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Stochastic quasicycles for a two-species model of the excitatory-inhibitory type, arranged on a triangular
loop, are studied. By increasing the strength of the internode coupling, one moves the system towards the Hopf
bifurcation, and the amplitude of the stochastic oscillations is consequently magnified. When the system is
instead constrained to evolve on specific manifolds, selected so as to return a constant rate of deterministic
damping for the perturbations, the observed amplification correlates with the degree of non-normal reactivity,
here quantified by the numerical abscissa. The thermodynamics of the reactive loop is also investigated and the
degree of inherent reactivity shown to facilitate the out-of-equilibrium exploration of the available phase space.
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I. INTRODUCTION

Deterministic models are customarily invoked to reproduce
in silico the intertwined dynamics of large populations of
microscopic actors [1]. Stationary attractors can be identified
and their inherent stability assessed via standard techniques.
By tuning an apt control parameter, a stable fixed point
can turn unstable via, e.g., a Hopf bifurcation, the canoni-
cal route to time-periodic solutions. The dynamical system
under inspection loses stability, as a pair of complex con-
jugate eigenvalues, stemming from the linearized version of
the problem, crosses the complex plane imaginary axis. A
small-amplitude limit cycle branches from the fixed point,
a dynamical transition which is intimately bound, under the
deterministic paradigm, to positive (real parts of the) Jacobian
eigenvalues. Stochastic perturbation can, however, play a role
of paramount importance [2,3]. Finite size corrections, arising
from the system graininess, manifest as an endogenous source
of disturbance, termed demographic noise. Under specific
conditions, the noisy contribution can shake the system from
the inside, yielding almost regular oscillations, the quasicy-
cles, as well as when the underlying deterministic dynamics
displays an asymptotically stable equilibrium, hence negative
defined eigenvalues of the Jacobian matrix [4–8]. Quasicycles
are often modest in size, their amplitude being set by the
strength of the imposed noise source. This fact constitutes a
practical limitation, which needs to be attentively pondered,
when targeting real-life applications. To circumvent this im-
pediment, we showed, in a recent work [9], that giant stochas-
tic oscillations, with tunable frequencies, can be obtained by
replicating a minimal model for a quasicycle along a directed
chain. Endogenous noise fuels a coherent amplification across
the array by instigating robust correlations among adjacent
interacting populations. It was argued that the observed phe-
nomenon, explained in Ref. [9] by resorting to the linear
noise approximation, reflected the non-normal character of the
imposed interaction scheme.

A linear system, in an arbitrary dimension, is non-normal
when its governing matrix does not commute with its conju-
gate transpose [10]. Non-normal systems may display a short
time growth for the norm of the system state once a perturba-
tion is injected, even when this latter is destined to fade away
at equilibrium [11–14]. The elemental ability of a non-normal
system to prompt an initial rise of the associated norm, stimu-
lated by an enduring stochastic drive, could eventually secure
the sought amplification process [15–17]. The aim of this
paper is to challenge this interpretative picture, by considering
a variant of the model presented in Ref. [9]. More specifically,
we will inspect the dynamics of excitatory and inhibitory pop-
ulations, organized in a loop, with varying coupling strength
and degree of asymmetry. By forcing the system to evolve in
a region of parameters where the homogeneous fixed point
is stable, while freezing the (negative real part of the) largest
eigenvalue to a constant amount, one can drive a sensible in-
crease in the amplitude of the stochastic quasicycles by acting
on the clout of non-normality. It is consequently speculated
that triangular loops of the type analyzed here might define the
minimal modules for self-sustained stochastic amplification
in nature. Feed-forward networks with triangular architecture
are often assumed in neuroscience as fundamental storage
and computational units [18,19]. In this respect, our conclu-
sions point at the crucial role that might be exerted by the
non-normal nature of neuronal connectivity in the functional
dynamics of cortical networks, in agreement with Ref. [17].
The system being examined works as a veritable out-of-
equilibrium thermal device under stationary conditions. The
asymptotic entropy associated to steady operation increases
with non-normality, hinting at a novel ingredient to be in-
cluded in the microscopic foundation of out-of-equilibrium
thermodynamics. The three-node setting explored here defines
the minimal nontrivial (beyond simplistic binary connections)
closed loop which can sustain stochastic amplification, fol-
lowing consecutive iterations across the loop itself. Loops
with more nodes display analogous dynamical features, but
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FIG. 1. The scheme of the model is illustrated. Two populations,
labeled, respectively, X and Y , are distributed on three distinct nodes
of a triangular loop and therein interact via an activator-inhibitor
cycle. The nodes of the collection are coupled together, through a
nonlinear sigmoidal function. D controls the strength of the intern-
ode interaction, while ε ∈ [1/2, 1] sets the degree of the coupling
asymmetry.

analytical inspection proves cumbersome, due to the progres-
sive increase in the number of interacting populations.

The paper is organized as follows: in the next section
we will introduce the stochastic model to be probed. We
will then turn to discussing its deterministic limit and study
the stability of the homogeneous fixed point in the relevant
parameters plane. We will also characterize the degree of non-
normal reactivity of the model, as witnessed by the numerical
abscissa. The stochastic contribution is then analyzed, in
Sec. III, under the linear noise approximation: the amplitude
of the quasicycle will be quantified and shown to positively
correlate with the degree of reactivity displayed by the system.
In Sec. IV, a thermodynamic interpretation is built, and the
concept of non-normal reactivity discussed with reference to
this generalized framework.

II. STOCHASTIC MODEL

Consider the scheme depicted in Fig. 1. Two populations
of agents are made to mutually interact via a nonlinear ex-
citatory and inhibitory circuit [20], reminiscent of the cele-
brated Wilson-Cowan model for neuronal dynamics [21–24].
The agents are dislocated on three different patches (nodes)
defining the edges of a triangular loop. The coupling among
adjacent nodes is controlled by two parameters: D sets the
strength of the interaction, and ε ∈ [1/2, 1] stands for the
degree of imposed asymmetry. The model is formulated as
a simple birth and death process, as we shall detail in the
following. As such, it accounts for demographic stochasticity,
an inevitable source of disturbance which originates from the
granularity of the inspected medium.

Denote by Xi (resp. Yi) one individual of the excitatory
(resp. inhibitory) species, on node i (i ∈ {1, . . . ,� = 3}).
Label with nxi

and nyi
the number of active excitatory and in-

hibitory neurons on node i, respectively. Furthermore, assume
Vi to identify the volume of the ith node. Then the stochastic

model is fully specified by the following chemical equations:

Xi
1−−−→ ∅, Yi

1−−−→ ∅,

∅ f (sxi
)−−−→ Xi, ∅ f (syi

)−−−→ Yi, (1)

where f (s) = 1
1+e−s is a sigmoidal function which mimics the

process of neuronal activation. Networks of excitatory and
inhibitory neurons represent in fact the primary computational
units in the brain cortex. Notably, inhibitory and excitatory
loops, triggered by self-regulated threshold activation, are also
found in genetic and metabolic cycles. Irrespectively of the
specific domain of pertinence, and in light of its inherent
simplicity, the above stochastic framework can be readily
adapted to all those settings where inhibition-excitation reac-
tion schemes are at play.

The arguments of the sigmoid function read

sxi
= −r

(
nyi

Vi

− 1

2

)
+ D

�∑
j=1

�ij

(
nxj

Vj

− nyj

Vj

)
, (2)

syi
= +r

(
nxi

Vi

− 1

2

)
+ D

�∑
j=1

�ij

(
nxj

Vj

− nyj

Vj

)
, (3)

where �ij are the entries of the Laplacian matrix and r is a
local control parameter. The spatial arrangement epitomized
in Fig. 1 yields the following adjacency matrix:

A =
⎡
⎣ 0 ε 1 − ε

1 − ε 0 ε

ε 1 − ε 0

⎤
⎦,

namely, Aij �= 0 if there is a link from j to i of weight ε or
1 − ε. Then one can readily write �ij = Aij − k

(in)
i δij , where

k
(in)
i = ∑

l Ail denotes the strength (hereafter also referred to
as to connectivity) of node i. In extended form,

� =
⎡
⎣ −1 ε 1 − ε

1 − ε −1 ε

ε 1 − ε −1

⎤
⎦. (4)

The state of the system is completely described by the
vector n = (nx1 , ny1 , . . . , nx�

, ny�
). Label with P (n, t ) the

probability for the system to be in state n at time t . Under the
Markov hypothesis, the chemical equations (1) are equivalent
to a master equation for P (n, t ):

∂P

∂t
(n, t ) =

∑
n′ �=n

[T (n|n′)P (n′, t ) − T (n′|n)P (n, t )]. (5)

The nonvanishing transition rates T (n′|n) from state n to
state n′, compatible with the former, are (let us observe that
for the sake of clarity we mention only the changed variable
in the new state)

T (nxi
− 1|n) = nxi

Vi

, (6)

T (nyi
− 1|n) = nyi

Vi

, (7)

and

T (nxi
+ 1|n) = f (sxi

), (8)

T (nyi
+ 1|n) = f (syi

). (9)
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To proceed with the analysis we assume V1 to be large
and γi = Vi

V 1 = O(1) ∀i, and seek for an approximate form of
the master equation via a standard Kramers-Moyal expansion
[2]. The ensuing calculations are analogous to those reported
in Ref. [9] and for this reason omitted in the following. To
illustrate the result of the analysis we define the macroscopic
time τ = t

V1
and introduce the vector

z = (x1, y1, . . . , x�, y�), (10)

where xi = nxi

Vi
, yi = nyi

Vi
are the concentrations of the active

excitatory and inhibitory neurons at node i, with i = 1, 2, 3.
Notice that in our approach Vi is an unspecified macroscopic
parameter fixing the volume of node i and, accordingly,
the amplitude of the fluctuations due to demographic noise
[see Eqs. (14) and (15)]. Then the master equation can be
approximated by a Fokker-Planck equation

∂P

∂τ
= −

2�∑
i=1

∂

∂zi

AiP +
2�∑
i=1

1

2V1

∂2

∂z2
i

BiP (11)

with

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .

. . .
1
γi

[T (nxi
+ 1|n) − T (nxi

− 1|n)]
1
γi

[T (nyi
+ 1|n) − T (nyi

− 1|n)]
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

(12)

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .

. . .
1
γ 2

i

[T (nxi
+ 1|n) + T (nxi

− 1|n)]
1
γ 2

i

[T (nyi
+ 1|n) + T (nyi

− 1|n)]

. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

The Fokker-Planck equation (11) is equivalent to the follow-
ing nonlinear Langevin equations for the stochastic concen-
trations of the involved species:

d

dτ
xi = 1

γi

[f (sxi
) − xi] + 1√

V1

1

γi

√
xi + f (sxi

)λ(1)
i , (14)

d

dτ
yi = 1

γi

[f (syi
) − yi )] + 1√

V1

1

γi

√
yi + f (syi

)λ(2)
i , (15)

where 〈λ(l)
i (τ )〉 = 0 and 〈λ(l)

i (τ )λ(m)
j (τ )〉 = δij δlmδ(τ − τ ′)

with i, j = 1, . . . ,� and l, m = 1, 2.

III. DETERMINISTIC LIMIT

In the limit V1 → +∞ one readily obtains the following
deterministic equations:

ẋi = 1

γi

[f (sxi
) − xi], (16)

ẏi = 1

γi

[f (syi
) − yi], (17)

where the dot stands for the derivative with respect to the
macroscopic time τ . Equations (16) and (17) are comple-

mented by the self-consistent conditions

sxi
= −r

(
yi − 1

2

)
+ D

�∑
j=1

�ij (xj − yj ), (18)

syi
= r

(
xi − 1

2

)
+ D

�∑
j=1

�ij (xj − yj ). (19)

System (16)–(17) admits a homogeneous fixed point xi =
yi = 1

2 , ∀i. To assess its stability, we proceed by linearizing
the dynamics around the aforementioned equilibrium. To this
end we set xi = 1

2 + δxi , yi = 1
2 + δyi and expand in power

of the perturbation amounts. By arresting the expansion to
the first order, one obtains the following system of linear
equations:

δẋi = 1

γi

⎡
⎣−δxi − r

4
δyi + D

4

�∑
j=1

�ij (δxj − δyj )

⎤
⎦

δẏi = 1

γi

⎡
⎣−δyi + r

4
δxi + D

4

�∑
j=1

�ij (δxj − δyj )

⎤
⎦,

which can be cast in matrix form as

d

dτ
δz = J δz, (20)

where δz = (δx1, δy1, . . . , δx�, δy�), and the Jacobian matrix
is given by

J =
⎡
⎣L1 M1 N1

N2 L2 M2

M3 N3 L3

⎤
⎦, (21)

being

Li = 1

γi

[
−1 − D

4 − r
4 + D

4
r
4 − D

4 −1 + D
4

]
, (22)

Mi = 1

γi

[
Dε
4 −Dε

4
Dε
4 −Dε

4

]
, (23)

Ni = 1

γi

[
D(1−ε)

4 −D(1−ε)
4

D(1−ε)
4 −D(1−ε)

4

]
. (24)

To compute the eigenvalues of the Jacobian, and eventually
elaborate on the stability of the equilibrium solution, we
introduce the eigenvectors φ(β ) of the Laplacian matrix:

�φ(β ) = �(β )φ(β ), β = 1, . . . ,�, (25)

where �(β ) are the associated eigenvalues. Assuming the
eigenvectors to form a complete basis, we can then decom-
pose the perturbation on such a basis which corresponds to
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setting

δxi =
�∑

β=1

cβ exp

(
λ

γi

τ

)
φ

(β )
i , (26)

δyi =
�∑

β=1

bβ exp

(
λ

γi

τ

)
φ

(β )
i , (27)

where cβ, bβ, λ are constants and λ sets the rate of the
exponential growth (or damping), as obtained under the linear
approximation. Inserting the above ansatz into the governing
equation and performing the calculation, one readily gets(

λ + 1 − D
4 �(β ) r

4 + D
4 �(β )

− r
4 − D

4 �(β ) λ + 1 + D
4 �(β )

)(
cβ

bβ

)
= 0. (28)

A nontrivial solution of the above system exists, provided
the determinant of the associated matrix is identically equal to
zero, or stated it differently, if the rates λ solve the quadratic
equation

λ2 + 2λ + 1 + r

16
(r + 2D�(β ) ) = 0 (29)

that yields the closed formula

λ = −1 ±
√

− r

16
(r + 2D�(β ) ), β = 1, . . . ,�. (30)

The eigenvalues of Laplacian �, specified in Eq. (4), read
�(1) = 0, �(2,3) = − 3

2 ± i
√

3
2 (1 − 2ε). Hence, we can imme-

diately get for β = 1:

λ1,2 = −1 ± r

4
i = −1 ± iν0, (31)

where the frequency ν0 has been introduced. The second
eigenvalue �(2) yields

λ3,4 = −1 ± 1
2

√
χ (32)

and �(3)

λ5,6 = −1 ± 1
2

√
χ̄ (33)

with

χ = r

4
[3D − r +

√
3Di(1 − 2ε)], (34)

and where χ̄ stands for the complex conjugate of χ .
Separating the real and imaginary parts returns

λ3,4 = −1 ± 1

2

√
|χ | + �χ

2
± i sgn(
χ )ν1, (35)

λ5,6 = −1 ± 1

2

√
|χ | + �χ

2
± i sgn(
χ̄ )ν1, (36)

where

ν1 = 1

2

√
|χ | − �χ

2
. (37)

We also define α as the supremum of the real part of the
spectrum of J , namely:

α = sup
k=1,...,6

�λk = −1 + 1

2

√
|χ | + �χ

2
. (38)

A straightforward calculation allows one to isolate the domain
in the plane (ε, D) where the homogeneous fixed point proves
stable. The stability is enforced by setting D < Dc where the
critical strength of interaction is explicitly given as a function
of the imposed degree of asymmetry by

Dc(ε) =
−12 +

√
144 + (4r2 + 64)3

(
ε − 1

2

)2

3
2 r
(
ε − 1

2

)2 . (39)

This is a decreasing function of ε for the values we are
considering ε ∈ (1/2, 1], suggesting that asymmetry antici-
pates the onset of the instability. Furthermore, Dc displays a
minimum in r , and the critical value Dc diverges for r → 0.
It is therefore possible to select arbitrarily large values of D,
provided r is sufficiently small, while still constraining the
system in the region of stable homogeneous fixed point.

The set of computed eigenvalues exhibits two distinct
imaginary contributions, for ε �= 1

2 , and D < Dc: ν0 = r/4,
as introduced in Eq. (31), and ν1, associated to the remaining
set of eigenvalues, which reads

ν1 = 1

4

√
r
√

(3D − r )2 + 3D2(1 − 2ε)2 − r (3D − r )

2
.

(40)

Interestingly, the frequency ν1 can be both smaller or
bigger than ν0: indeed, it is possible to show that ν1 > ν0

if D > D∗ = 4r/(1 − 2ε)2. If D = D∗, ν0 = ν1. In the lim-
iting condition of a symmetric loop, ε = 1

2 , the Laplacian
displays a real spectrum. More specifically, χ = r

4 (3D − r )
is real. Thus, λ3,4 = λ5,6 = −1 ± 1

2

√
r
4 (3D − r ). In this case,

the critical coupling is Dc = r
3 + 16

3r
. For D < r

3 , the sys-
tem is stable and two frequencies are active, ν0 and ν1 =
1
2

√| r
4 (3D − r )|. Conversely, for r/3 < D < Dc the system

is stable but the frequency ν1 disappears. For any choice of
ε, at D = Dc(ε), two complex conjugate eigenvalues cross
the vertical imaginary axis, signaling a Hopf bifurcation and
the consequent inception of a limit cycle. In the following,
we shall operate in the region of the plane (ε,D) where the
system is predicted to stably converge to a homogeneous
equilibrium, obtained by replicating on each node of the
collection the trivial fixed point (1/2, 1/2).

The fate of any imposed perturbation is eventually set by
the spectrum σ (J ) of the Jacobian matrix J , the matrix that
governs the linear dynamics of the system around the exam-
ined equilibrium. Perturbations fade away when α < 0—for
our specific case study, this amounts to setting D < Dc—
and the system converges back to its deputed equilibrium. A
transient growth of the perturbation can, however, be seen,
at short times, if J is non-normal and reactive. A matrix
is said to be non-normal if it does not commute with its
adjoint [10]. Asymmetry, as reflecting a nontrivial balance
between intrinsic dynamics and enforced nonlocal couplings,
is thus a necessary condition for non-normality to emerge.
Since, in our case, J is real, taking the adjoint is identical to
considering the transpose of the matrix. In formulas, J is non-
normal, provided [J ,J T ] ≡ JJ T − J TJ �= 0, where the
apex T identifies the transpose operation. It is immediate to
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FIG. 2. The domain of stability of the homogeneous equilibrium
is depicted in the reference plane (ε, D) and for r = 50. The upper
dashed curve stands for the Hopf bifurcation. Above the lower
dashed curve the non-normal Jacobian matrix J is found to be
reactive. Iso-α and iso-ω(J ) curves are traced and colored with
relevant codes which reflect their associated level, as specified in the
bars on either side.

conclude that the matrix J , as defined in (21), is non-normal
when D > 0.

A straightforward manipulation [10,13] yields the follow-
ing equation for the evolution of the norm of the perturbation
‖δz‖:

d‖δz‖
dτ

= δzTH(J )δz
‖δz‖ , (41)

where H(J ) = J+J T

2 stands for Hermitian part of J . The
evolution of the perturbation, at short times, is intimately
related to the numerical abscissa, ω(J ) = sup σ [H(J )], also
called reactivity in population dynamics [11]. If ω(J ) > 0,
the system is termed reactive, and perturbations may display
an initial, transient growth. In this paper, we are interested in
shedding light on the interplay between reactivity, i.e., the in-
herent ability of the system to yield a short time enhancement
of a deterministic perturbation, and the stochastic contribution

stemming from demographic fluctuations. As we shall see,
the amplification of quasicycles, self-sustained oscillations
driven by granularity, correlates with the degree of reactive
non-normality, as displayed by the system in its linearized
version. To proceed in the analysis, we set to compute the
eigenvalues of H(J ) and get the following closed expression
for the reactivity ω(J ):

ω(J ) = −1 + D

4

√
3(ε2 − ε + 1). (42)

Hence, ω(J ) > 0 when D > Dreact (ε) = 4√
3(ε2−ε+1)

. Notice

that Dreact (ε), the lower bound in D for the onset of a reactive
response, is independent of r and solely a function of ε.

The above results are summarized in Fig. 2, where the
boundaries of stability are depicted in the reference plane
(ε,D), for a fixed, although representative, value of r . The
upper dashed curve stands for Dc(ε) as given in Eq. (39).
The lower dashed line refers instead to Dreact (ε) and marks
the boundary of the domain where matrix J is found to be
reactive. Level sets traced at constant values of α (see the
color bar depicted on the left) and ω(J ) (refer to the color
bar reported on the right) foliate the scanned portion of the
plane. Moving along iso-α lines implies freezing the rate of
exponential damping of the perturbation to a constant value,
or, stated differently, visiting the subset of points that are, to
some extent, equidistant from the frontier of the Hopf bifur-
cation. When crawling on iso-ω(J ) lines, instead, one forces
constantly the (largest) rate of short time growth, as seeded by
reactive non-normality. While it is straightforward to obtain a
closed analytical expression for iso-ω(J ) curves, upon trivial
inversion of Eq. (42), the calculation that yields an explicit
representation of iso-α lines proves trickier. Label with ᾱ < 0
the selected iso-α. Then, after a cumbersome derivation, one
gets the following expression for D, as function of both ᾱ

and ε:

Diso−α (ε) =
−12(ᾱ + 1)2r +

√
144(ᾱ + 1)4r2 + [64(ᾱ + 1)4 + 4(ᾱ + 1)2r2] 3

4 r2(2ε − 1)2

3
8 r2(2ε − 1)2

, (43)

which is employed for tracing the iso-α lines displayed in
Fig. 2. Starting from this setting, we shall hereafter elabo-
rate on the role of non-normality in a stochastic framework.
To anticipate our findings, we will prove that the ampli-
tude of noise-driven oscillations grows with the degree of
reactivity.

IV. LINEAR NOISE APPROXIMATION

To quantify the role of stochastic fluctuations around the
deterministic equilibrium, we shall operate under the lin-
ear noise approximation. In concrete terms, we rewrite the
stochastic densities xi and yi , for all nodes of the collection, as
the sum of two distinct contributions: the deterministic fixed
point, on the one side, and a stochastic perturbation, on the
other. This latter is assumed to be modulated by a scaling

factor 1/
√

Vi , which follows the central limit theorem. In
formulas, we postulate that

xi = 1

2
+ ξi√

Vi

, (44)

yi = 1

2
+ ηi√

Vi

(45)

and introduce

ζ = (ξ1, η1, . . . , ξ�, η�) (46)

to label the vector of fluctuations. Inserting the above ansatz in
the governing master equation and performing the expansion
at the first order in 1/

√
V1 (see Ref. [9] for details about the

technical steps involved in the calculations), one eventually
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gets the following set of linear Langevin equations:

d

dτ
ζi = (J ζ )i + λi, (47)

where λ stands for a Gaussian noise that satisfies the following
conditions:

〈λ〉 = 0, (48)

〈λi (τ )λj (τ ′)〉 = Bij δ(τ − τ ′). (49)

The diagonal diffusion matrix B is hence completely defined
by

B = diag

(
1

γ1
,

1

γ1
, . . . ,

1

γ�

,
1

γ�

)
. (50)

When the volumes are equal, the diffusion matrix simply
reduces to Bij = δij .

The above Langevin equations (47) admits an equivalent
formulation in terms of an associated Fokker-Planck equation
which can be formally cast in the form

∂

∂τ
� = −

2�∑
i=1

∂

∂ζi

(J ζ )i� + 1

2

2�∑
i=1

∂2

∂ζ 2
i

Bii�. (51)

This describes the evolution of the probability distribution
�(ζ , τ ) of the fluctuations.

The solution at any time of the above Fokker-Planck equa-
tion is a multivariate normal distribution:

�(ζ , τ ) = 1√
(2π )2�|C|

exp

{
−1

2
(ζ − 〈ζ 〉)T C−1(ζ − 〈ζ 〉)

}
,

(52)

where |C| is the determinant of the correlation matrix. The
sought probability distribution �(ζ , τ ) is hence completely
characterized in terms of the first and second moments of the
fluctuations, 〈ζi〉 and 〈ζlζm〉. These latter quantities obey the
following differential equations [9]:

d

dτ
〈ζi〉 = (J 〈ζ 〉)i ,

d

dτ

〈
ζ 2
l

〉 = 2〈(J ζ )lζl〉 + Bll = 2
2�∑
j=1

Jlj 〈ζlζj 〉 + Bll ,

d

dτ
〈ζlζm〉 = 〈(J ζ )lζm〉 + 〈(J ζ )mζl〉

=
2�∑
j=1

Jlj 〈ζmζj 〉 + Jmj 〈ζlζj 〉. (53)

The stationary moments can be analytically computed by
setting to zero the time derivatives on the left-hand side
of Eqs. (53) and solving the system that is consequently
obtained. The first moments are immediately found to be iden-
tically equal to zero asymptotically. Indeed, solving J 〈ζ 〉 = 0
returns 〈ζ 〉 = 0. Determining the second moments implies
dealing with a linear system, which can be drastically sim-
plified, by invoking translation invariance across the loop.
In particular, 〈ζ 2

i 〉 take two distinct values, respectively,

(a)

(b)

FIG. 3. (a) the asymptotic norm of the fluctuations 〈||ζ ||2〉/3 =∑3
i=1(ξ 2

i + η2
i )/3, as displayed on each individual node, is plotted

versus ω(J ) − |α|, moving along isolines ᾱ. Different curves refer
to different choices of ᾱ (= −0.8, −0.6, −0.4, from bottom to top).
Solid lines stand for the analytical solution after Eqs. (53). Symbols
are obtained from direct simulations of the nonlinear Langevin
equations (14), averaging over M = 300 independent realizations.
Here V1 = V2 = V3 = 106 and r = 50: (b) stochastic trajectories are
displayed, relative to the inhibitors on the first node, i.e., species
y1, for different values of the numerical abscissa. The red (small-
amplitude) trajectory is obtained for ω(J ) = −0.24 (ε = 1), while
the blue (large-amplitude) trajectory refers to ω(J ) = 5.18 (ε =
0.506). Here r = 50 and V1 = V2 = V3 = 106.

reflecting the typical amplitude of the fluctuations, as dis-
played by excitators and inhibitors.

In Fig. 3 〈||ζ ||2〉/3 = ∑3
i=1(ξ 2

i + η2
i )/3, the stationary

norm of fluctuations on one node of the collection, is plot-
ted against the reactivity index ω(J ), moving on (different)
iso-α lines. Solid lines stand for the analytical calculations,
following Eqs. (53), while the symbols refer to the homol-
ogous quantities computed from direct simulation of the
nonlinear Langevin equations (14), via the Euler-Maruyama
algorithm [25]. The satisfying agreement between theory and
simulations testifies to the adequacy of the linear noise ap-
proximation. The positive correlation between 〈||ζ ||2〉/3 and
ω(J ) suggests that non-normality controls the amplitude of
emerging quasicycles. The effect becomes more pronounced
when ω(J ) > 0, i.e., when the reactivity of the non-normal
Jacobian drives a self-consistent growth for the norm of the
injected stochastic perturbation. Notice that ω(J ) is found
to increase when crawling on the iso-α curves, from right to
left, in the plane (ε,D): it is remarkable that the progressive
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FIG. 4. The theoretical power spectrum of the inhibitory species,
P22, is plotted with a solid line against ν. Different curves refer to
different choices of (ε, D) constrained to move across the iso-α line
ᾱ = −0.4. The degree of reactivity, as quantified by the numerical
abscissa ω(J ), increases from right to left [ω(J ) = 0.1, 4.6, 5.2]:
the peak of the power spectrum gains correspondingly in power.
Symbols refer to direct numerical simulations, based on Eq. (14),
averaging over M = 200 independent realizations. Here V1 = V2 =
V3 = 106 and r = 50. Notice that P22 = P44 = P66, due to transla-
tional invariance across the loop.

gain in reactivity is triggered by a steady reduction in ε, which
implies forcing the system to be symmetric, at odd with intu-
ition. Despite the fact that we have here chosen to display the
cumulative contribution, the norm of both the activators and
inhibitors species is found to grow, with the reactivity index
ω(J ), when ω(J ) > 0. Moreover, the ensuing amplification
can be made more conspicuous by differentiating the volumes
Vi , across the loop.

To further characterize the amplification of the stochastic
cycles, against ω(J ), at fixed α, we compute the power
spectrum of the fluctuations around the deterministic fixed
point. To this end we apply the temporal Fourier transform
on both sides of (47) and obtain the equation

−iνζ̃i (ν) = (J ζ̃ )i + λ̃i , (54)

where ζ̃ stands for the Fourier transform of ζ .1 Then define
the matrix �ij = −iνδij − Jij . The solution of (54) can be
written as

ζ̃ = �−1λ̃. (55)

The power spectrum density matrix is consequently defined
by the elements

Pij (ν) = 〈ζ̃i (ν)ζ̃ ∗
j (ν)〉. (56)

A straightforward calculation yields

Pij (ν) = [�−1(ν)B(�−1)†(ν)]ij , (57)

whose diagonal elements represent the power spectra of the
signals. In Fig. 4 three different power spectra, relative to
the inhibitory species, are represented for distinct choices
of the reactivity parameter ω(J ). When ω(J ) is made to
increase, while keeping α fixed, the power spectrum shifts

1In the following the Fourier frequency is named ν to avoid notation
clashes with the definition of the reactivity index ω(J ).

6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

FIG. 5. The theoretical power spectrum of the inhibitory species,
P22, is plotted with a solid line against ν, for different choices of
D (from right to left D = 0, 6, 8). Symbols refer to direct numerical
simulations, based on Eq. (14), averaging over M = 200 independent
realizations. Here V1 = V2 = V3 = 106; P22 = P44 = P66, due to
translational invariance across the loop and r = 50.

towards the left, as prescribed by the formula for ν1, which
sets the position of the peak. In agreement with the above,
the peak gains in potency when the degree of reactivity is
augmented. Moving along iso-α lines is essential to prevent
spurious contributions that might set in when the system is
pushed towards the edge of the Hopf bifurcation. A gain of
the quasicycles amplitude is in fact observed when ε is kept
constant and D modulated in the range from 0 to Dc(ε),
as demonstrated in Fig. 5. Although interesting per se, this
phenomenon is, to a large extent, dictated by the progressive
reduction in the value of α, which is enforced by making
D approach its critical value Dc. Disentangling this latter
contribution from the contextual raise in reactivity is arduous,
and this is ultimately the reason why we have chosen to foliate
the relevant parameters space in curves characterized by a
constant damping factor α. A similar conclusion holds when
monitoring the power spectra of fluctuations relative to the
excitatory species.

The above analysis suggests that the conversion of a
stochastic input into regular oscillations is more efficient, in
terms of amplification gain, when the reactivity of the system
gets more pronounced. This observation provides an alterna-
tive angle to interpret the mechanism of noise-driven ampli-
fication, as originally discussed in Ref. [9]. It can in fact be
proven that the Jacobian matrix that rules the self-consistent
amplification as displayed in Ref. [9] is non-normal: its inher-
ent reactivity grows with the coupling strength among adja-
cent nodes, i.e., with the parameter that boosts the exponential
magnification of fluctuations along the unidirectional chain.
In the setting explored in Ref. [9], the analog of the damping
factor α is always constant and, as such, independent on the
strength of the imposed coupling. This is at variance with
the current implementation, where excitatory and inhibitory
species are arranged on a triangular loop and iso-α curves
are nonlinear functions of the parameters of the model. The
intertwined activity of excitatory-inhibitory populations gets
self-consistently amplified by circulating the signal across
a symmetric or asymmetric cyclic loop, a minimal com-
putational unit which constitutes the fundamental building
block of any large networks, notwithstanding their diverse and
variegated topology. In the following, we will continue elabo-
rating along this line and show, from a thermodynamical per-
spective, that the reactivity promotes the out-of-equilibrium
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dynamics of the scrutinized system. As such, it holds promise
to result in an additional ingredient to lay the founda-
tion of stochastic thermodynamics from the micro- to the
macrorealms.

V. THERMODYNAMICS OF A REACTIVE LOOP

The goal of this section is to analyze the process of
noise-driven amplification across the circular loop from a
thermodynamic point of view. In doing so we shall provide
a distinct angle to contextualize the implications of reactive
non-normality. To this end we recall that �(ζ , τ ), the distri-
bution of fluctuations, obeys the Fokker-Planck equation (51),
in the linear noise approximation. Label with Fi ≡ (J ζ )i
the nonconservative forces that define the drift term in the
aforementioned Fokker-Planck equation; B stands instead for
the diffusive contribution.

The Fokker-Planck equation (51) can be written in the form
of a continuity equation:

∂�

∂τ
= −∇ · I = −

∑
i

∂

∂ζi

Ii , (58)

where we have defined the probability density current

Ii = Fi� − Bii

2

∂

∂ζi

�, (59)

and use has been made of the fact that Bii are constants. In the
limit τ → ∞, stationarity is achieved,

∂�

∂τ
= 0, (60)

and the probability current is a solenoidal vector field:

∇ · I = 0. (61)

Equilibrium represents a very specific stationary solution,
attained by imposing a vanishing probability current, namely,
I ≡ 0. Hence,

Fi = Bii

2

∂

∂ζi

ln(�). (62)

If we suppose that the system is in contact with just one
thermal bath (Bii = B ∀i), or restating the assumption in
the context of interest, assuming that γi = γ1 = 1 ∀i, the
following consistency requirement should be matched:

∂

∂ζj

Fi = ∂

∂ζi

Fj . (63)

The above expression implies that the forces must be conser-
vative, i.e., they can be obtained by a generalized potential
U :

Fi = − ∂

∂ζi

U . (64)

The definition of the current becomes therefore

− ∂

∂ζi

U = B
2

∂

∂ζi

ln(�), (65)

and the above expression can be readily integrated to return
the usual Boltzmann-Gibbs distribution,

�(ζ ) = K exp

[
− 2

B
U (ζ )

]
, (66)

where K stands for a proper normalization constant. More
interesting is the setting where the forces are nonconservative
and the system evolves towards a stationary state, different
from the conventional equilibrium. To explore this possibility
we set to introduce the entropy functional S (τ ) from the
probability distribution �(ζ , τ ) as [26–28]

S (τ ) = −
∫

V

dζ�(ζ , τ ) ln[�(ζ , τ )], (67)

where V is the sample space of the dynamical variables. The
Fokker-Planck equation sets the temporal evolution of the
entropy. Taking the derivative of (67) with respect to time τ ,
and making use of the Fokker-Planck equation, one obtains
[27,28]
dS
dτ

= −
∫

V

∂�

∂τ
(ln � + 1) dζ =

∫
V

∑
i

∂Ii

∂ζi

(ln � + 1) dζ .

(68)

Assuming that the probability current vanishes at the bound-
ary of the volume V , a simple integration by parts returns

dS
dτ

= −
∑

i

∫
V

Ii

∂

∂ζi

ln � dζ . (69)

By recalling the definition of the probability current, one can
write

∂

∂ζi

ln � = 2

Bii

Fi − 2

Bii

Ii

�
. (70)

Finally, by substituting the above expression in the formula for
the temporal evolution of the entropy, one eventually obtains
[27,28]

dS
dτ

= ΠS − ΦS, (71)

where

ΠS =
∑

i

2

Bii

∫
V

I2
i (ζ , τ )

�(ζ , τ )
dζ (72)

and

ΦS =
∑

i

2

Bii

∫
V

Fi (ζ )Ii (ζ , τ ) dζ . (73)

The quantity ΠS is always positive and can be interpreted
as the entropy production rate given by the nonconservative
forces Fi . On the other hand, ΦS can be either positive or
negative, and can be identified as the entropy flux rate. If
ΦS > 0 the flux is from the system towards the environment,
the opposite scenario corresponding to ΦS < 0. By invoking
the definition of the current and performing a few integrations
by parts, one derives a compact formula for the entropy flux
rate:

ΦS =
∑

i

2

Bii

∫
V

FiIidζ

=
∑

i

2

Bii

∫
V

(
F 2

i � − Bii

2
Fi

∂

∂ζi

�

)
dζ
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=
∑

i

2

Bii

∫
V

(
F 2

i � + Bii

2
�

∂

∂ζi

Fi

)
dζ

=
∑

i

(
2

Bii

〈
F 2

i

〉 + 〈
∂

∂ζi

Fi

〉)
, (74)

which, by making explicit the forces Fi , yields

ΦS =
∑
i,j,k

2

Bii

JijJikCjk +
∑
i,j,k

2

Bii

JijJik〈ζj 〉〈ζk〉+
∑

i

Jii

=
∑

i

2

Bii

(
J CJ t

)
ii

+
∑

i

2

Bii

[(J 〈ζ 〉)i]
2 + TrJ . (75)

In the stationary state,

(ΦS )∞ =
∑

i

2

Bii

(
J CsJ t

)
ii

− 6, (76)

where use has been made of the fact that the first moments
of the distribution � vanish in the stationary states and that
TrJ = −2(1 + 1

γ2
+ 1

γ3
) = −6. Here Cs stands for the sta-

tionary correlation matrix. Similarly, following an analogous
pathway, one can prove that

ΠS =
∑

i

2

Bii

(
J CJ t

)
ii

+ 2TrJ + 1

2

∑
i

BiiC−1
ii

+
∑

i

2

Bii

[(J 〈ζ 〉)i]
2 + 4(J 〈ζ 〉)i (C−1〈ζ 〉)i

+ 2Bii[(C−1〈ζ 〉)i]
2. (77)

In the stationary state, for the setting of interest where
the nodes share the same volume (γi = γ1 ∀i), the entropy
production rate matches the expression

(ΠS )∞ = 2Tr(J CsJ ) + 2TrJ + 1
2 TrC−1

s . (78)

A straightforward, although lengthy, calculation confirms
that (ΠS )∞ = (ΦS )∞, i.e., the condition for stationarity
should be obviously met. The entropy can be calculated, at any
time τ , by inserting in the definition (67) the general solution
of the Fokker-Planck equation (51). This is the multivariate
Gaussian of Eq. (52). Carrying out the calculations returns
[29]

S (τ ) = 1

2

∫
�(ζ , τ ){(ζ − 〈ζ 〉)T C−1(ζ − 〈ζ 〉)

+ ln [(2π )2�|C|]} dζ . (79)

The second term in the above integral gives simply
ln [(2π )2�|C|], because of the normalization of the probability
distribution. The first term can be calculated as follows.
Observe that C is a symmetric positive definite matrix and its
elements are real. It is hence possible to construct its Cholesky
decomposition C = EET . Perform now the transformation
ζ = Es + 〈ζ 〉, which yields (ζ − 〈ζ 〉)T C−1(ζ − 〈ζ 〉) = sT s.
The probability distribution expressed as a function of the
variables s reads

�(s) = 1√
(2π )2�

exp

{
−1

2
sT s

}
, (80)

FIG. 6. The stationary entropy S∞ is plotted against ω(J ) − |α|
moving on iso-α lines. Here ᾱ (= −0.8, −0.6, −0.4, from bottom to
top). Solid lines stand for the analytical solutions. Symbols follow
from direct simulations of the Langevin equations (14), on averaging
over M = 300 independent realizations. Here V1 = V2 = V3 = 106

and r = 50.

and consequently the first integral in (79) gives

〈sT s〉 = 2�. (81)

In conclusion, S (τ ) = 1
2 [2� + ln ((2π )2�|C|)] =

1
2 ln ((2πe)2�|C|) and S∞ = 1

2 ln ((2πe)2�|Cs |) with an
obvious meaning of the symbols involved.

In Fig. 6 the stationary entropy S∞ is plotted against ω(J )
moving on iso-α lines: the stationary entropy grows with the
reactivity of the system. The reactivity, as stemming from non-
normality, hence facilitates the exploration of the available
phase space, pushing the system out of equilibrium. In the
transient phase, ΠS > ΦS , as can be appreciated in the main
panel of Fig. 7, where ΠS − ΦS is represented against τ . The
two curves refer to different pairs (ε,D), chosen on the iso-α
line ᾱ = −0.6. During the initial violent relaxation, the curves
are almost indistinguishable but then separate to proceed
on distinct tracks. More importantly, the out-of-equilibrium
transient regime seems to persist for longer times, when the
value of ω(J ) is made larger (solid versus dashed lines).
Indeed, the smaller ω(J ), the sooner the stationary condition
ΠS = ΦS is established, as illustrated in the inset of Fig. 7.
Here the quantities ΠS and ΦS are monitored as a function of

FIG. 7. Main panel: ΠS − ΦS is plotted in lin-log scale against τ ,
for two choices of the parameters D, ε constrained to return constant
α = ᾱ = −0.6. The solid (red) line refers to ω(J ) = 5.25, while the
dashed (blue) line stands for ω(J ) = −0.24. In the inset ΠS and ΦS

are reported for the choices of parameters, as given in the main panel.
Here r = 50.
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time, in lin-log scale, for the same choice of parameters as in
the main panel.

VI. CONCLUSIONS

Finite size corrections represent an unavoidable source
of endogenous disturbance, which can significantly impact
the dynamics of the system under examination. Macroscopic
order can materialize from the microscopic disorder, as stem-
ming from the inherent demographic noise. Under specific
operating conditions, quasicycles can develop via a resonant
mechanism, triggered by the stochastic component of the
dynamics. In general, quasicycles are modest in size, and
it is interesting to elaborate on the possible strategies, of
either artificial or natural inspirations, that yield a coherent
amplification of the stochastic signal. In a recent paper [9],
it was shown that giant, noise-assisted oscillations can de-
velop when replicating a minimal model of excitatory and
inhibitory units on a large one-dimensional lattice subject
to unidirectional couplings. The parameters are assigned in
such a way that the deterministic analog of the scrutinized
stochastic model displays a stable homogenous equilibrium.
Fluctuations generated by the microscopic granularity yield
seemingly regular oscillations, with tunable frequency, which
gain amplitude across the lattice. The rate of amplification is
controlled by the coupling constant, among adjacent patches.
Motivated by this analysis, we have considered here a variant
of the model discussed in Ref. [9] to shed light onto the
fundamental ingredients which cooperate for the onset of
the amplification. The species are assigned to populate a
spatially extended loop made of three nodes. Triangular loops
define the simplest nontrivial closed paths in large network
complexes: for this reason, it is instructive to elaborate on
their putative role in assisting the stochastic amplification of
quasicycles. A sensible increase in the stochastic oscillations
is indeed obtained when propagating the signal across the
loop, while forcing the system in a region where the deter-
ministic homogeneous fixed point proves stable. The larger
the coupling constant, the more pronounced the measured
gain. When the coupling is made stronger, one approaches
the boundary of stability for the underlying equilibrium: the
damping of fluctuations is consequently reduced, and this

explains the increase of oscillations’ amplitude against D.
More interesting is the amplification detected when freezing
the dispersion relation, i.e., setting to a constant the largest
(negative real part of the) eigenvalue of the Jacobian. In
this case, the degree of amplification is controlled by the
reactivity index, a parameter that quantifies the short time
growth of the norm of an imposed perturbation. The larger
the reactivity of the non-normal Jacobian matrix—associated
to the spatially extended system—the more pronounced the
stochastic driven oscillations. Nonconservative forces push
the system out of equilibrium, and the stationary value of the
entropy is found to increase with the reactivity, here measured
by the numerical abscissa. Based on these observations, we
argue that non-normality, and, more specifically, reactivity,
should be thoroughly considered when bridging stochastic
dynamics and out-of-equilibrium thermodynamics. More than
that, we want to remark that we are facing an important
and unconventional thermodynamic scenario. In fact, in the
presence of nonconservative forces the system converges
asymptotically to a genuine nonequilibrium steady state, after
a transient during which the entropy production rate mono-
tonically vanishes and the system reaches a maximum of
the entropy. This shows that a variational principle based on
entropy maximization is compatible with the presence of a
nonzero (entropy) current. This is because in our model all
nodes are subjected to the same effective temperature (i.e.,
γi = γ1 = 1 ∀i). We conjecture that when assuming different
values of the volumes of the nodes and of the corresponding
temperatures, the system converges to the more standard
scenario of another genuine nonequilibrium state, which is
a consequence of the variational principle of minimization
of the entropy production rate, constant at any node of the
system. In conclusion, we have here shown that minimalistic
loops of intertangled excitatory and inhibitory units might
trigger a coherent amplification of the stochastic oscillations,
as exhibited on each isolated patch. Moreover, deterministic
non-normality should be maximized for the the stochastic
system to grow giant coherent oscillations.
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