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Its semi-allogeneic nature renders the conceptus vulnerable to attack by the maternal
immune system. Several protective mechanisms operate during gestation to correct the
harmful effects of anti-fetal immunity and to support a healthy pregnancy outcome.
Pregnancy is characterized by gross alterations in endocrine functions. Progesterone is
indispensable for pregnancy and humans, and it affects immune functions both directly and
via mediators. The progesterone-induced mediator - PIBF - acts in favor of Th2-type
immunity, by increasing Th2 type cytokines production. Except for implantation and
parturition, pregnancy is characterized by a Th2-dominant cytokine pattern. Progesterone
and the orally-administered progestogen dydrogesterone upregulate the production of Th2-
type cytokines and suppress the production of Th1 and Th17 cytokine production in vitro.
This is particularly relevant to the fact that the Th1-type cytokines TNF-a and IFN-g and the
Th17 cytokine IL-17 have embryotoxic and anti-trophoblast activities. These cytokine-
modulating effects and the PIBF-inducing capabilities of dydrogesterone may contribute
to the demonstrated beneficial effects of dydrogesterone in recurrent spontaneous
miscarriage and threatened miscarriage. IL-17 and IL-22 produced by T helper cells are
involved in allograft rejection, and therefore could account for the rejection of paternal HLA-
C-expressing trophoblast. Th17 cells (producing IL-17 and IL-22) and Th22 cells (producing
IL-22) exhibit plasticity and could produce IL-22 and IL-17 in association with Th2-type
cytokines or with Th1-type cytokines. IL-17 and IL-22 producing Th cells are not harmful for
the conceptus, if they also produce IL-4. Another important protective mechanism is
connected with the expansion and action of regulatory T cells, which play a major role in the
induction of tolerance both in pregnant women and in tumour-bearing patients. Clonally-
expanded Treg cells increase at the feto-maternal interface and in tumour-infiltrating
regions. While in cancer patients, clonally-expanded Treg cells are present in peripheral
blood, they are scarce in pregnancy blood, suggesting that fetal antigen-specific tolerance is
restricted to the foeto-maternal interface. The significance of Treg cells in maintaining a
normal materno-foetal interaction is underlined by the fact that miscarriage is characterized
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by a decreased number of total effector Treg cells, and the number of clonally-expanded
effector Treg cells is markedly reduced in preeclampsia. In this review we present an
overview of the above mechanisms, attempt to show how they are connected, how they
operate during normal gestation and how their failure might lead to pregnancy pathologies.
Keywords: progesterone, Th2 dominance, Th 17 cell, cytokines, regulatory T cells
INTRODUCTION

The foetus expresses paternal antigens. These are recognized as
foreign, but (at least during normal pregnancy) are not attacked
by the maternal immune system (1). Immunological recognition
of pregnancy initiates a series of changes, which eventually result
in a tolerant immunological attitude toward the foetus. Several
players of the immune system, such regulatory T cells, NK cells
and cytokines contribute to creating a favourable environment
for the foetus, and many of these functional alterations are
orchestrated and controlled by progesterone.
PROGESTERONE-DEPENDENT
IMMUNOREGULATION

In most mammals, progesterone is essential for implantation as
well as for the maintenance of gestation. The genomic action of
progesterone depends on two nuclear progesterone receptor (PR)
isoforms, PRA and PRB (2, 3). Our understanding of their
functions stems from studies on progesterone receptor knock-
out mice which show that the absence of PRA results in infertility
(4, 5), while the PRB isoform mediated effects control mammary
gland development (6). PRs are also required for establishing a
tolerant immunological milieu in the endometrium (7).
Peripheral blood NK cells express both classical PR isoforms
(8), and others have also reported on the presence of either
nuclear, or G-protein coupled membrane progesterone receptors
on lymphocytes (9–12). The latter rapidly alter cell signalling,
while nuclear PRs act via gene induction. Pregnancy lymphocytes,
but not lymphocytes from non-pregnant, women express PRs
(13, 14). The majority of PR + cells belonged to the g/d T cell
population, and treatment of the lymphocytes with anti g/d TCR
antibody inhibited PIBF- as well as IL-10 production (14).

During normal pregnancy, the percentage of PR-positive cells
among circulating lymphocytes increases by gestational age. In
peripheral blood of women with recurrent miscarriage, the
percentage of PR expressing cells is significantly lower than in
that fromwomen with uneventful pregnancies (13, 14), suggesting
a relationship between the presence of PR+ lymphocytes and the
outcome of pregnancy.

Resting lymphocytes do not express PRs, while lymphocytes
exposed to activating stimuli express PRs (15). Lymphocyte
immunotherapy for recurrent miscarriage increased the
expression of PR on maternal lymphocytes (16) and lymphocytes
of transplant patients have also been shown to express PRs (17),
Taken together, these data indicate that PR expression in immune
cells, is activation-related.
org 2
The progesterone-induced blocking factor (PIBF) is one of
the progesterone-regulated genes and the resulting protein is
accountable for several of the immunomodulatory effects of
progesterone. The mRNA transcribed from the PIBF1 gene
contains 18 exons, and codes for a 90 kDa protein (18). The 90
kDa form has been shown to have a peri-nuclear localization
within the cell, as a component of the peri-centriolar satellite (19,
20). Smaller isoforms produced by alternative splicing are
localized in the cytoplasm (18). The full-length molecule and
the smaller isoforms convey different functions, the former
regulating cell invasion (21, 22), and the latter responsible for
the immunomodulatory effects.

Progesterone and PIBF play key roles in establishing the Th2
dominant cytokine balance during normal pregnancy.
Progesterone induces naïve T cells to differentiate into Th2-type
cells (23), and PIBF signals via the IL-4 receptor. Upon
engagement, the PIBF receptor forms a heterodimer with the
alpha chain of the IL-4 receptor and activates the Jak1/Stat6
pathway (24). Signalling via the IL-4 receptor increases Th2 type
cytokine production, by which PIBF contributes to the Th2
dominant cytokine pattern during normal pregnancy. PIBF-
treated spleen cells of non-pregnant female mice produce
significantly more IL-4 and IL-10 than those in the absence of
PIBF (25). In lymphocytes from women with recurrent miscarriage
progestogens and PIBF induce a Th2 biased cytokine production
(26, 27). Furthermore, progestogen treatment of peripheral blood
mononuclear cells (PBMC) from women with pre-term delivery
induces a Th2 dominant cytokine pattern (26, 27). The T cells of
PIBF-deficient pregnant mice differentiate towards Th1 (28).

Several studies suggest that progesterone is an important
regulator of Th1/Th2/Th17 and Treg immunity (29–31).
Progesterone affects Treg cell generation, either directly or by
altering the function of other cells, e.g., by inducing tolerogenic
DCs, which leads to the generation of CD4+ and CD8+ Treg cells
(32). Membrane PRs have been detected in Tregs isolated from
pregnancy blood, and the number of PR+ Tregs has been shown to
increase during gestation and drop before delivery. These data
suggest, that the anti-inflammatory action of progesterone
through Treg cells might be important for maintaining
pregnancy (33)

The relationship between progesterone-dependent
immunomodulation and pregnancy outcome has been
demonstrated by several animal and clinical studies. PIBF
induces decidualization of mouse endometrial stromal cells;
furthermore, the peak of PIBF expression in the mouse
endometrium corresponds with the implantation window (34).

Depletion of PIBF during the peri-implantation period in
mice results in reduced implantation- and increased resorption
July 2021 | Volume 12 | Article 717808
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rates, together with increased decidual and peripheral NK
activity; this also results in a significant downregulation of the
genes required for T cell activation in CD4+, and an upregulation
in CD8+ cells. Simultaneously, in animals treated with anti-PIBF
antibodies, the gene for IL-4 is significantly downregulated in
CD4+ cells while that of IL-12A is upregulated in CD8+ cells
(28). In a preeclampsia rat model, PIBF treatment normalized
the Th1/Th2 ratio, reduced the inflammation, corrected the
blood pressure and prevented foetal growth restriction (35).

In IVF patients PIBF is detectable in the serum 14 days after
embryo transfer (36). During normal human pregnancy, the
serum concentrations of PIBF increase with gestational age;
lower than normal concentrations predict spontaneous
pregnancy termination (37, 38). In women with unexplained
miscarriages decidual PR and PIBF expression, as well as serum
PIBF concentrations are significantly lower than in healthy
pregnant women and all of these parameters show a positive
correlation with the number of peripheral g d T cells (39).

Taken together, data from both human studies and animal
models show that the immunomodulatory action of
progesterone is indeed a prerequisite for normal gestation.
CYTOKINES AND THE MAINTENANCE
OF PREGNANCY

Healthy pregnancy is associated with an enhancement of
humoral immunity and a downregulation of cell-mediated
immunity; this is quite likely due to a down-regulation of Th1
reactivity cytokines and upregulation of Th2 reactivity cytokines
(40–42). This shift away from Th1 reactivity and Th1 cytokines is
suggested to be conducive to the success of pregnancy, as Th1-
type cytokines have a deleterious effect on the conceptus. The
administration of single low doses of the inflammatory Th1
cytokines TNFa and IFNg into pregnant mice causes abortions
while the injection of anti-TNFa antibodies reduces abortion
rates in an immunologically-driven mouse abortion model (43).
TNFa and IFNg inhibit the outgrowth of human trophoblast
cells in vitro (44) and induce apoptosis of human trophoblast
cells (45).

Spontaneous miscarriage is defined as a pregnancy loss in the
first 20weeks of gestation, while recurrent spontaneousmiscarriage
(RSM) as two or more miscarriages before the 20th week of
gestation (46). About 60% of the cases of RSM are “unexplained”,
and researchers have explored immunologic factors that may
account for RSM in the absence of genetic, infectious and
endocrinologic background. The contribution of maternal
humoral and cell-mediated immune factors has been studied in
the development of RSM. The foeto-placental unit appears to be
invulnerable to attack by humoral immune factors except for anti-
phospholipid antibodies which are clearly implicated in a distinct
group of RSM cases. Maternal cell-mediated immune effectors that
have been studied in maternal peripheral blood and in utero-
placental tissues include T lymphocytes, macrophages and
natural killer (NK) cells. Cytokines in particular have received a
great deal of attention in this context. Considering that cytokines
mediate a remarkable range of immune responses including
Frontiers in Immunology | www.frontiersin.org 3
immunity to infections, rejection of allografts, autoimmune
diseases and hypersensitivity, it is not surprising that cytokines
also affect the maternal-fetal relationship.

When stimulated with human trophoblast antigens, peripheral
lymphocytes from women with a history of RSM secrete markedly
higher levels of Th1 cytokineswith embryotoxic activity (47). Blood
lymphocytes stimulatedwith amitogen(48) orbyco-coculturewith
placental cells (49) from healthy pregnant women produce
significantly higher levels of the anti-inflammatory Th2 cytokines
IL-4, IL-5 and IL-10, while womenwith unexplained RSMproduce
significantly elevated levels of the pro-inflammatory cytokines IL-2,
IFNg and TNFa. The ratios of inflammatory/anti-inflammatory
cytokines are higher in RSMpatients, supporting the notion of Th1
or pro-inflammatory cytokine dominance in RSM and a stronger
Th2-bias inhealthypregnancy (50).Observations similar to these in
the peripheral blood have beenmade at thematernal-fetal interface;
lower levels of T cell clones producing anti-inflammatory cytokines
were reported in the decidua ofwomenwithunexplainedRSM than
in the decidua of women with normal pregnancy (51). The
expression of pro-inflammatory cytokines is upregulated in the
endometrium, while that of anti-inflammatory cytokines is
downregulated in women with unexplained recurrent miscarriage
as compared to healthy controls (52). It can be inferred therefore
that unexplainedRSM is associated with a greater bias towards Th1
or pro-inflammatory cytokines (53, 54); and thus, there is ample
support for an increased pro-inflammatory cytokine bias in
unexplained recurrent miscarriage (47–53).
MANIPULATION OF CYTOKINE PROFILES

The demonstration of an association between pro-inflammatory
cytokines and recurrent miscarriage has spurred research on the
downregulation of these cytokines, and upregulation of anti-
inflammatory cytokines to create a favourable immunological
environment for the foetus. We can consider the use of the
pregnancy-related hormone progesterone, which was shown as early
as in 1983, to have anti-inflammatory and immunosuppressive
properties (55) because of which it was referred to as “Nature’s
immunosuppressant” (56). Progesterone suppresses several cell-
mediated immune activities including the activation and
proliferation of lymphocytes (57) and reverses many of the events
that occur during T cell activation (58).

Given thatpro-inflammatory cytokines are associatedwithRSM
(47–53) and that progesterone has interesting immunomodulatory
effects (55–58), progestogens have been explored for their ability to
inhibit or down-regulate the production of Th1/pro-inflammatory
cytokines. This includes research on the immunomodulatory
capacity of dydrogesterone (6-dehydro-9b, 10a-progesterone)
(Duphaston®, Abbott Laboratories, USA), an orally-administered
progestogen, which is similar to endogenous progesterone in its
molecular structure and pharmacological effects, but more potent
than natural progesterone, with a high affinity for the progesterone
receptor (59).

PBMC from women with a history of unexplained RSM when
cultured with dydrogesterone produce significantly lower levels of
the Th1 (pro-inflammatory) cytokines IFNg and TNFa, and
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significantly higher levels of the Th2 cytokines IL-4 and IL-6 (26).A
significant reduction in Th1/Th2 cytokine ratios is observed,
indicating a decrease in dominance of Th1 or pro-inflammatory
cytokines. The progesterone-receptor antagonist RU486 inhibits
the cytokine-modulating effects of dydrogesterone indicating that
these effects are mediated via the progesterone receptor (26).

A recent study showed that dydrogesterone is able to suppress the
production of the pro-inflammatory cytokine IL-17 (60), a powerful
chemoattactrant and activator of monocytes and neutrophils. IL-17
treatment of pregnant mice results in foetal loss suggesting that this
inflammatory cytokine is antagonistic to pregnancy (61). Elevated
levels of IL-17 have been observed in the peripheral blood and
decidua of RSM patients (62). The incidence of unexplained RSM
is associated with an increase in the level of serum IL-17 and the
Th17/Treg ratio cells in peripheral blood and the maternal-fetal
interface (63). Thus, dydrogesterone clearly has interesting potent
immunomodulatory properties. Dydrogesterone is converted into its
major metabolite 20[alpha]-dihydrodydrogesterone (DHD) which
has also been shown to be capable of inhibiting the production of
IFNg and TNFa and upregulating the production of IL-10 (64). This
is an important beneficial feature fordydrogesterone tobe considered
as a therapeutic immunomodulator.

The pro-inflammatory cytokines that are downregulated by
dydrogesterone are the ones that are deleterious to pregnancy;
thus, the ability of progestogens to inhibit the production of these
cytokines can be projected to be conducive to healthy pregnancy.
SUPPLEMENTATION WITH
DYDROGESTERONE: CLINICAL
APPLICATIONS

Substantial attention has been focused on exploring the benefits of
supplementation with oral progesterone in treating miscarriage
(65–67). However, it should be noted that orally-administered
progesterone has the disadvantages of being absorbed poorly,
having a short biologic half-life (68), losing bioactivity (69) and
getting cleared quickly (70). On the contrary, the orally-active
progestogen dydrogesterone is a potentially more attractive
alternative as it does not suffer from these disadvantages (71).
Dydrogesterone continues to retain its immunomodulatory
activity even after it is converted to its major metabolite (64).
Furthermore, the anti-androgenic properties of dydrogesterone
helps to avoid the masculinization of female foetuses (59, 71).

Supplementation with dydrogesterone has been reported to be
beneficial in recurrent miscarriage. A randomized, double-blind,
placebo-controlled study on dydrogesterone supplementation by
Kumar and colleagues demonstrated a significant decrease in the
number ofmiscarriages and an increase in themean gestational age
at delivery (72). Carp conducted a systematic review of randomized
trials ondydrogesterone and reported a 10.5%miscarriage rate after
dydrogesterone administration and a miscarriage rate of 23.5% in
control women; he concluded that there is a significant reduction of
29% in the odds for miscarriage with dydrogesterone when
compared to standard care (73). A systematic review and meta-
analysis of ten randomized controlled trials by Saccone and
colleagues showed that women who received progestogens had a
Frontiers in Immunology | www.frontiersin.org 4
lower risk of recurrent miscarriage (RR 0.72, 95% CI 0.53-0.97) as
well as a higher live birth rate (RR 1.07, 95% CI 1.02-1.15) when
compared to those who did not (74).

In fact, Schindler suggests that progestogens like dydrogesterone
may be considered for preventing or treating a variety of pregnancy
complications such as threatened miscarriage, recurrent (habitual)
miscarriage, preterm labour and preeclampsia (75).

Thus, dydrogesterone is an immune-modulator that shifts the
balance from a Th1 or pro-inflammatory cytokine bias towards a
Th2 or anti-inflammatory bias, a milieu favourable to the success
of pregnancy. Dydrogesterone may be therefore be considered
for effective, safe and orally-administered therapy in unexplained
recurrent spontaneous miscarriage.
IL-17 AND IL-22: A DOUBLE-EDGED
SWORD FOR PREGNANCY

The Th1/Th2 paradigm has recently been expanded into the
Th1/Th2/Th17 and regulatory T (Treg) cells paradigm (42), in
which Th2 and T reg cells are responsible for maternal tolerance
toward foetal alloantigens, while Th1 and Th17 cells are
accountable for spontaneous abortion. However, the role Th17
cells in the Th1/Th2/Th17 and T reg paradigm in pregnancy has
not been completely clarified. It appears that the Th17-type
cytokines IL-17 and IL-22 together could have both a positive
and a negative impact on pregnancy and could thus represent a
double-edged sword.

The IL-17 family of cytokines consists of 6 proteins (IL-17A
to IL-17F). IL-17A is the hallmark cytokine of Th17 cells, which
also produce IL-17F, IL-22 and IL-21. IL-17 is also produced by
CD8+cells and by tissue-resident innate cells such as NK, NKT,
Tgd, ILC3 cells (76), by placental macrophages (77), ILC3 (78)
and cytotrophoblast and syncytiotrophoblast from normal term
pregnancy, spontaneous miscarriage and molar pregnancy (79).
IL-1b and IL-23 effectively enhance (80, 81), while IFN-g, IL-4,
and IL-27 suppress (82, 83) the generation of human Th17 cells.

The pathogenic role of IL-17 cells has been suggested in several
chronic inflammatory disorders (76, 84). However, its potent
inflammatory activity is mostly due to its ability to recruit immune
cells, as well as to its synergistic actions with other pro-inflammatory
cytokines such as TNF, IL-1b, IFN-g, GM-CSF, IL-22.

By recruiting and activating neutrophils, IL-17A and IL-17F
are significant players in the physiological immune response
against extracellular bacteria and fungi (76).

Because of its role in early stage acute allograft rejection (62, 85–
87) the possible contribution of IL-17 in foetal allograft rejection, and
its accountability for spontaneous abortion has been the focus of
intensive research in the last decade. Th17 cells were significantly
upregulated, while Treg cells were downregulated in abortion-prone
mice. Furthermore, intraperitoneal injection of recombinant IL-17
induced foetal loss in a normal mouse model, and an anti-IL-17
antibody prevented foetal loss in the abortion prone mouse model
(61).Thus, IL-17 seems tobe a central player of spontaneous abortion
inmice. Th17,CD8TandNKTcells (whichhave also been identified
as the cellular source of IL-17A in pregnantmice), but not gdT-cells,
could have had an impact on fetal development (88).
July 2021 | Volume 12 | Article 717808
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In theperipheral bloodanddeciduaofpatientswithunexplained
recurrentmiscarriage, thenumberof IL-17-producingCD4+Tcells
was found to be increased, whereas that of T reg cells decreased,
compared to healthy control subjects (62). IL-27, a suppressor of
Th17 cells, decreased in deciduas of patients with unexplained
recurrent abortion compared to spontaneous abortion and controls
subjects (87). In agreement with these findings, an increase in the
Th17/Treg ratio at the maternal-fetal interface in women with
unexplained recurrent miscarriage suggested the contribution of
Th17 to the loss of maternal-foetal immune tolerance (63, 89).

Although all these findings seem to indicate the deleterious
effect of IL-17 on pregnancy, IL-17 accountability for foetal
allograft rejection and spontaneous abortion is not evident.

Nakashima et al. (90) reported no significant differences in
the number of decidual IL-17+ T helper cells between missed
abortion cases without genital bleeding, and normal pregnancies.
The increased number of decidual IL-17+ T cells was only
observed in abortion complicated with genital bleeding. The
authors suggested that after embryonic death, increased IL‐1 or
IL‐6 production and decreased TGF‐b production might
increase the number of Th17 cells and decrease those of T reg
cells in the uterus (42, 90).

None of these prior investigations consider the possibility that
Th17 cells might exhibit plasticity. In fact, naive CD4+CD161+ T
cells, precursors of Th17 cells (83) could differentiate into Th17,
Th17/Th1, and finally into Th1 cells in response to IL-12, or to the
prolonged exposure to IL-23 (91, 92). Th17/Th2 cells originate
from circulatingmemory CCR6(+)CD161(+)CD4(+) T cells in the
presence of an IL-4-rich microenvironment (93). More recently, a
high number of decidual Th17/Th2 cells have been detected at the
implantation site in successful pregnancy, whereas Th17/Th1 cells
and “proper” Th17 cells were prevalent in RSM during the first
trimester miscarriage of normal karyotype foetuses (94). In line
with these results, the association of IL-17 and IFNg production
has been demonstrated in the serum of infertile women who had
not conceived after embryo transfer in ART (95). Noteworthy is
the observation that the levels of IL-4, IL-17A and IL-17F
produced by the CD4+ T cells at the implantation site were
higher than the levels of these cytokines distant from the
embryo implantation site (94). The differentiation of Th17 cells
into Th17/Th2 cells at fetal maternal interface is due to soluble
HLA-G5, a non polymorphic class I molecule produced by
embryo and cytotrophoblast cells (94). Thus, decidual Th17 cells
are not necessarily deleterious, and can even be beneficial for
pregnancy, if they also produce IL-4.

This raises the question, why prior investigations showed an
increased number of IL-17-producing CD4+T cells in the decidua
of patients with unexplained RSM compared to healthy control
subjects. If Th17, Th17/Th2 and Th17/Th1 cells are not separately
investigated within the IL-17+ CD4+ T cell population, the
percentage of IL-17-producing CD4+ T cell clones derived from
the decidua of RSM patients (59%) is statistically increased
compared to the percentage of decidual IL-17-producing CD4+
T cell clones from normal pregnancy (23%) (p=0.000001)
(Piccinni MP et al, unpublished data).

Although these results are statistically significant, these
superficial investigations show only a partial image of what
Frontiers in Immunology | www.frontiersin.org 5
happens at fetal-maternal interface and this could lead to
incorrect conclusions. In fact, not all the IL-17-producing CD4+
T cells are harmful for pregnancy and IL-17 is not regularly
associated with spontaneous abortion. In agreement with this, it
has been shown recently that serum IL-17 levels increased in the
healthy pregnant women compared to miscarriage (96). The
potential role of IL-17 in sustaining pregnancy has already been
reported. IL-17 may promote an adequate response to protect the
mother from extracellular pathogens (97). Other cells, as gd T cells
producing IL-17 also contribute to the prevention of intrauterine
infection (98). More importantly, IL-17 produced by T helper cells
favours pregnancy by promoting proliferation and invasion and
by inhibiting the apoptosis of human trophoblast cells during the
first trimester of pregnancy (99) (Figure 1). Thus, the success of
pregnancy seems to depend on the increased activity of Th2-Th17/
Th2-Treg cells and decreased activity of Th1-Th17/Th1cells.

Interestingly, immunoregulatory factors derived from the
placenta could selectively inhibit the simultaneous production
of IL-17 and IFNg by activated T cells (100), and may control the
harmful amplification of Th17/Th1 cells in pregnancy.

Based on these results, a more rigorous evaluation of the role of
IL-17 in sustaining normal pregnancy is required. More so because
emerging data point to a pathogenic role of IL-17 in pre-eclampsia
and pre-term birth. The role of IL-17 in preterm labour associated
with subclinical infection and increased pro‐inflammatory
cytokines in amniotic fluid and decidual tissue remains unclear.
In preterm labour, IL-17 produced by T cells has been shown to
promote inflammation at the foeto–maternal interface (101). By
contrast women with preterm contractions and preterm deliveries
showed significantly decreased serum IL-17 levels as compared to
normal pregnancies with term deliveries (102). Pre-eclampsia (PE)
is associated with exaggerated systemic inflammatory changes and
poor angiogenesis. Higher levels of circulating Th17 cells, which
could induce strong systemic inflammatory changes and vascular
endothelial dysfunction, have been observed in preeclamptic
women compared to women with normal pregnancy (42, 103–
107). Not only Th17 cells but also Th22 cells have been shown to
be involved in the pathophysiology of PE. A positive correlation
has been found between the number of Th22 cells and Th17 cells
in PE patients (107). Some researchers have reported decreased
plasma IL-17 levels (108) or no difference (109) in PE patients
compared to healthy pregnant women. Interestingly, others
postulated that the increased IL-17 levels observed in patients
with preeclampsia are not associated with T cell subpopulations
during pregnancy but associated with ILC-3 which, if
dysregulated, may pose threats to the foetus (110). The
prevalence of IL-17-producing CD4, CD8, ILC-3 and NK cells
in pre-eclampsia, might indicate that both the innate and adaptive
arms of the immune system could be involved in the development
of the exaggerated maternal systemic inflammation observed in
this pregnancy-specific disorder (111).

IL-22 is a member of the IL-10 family, which also includes
IL-19, IL-20, IL-24, and IL-26 and IFNl (112, 113). IL-22 is
produced by T helper cells (Th1, Th17, Th22), CD8+ T cells and
gd T cells and also by NK cells, ILC3 cells and neutrophils (114,
115). The activation of the aryl hydrocarbon receptor (AHR) is
required for the production of IL-22 (116). IL-22 exerts important
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functions in tissue repair as well as in host defense at mucosal
surfaces. However, depending on the target tissue, its effects can be
harmful due to its intrinsic pro‐inflammatory activities, which are
further enhanced when released together with other pro‐
inflammatory cytokines, in particular IL‐17 (117). In murine T
helper cells, IL-22 expression is closely related to RORgT and IL-
17 expression, and thus IL-22 is considered a Th17 cytokine.
However, this relationship is much less evident in the human,
where Th1 and Th22 cells are the main sources of IL-22 (117).
Furthermore, in vitro Th22 cells may develop independently of the
Th17 lineage while (similarly to Th17 cells), demonstrating a
plasticity toward Th1- and Th2-type cells (118). Under Th1-
promoting conditions in vitro, in vivo, Th22 cells produce IFN-
g, while under Th2 culture conditions in vitro they develop into IL-
13-producing cells. Consistent with these results, the numbers of
skin-homing IL-13– and IL-22–producing Th2/IL-22 and Tc2/IL-
22 cells are elevated in subjects with Atopic Dermatitis (known to
be driven by strong type 2 immune responses) (119–121).

IL-22 is involved in allograft rejection, by increasing the
production of IFNg by Th1 and Tc1 cells and decreasing the
Frontiers in Immunology | www.frontiersin.org 6
production of IL-10 by Treg and Th2 cells (122). Because of this,
IL-22 could play a key role in miscarriage. Findings on the role of
IL-22 in RSM are conflicting. Serum levels of IL-22 levels are
increased in RSM patients (123, 124), while the expression of IL-
22 mRNA is lower in the decidua of RSM patients compared to
women with successful pregnancy (125). Human decidual IL-22
is also produced by NK 22 cells and IL-C3, controlled by their
interaction with PD-1 ligand expressed by trophoblast cells (126,
127). IL-22 produced by IL-C3 could also be involved in the
prevention of preterm labour (128, 129).

The percentage of IL-22-producing CD4+ T cells was higher
in the decidua from successful pregnancy, than in the decidua of
women with RSM (miscarriage of normal karyotype foetus),
suggesting that there is a prevalence of IL-22-producing T helper
cells in the decidua of successful pregnancy compared to RSM
(130). Four subpopulations of CD4+ T cells producing IL-22 and
also producing IL-4 (Th0/IL-22+, Th2/IL-22+, Th17/Th0/IL-22+
and Th17/Th2/IL-22+cells) were associated with successful
pregnancy, whereas the only subpopulation of IL-22-producing
CD4+ cells associated with RSM (Th17/Th1/IL-22+cells),
FIGURE 1 | Positive roles of IL-17 and IL-22 at maternal fetal interface of successful pregnancy. In successful pregnancy where IL-17 is produced in association
with IL-4 by Th17/Th2 cells stimulated by trophoblast-derived HLA-G5, IL-17 could have a positive influence on pregnancy, by inducing trophoblast proliferation and
invasion and by protecting the mother from extracellular pathogens, responsible for miscarriages. IL-22, when it is produced in association with IL-4, could also
positively affect pregnancy by repairing damage of the trophoblast cells, by inducing the proliferation, survival and decreased apoptosis of trophoblast cells and by
stimulating epithelial cells to secrete antimicrobial peptides supporting the defense against pathogens.
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did not produce IL-4 (130). In addition, serum IL-22 was
positively correlated with serum IL-4 in successful pregnancy
but not in RSM (130). At the implantation site the percentages of
Th17/Th0/+IL-22 and of Th17/Th2/IL-22+CD4+ T cells were
higher than those of T cells away from the implantation site
(130). Moreover, mRNA expression for IL-4 and IL-22 and their
respective transcriptional factors, GATA3 and AHR, were present
at the implantation site, whereas the prevalence of mRNA
expression for IFNg and Tbet was observed in patients with
ectopic pregnancy (130). Thus, the associated production of IL-22
and IL-4 at the implantation site seems tobe essential for the success
of pregnancy. The beneficial role of IL-22 for pregnancy has been
investigated. As IL-22 is important for epithelial regeneration and
woundrepair (131, 132), bybinding IL-22R1present ontrophoblast
cells (133), IL-22 could act at the fetal maternal interface by
repairing damage of trophoblast cells. The binding of IL-22 to its
receptor could also directly stimulate trophoblast proliferation,
survival and decrease its apoptosis (133). IL-22 could also
contribute to defence against intrauterine infections responsible
for pregnancy loss and for up to 40% of all preterm births, by its
ability to induce the secretion of antimicrobial peptides. In fact,
supplementation with recombinant IL-22 significantly improved
the pregnancy outcome in mice that are challenged with
intrauterine lipopolysaccharide treatment (128) (Figure 1).

Thus, similar to IL-17, IL-22 could be another cytokine essential
for themaintenance ofpregnancywhen it is produced togetherwith
IL-4.
THE BALANCE BETWEEN IMMUNE
ACTIVATION AND REGULATION IN
PREGNANCY

Recognition of the semi-allogeneic foetus activates maternal
decidual T cells and NK cells (134, 135). Extravillous
trophoblasts (EVTs) express polymorphic HLA-C molecules on
their surface, and foetal-maternal HLA-C mismatch is associated
with decidual T cell activation (136), suggesting that maternal
T cells recognize the foetus. Therefore, a mechanism to
control rejection is needed for the maintenance of pregnancy.
CD4+CD25+Fox3+ regulatory T (Treg) cells play a central role in
the establishment and maintenance of allogeneic pregnancy in
mice and humans (137, 138). During the implantation period
depletion of Tregs results in implantation failure in allogenic-, but
not in syngeneic pregnancy, suggesting that Treg cells are essential
for successful implantation in mammals (139–141).

Activation of decidual CD8+ T cells (135) and paternal
antigen-specific CD8+ T cells drives fetal resorption in mice
(142), suggesting that immunoregulation is necessary to prevent
foetal rejection. Kinder et al. reported that PD-1 and LAG-3 on
foetal antigen-specific CD8+ T cells suppress the cytotoxic activity
of CD8+ T cells (142). The balance between immunoregulation
and immune activation is well-controlled in normal pregnancy,
but dysregulated in implantation failure (141), miscarriage with
normal karyotype foetuses (42, 62, 143), and preeclampsia (105,
144). Interestingly, decreased effector Treg- and increased effector
activating T cell counts are observed in the decidua in
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miscarriages with normal foetal karyotypes, but not in
miscarriages with abnormal fetal karyotypes (143). These
findings suggest that immune imbalance might induce RSM of
unknown etiology. Similarly, decreased effector Treg cells,
increased exhausted Treg cells, and increased activated T cells
were observed in preeclampsia (111), indicating immune
activation, resulting in maternal and foetal complications.

Paternal- or Fetal-Antigens Specific Treg
Cells and Cytotoxic T Cells in Pregnancy
Paternal antigen-specific tolerance is present during pregnancy
and disappears after delivery (145). Treg cells play a central role in
the induction of paternal antigen-specific tolerance (146). After
delivery, paternal antigen-specific Treg cells decrease in number,
but do not disappear, and in the second pregnancy with the same
partner, these Treg cells expand more rapidly, than during the first
pregnancy (146). A small number of maternal cells cross the
placenta and accumulate in foetal lymph nodes (147). Foetal Tregs
specific for maternal antigens suppress anti-maternal immunity of
the foetus (147). Treg cells present after birth drive postnatal
maternal antigen-specific tolerance. In the next generation,
microchimeric maternal cells induce maternal antigen-specific
tolerance. When a female offspring becomes pregnant with a
partner who shares maternal major histocompatibility complex
(MHC) antigens, a cross-generational tolerance is established,
which prevents foetal loss in mice. Further studies are needed to
confirm, whether a similar mechanism exists in humans (148).

Paternal antigen-specific Treg cells accumulate in the uterine
draining lymph nodes before implantation, and increase in number
in the uterus after implantation (149). Seminal plasma induces the
expansion of paternal antigen-specific Treg cells and induces
tolerance to paternal alloantigens (149, 150). These findings
suggest that the use of condoms and short cohabitation are risk
factors for preeclampsia because of insufficient induction of
paternal antigen-specific tolerance due to poor seminal priming.

Fetal (paternal) antigen-specific CD8+ cytotoxic T cells (CTLs)
are detectable in the first trimester and increase in number during
pregnancy (54). These CD8+ T cells can lyse foetal antigen-
expressing cells. The memory type of foetal antigen-specific CD8+

T cells persist after delivery (54, 142). However, foetal antigen-
specific CD8+ T cells are exhausted during secondary pregnancies
(151). PD-1 and LAG-3 on CD8+ T cells suppress cytotoxicity
against foetal cells (142).Thus, the foetus isprotected frommaternal
T cell attack by immune checkpoint molecules and Tregs.
THE SIMILARITY AND DIFFERENCE
BETWEEN FETAL ANTIGEN- AND
TUMOUR ANTIGEN-SPECIFIC TREG
CELLS OR FETAL ANTIGEN- AND
TUMOUR ANTIGEN-SPECIFIC
CYTOTOXIC T CELLS

It is challenging to detect foetal (paternal) antigen-specific Treg
cells and CTLs in humans. Recent data show that clonally-
expanded Treg cells and CTLs are surrogate markers of fetal-
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or tumour-antigen-recognized Tregs or CTLs (151–161). A
single-cell-based T cell receptor (TCR) repertoire analysis
method helps to detect clonally-expanded Treg cells or CTLs
(151–153). Clonally-expanded Treg cells increase at the foeto-
maternal interface (151) and in tumour-infiltrating regions (154,
155, 161). Clonally-expanded Treg cells are scarce in peripheral
pregnancy blood, and the similarity of TCR repertoires of
effector Treg cells between peripheral blood and decidua is
very low (~ 0.2%) (151). However, in cancer the same clonally-
expanded Treg cells expressing the same TCR are observed in
peripheral blood, and similar TCR repertoires of Tregs are
observed between peripheral blood and cancer lesions (161),
suggesting that foetal antigen-specific tolerance is localized at the
foeto-maternal interface, while tumour antigen-specific tolerance
is established in the whole body. This immune condition may
lead to distant metastases in cancer. This observation points to
differences in immune responses in pregnancy and cancer.

A decreased number of total effector Treg cells is observed in
miscarriages with normal foetal karyotype (151), and a decreased
number of clonally-expanded effector Treg cells is observed in
preeclampsia (151). These findings support the observation that
first pregnancy, short cohabitation, and long-term interval from
the last delivery are risk factors for preeclampsia but not for
recurrent pregnancy loss. These epidemiological risk factors are
related to poor induction of paternal antigen-specific Treg cells.
Expansion of total Tregs could be considered for use in the
therapy of unexplained recurrent pregnancy loss. Alternatively,
the proliferation of paternal antigen-specific Treg cells might be
used for the treatment of preeclampsia.

Incancerpatientswithhighnumbers ofclonally expanded intra-
tumour Treg cells, the survival rate is low (157), suggesting that
clonally expanded Treg cells induce tumour-specific tolerance and
tumour cells are thus protected by host T cell attack. This finding
shows the similarity betweenpregnancy and cancer. Anti-PD-1 and
anti-CTLA-4 antibodies are helpful for disrupting tumour-specific
tolerance, and these antibodies arewidelyused incancer treatments.

Clonally-expanded CTLs that recognize fetal antigens or
tumour antigens are localized at the feto-maternal interface
(152) and tumour tissues (153, 154, 157–160). The proportion
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of clonally expanded CTLs is higher in the decidua than in the
peripheral blood (152). In miscarriage, the total volume of
clonally expanded PD-1- CTLs increases in the decidua. The
decreased total pool of Treg cells and increased PD-1- clonal
CTLs in the decidua could induce fetal rejection, resulting in
miscarriage. Alternatively, the number of PD-1hi clonally-
expanded decidual CTLs is increased in the third trimester of
normal pregnancy, but decreased in preeclampsia (152).
Decreased numbers of clonally expanded Treg cells and
reduced PD-1 expression on clonally-expanded CTLs could
induce fetal rejection, resulting in preeclampsia (Table 1).

In cancer patients, PD-1 is highly expressed in tumour-
infiltrating CTLs. The frequency of clonally expanded CTLs is
higher in tumour tissue than in peripheral blood, and the
clonality rate in tumour-infiltrating PD-1+ CTLs is very high,
indicating that tumour antigen-specific CTLs express PD-1,
resulting in the survival of tumour cells (Table 1). This
observation shows the similarity between normal pregnancy and
cancer, and immunologic milieu in cancer patients with anti-PD-1
therapy is similar to complicated pregnancies such as implantation
failure,miscarriage, andpreeclampsia.Understanding reproductive
immunology and cancer immunology is useful for establishing
therapies for miscarriage, preeclampsia and cancer.
CONCLUSION

Reproduction is one of the most important factors for the
survival of the animal kingdom, and therefore, the system
responsible for maintaining gestation is over-insured. The
interplay of several parallel mechanisms protects the semi-
allogeneic foetus from harmful maternal immune reactions.

Progesterone, is not only indispensable for pregnancy, but
also acts as an immuno-steroid. Several studies confirm that
progestagen-treatment may have a beneficial effect in recurrent
spontaneous miscarriage and threatened miscarriage. The major
part of pregnancy is characterized by a Th2-dominant cytokine
pattern. Progesterone upregulates the production of Th2-type
cytokines and suppresses the production of embryo-toxic Th1
TABLE 1 | Tregs and cytotoxic T cells (CTLs) in normal pregnancy, complicated pregnancy and cancer patient.

Normal pregnancy Miscarriage Preeclampsia Cancer

1st trimester 3rd trimester Abnormal fetal karyotype Normal fetal karyotype

Peripherral blood
Total Tregs ↑ ↓ ↑
effector Tregs ↑ ↓ ↑
clonal tregs very few very few very few very few very few ↑
clonal CTLs ! ! ! ! ! ↑
PD-1*clonal CTLs ! ! ! ! ! ↑
Decidua or Intratumor
Total Tregs ↑ ↑↑ ↑ ↓ ↓ ↑↑
effector Tregs ↑ ↑↑ ↑ ↓ ↓ ↑↑
clonal tregs ↑ ↑↑ ↑ ↑ ↓ ↑↑
Clonal CTLs ↑ ↑↑ ? ↑↑ ↑↑ ↑↑
PD-1*clonal CTLs ! ↑↑ ? ! ↓ ↑↑
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and Th17 cytokines. However, Th17 cells are not entirely
harmful for pregnancy, because –depending on the cytokine
milieu, they are able to differentiate to either Th17/Th1 or Th17/
Th2 cells. Th17/Th2 cells support embryo implantation and
pregnancy (94). The Th2 shift induced by progesterone favours
the switch of Th17 cells into Th17/Th2 cells, while soluble HLA-
G5 produced by embryo and extravillous cytotrophoblast
directly induces the differentiation of Th17 cells into Th17/Th2
cells and stimulates the associated production of IL-17 A, IL-17F
and IL-4 by T helper cells (94). When produced in association
with IL-4, IL-22 can also favour pregnancy and embryo
implantation (130) (Figure 1).
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Treg cells express membrane progesterone receptors (mPRa)
during pregnancy (162, 163), and human labour may be initiated
by a decline in the number of mPR(a+) Treg cells (33).
Progesterone has been shown to expand Treg populations by
activating nuclear P4 receptors in mice (164) furthermore, it fails
to induce Treg cells in nuclear progesterone receptor-deficient T
cells (165). These data suggest that both nuclear and membrane
progesterone receptors are involved in the mechanisms by which
progesterone affects the generation and proliferation of regulatory
T cells. Clonally-expanded Treg cells increase at the feto-maternal
interface and induce a local, foetal antigen-specific tolerance, while
miscarriage and preeclampsia are characterized by a decreased
number of clonally-expanded effector Treg cells (Figure 2).
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Progesterone-Induced Blocking Factor (PIBF) and Trophoblast Invasiveness.
J Reprod Immunol (2011) 90:50–7. doi: 10.1016/j.jri.2011.03.005

22. Halasz M, Polgar B, Berta G, Czimbalek L, Szekeres-Bartho J. Progesterone-
Induced Blocking Factor Differentially Regulates Trophoblast and Tumor
Invasion by Altering Matrix Metalloproteinase Activity. Cell Mol Life Sci
(2013) 70:4617–30. doi: 10.1007/s00018-013-1404-3

23. Piccinni M-P, Giudizi MG, Biagiotti R, Beloni L, Giannarini L, Sampognaro
S, et al. Progesterone Favors the Development of Human T Helper Cells
Producing Th2-Type Cytokines and Promotes Both IL-4 Production and
Membrane Cd30 Expression in Established Th1 Cell Clones. J Immunol
(1995) 155:128–33.

24. Kozma N, Halasz M, Polgar B, Poehlmann TG, Markert UR, Palkovics T,
et al. Progesterone-Induced Blocking Factor Activates STAT6 Via Binding
to a Novel IL-4 Receptor. J Immunol (2006) 176:819–26. doi: 10.4049/
jimmunol.176.2.819

25. Szekeres-Bartho J, Wegmann TG. A Progesterne-dependent Immuno-
Modulatory Protein Alters the Th1/Th2 Balance. J Reprod Immunol
(1996) 31:81–95. doi: 10.1016/0165-0378(96)00964-3

26. Raghupathy R, Al Mutawa E, Makhseed M, Azizieh F, Szekeres-Bartho J.
Modulation of Cytokine Production by Dydrogesterone in Lymphocytes
From Women With Recurrent Abortion. Brit J Ob Gyn (2005) 112:1096–
101. doi: 10.1111/j.1471-0528.2005.00633.x

27. Raghupathy R, Al-Mutawa E, Al-Azemi M, Makhseed M, Azizieh F,
Szekeres-Bartho J. The Progesterone-Induced Blocking Factor (Pibf)
Modulates Cytokine Production by Lymphocytes From Women With
Recurrent Miscarriage and With Preterm Delivery. J Reprod Immunol
(2009) 80:91–9. doi: 10.1016/j.jri.2009.01.004

28. Csabai T, Pallinger E, Kovacs AF, Miko E, Bognar Z, Szekeres-Bartho J.
Altered Immune Response and Implantation Failure in Progesterone-
Induced Blocking Factor-Deficient Mice. Front Immunol (2020) 11:349.
doi: 10.3389/fimmu.2020.00349

29. Maeda Y, Ohtsuka H, Tomioka M, Oikawa M. Effect of Progesterone on
Th1/Th2/Th17 and Regulatory T Cell-Related Genes in Peripheral Blood
Mononuclear Cells During Pregnancy in Cows. Vet Res Commun (2013)
37:43–9. doi: 10.1007/s11259-012-9545-7

30. Lee JH, Ulrich B, Cho J, Park J, Kim CH. Progesterone Promotes
Differentiation of Human Cord Blood Fetal T Cells Into T Regulatory
Cells But Suppresses Their Differentiation Into Th17cells. J Immunol (2011)
187:1778–87. doi: 10.4049/jimmunol.1003919

31. Mao G, Wang J, Kang Y, Tai P, Wen J, Zou Q, et al. Progesterone Increases
Systemic and Local Uterine Proportions of CD4+CD25+ Treg Cells During
Midterm Pregnancy in Mice. Endocrinol (2010) 151:5477–88. doi: 10.1210/
en.2010-0426

32. Thiele K, Hierweger AM, Amambay Riquelme JI, Solano ME, Lydon JP.
Arck PC. Impaired Progesterone-Responsiveness of CD11c+ Dendritic Cells
Frontiers in Immunology | www.frontiersin.org 10
Affects the Generation of CD4+ Regulatory T Cells and Is Associated With
Intrauterine Growth Restriction in Mice. Front Endocrinol (Lausanne)
(2019) 10:96. doi: 10.3389/fendo.2019.00096

33. Areia A, Vale-Pereira S, Alves V, Rodrigues-Santos P, Santos-Rosa M,
Moura P, et al. Can Membrane Progesterone Receptor Alpha on T
Regulatory Cells Explain the Ensuing Human Labour? J Reprod Immunol
(2016) 113:22–6. doi: 10.1016/j.jri.2015.10.002
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