to the RTE solutions and to the related invariance prop- 

rties. 

According to Eq. (15) , the total incident power is P I = π I 0 �.

hus, by equaling P A 1 and P A 2 in the limit μa → 0 , it is possible 

o express 〈 L 〉 ( μa = 0 ) as: 

 L 〉 ( μa = 0 ) = 4 

(
n i 
n e 

)2 V 
� = �( � r , μa = 0 ) V 

π�I 0 
[ m ] . (23) 

quation (23) shows that the average path length 〈 L 〉 for the non-

bsorbing medium depends on the refractive index mismatch and 

n the ratio between the volume of the medium and its external 

urface area, but it is invariant with respect the scattering proper- 

ies (apart for μs ( � r ) = 0). Such invariance property is a generaliza- 

ion of the mean chord length theorem, valid for ballistic prop- 

gation and also used in the context of nuclear physics [14,26] . 

herefore, among the invariance properties observed for the radi- 

nce and other radiometric quantities (invariance with respect to 

he geometry, and invariance with respect to the scattering prop- 

rties) only the invariance with respect to the scattering properties 

lso applies to the average path length 〈 L 〉 ( μa = 0 ) . Anyway, the 

ependence on the geometry of the illuminated medium is very 

imple and only involves the ratio V 
� . 

For the infinitely extended slab of thickness s 0 , Eq. (23) be- 

omes: 

 L 〉 Slab ( μa = 0 ) = 2 s 0 
(

n i 
n e 

)2 
, (24) 

or the sphere of radius R 0 : 

 L 〉 Sphere ( μa = 0 ) = 

4 
3 

R 0 

(
n i 
n e 

)2 
, (25) 

nd for the infinite cylinder with radius R 0 : 

 L 〉 Cylinder ( μa = 0 ) = 2 R 0 

(
n i 
n e 

)2 
. (26) 

. RTE for non-scattering volumes with uniform refractive 

ndex 

For non-scattering and non-absorbing volumes the RTE ( Eq. (4) ) 

educes to 

 · [ I 
(
�
 r , ̂  s 

)
ˆ s ] = 0 ∀ ̂

 s and ∀ 

�
 r ∈ V, (27) 

hat can also be written as: 

∂ I ( � r , ̂ s ) 
∂s 

= 0 ∀ ̂

 s and ∀ 

�
 r ∈ V. (28) 

hese equations state that the radiance does not change inside the 

olume V along a fixed direction ˆ s . 

Light propagation is thus determined only by the boundary con- 

itions, i.e. by Eqs. (7) and (8) . 

Solutions for non-scattering volumes are described separately 

or n i ≤ n e and n i > n e . 

.1. Solution for n i ≤ n e 

When n i ≤ n e , it is R ie ( θi ) < 1 for any angle θi < π/ 2 and the

oundary conditions of Eqs. (7) and (8) in this case are fulfilled by 

he following solutions: 

 

(
�
 r , ̂  s 

)
= 

(
n i 
n e 

)2 
I 0 ∀ ̂

 s and ∀ 

�
 r ∈ V 

 e 

(
�
 r �, ̂  s 

)
= I 0 ∀ 

�
 r � ∈ � and ∀ ̂

 s | − 1 ≤ ˆ s · ˆ q ≤ 0 . 
(29) 
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Fig. 2. Refraction and reflection in the laterally infinitely extended slab. ˆ q is the 

unitary vector normal to the sides of the slab inwardly directed. 
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hus, for n i ≤ n e the solutions for the radiance are identical to 

hose for μs ( � r ) 
 = 0 ( Eqs. (9) and (10) ), with an internal radiance

niform and isotropic. Also the solutions for fluence rate, mean 

ath length, etc. will be identical to those for scattering volumes 

escribed in Sections 2.1 and 2.2 . 

.2. Solution for n i > n e 

When n i > n e , it is R ie ( θi ) = 1 for θi ≥ θc ie , with sin θc ie = n e /n i 
nd the boundary conditions can be re-written as: 

 

(
�
 r �, ̂  s i 

)
= R ie ( θi ) I 

(
�
 r , ̂  s ′ 

i 

)
+ [1 − R ie ( θi ) ] 

(
n i 
n e 

)2 
I 0 

∀ 

�
 r � ∈ �, and ∀ ̂

 s i | cos θcie ≤ ˆ s i · ˆ q ≤ 1 , i.e. θi < θc ie 

(30) 

 

(
�
 r �, ̂  s i 

)
= I 

(
�
 r �, ̂  s ′ 

i 

)
∀ 

�
 r � ∈ �, ∀ ̂

 s i | 0 ≤ ˆ s i · ˆ q ≤ cos θc ie , i.e. θi ≥ θc ie 

(31) 

 e 

(
�
 r �, ̂  s e 

)
= R ei ( θe ) I 0 + ( 1 − R ei ( θe ) ) 

(
n e 
n i 

)2 
I 
(
�
 r �, ̂  s ′ 

i 

)
∀ 

�
 r � ∈ � and ∀ ̂

 s e | − 1 ≤ ˆ s e · ˆ q ≤ 0 , 
(32) 

here Eq. (7) has been split for θi < θc ie and for θi ≥ θc ie . 

Equations (30) and (32) determine the same RTE solutions 

ound for scattering media but only at the boundary points, � r � , 

nd for angles θi < θc ie . Thus, we obtain for the radiance on the 

nternal surface: 

 

(
�
 r �, ̂  s i 

)
= 

(
n i 
n e 

)2 
I 0 

∀ 

�
 r � ∈ �, ∀ ̂

 s i | cos θc ie ≤ ˆ s i · ˆ q ≤ 1 , i.e. θi < θc ie . 
(33) 

imilarly, from Eqs. (6) and (29) , for the radiance on the external 

urface the solution is 

 e 

(
�
 r �, ̂  s e 

)
= I 0 

∀ 

�
 r � ∈ �, and ∀ ̂

 s e | − 1 ≤ ˆ s e · ˆ q ≤ 0 . 
(34) 

he solutions for the radiance on the internal surface for angles 

i < θc ie , and for the external radiance are identical to those for 

he volume with μs ( � r ) 
 = 0 ( Eqs. (9) and (10) ). 

However, it must be noted that for angles θi ≥ θc ie , Eq. (31) is 

ot sufficient to obtain a general univocal solution for the radiance 

n the internal surface. Therefore, also the solution for the radiance 

 

(
�
 r , ̂  s 

)
within the volume remains undetermined: a solution can be 

ound only with detailed information on the shape of the external 

urface �. Indeed, the solution is still unique, accordingly to the 

eneral theorem of Ref. [26] , however the RTE solution for angles 

i > θcie depends on the geometry considered, i.e. on the external 

urface �. Thus, detailed characteristics of the geometry have to be 

onsidered. As long as the geometry of the medium is not known, 

t is not possible to determine the unique solution for angles θi > 

cie that in general may be different from the solution for θi < θcie . 

As a general outcome, multiple internal reflections tend to ran- 

omize directions of propagation and to reestablish the homogene- 

ty and isotropy of internal radiance also for n i > n e . In this case,

olutions for I 
(
�
 r , ̂  s 

)
, �( � r ) , �

 J ( � r ) , J e + ( � r ) , J + ( � r ) , J −( � r ) , ρNcross and 〈 L 〉
re identical to those for the scattering volume and also the in- 

ariance property for the average path length holds. However, for 

onergodic geometries this does not fully happen as for instance in 

he plane-parallel slab and in the sphere. As noted by Yablonovitch 

28] nonergodic geometries are “unusual and exceptional” and “the 

ymmetry is so high that only a restricted class of angles is dynam- 

cally accessible to an incoming light ray”. Moreover, whispering 

allery modes does exist in any smooth convex domain as shown 

y Lazutkin [29] . These facts imply that for n i > n e there are ge-

metries with high-symmetry for which multiple internal reflec- 

ions do not reproduce the solutions for the radiance found for 

 i < n e . 

Thus, for geometries like slab and sphere, due to particular 

ymmetries, for n i > n e there are conditions for internal guided 

ropagation, i.e. trapped ray trajectories. Thus, isotropic and/or 
5 
niform radiance inside the medium cannot be established, be- 

ause the internal incidence angle remains the same for all re- 

ection orders. In these cases solutions must be determined case- 

y-case. In the next section, we discuss the solutions for slab and 

phere. 

.2.1. Slab geometry 

Since the solutions for non-scattering volumes with n i ≤ n e are 

dentical to those for scattering volumes, we consider here only 

he case n i > n e . Let’s consider a non-absorbing slab of thickness 

 0 and refractive index n i (see Fig. 2 ). For a non-scattering later- 

lly infinitely extended slab, the trajectories of photons entering 

long the same direction, during propagation always remain paral- 

el to each other anywhere they enter. The internal radiance will be 

herefore identical to the radiance on the internal boundary. From 

q. (33) we therefore have for angles smaller than the critical angle 

c ie ( sin θc ie = 

n e 
n i 

) that: 

 

(
�
 r , ̂  s 

)
= 

(
n i 
n e 

)2 
I 0 

∀ 

�
 r ∈ V, ∀ ̂

 s | cos ( θcie ) ≤ | ̂  s · ˆ q | ≤ 1 , 
(35) 

hereas for angles greater than θc ie we have: 

 

(
�
 r , ̂  s 

)
= 0 

∀ 

�
 r ∈ V, ∀ ̂

 s | | ̂  s · ˆ q | < cos θc ie , θc ie < θi < π − θc ie 

(36) 

ince no photons can arise inside the slab with angles greater than 

he critical angle. Therefore there is an angular discontinuity of ra- 

iance inside the slab. Equations (35) and (36) provide the full de- 

cription of the internal radiance from which solutions for fluence, 

ux, etc, can be easily obtained. Consequently, it results: 

( � r ) = 2 π2 

∫ θc ie 

0 

(
n i 
n e 

)2 
I 0 sin θdθ = 4 π

(
n i 
n e 

)2 
I 0 

[
1 −

√ 

1 −
(

n e 
n i 

)2 

]
, 

(37) 

 

 ( � r ) = 

∫ 
4 π I 

(
�
 r , ̂  s 

)
ˆ s d ̂  s = 0 , (38) 

 e + ( � r ) = 

∫ 
ˆ s · ˆ q ≥0 I eSource 

(
�
 r , ̂  s 

)
ˆ s · ˆ q d ̂  s = π I 0 , (39) 

 + ( � r ) = −J −( � r ) = 2 π
∫ θc ie 

0 

(
n i 
n e 

)2 
I 0 cos θ sin θdθ = (

n i 
n e 

)2 
I 0 
(

n e 
n i 

)2 = π I 0 , 
(40) 

Ncross = 

N cross 

N e + 
= 

2 J + 
J e + 

= 2 . (41) 
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Fig. 3. Schematic for non-scattering sphere: internal-external critical angle. The 

symbol r denotes | � r | . 
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he factor 2 in Eq. (37) takes into account the incident radiance 

rom both sides of the slab. Since the internal fluence is uniform, 

he internal average path length can be obtained in a simple way 

ollowing the procedure used in Section 2.2 . Using in Eq. (20) the 

uence given by Eq. (37) , and then by acting as in Section 2.2 we

btain for the average path length 〈 L 〉 : 

 L 〉 = 2 s 0 
(

n i 
n e 

)2 

[
1 −

√ 

1 −
(

n e 
n i 

)2 

]
. (42) 

f we compare this equation with Eq. (24) , we realize that 〈 L 〉
s discontinuous with the scattering properties in the case of 

uided propagation. For any arbitrarily small scattering value, 

q. (24) holds, while Eq. (42) holds for μs = 0 . The same result has

een also obtained by Majic et al. [30] by following two different 

pproaches for the scattering (thermodynamic) and nonscattering 

ray optics) cases. 

Solutions for the non-scattering slab with n i > n e are therefore 

ignificantly different from those for the scattering slab. In par- 

icular, the internal radiance I 
(
�
 r , ̂  s 

)
is independent of � r but non- 

sotropic. The fluence is uniform, however its value differs from the 

alue for the scattering slab and we have thus a discontinuity be- 

ween the solution with and without scattering. Also the internal 

artial flux component along the normal direction ˆ q does not re- 

roduce the value for the scattering slab and its value is J + ( � r ) = 

 e + ( � r ) . 

Finally, also the solution for the average path length 〈 L 〉 is dif-

erent from that obtained for the scattering slab ( Eq. (24) ) be- 

ause of the internal-external critical angle. Therefore, the invari- 

nce property as was presented for the scattering slab does not 

pply for the non-scattering slab with n i > n e . 

In Appendix, we have shown how solutions for the non- 

cattering slab can also be obtained following a different approach 

nly based on Snell’s and Fresnel’s laws. The two procedures obvi- 

usly return the same solutions. 

.2.2. Sphere geometry 

Let’s consider a sphere of radius R 0 with refractive index n i (see 

ig. 3 ). When n i > n e , the internal radiance for a non-scattering

nd non-absorbing sphere with Lambertian surface illumination is 

btained from the radiance on the internal boundary. Indeed, in 

bsence of scattering, the radiance at the internal boundary fully 
6 
etermines the radiance in the inner part of the sphere. In this 

alculation it must be accounted for the contributions from all the 

oundary �. From Eqs. (30) and (31) , taking into account that the 

nternal incidence angle remains unchanged regardless of the num- 

er of internal reflections that may occur at the internal boundary 

f the sphere, the radiance on the internal boundary results: 

 

(
�
 r �, ̂  s 

)
= 

(
n i 
n e 

)2 
I 0 

∀ 

�
 r � ∈ �, ∀ ̂

 s | cos θc ie < 

ˆ s · ˆ q ≤ 1 , i.e. θi < θc ie 

 

(
�
 r �, ̂  s 

)
= 0 

∀ 

�
 r � ∈ �, ∀ ̂

 s | | ̂  s · ˆ q | < cos θc ie , i.e. θi > θc ie , 

(43) 

here ˆ q is the normal inwardly directed and sin θc ie = 

n e 
n i 

. 

Making reference to Fig. 3 , the internal radiance can be written 

s: 

 

(
�
 r , ̂  s 

)
= 

(
n i 
n e 

)2 
I 0 ∀ 

�
 r | r ≤ r c ie , ∀ ̂

 s | − 1 < 

ˆ s · ˆ q ( � r ) ≤ 1 

 

(
�
 r , ̂  s 

)
= 

(
n i 
n e 

)2 
I 0 ∀ 

�
 r | r > r c ie , ∀ ̂

 s | arccos 
[| ̂  s · ˆ q ( � r ) | ] ≤ θ ( r ) 

 

(
�
 r , ̂  s 

)
= 0 ∀ 

�
 r | r > r c ie , ∀ ̂

 s | arccos 
[| ̂  s · ˆ q ( � r ) | ] > θ ( r ) , 

(44) 

here ˆ q ( � r ) is the inwardly directed normal to the sphere with ra- 

ius r, r c ie = R 0 sin θc ie = R 0 
n e 
n i 

, θ ( r ) = arcsin 

[ r c ie 
r 

]
, and R 0 is the ra-

ius of the sphere. From the above internal distribution of radiance 

t is possible to calculate the internal fluence rate as: 

( � r ) = 2 π
∫ π

0 

(
n i 
n e 

)2 
I 0 sin θdθ = 4 π

(
n i 
n e 

)2 
I 0 , ∀ r ≤ r c ie 

( � r ) = 2 π2 

∫ θ ( r ) 
0 

(
n i 
n e 

)2 
I 0 sin θdθ = 

 4 π
(

n i 
n e 

)2 
I 0 

[
1 −

√ 

1 −
(

r c ie 

r 

)2 

]
, ∀ r > r c ie . 

(45) 

or the total flux we have: 

 

 ( � r ) = 

∫ 
4 π I 

(
�
 r , ̂  s 

)
ˆ s d ̂  s = 0 , (46) 

nd the components of the partial flux along the radial direction ˆ q 

re: 

 e + ( � r ) = 

∫ 
ˆ s · ˆ q ≥1 I esource 

(
�
 r , ̂  s 

)
ˆ s · ˆ q ( r ) d ̂  s = π I 0 , ∀ 

�
 r ∈ �, (47) 

 + ( � r ) = −J −( � r ) = 2 π
∫ π/ 2 

0 

(
n i 
n e 

)2 
I 0 ̂  s · ˆ q ( r ) sin θdθ = 

 π
(

n i 
n e 

)2 
I 0 , ∀ r ≤ r c ie 

 + ( � r ) = −J −( � r ) = 2 π
∫ θ ( r ) 

0 

(
n i 
n e 

)2 
I 0 ̂  s · ˆ q ( r ) sin θdθ = 

 π
(

n i 
n e 

)2 
I 0 
[

R 0 
r 

n e 
n 1 

]2 = π
(

R 0 
r 

)2 
I 0 , ∀ r > r c ie . 

(48) 

inally, we can write the solution for the “trajectory density” or 

crossing density”: 

Ncross = 

N cross 

N e + 
= 

2 J + 
J e + 

= 2 

(
n i 
n e 

)2 ∀ r ≤ r c ie 

Ncross = 

N cross 

N e + 
= 

2 J + 
J e + 

= 2 

(
R 0 
r 

)2 ∀ r > r c ie . 

(49) 

hus, for n i > n e the solutions are significantly different from those 

or a nonscattering sphere and for a non-scattering sphere for 

 i ≤ n e . A special emphasis on the internal radiance that is uniform 

nd isotropic only for r ≤ r c ie = R 0 
n e 
n i 

. Moreover, both the fluence 

nd the component of the internal partial flux along the radial di- 

ection are not longer uniform. 

The internal average path length 〈 L 〉 can be obtained with 

he procedure described in Section 2.2 and by using the non- 

niform fluence rate given by Eq. (45) . However, the calculation 

f the integral of Eq. (20) is a bit cumbersome and the results can 

e more easily obtained from geometrical considerations together 

ith Snell’s and Fresnell’s laws. Following the alternative proce- 

ure used for the slab geometry (see Appendix) we obtain for the 
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Fig. 4. Direction vectors for boundary condition for adjacent subvolumes V j and 

V j+1 : ˆ s j , ˆ s ′ 
j 
, ˆ s j+1 , ˆ s ′ 

j+1 
, ˆ q j , are related by Snell’s laws. 
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verage path length 〈 L 〉 ( θe ) for radiation with incidence angle over 

he sphere θe : 

 L 〉 ( θe ) = 2 R 0 cos θi , (50) 

.e. the same expression as for matched refractive index. Then, for 

 L 〉 we obtain: 

 L 〉 = 

2 π
∫ π/ 2 

0 〈 L 〉 ( θe ) I 0 cos θe sin θe dθe 

2 π
∫ π/ 2 

0 I 0 cos θe sin θe dθe 

= 4 R 0 

∫ π/ 2 

0 cos θi cos θe sin θe dθe = 

 4 R 0 

∫ θc ie 

0 cos θi 

(
n i 
n e 

)2 
cos θi sin θi dθi = 

 

4 
3 

R 0 

(
n i 
n e 

)2 

{
1 −

[ 
1 −

(
n e 
n i 

)2 
] 3 / 2 }

. 

(51) 

his solution is different from that for the scattering sphere and 

lso from that the non-scattering sphere for n i ≤ n e ( Eq. (25) ) be-

ause of the internal-external critical angle. Therefore, also for the 

on-scattering sphere with n i > n e the invariance property does 

ot apply. The same result has been also obtained by Majic et al. 

30] . 

. RTE for scattering volumes with non-uniform refractive 

ndex 

The RTE solutions obtained in previous sections are for volumes 

ith uniform refractive index. In this section, we show how to ex- 

end solutions to volumes with non-uniform discrete distributions 

f refractive index and where the scattering properties can vary in 

otal generality. 

.1. Solutions for radiance and other radiometric quantities 

With reference to Fig. 4 , we consider an inhomogeneous vol- 

me V , without internal sources, enclosed by a smooth convex sur- 

ace � divided in a number N of discrete sub-volumes V j of refrac- 

ive index n j and with not restrictions on the scattering properties 

ssumed inside each V j . The surfaces enclosing each sub-volume 

s assumed to be smooth so that Snell’s and Fresnel’s law can be 

pplied. The refractive index of the external medium is n e and the 

urface � is illuminated by a CW Lambertian radiation. 

To obtain a solution of the RTE, we have to solve the RTE in

ach volume V j . Thus the radiance in each volume V j , I j 
(
�
 r , ̂  s 

)
, is

ubjected to the CW RTE, i.e.: 

 · [ I j 
(
�
 r , ̂  s 

)
ˆ s ] + μs ( � r ) I j 

(
�
 r , ̂  s 

)
= 

 μs ( � r ) 
∫ 

4 π p 
(
�
 r , ̂  s , ̂  s ′ 

)
I j 
(
�
 r , ̂  s ′ 

)
d ̂  s ′ 

∀ 

�
 r ∈ V j and ∀ ̂

 s , 

(52) 
7 
here I j is the radiance inside V j . The boundary conditions at the 

xternal boundary � are the same as Eqs. (5) and (6) . Those on 

he surface � j, j+1 separating the volumes V j and V j+1 are 

 j 

(
�
 r , ̂  s j 

)
= R j, j+1 

(
θ j 

)
I j 
(
�
 r , ̂  s ′ 

j 

)
+ 

 T j+1 , j 

(
θ j+1 

)( n j 
n j+1 

)2 

I j+1 

(
�
 r , ̂  s ′ 

j+1 

)
∀ 

�
 r ∈ � j, j+1 and ̂

 s j · ˆ q j ≥ 0 , 

(53) 

 j+1 

(
�
 r , ̂  s j+1 

)
= R j+1 , j 

(
θ j+1 

)
I j+1 

(
�
 r , ̂  s ′ 

j+1 

)
+ 

 T j, j+1 

(
θ j 

)( n j+1 

n j 

)2 

I j 
(
�
 r , ̂  s ′ 

j 

)
∀ 

�
 r ∈ � j, j+1 and ̂

 s j+1 · ˆ q j ≤ 0 , 

(54) 

here the unitary vectors ˆ s j , ˆ s ′ 
j 
, ˆ s j+1 , ˆ s ′ 

j+1 
, ˆ q j are related by 

nell’s laws. With these boundary conditions, whatever the inter- 

al scattering properties are, apart for non-scattering sub-volumes 

n which guided propagation can be established (see Section 3.2 ), 

he solution for the radiance inside V j is 

 j 

(
�
 r , ̂  s 

)
= 

( n j 
n e 

)2 
I 0 [ Wm 

−2 ] ∀ ̂

 s and ∀ 

�
 r ∈ V j , (55) 

hat depends on the refractive index n j internal to V j and n e exter- 

al to V , but not on the refractive index of other sub-volumes. The 

olution for the outgoing radiance on the external boundary � is: 

 e 

(
�
 r , ̂  s 

)
= I 0 [ Wm 

−2 ] ∀ 

�
 r ∈ � and ∀ ̂

 s | − 1 ≤ ˆ s · ˆ q ≤ 0 . (56) 

It is interesting to observe that these solutions are very sim- 

lar to those for the volume with uniform refractive index, i.e. 

qs. (9) and (10) . In particular, for the outgoing radiation the two 

olutions are identical, with outgoing radiance, I e 
(
�
 r �, ̂  s 

)
, uniform, 

ambertian, and with intensity identical to the incoming radiance. 

or the internal radiance Eq. (55) and Eq. (9) only differ for refrac- 

ive index: n j for the sub-volume V j in Eq. (55) , and n i for the total

olume V in Eq. (9) . In both cases the radiance only depends on 

he ratio between the refractive index inside the considered sub- 

olume V j and the refractive index outside the volume V . 

We also point out that, similarly to the solution for the volume 

ith uniform refractive index ( Eq. (9) ), also the solution for the ra- 

iance inside any sub-volume V j with μs j 
 = 0 ( Eq. (55) ) is invari-

nt both with respect to the geometry (size and shape of V and 

f all the sub-volumes in which can be decomposed), with respect 

o the scattering properties (scattering coefficient, scattering func- 

ion, homogeneity) of the whole volume V and also with respect 

o the refractive index of all the other sub-volumes. In particular, 

q. (10) for the outgoing radiance also holds when all or part of the 

ub-volumes are non-scattering ( μs ( � r ) = 0 ) whatever the refractive 

ndex distribution is. 

From Eqs. (55) and (56) we obtain: 

j ( � r ) = 

∫ 
4 π I j 

(
�
 r , ̂  s 

)
d ̂  s = 4 π

( n j 
n e 

)2 
I 0 , [ Wm 

−2 ] , ∀ 

�
 r ∈ V j , (57) 

 

 j ( � r ) = 

∫ 
4 π I j 

(
�
 r , ̂  s 

)
ˆ s d ̂  s = 0 , [ Wm 

−2 ] , ∀ 

�
 r ∈ V j , (58) 

 e + ( � r ) = π I 0 , [ Wm 

−2 ] ∀ 

�
 r ∈ �, (59) 

 j+ ( � r ) = −J j−( � r ) = π
( n j 

n e 

)2 
I 0 , [ Wm 

−2 ] ∀ 

�
 r ∈ V j , (60) 

Ncross = 

N cross j 

N e + 
= 

2 J j+ 
J e + 

= 2 

( n j 
n e 

)2 ∀ 

�
 r ∈ V j . (61) 

As expected Eqs. (57) –(60) show that the invariance properties 

bserved for the radiance also apply to the other radiometric quan- 

ities, i.e. solutions are invariant with respect to 1) the geometry, 

) the scattering properties of the whole volume V and 3) the dis- 

ribution of internal refractive index. 
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.2. Solution for average internal path length 

To obtain the average path length 〈 L j 〉 followed inside V j we 

se the procedure of Section 2.2 for uniform refractive index: radi- 

tion P jA 1 absorbed inside V j in the limit of zero absorption is first 

valuated by integrating the local absorption μa 

(
�
 r j 
)
� j 

(
�
 r j 
)
d � r j over 

he volume V j , and with the internal fluence of Eq. (57) we obtain

lim 

a → 0 
P jA 1 = lim 

μa → 0 

∫ 
V j 

μa 

(
�
 r j 
)
�

(
�
 r j 
)
d � r j = lim 

μa → 0 
4 πμa 

( n j 
n e 

)2 
I 0 V j . (62) 

t is then calculated the absorbed radiation P jA 2 in the limit of zero 

bsorption using the probability density function p j 
(
L j 

)
for path 

engths followed inside V j by the total incoming radiation π I 0 �: 

lim 

a → 0 
P jA 2 = π I 0 �

∫ ∞ 

0 

μa L j p j 
(
L j 

)
dL J = π I 0 �μa 〈 L j 〉 ( μa = 0 ) , (63) 

nd equating Eqs. (62) and (63) the average internal path length 

esults : 

 L j 〉 ( μa = 0 ) = 4 

( n j 
n e 

)2 V j 
� . (64) 

his expression is valid whatever the shape of the internal vol- 

me and whatever the internal optical properties are, apart for 

on-scattering sub-volumes ( μs 

(
�
 r j 
)

= 0 ) when there are condi- 

ions for internal guided propagation. The average total path length 

 L 〉 ( μa = 0 ) inside the total volume V can be evaluated from the 

alculation of the total absorbed power by integrating the local ab- 

orption over the whole volume and by using the probability den- 

ity function for total path length, or simply adding up the average 

nternal path lengths of Eq. (64) , i.e. 

 L 〉 ( μa = 0 ) = 

N ∑ 

j=1 

〈 L j 〉 ( μa = 0 ) = 4 

N ∑ 

j=1 

( n j 
n e 

)2 V j 
� . (65) 

For the average path length only the invariance with respect 

o the scattering properties holds. Anyway, the dependence on the 

eometry for the average partial path length 〈 L j 〉 ( μa = 0 ) is very 

imple and only involves the ratio between the volume V j of the 

onsidered sub-volume and the surface � of the total volume V . 

. RTE for non-scattering volumes with non-uniform discrete 

efractive index distributions 

For non-scattering and non-absorbing sub-volumes the RTE, 

q. (52) , reduces to 

 · [ I j 
(
�
 r , ̂  s 

)
ˆ s ] = 0 ∀ 

�
 r ∈ V j and ∀ ̂

 s , (66) 

here I j is the radiance inside V j . The boundary conditions at the 

xternal boundary � are the same as Eqs. (5) and (6) and those 

n the surface � j, j+1 separating the volumes V j and V j+1 are the 

ame as Eqs. (53) and (54) . 

.1. Solutions for radiance and other radiometric quantities 

As for the non-scattering volume with constant refractive index, 

he solution also depends on the shape of the volume V and of the 

ub-volumes V j . Generally, multiple reflections are sufficient to re- 

stablish the isotropic distribution of the radiance inside the sub- 

olumes and thus the solutions given in Section 4 are still valid. 

n exception is found for those sub-volumes where guided prop- 

gation can be established and thus where light can only propa- 

ate with incidence angles lower than the critical angle for V j , θc j . 

n consequence of this physical constrain, it will be I j 
(
�
 r , ̂  s 

)
= 0 for 

ll ∀ 

�
 r ∈ V j and for all ˆ s for which ˆ s · ˆ q j > θc j . As examples of these

inds of exception, in the following we address two special exam- 

les: the layered non-scattering slab and sphere. 
8 
.1.1. Layered non-scattering slab 

The solution of the RTE for a layered non-scattering slab ex- 

resses a limit physical condition where the absence of scattering 

mplies that the trajectories are fully determined by reflections and 

efractions at the boundaries of the layers. 

As for the homogeneous non-scattering slab the radiance for 

he layered slab is obtained from the boundary conditions on the 

xternal surface, Eqs. (5) and (6) , and from the boundary condi- 

ions for adjacent layers, Eqs. (53) and (54) . The solution for the 

nternal radiance is: 

 j 

(
�
 r , ̂  s 

)
= 

( n j 
n e 

)2 
I 0 ∀ 

�
 r ∈ V j ∀ ̂

 s | | ̂  s · ˆ q | ≥ cos θ jMax 

 j 

(
�
 r , ̂  s 

)
= 0 ∀ 

�
 r ∈ V j ∀ ̂

 s | | ̂  s · ˆ q | < cos θ jMax , 

(67) 

here I 0 is the radiance on the external surface �, ˆ q is the unit 

ector perpendicular to the slab external sides inwardly directed, 

jMax is the maximum angle with which radiation from the exter- 

al boundary can penetrate inside the jth layer: 

in θ jMax = MAX 

[
sin 

(
θ jMaxTop 

)
, sin 

(
θ jMaxBot 

)]
(68) 

ith θ jMaxTop and θ jMaxBot maximum angle respectively for radia- 

ion from the top and from the bottom of the jth layer of the slab,

iven by: 

in θ jMaxTop = MIN 

[ 
1 , 

n j−1 

n j 
sin 

(
θ j−1 MaxTop 

)] 
in θ jMaxBot = MIN 

[ 
1 , 

n j+1 

n j 
sin 

(
θ j+1 MaxBot 

)] 
, 

(69) 

nd for the first layer ( j = 1 ) and the last layer ( j = N): 

in θ1 MaxTop = MIN 

[
1 , n e 

n 1 

]
in θNMaxBot = MIN 

[
1 , n e 

n N 

]
. 

(70) 

Solutions for fluence, flux, partial flux and “crossing density”

re: 

j ( � r ) = 4 π
( n j 

n e 

)2 
I 0 
[
1 − cos 

(
θ jMax 

)]
, [ Wm 

−2 ] ∀ 

�
 r ∈ V j , (71) 

 

 j ( � r ) = 0 ∀ 

�
 r ∈ V j , (72) 

 e + ( � r ) = −J e −( � r ) = π I 0 , [ Wm 

−2 ] ∀ 

�
 r ∈ �, (73) 

 j+ ( � r ) = −J j−( � r ) = π
( n j 

n e 

)2 
I 0 sin 

2 
(
θ jMax 

)
, [ Wm 

−2 ] ∀ 

�
 r ∈ V j , (74) 

Ncross = 

N cross 

N e + 
= 

2 J + 
J e + 

= 2 

( n j 
n e 

)2 
sin 

2 
(
θ jMax 

)
in layer j. (75) 

he obtained solutions for the non-scattering layered slab differ 

rom the case of a scattering layered slab by a multiplicative term 

hat accounts for the maximum incidence angle on layer j. 

To obtain the average path length 〈 L j 〉 followed inside the layer 

j we follow the same procedure of Section 4 . With � j given by 

q. (71) , the radiation P jA 1 absorbed inside the volume V j for the 

ayer j in the limit of zero absorption, obtained by integrating the 

ocal absorption μa ( � r ) � j ( � r ) d � r over the volume V j , is 

lim 

a → 0 
P jA 1 = lim 

μa → 0 

∫ 
V j 

4 πμa 

( n j 
n e 

)2 
I 0 
[
1 − cos 

(
θ jMax 

)]
d � r = 

 lim 

μa → 0 
4 πμa 

( n j 
n e 

)2 
I 0 V j 

[
1 − cos 

(
θ jMax 

)]
. 

(76) 

The formal expression for the absorbed radiation P jA 2 obtained 

rom the probability density function for path lengths followed 

nside V j by the total incoming radiation is identical to that of 

q. (63) . Equalizing Eq. (76) and Eq. (63) the average internal path 

ength 〈 L j 〉 results 

 L j 〉 ( μa = 0 ) = 2 s j 
( n j 

n 

)2 [
1 − cos 

(
θ jMax 

)]
. (77) 
e 
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Fig. 5. Examples of photons trajectories through a two layer non-scattering sphere. The refractive indices of the external medium and of the internal layers are shown in 

the inset of the figures. The figures shows some trajectories extracted for a layered sphere of 5 mm radius in which the layers are highlighted in the figures. The boundary 

of the layers are at a distance of 4 and 5 mm from the centre of the sphere. 
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here s j is the thickness of the jth layer. Also the mean path 

ength spent in the layer j differs from the case of a scattering lay- 

red slab by a multiplicative term that accounts for the maximum 

ncidence angle on layer j. 

Solutions for non-scattering slab with layered refractive index 

an be useful for instance for validating algorithms to manage re- 

ections and refractions in MC codes for layered slab. 

.1.2. Layered non-scattering sphere 

Let’s assume to have a layered non-scattering sphere, composed 

f concentric spherical layers, with a discrete number of layers of 

adius R j and refractive index n j (with the convention that R j > 

 j+1 ). 

Figure 5 shows examples of trajectories in a two layer sphere 

or two combinations of the refractive index. The refractive indices 

re shown in the inset of the figures. 

As for layered non-scattering slab, the internal radiance I j 
(
�
 r , ̂  s 

)
n the layer j is obtained from the boundary conditions on the ex- 

ernal surface, Eqs. (5) and (6) , and from the boundary conditions 

or adjacent layers, Eqs. (53) and (54) . It results that the internal 

adiance is: 

 j 

(
�
 r , ̂  s 

)
= 

( n j 
n e 

)2 
I 0 ∀ 

�
 r ∈ V j ∀ 

ˆ s | arccos [ | ̂  s · ˆ q ( � r ) | ] ≤ θ jMax ( r ) 

 j 

(
�
 r , ̂  s 

)
= 0 ∀ 

�
 r ∈ V j ∀ ̂

 s | arccos [ | ̂  s · ˆ q 
(
�
 r j 
)| ] > θ jMax ( r ) , 

(78) 

here ˆ q ( � r ) is the inwardly directed normal to the sphere with ra- 

ius r and 

jMax ( r ) = arcsin 

[
MIN 

(
1 , 

r jc 
r 

)]
, (79) 

ith 

 jc = R j sin θ jIn , (80) 

nd 

in θ1 In = MIN 

[
1 , n e 

n 1 

]
, 

in θ jIn = MIN 

[ 
1 , 

n j−1 

n j 
sin θ j−1 Out 

] 
, 

in θ jOut = MIN 

[ (
1 , 

r jc 
R j 

)] 
. 

(81) 

he angles θ jIn and θ jOut represent respectively the maximum re- 

racted angle on the external surface (radius R j ) and the maximum 

ncidence angle on the internal surface (radius R j+1 ) of the jth 

ayer. The corresponding expressions for fluence and fluxes are: 

j ( � r ) = 4 π
( n j 

n e 

)2 
I 0 
[
1 − cos θ jMax ( r ) 

]
, ∀ 

�
 r ∈ V j (82) 

 

 j ( � r ) = 0 , ∀ 

�
 r ∈ V j (83) 

 e + ( R 1 ) = π I 0 , [ Wm 

−2 ] ∀ 

�
 r ∈ �, (84) 
9 
 j+ ( � r ) = −J j−( � r ) = π
( n j 

n e 

)2 
I 0 sin 

2 θ jMax ( r ) , ∀ 

�
 r ∈ V j , (85) 

Ncro ss = 

N cross 

N e + 
= 

2 J + ( r ) 
J e + 

= 2 

(
n j 

n e 

)2 

sin 

2 θjMax ( r ) ∀ r in layer j. (86) 

he obtained solutions for the non-scattering layered sphere dif- 

er from the case of a scattering layered sphere by a multiplicative 

erm that accounts for the maximum incidence angle on layer j. 

Also solutions for non-scattering sphere with layered refractive 

ndex can be useful for instance for validating algorithms to man- 

ge reflections and refractions in MC codes. 

In case that only some layers are non-scattering, solutions for 

cattering layers are identical to those discussed for the layered 

cattering medium (for these layers the RTE is that of Eq. (66) ). 

imilarly, for non-scattering layers solutions presented in this sec- 

ion for the sphere and in the previous one for the slab remain 

alid. Obviously in calculating θ jMax , the maximum angle with 

hich radiation from the external boundary � can penetrate in- 

ide the jth layer ( Eq. (68) for the slab, Eq. (79) for the sphere),

e should take into account that the radiance inside any scatter- 

ng layer is uniform and isotropic accordingly to the obtained so- 

utions. 

. Discussion 

Although the invariance property is known since many years, 

t is difficult to find in literature a complete presentation of this 

ubject. To the best of our knowledge this is the first work where 

he path length invariance property of disordered scattering media 

as been derived in all generality from RTE under the assumption 

f uniform Lambertian illumination. More importantly, we have 

hown that invariance properties can be derived for the radiance, 

he fluence and the flux with a larger extent range of situations. 

On this ground, we have provided in all generality the solutions 

f the RTE for non-absorbing scattering volumes illuminated by 

niform Lambertian radiation. In this work we have also presented 

olutions for non-scattering inhomogeneous volumes that have not 

een considered in the previous literature. These solutions offer a 

owerful tool to deeply understand the complexity of light propa- 

ation and to realize at the same time the ease and intuitiveness 

f the approach here proposed. Indeed, in many applied fields such 

s tissue optics, except few cases [3–13] , it is still claimed a lack of

asy tractable solutions of the RTE. 

In the previous sections, we have presented the exact solution 

f the RTE for the radiance and other radiometric quantities for 

 non-absorbing volume illuminated with uniform and Lambertian 

W radiation on the external surface ( Sections 2.1, 2.2, 4.1 and 4.2 ).

he solutions have been at first obtained for a volume with a uni- 

orm refractive index ( Sections 2.1 and 2.2 ) and then generalized 
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o a volume with a variable (discrete variations of) refractive index 

 Sections 4.1 and 4.2 ). All solutions are obtained in a simple way

nd with elementary mathematics. The only constrains for their 

alidity are: 1) the external surface of the illuminated volume, that 

ust be smooth and convex, 2) the external medium, that must be 

on-scattering and with uniform refractive index, and 3) the in- 

ernal scattering coefficient must be non-null for sub-volumes in 

hich there are conditions for guided propagation. In fact, even 

hough the formulas ( Sections 2, 4 ) were derived for scattering me- 

ia, they are also valid under this more general condition. In other 

ords, they are valid also for regions of null scattering as long as 

uided propagation cannot occur. The condition of guided propaga- 

ion only occurs when there are particular symmetries, as for slab 

r sphere with a layered refractive index or with refractive index 

ismatch with the external volume. For these geometries, often 

f interest, solutions for non-scattering layers have also been ob- 

ained in two different ways, solving the RTE ( Sections 3.2.1 and 

.2.2 ) or resorting to Snell’s and Fresnell’s laws (see Appendix). 

hese invariance properties also apply to the outgoing radiation 

 e 

(
�
 r , ̂  s 

)
, that is always uniform and Lambertian (also in presence of 

ub-volumes with μs = 0 in which there are conditions for guided 

ropagation). 

Solutions for all radiometric quantities inside any sub-volume 

 j internal to the illuminated volume V show interesting invariance 

roperties. Solutions only depend on the refractive index mismatch 

etween the sub-volume index n j and the external medium index 

 e . Solutions are therefore invariant with respect to: 1) the scatter- 

ng properties, i.e. both the scattering coefficient and the scattering 

unction can vary in all generality (the only constrain is μs 
 = 0 for

ub-volumes with conditions for guided propagation); 2) for an in- 

ernal sub-volume, the refractive index of other sub-volumes; 3) 

he geometry, i.e., size and shape of the illuminated volume and of 

nternal sub-volumes (the only constrain is on the external surface 

hat must be smooth and convex). 

Although the RTE has been only solved for CW sources, some 

eneral information has been obtained also on the length of paths 

ollowed by photons into the volume. This has been possible 

hanks to the strict relationship between the internal fluence and 

he mean path length followed by photons used in Sections 2.2 and 

.2 . From the solutions for the fluence we have obtained the mean 

ath length followed by photons both in a volume with uniform 

efractive index, 〈 L 〉 , and in a sub-volume V j with refractive in-

ex n j , 〈 L j 〉 . The invariance properties of the radiometric quanti-

ies with respect to the scattering properties and the refractive in- 

ex are also valid for the mean path length. As for the dependence 

n the geometry, the mean pathlenght only depends on the ratio 

etween the volume V j and the area of the illuminated external 

urface �. 

We point out that the invariance of 〈 L 〉 with respect to the 

cattering properties for the volume with uniform refractive index 

s the well known invariance property widely investigated also 

n recent years [14–20,22,23] . We also note that solutions for 

 L 〉 in homogeneous non-scattering slab, sphere, infinite cylinder, 

ube and also for other 3D and 2D geometries have been recently 

escribed in Ref. [30] using a quite general approach for the 

on-scattering case. For the slab, the procedure used in Ref. [30] is 

ery similar to that used in the Appendix. However, it is important 

o note the very different perspectives of this work compared 

o Ref. [30] . Whilst Ref. [30] considers only the non-scattering 

ase and the information on mean path-length, the present work 

ddresses scattering and non scattering media, homogeneous and 

nhomogeneous media, obtaining solutions not only for the mean 

ath length but also for all the radiometric quantities. Moreover, 

ur procedure is within the frame of the RTE, while Ref. [30] is 

ased on geometrical optics and thermodynamics considerations. 

hus, the two works overlap only in few results obtained for the 
10 
ean path length in non-scattering media, while for all the other 

spects provide different views, approaches and investigations. 

t is also worth to note that Ref. [30] discusses real physical 

ystems where exact zero values cannot be encountered both for 

he absorption and scattering coefficients. On the contrary we 

re concerned with the mathematical solutions of RTE in general 

ituations, including also the ideal ones of non-absorbing and 

on-scattering media. The solutions described in this work, even 

hough obtained in ideal conditions, offer an important reference 

or testing numerical and/or analytical algorithms for light prop- 

gation under the validity of RTE. A practical example can be for 

nstance the validation of MC or finite element method (FEM) 

odes for which exact reference are very few and only for very 

imple and specific geometries [31,32] . 

In our opinion there is another important application for the 

olutions here described: The invariance with respect to the scat- 

ering properties, the geometry, and the refractive index implies 

hat the same identical results for all the radiometric quantities are 

btained in a large number of situations, with extremely different 

egimes of propagation. Therefore, there is a large variety of propa- 

ation regimes, each one of great complexity, that gives rise to the 

ame identical internal lighting conditions, all exactly described by 

he same, simple, solution. Indeed, this result is counterintuitive, as 

ell as also important and very useful. For instance, it provides a 

nique introduction to the world of light propagation through scat- 

ering media that emphasizes and highlights the two-fold aspect of 

he presented approach where the complexity of the propagation 

egimes and the simplicity of the solutions coexist. 

To give an example of the variety of physical situations with 

dentical RTE solutions we refer to Figs. 6 - 7 . These figures pertain

o a sphere of radius 5 mm, with uniform optical properties (scat- 

ering coefficient and scattering function) and with a layered re- 

ractive index distribution (four layers, see Tables 1 ). The results 

ertain to a unitary incident flux J e + of 1 Wmm 

−2 . The figures re- 

er to two profiles of refractive index, DwUp and UpDw, shown in 

ables 1 . In Tables 1 the values of RTE solutions in the layers for

he profiles DwUp and UpDw and for μs 
 = 0 are summarized. Light 

ropagation for the two profiles is significantly different: for DwUp 

e have 59.6% of the impinging radiation reflected on the external 

urface and 〈 L 〉 = 4.296 mm; for UpDw only 6.65% of radiation is

eflected and 〈 L 〉 = 9.985 mm. However, predictions of the RTE so- 

utions (radiance and fluence) for layers j = 2 and j = 4 are iden-

ical for the two profiles. 

Figures 6 and 7 pertain to the total path length probability dis- 

ribution function, PDF ( L ) , followed by photons respectively for the 

rofiles DwUp and for the UpDw (see Tables 1 ) obtained with MC 

imulations [2,33] . To show the strong influence of scattering on 

ropagation, examples of path length probability distribution func- 

ion (PDF) are displayed for different values of μs ranging from 

 to 2 mm 

−1 and scattering function obtained with the Henyey 

nd Greenstein model with asymmetry factor g = 0 . It is worth to 

ote that, despite the strong differences in the probability distri- 

ution function, the mean value of L remains the same in scat- 

ering media with the same profile of refractive index. The curves 

ith many spikes for μs = 0 are only determined by multiple re- 

ections/refractions. On the contrary, the smooth curves for μs ≥
 mm 

−1 , are mainly determined by multiple scattering and thus 

ertain to a diffusive regime of propagation. Curves for μs = 0.01 

nd 0.1 mm 

−1 pertain to an intermediate regime in which the con- 

ribution of trajectories only determined by reflections/refractions 

nd that of trajectories with few orders of scattering has similar 

mportance. 

The PDF curves, for each profile of refractive index, are very dif- 

erent versus the value of the scattering coefficient μs . However, as 

redicted by the RTE solutions, the corresponding overall illumina- 

ions within the sphere are identical, with identical radiance dis- 
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Fig. 6. Path length probability distribution function, PDF (L ) , versus the length L obtained with MC simulations for the profile DwUp and some values of μs . The right panel 

is the zoomed in version of the left panel. 

Fig. 7. Path length probability distribution function, PDF ( L ) , versus the length L obtained with MC simulations for the profile UpDw and some values of μs . The right panel 

is the zoomed in version of the left panel. 

Table 1 

The table shows the RTE solutions in a four-layered sphere for two profiles of refractive index DwUp 

and UpDw and with μs 
 = 0 and constant. The index e indicates the external medium. Solutions of 

the RTE for 〈 L j 〉 (total path length in layer j), I j (radiance in layer j), � j (fluence in layer j) and 

〈 L 〉 (total mean path length) are reported. The average reflection coefficient for Lambertian radiation 

on the external surface 〈 R L 〉 is also shown. The symbols R j and n j indicate the external radius and 

refractive index of the layer j, respectively. 

Layer j e 1 2 3 4 

R j (mm) 5 4 3 2 〈 R L 〉 〈 L 〉 (mm) 

DwUp n j 1.5 1 1.5 1 1.5 0.5963 4.2963 

〈 L j 〉 (mm) 1.4459 1.9733 0.4504 0.4267 

I j (Wmm 

−2 ) 0.1415 0.3183 0.1415 0.3183 

� j (Wmm 

−2 ) 1.7778 4 1.7778 4 

UpDw n j 1.5 2 1.5 2 1.5 0.0665 9.9852 

〈 L j 〉 (mm) 5.7837 1.9733 1.8015 0.4267 

I j (Wmm 

−2 ) 0.5659 0.3183 0.5659 0.3183 

� j (Wmm 

−2 ) 7.1111 4 7.1111 4 

11 
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Fig. 8. Fluence rate for the two profiles DwUp and UpDw for μs = 2 mm 

−1 . The figures shows the results of MC simulations (marks) and the RTE solution (curves). The 

fluence is plotted against the depth from the external surface of the sphere. 
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t

ribution and identical mean path length in each layer, whatever 

cattering strength is considered. The only exception is for layers 

j = 1 and j = 3 for the UpDw profile with μs = 0 , in which there

re conditions for internal guided propagation. 

Since the two profiles have identical refractive index for the ex- 

ernal medium n e and for layers j = 2 and j = 4 , identical solu-

ions are also predicted for the two profiles in these layers. As also 

hown by MC simulations (results not reported), identical results 

or all CW radiometric quantities and for internal mean path length 

ave been obtained with different distribution both for the scatter- 

ng properties and for the refractive index in spite of very different 

ropagation regimes with very different PDF. In Fig. 8 , as an ex- 

mple, it is shown the fluence for the profiles DwUp and UpDw 

or μs = 2 mm 

−1 . In figure the results of the MC simulation and

f the RTE solution are shown. The figure offers an overview of 

he expected profile from the RTE solution and MC simulations ac- 

ordingly to the two profiles of refractive index DwUp and UpDw 

f Tables 1 . 

. Conclusions 

We have examined with a quite large view the invariance prop- 

rties of RTE solutions in non-absorbing media subjected to Lam- 

ertian illumination. It is worth to further remind that also the so- 

ution for the outgoing radiation I e 
(
�
 r , ̂  s 

)
is invariant with respect 

o the geometry, the scattering properties and the refractive in- 

ex distribution. The outgoing radiance is uniform, Lambertian and 

ith intensity identical to the incoming radiance. It can be finally 

oted that for the geometries of slab and sphere, given the sym- 

etry of these geometries, the RTE solutions for the mean path 

ength are also valid for a point-like Lambertian illumination pro- 

ided that the detected light is collected from the whole external 

urface. 

It is interesting to observe that the RTE solutions obtained for 

on-absorbing volumes with non-uniform distributions of refrac- 

ive index are very similar to those for volumes with uniform dis- 

ributions of refractive index ( Eqs. (9) and (10) ). In particular, for 

he outgoing radiation solutions are identical, with an outgoing 

adiance I e 
(
�
 r �, ̂  s 

)
, uniform, Lambertian, and with intensity identi- 

al to the incoming radiance. This fact implies that a re-emission 

f Lambertian radiation is always possible from any medium illu- 
12 
inated by a uniform Lambertian illumination. The solutions pre- 

ented in our work implicitly provide a sufficient condition of ex- 

stence of a Lambertian surface. Thus, in the light of the presented 

esults, we can argue that a Lambertian surface does exist whether 

t is possible to illuminate a non-absorbing volume with a uniform 

ambertian light. Under the condition of uniform Lambertian illu- 

ination, a non-absorbing volume at its external surface becomes 

 Lambertian surface. 

The solutions of the RTE and their invariance properties un- 

er the conditions of Lambertian illumination emphasize that the 

hysical origin of this regime of propagation is the uniform and 

sotropic distribution of the radiance inside the medium and the 

niform distribution of the fluence rate. Moreover, also the cross- 

ng density of photons inside any internal surface of the medium 

esults to be a uniform quantity that only depends on the re- 

ractive index mismatch between internal and external medium. 

henever the light propagation can assure these two conditions 

he invariance property holds. In case the medium is characterized 

y an inhomogeneous discrete distribution of refractive index the 

bove physical insight remains valid inside each sub-domain where 

he refractive index of the medium is constant. 

The invariance properties of the obtained RTE solutions ver- 

us the scattering properties, for the reflectance and the other ra- 

iometric quantities, for a non-absorbing volume illuminated with 

ambertian uniform radiation, emphasize the intrinsic difficulties 

o re-construct the scattering properties of volumes from measure- 

ents of radiometric quantities especially when determined in a 

ultiple scattering regime of propagation. 

In particular, we can state that, for the case of CW Lamber- 

ian illumination of a scattering medium (i.e. the incident radiance 

s constant at each point of its boundary), we cannot recover its 

cattering properties from measurements of radiometric quantities 

aken on the surface of the medium or inside it. However, from CW 

easurements of radiometric quantities inside the volume, such as 

uence, radiance and mean path length, we can retrieve the distri- 

ution of the refractive index. 

Only with the introduction of absorption inside the volume or 

y breaking the condition of uniform illumination, it possible to 

ave information on the scattering properties. The presence of ab- 

orption makes all the radiometric quantities dependent from scat- 

ering and establishes relations among them. Thus, in an absorbing 
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edium is possible to re-construct both absorption and scattering 

roperties from radiometric CW measurements also when the vol- 

me is uniformly illuminated. A general intrinsic difficulty to re- 

rieve the optical properties remains the lack of exact solutions of 

he RTE in absorbing volumes and to the existing correlation be- 

ween scattering and absorption effects, as for instance in the ap- 

roximate solutions of the diffusion equation [2] . 

The uniform illumination can be “broken” both in time and in 

pace. In the first case we note that information can be gained 

rom time-resolved measurements. However, we point out that the 

xisting time-resolved solutions of RTE are complex also for regu- 

arly bounded geometries. For scattering and absorbing media, the 

hape of the Temporal Point Spread Function at late times is basi- 

ally determined by the absorption coefficient, whilst the informa- 

ion on the scattering coefficient is encoded inside the early pho- 

ons. Thus, their detection may require a high temporal resolution 

aking this task particularly difficult. 

The uniform illumination can be also “broken” by using radia- 

ion uniform in time, but not in space, as for instance by illuminat- 

ng the boundary of the medium with a CW pencil beam. In this 

ase the dependence on the scattering properties is encoded inside 

he spatial distribution of the radiance, and the re-construction of 

he scattering properties can be obtained from spatially resolved 

W measurements (reflectance measurements on the boundary or 

uence measurements inside the volume). However, also in this 

ase difficulties can be emphasized due to the lack of exact RTE 

olutions for this kind of illumination and to the strong correlation 

etween scattering and absorption effects, particularly evident in 

he solutions of the diffusion equation [2] . 

With the above overview we have represented the scenario of 

he retrieval of the optical properties in scattering media. The con- 

ition of uniform Lambertian illumination offers a clear and pow- 

rful interpretation of the intrinsic difficulties to perform this task. 

t is impressive how all the vision can be derived from an ini- 

ial regime of propagation, the one addressed in this paper, i.e. 

 uniform CW Lambertian illumination, where the uniform char- 

cteristic of the illumination is maximum. This fact emphasizes 

he importance of the RTE solutions presented in this paper. It is 

lso important to stress that the presented solutions are valid also 

or Levy flight materials [34] . In fact these materials, that present 

nteresting properties of anomalous transport, are made with a 

roper choice of inhomogeneous components and then are within 

he cases presented in this work. 

Finally, we observe that the presented exact solutions can find 

n future a use as “reference standard” for analytical models or nu- 

erical simulations aimed to make predictions on radiative trans- 

ort calculations. Indeed, the expanded domain of validity of the 

nvariance properties of the solutions of the radiative transfer in 

ondition of Lambertian illumination offers a unique reference 

tandard, known with arbitrary accuracy, for the validation of com- 

utational codes used in photon migration in diffusive media, such 

s Monte Carlo and finite element methods or any other numerical 

nd analytical method. 
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ppendix 

Solutions for the slab with μs ( � r ) = 0 and n i > n e based on Snell’s

nd Fresnel’s laws 

It may be also interesting to show how solutions for the non- 

cattering slab can be obtained following a different approach only 

ased on Snell’s and Fresnel’s laws. With reference to Fig. 2 , the 

adiance on a surface element (boundary of the slab �) can be ob- 

ained summing the transmitted component and the multiple re- 

ections components: 

 

(
�
 r �, ̂  s 

)
= I 0 T ei ( θe ) 

(
n i 
n e 

)2 ∞ ∑ 

n =0 

R 

n 
ie ( θi ) , (87) 

here T ei ( θe ) is the external to internal transmission coefficient, 

 ie ( θi ) is the internal to external reflection coefficient, I 0 the ra- 

iance on the external surface and 

( n i 
n e 

)2 
accounts for the differ- 

nt geometrical extent of the beam element inside and outside the 

lab. Since the previous series is a power series, 

∞ 

 

 =0 

R 

n 
ie ( θi ) = 

1 

1 − R ie ( θi ) 
= 

1 

T ie ( θi ) 
, (88) 

nd also T ie ( θi ) = T ei ( θe ) , we obtain for the internal radiance: 

 

(
�
 r , ̂  s 

)
= 

(
n i 
n e 

)2 
I 0 , ∀ 

�
 r ∈ V, ∀ ̂

 s | | ̂  s · ˆ q | ≥ cos θc ie 

(
sin θc ie = 

n e 
n i 

)

 

(
�
 r , ̂  s 

)
= 0 , ∀ ̂

 s | | ̂  s · ˆ q | < cos θc ie . 

(89) 

his solution is identical to the solution obtained from the bound- 

ry conditions ( Eqs. (35) and (36) ). It is interesting to observe 

hat for directions with θi ≤ θc it is I 
(
�
 r , ̂  s 

)
= 

( n i 
n e 

)2 
I 0 independent 

f the incidence angle θe despite that the transmission coefficient 

 ei ( θe ) depends on θe . This is because the reflected radiation lost 

n the external surface is exactly compensated by multiple reflec- 

ions coming from other surface elements (to visualize the effect 

ay help Fig. 2 ). Because of this perfect compensation the internal 

adiance is only determined by the variation of the beam element 

xtension passing from outside to inside. 

Also the internal average path length 〈 L 〉 can be obtained from 

eometrical considerations together with Snell’s laws. We first 

valuate the average path length 〈 L 〉 ( θe ) for radiation with inci- 

ence angle θe as the weighted sum of the lengths followed by 

adiation leaving the slab after multiple reflections: 

 L 〉 ( θe ) = 0 · R ei ( θe ) + 

s 0 
cos θi 

[
T ei ( θe ) T ie ( θi ) 

∞ ∑ 

n =0 

( n + 1 ) R 

n 
ie ( θi ) 

]
, (90) 

https://doi.org/10.13039/501100003056
http://www.photonics21.org
https://doi.org/10.13039/100000002
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here the weight factor T ei ( θe ) T ie ( θi ) R 
n 
ie ( θi ) is the fraction of radi- 

tion with path length 

( n +1 ) s 0 
cos θi 

leaving the slab after n internal re- 

ections, i.e., probability of radiation incident at angle θe to travel a 

ath length 

( n +1 ) s 0 
cos θi 

inside the slab. Let’s introduce the path length 

n , and its discrete probability, P ( Ln ) , defined as follow: 

n = 

( n +1 ) s 0 
cos θi 

, 

 ( Ln ) = T 2 
ei 

R 

n 
ei 
, 

 ( Ln = 0 ) = R ei . 

(91) 

ince R ei ( θe ) = R ie ( θi ) and T ei ( θe ) = 1 − R ei ( θe ) = T ie ( θi ) , we have

hat P ( Ln = 0 ) + 

∞ ∑ 

n =0 

P ( Ln ) = 1 . In fact: 

 ei + 

[
T 2 

ei 

∞ ∑ 

n =0 

R 

n 
ei 

]
= R ei + 

[
( 1 − R ei ) 

2 1 
1 −R ei 

]
= 1 . (92) 

he weights’ distribution is thus normalized. Furthermore, since 

∞ ∑ 

 =0 

( n + 1 ) R 

n 
ie ( θi ) = 

1 
1 −R ie ( θi ) 

+ 

R ie ( θi ) 

1 −R ie ( θi ) 
2 , (93) 

e obtain 

 L 〉 ( θe ) = 

s 0 
cos θi 

, (94) 

imilar to the expression for matched refractive index. The total 

verage path length 〈 L 〉 is obtained as 

 L 〉 = 

2 π
∫ π/ 2 

0 〈 L 〉 ( θe ) I 0 cos θe sin θe dθe 

2 π
∫ π/ 2 

0 I 0 cos θe sin θe dθe 

. (95) 

hen, by using Eq. (94) we can express 〈 L 〉 as: 

 L 〉 = s 0 2 

∫ π/ 2 

0 
1 

cos θi 
cos θe sin θe dθe = 

 s 0 2 

∫ θc ie 

0 
1 

cos θi 

(
n i 
n e 

)2 
cos θi sin θi dθi = 

 2 s 0 
(

n i 
n e 

)2 ∫ θc ie 

0 sin θi dθi = 2 s 0 
(

n i 
n e 

)2 
[ 1 − cos θc ie ] . 

(96) 

his expression is identical to that obtained with the other method 

 Eq. (42) ). 
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