
EURO Journal on Computational Optimization 9 (2021) 100012 

Contents lists available at ScienceDirect 

EURO Journal on Computational Optimization 

journal homepage: www.elsevier.com/locate/ejco 

(Global) Optimization: Historical notes and recent developments 

Marco Locatelli a , Fabio Schoen 

b , ∗ 

a DIA - Università di Parma, Parco Area delle Scienze, 181/A, Parma - 43124, Italy 
b DINFO - Università degli Studi di Firenze, via di S. Marta, 3, Firenze - 50139, Italy 

a r t i c l e i n f o 

Keywords: 

Global optimization 
Heuristics 
Exact methods 

a b s t r a c t 

Recent developments in (Global) Optimization are surveyed in this paper. We collected and commented quite 
a large number of recent references which, in our opinion, well represent the vivacity, deepness, and width 
of scope of current computational approaches and theoretical results about nonconvex optimization problems. 
Before the presentation of the recent developments, which are subdivided into two parts related to heuristic 
and exact approaches, respectively, we briefly sketch the origin of the discipline and observe what, from the 
initial attempts, survived, what was not considered at all as well as a few approaches which have been recently 
rediscovered, mostly in connection with machine learning. 
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a

. introduction 

It seems worthwhile, in a special issue like this one, to devote a few
ords to the foundation of (global) optimization as an independent re-

earch topic. Looking back to the early days might prove useful, as some
ld ideas which, in the beginning, did not lead to much development,
ight prove to be interesting for current research, when considered from
 modern perspective. Moreover, it is interesting to notice how some of
he sub-fields which have seen a very large set of contributions in recent
ears, were almost totally neglected in the beginning. We refer in partic-
lar to exact (global) optimization methods based on implicit enumer-
tion and to the jungle of “nature inspired ” population heuristics. For
hat concerns this kind of heuristics, we need of course to cite at least

he book Holland (1975) where the basic ideas of genetic algorithms are
icely introduced. In what follows, we will first give a quick overview
f the main approaches contained in the two classical books devoted to
he subject in the 70’s ( Dixon and Szegö, 1975; 1978 ). Then, we will
ive more details on recent developments. We also refer to our book
ocatelli and Schoen (2013) for a detailed discussion about (global) op-
imization topics, updated as of the date of publication of the book. After
he historical introduction, the paper will consider two topics: recent,
r re–discovered, heuristic approaches and recent developments in exact
pproaches. A final observation before the beginning of the paper: here
nd in the title we parenthesized the word (global). We will omit doing
o in the paper, but we would like to observe that, although in the past
he subject was considered somewhat exotic and off the main research
treams, nowadays the richness of both theory as well as computational
pproaches gives to the subject a full recognition in the scientific com-
unity. We might then propose, with a slightly provocative style, to
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ename the whole subject simply as “optimization ” – what else should
e look for when optimizing, if not a global optimum? 

The paper is structured as follows. After the brief introduction given
n this section, in Section 2 we recall the contents of the two books
dited in the70 ′s by Lawrence Dixon and Giorgio Szegö, which gave
 strong initial impulse to the whole discipline. In Section 3 we re-
iew some of the many heuristic computational approaches published
n the literature in recent years (say, roughly after the publication of our
ook Locatelli and Schoen (2013) , of which this paper might be consid-
red as a continuation). Section 4 surveys recent literature dealing with
tructured optimization problems for which an exact procedure can be
esigned. In Section 5 we briefly discuss some computational aspects
nd suggest sites where exhaustive lists of GO test problems and solvers
an be found. Some concluding remarks are finally presented. 

. On the origins of global optimization 

Many early papers dealt with non convex optimization problems
nd outlined basic algorithms. We recall here, as particularly inter-
sting examples, Dantzig (1960) , McCormick (1972) , Beale and For-
est (1976) , Falk and Soland (1969) , Soland (1971) , McCormick (1976) ,
orst (1976) . All of these papers had impact on the whole field, as well
s many others we are not citing here. Despite the relevance of these as
ell as many other early papers, it can quite safely be assumed that the
rst “large scale ” diffusion of the ideas of Global Optimization (denoted
y GO in what follows) can be credited to the two “orange ” books Dixon
nd Szegö (1975, 1978) . These two books, although clearly not the first
ublications in GO, gave a fundamental impulse to the whole research
eld and since their publication, the term “Global Optimization ” started
o be a recognized and respected label, characterizing optimization the-
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ry and methods for nonconvex optimization problems. To insist on the
act that the field was just in its infancy at that time, it might be observed
hat only 9 of the 25 papers in the first volume and only 12 out of 24
n the second one were grouped in the “Global Optimization ” chapters,
ll the others being local optimization papers, despite the title of the
wo books. It might be of interest to observe the topics which, at that
ime, were considered as the most promising ones. In this section we
ill briefly review some of the main ideas proposed at that time and

omment on their success in the GO literature and practice. 
We can group the first few papers on global optimization as follows:

Space covering. This area was related to methods aiming at
implicitly exploring the whole feasible region.
In particular, methods were described, mainly
for 1–dimensional optimization, which, based
on the knowledge of (an upper bound to) the
Lipschitz constant of the objective function,
could be built with a guaranteed maximum er-
ror in the approximation of 𝑓 ⋆ = min 𝑥 ∈𝑆 𝑓 ( 𝑥 ) .
In the survey by Dixon (1975) the methods of
Evtushenko (1971) and of Shubert (1972) (later
known as Piyavskii-Shubert ( Piyavskii, 1972 ))
were described. In the following years those
approaches generated a stream of research in
Lipschitz–optimization, with some interesting ap-
proaches but also severe limitations. In general,
as nicely described in another milestone in the
field, Horst and Tuy (1993) , these can be seen as
precursors and special cases of modern Branch &
Bound algorithms. The idea of Branch & Bound
for nonlinear optimization was not considered at
all in the two original books. 

Trajectory methods. At those times the idea of following the trajectory
of a suitable set of differential equations seemed
to be very promising. Some of the proposed ap-
proaches required locating saddle points in the
boundary of the region of attraction of known
local optima in order to be able to escape and
explore new basins. A group of papers in the
book, mostly from Joanna Gomulka and Gior-
gio Treccani, explored this idea. In the follow-
ing years this approach received less attention,
although some similarities can be traced with
some approaches based on stochastic differential
equations and with some recent approaches in
the neural network literature. A recent survey on
developments in this algorithmic family can be
found in Alexandropoulos et al. (2020) . 

yesian Optimization. At those times, GO problems with as few as ten
variables, with just box constraints, were con-
sidered as the frontier in computational GO ap-
proaches. Much of the effort then was devoted
to very small scale problems; even at small scale,
black-box problems were considered as very rel-
evant. In fact, practical problems arise in which
the objective function is not available in analyt-
ical form, but can only be evaluated at specific
points, possibly through an expensive procedure.
Among the most interesting and profound ideas
for small dimensional, possibly 1–dimensional,
GO problems, Bayesian Optimization (BO) was
particularly relevant. The main ideas of BO can
be traced back to papers published in the 60’s
by Harold Kushner (see, e.g., Kushner (1964) )
and then generalized in Mockus (1975) and in
many papers by the same author. The idea of
2 
BO is fascinating: assume the objective function
is a realization of a stochastic process, typically
a Gaussian one. Then, given a prior distribu-
tion on the possible sample paths of the pro-
cess, after a few observations of the objective
function, possibly affected by errors, have been
performed, a posterior distribution can be com-
puted, leading to a conditional stochastic model
which is further updated as soon as the true ob-
jective function is observed at new sample points.
This stochastic model can be analyzed in order to
answer, through suitable numerical algorithms,
queries like: find the point at which the expected
value of the function is minimum, or find the
point at which the expected improvement over
the current best observation is maximum. These
queries are themselves GO problems, but, dif-
ferently from the original one, possess a known
analytical expression, from which gradients can
be analytically computed; the global optimiza-
tion required can be carried out with standard
GO methods, without any necessity of excessive
precision. It is worth observing that, although
born in a stochastic framework, these methods
are indeed deterministic. A nice and relevant gen-
eralization and implementation of the BO ideas
can be found in Jones et al. (1998) , currently
among the top cited papers in the whole GO lit-
erature. Among the reasons for the great success
of this paper we can mention the fact that, after
a period in which BO almost disappeared from
the literature, as a consequence of the high in-
crease in complexity per iteration in the multi–
dimensional case, the implementation of EGO de-
scribed in Jones et al. (1998) recently became
a standard for hyperparameter optimization in
machine learning (see, e.g., Frazier (2018) for
a recent survey). The field has considerably ex-
panded in the last years and it is the subject of
very active research. 

Random Search. Methods based on some form of random sam-
pling were considered in the two books, as they
are in general simple to implement and do not
require first order information on the objective
function. In Gaviano (1975) some general con-
vergence results were proven; quite a few papers
proposed random search algorithms, which, how-
ever, did not find great attention in the following
years. The field was quite productive for some
time, and new approaches have been published
in recent years. Some of those we consider as the
most interesting ones are reviewed in our book
Locatelli and Schoen (2013) . 

Clustering. This, at the time, seemed to be one of the bright-
est and most innovative ideas. The efficiency
of the most elementary GO method, Multistart
(sample some random points and start a local
search from each of them), is improved by care-
fully selecting from which sample points it seems
worth starting an expensive local optimization.
Ideally, a single local search should be started
from each basin of attraction (and, possibly,
not from all of them, but just from the most
“promising ” ones). This idea was first proposed
in Becker and Lago (1970) and then has been
expanded and made available to a larger audi-
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ence in Törn (1978) . The idea of the proposed
approach is both simple and powerful. First draw
a uniform sample of feasible points. Then “con-
centrate ” the sample towards local optima either
by temporarily discarding a fraction of highest
value observations, or by performing a few de-
scent steps. Finally, identify higher density re-
gions (clusters), from each of which a single local
search is started. The approach had immediately
a great success and seemed to represent “the ” GO
method of choice, until a few years later, when it
gradually got abandoned. There might be many
reasons for the decline of clustering methods. We
conjecture that this might be due to: 
– the practical impossibility of dealing with

large dimensional problems, say with more
than 10 variables; 

– the fact that the method could be used just
to speed up Multistart, while more advanced
algorithms appeared in the literature; 

– the method became popular as it allows to
save on local searches which, at the time,
were very time consuming. With the advent
of modern local optimization methods, al-
though saving unnecessary local searches re-
mains a good point, the efficiency of local
search made those savings quite negligible in
the overall method. 

In recent years, some new methods have been
proposed (see Bagattini et al., 2018 ; Bagattini
et al., 2019 ; Schoen and Tigli, 2021 ) which re-
visit these ideas trying to soften as much as pos-
sible the above defects. 

. Recent heuristic GO methods 

In this section we would like to present a few recent papers dealing
ith modern GO algorithms. The papers cited in this section come either

rom the vast field of evolutionary approaches or have been stimulated
nd, in some cases, re-discovered thanks to the exponential growth in
he interest around machine learning. We point out that the review of
ecent literature will be partial and biased towards our knowledge and
references. It is really an impossible task to track all the papers dealing
ith GO heuristics, and even more difficult to highlight those which
re indeed relevant and truly innovative. But we tried to do our best in
escribing interesting new approaches in this wide field. 

.1. Population-based, evolutionary methods 

An enormous quantity of papers dealing with variants of the basic
volutionary population schemes appeared in recent years. In the au-
hors’ opinion it is quite disturbing that most of the papers in this sub-
eld justify themselves by some sort of an inspiration from nature, and,

requently, do not report any theoretical justification of the algorithmic
hoices, nor a fair and wide numerical comparison with state-of-the-art
lgorithms on well recognized benchmarks of test functions. A charac-
eristic within this family of approaches is that they are mostly based on
ome variation of very basic schemes which include: 

• a random generation of the initial set of solutions (initial popula-
tion); 

• a combination mechanism which takes parts of the components of
the solutions represented in the current population and generates a
new set of solutions; 

• possibly a mutation, through which some solutions are randomly
perturbed; 
3 
• possibly, in memetic algorithms, a local search applied to a selection
of the elements in the current population; 

• a substitution criterion, based on observed function values, by which
from the original and the current population, a new set of solutions
is built. 

Some standard algorithms arose from this basic scheme. The most no-
able, in GO, are Differential Evolution (DE) and Particle Swarm (PS), for
hose description we address the reader to the rich literature on the sub-

ect or to our chapter in Locatelli and Schoen (2013) . Some recent sur-
eys have been published on this subject (see, e.g., Das et al. (2016) or
el Ser et al. (2019) ). In the recent literature some new proposals ap-
eared like, e.g., Cui et al. (2016) or Wu et al. (2016) , where multiple
opulations, with different evolution strategies, are evolved simultane-
usly and compete among themselves to improve the best population.
t seems that memetic variants of DE stand out as a good compromise
etween simplicity and quality. For DE we can even cite some theoreti-
al convergence results ( Ghosh et al., 2012; Locatelli and Vasile, 2015 )
hich can suggest guidelines for algorithm definition. 

Among many variants of DE, those based on the exploitation of lo-
al optimization (memetic variants) are very interesting, as many GO
roblems allow for fast and reliable local search tools. In Cabassi and Lo-
atelli (2016) an analysis of some variants of the basic memetic DE is in-
roduced and numerically shown to be very effective on a wide range of
O test problems of varying dimension. In Schoen and Tigli (2021) those
ethods have been extended and mixed with a clustering approach in

rder to save unnecessary local searches; numerical results show that it
s possible to significantly improve the efficiency of those population–
ased methods while keeping their good quality. On a different line
f research, in Mansueto and Schoen (2021) a DE–based memetic ap-
roach is used to build an efficient GO method for optimal clustering in
uclidean spaces. In that paper a specialized local search is used, based
n the well known 𝐾–means clustering algorithm, coupled with the ex-
loration capabilities of DE. 

A source for many evolutionary algorithms, as well as test problems,
an be found in the various CEC (the IEEE Congress on Evolutionary
omputation) competition websites. It appears that, in those competi-
ions, a dominant role is played by population–based methods which
n some way exploit the separability or partial separability of prob-
ems. The idea of, at least partially, decompose a GO into sub-problems
s adopted by quite a large number of successful approaches in those
ompetitions. Of course, for separable problems it is easy to forecast
heir good performance, but numerical results seem to be quite inter-
sting also for non separable ones. The paper Ma et al. (2019) con-
ains a survey on decomposition–based methods and presents the ba-
ic ideas of these approaches. There are many variants of the basic
cheme, which typically differ in the decomposition strategy and the
ecombination one; many are based on a Gauss-Seidel–like strategy in
hich optimized subsets of variables are fixed and used while optimiz-

ng different subsets. We can cite here, as an example of an efficient
O approach, Hadi et al. (2019) , where, starting from an adaptive DE

cheme in which some hyperparameter is adjusted during the evolu-
ion, a hybrid, decomposition–based, memetic approach is proposed. In
articular, at some stage of the computation, variables are randomly
rouped and different local optimization algorithms are associated to
ach sub-group of variables. The winner of the 2019 CEC competition
un et al. (2019) uses an innovative strategy to decompose non separa-
le problems which leads to a highly efficient method. Their decompo-
ition scheme is based on the identification of subsets of variables which
artially overlap one another. 

Finally, we would like to mention the family of CMA-ES (Covari-
nce Matrix Adaptation Evolutionary Strategies) algorithms (see, among
any papers on the subject, Hansen and Ostermeier (2001) for an early

ntroduction to the approach, or Hansen (2006) for a survey on variants
f the basic method). The idea behind CMA-ES is that of having a popula-
ion of solutions to a GO problem which evolves through sampling from
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 multinomial distribution whose mean and covariance matrix evolve
uring the iterations and in some sense adapts to the level sets of the
bjective function. The objective function is evaluated at each sample
oint and a new mean and covariance matrix are generated through
n updating mechanism. Oversimplifying a description of this family
f approaches, which is indeed quite vast, we might say that they try
o adapt search directions and step sizes in order to favour changes in
he current population members which are likely to contribute much to
he improvement of the objective function. This is usually obtained by
ollowing directions associated to the principal components of the co-
ariance matrix, which is built in such a way as to adapt to observed
unction values. In Diouane et al. (2015a,b) an interesting extension of
he basic scheme is presented in which, imposing a criterion of suffi-
ient decrease in the objective function, some convergence properties
re obtained. 

.2. Basin-Hopping methods 

Multistart is one of the simplest GO methods, where a local search is
tarted from each point randomly generated within the feasible region
f a GO problem. It is usually considered a low efficiency algorithm
or GO due to the computational waste it produces in rediscovering the
ame local optima more than once and due to its absence of any learn-
ng mechanism (see Section 3.4 for further comments on these topics).
owever a relatively simple modification of Multistart, which goes un-
er the name of Basin Hopping (BH), or Iterated Local Search, is quite
n interesting approach for many hard GO problems. As in Multistart,
lso in BH local optimization is performed starting from a random ini-
ial point. However in BH, after a local optimum is found, new local
earches are performed starting from a (suitably defined) neighborhood
f the current one until possibly a better local optimum is found; in this
ase new local searches are performed starting from a neighborhood of
he new local minimum, and the whole procedure is repeated until some
topping rule is satisfied. The version we sketch here is the monotonic
ersion of the method: non monotonic ones have also been successfully
mplemented. BH has been used in Vinkó and Gelle (2017) as a tool to
uild a graph of neighboring local optima, much in the sense of what
as described in Chapter 3 of our book Locatelli and Schoen (2013) .
iven a BH algorithm with specific parameters, a run on a specific test

unction generates a set of local optima which can be pairwise connected
n a graph in which an oriented arc exists between two local minima if
he second one has been reached through a BH step from the first one.
he resulting graph associated to some classical test functions can be an-
lyzed. It might be possible to exploit this information in order to build
dvanced BH methods, but this is still a subject of current research. A
ybrid approach, mixing Differential Evolution with BH is presented in
i Carlo et al. (2020) , where a simple criterion is presented to save un-
ecessary local searches. 

Most recent literature on BH and its variations, including
opulation–based variants as discussed, e.g., in Grosso et al. (2007) ,
eals with application of these methods. Many of those applications
re in computational chemistry, a field where BH was born and
as found a prominent space in current research. As an example, in
hao et al. (2017) a modified BH is applied to the optimization of
tomic clusters. Among the many variations, in this paper it is sug-
ested that some variables are kept fixed at certain iterations (those
orresponding to the location of specific subsets of atoms), while some
thers are subject to perturbation in BH steps. Moreover, some accep-
ance criteria different from the improvement of the objective function
re suggested, like the exploration of new geometrical configurations. In
erreiro-Ferreiro et al. (2019) a simple modification of the BH scheme
s introduced and tested on specific atomic clusters. The idea is to let BH
xplore deeper basins by reducing its “greediness ”. To this aim, at each
teration, several neighboring local optima are generated and, instead of
oving towards the first improving one, the best is chosen as the starting
4 
oint of the next iteration. In Wales (2018) variants of BH are described
n the context of energy landscapes for atomic clusters. Different accep-
ance rules are proposed that differ from the classical monotonic and
etropolis-like acceptance rules, generalizations to multiple objectives

n the exploration phase are introduced, and further refinements based
n molecular dynamics are proposed. 

.3. Methods for expensive black-box objective functions 

This field has recently attracted enormous attention, driven by ma-
hine learning research, as algorithms within this framework are con-
idered as especially suitable for hyperparameter calibration in training
achine learning tools like, e.g., deep learning architectures. A survey

n the subject of optimization–based hyperparameter choice in machine
earning recently appeared in Yang and Shami (2020) , where a list of
vailable software is also provided. Also, in Tran et al. (2020) a dis-
ussion on the use of optimization tools in hyperparameter tuning is
resented. In applications for hyperparameter setting, two levels are
sually present. At the lower level, given a training set, learning pro-
eeds by suitably choosing (in neural networks, as an example) con-
ection weights in such a way that a loss function is minimized; at the
pper level the loss function itself, the overall architecture and, some-
imes, the optimization algorithm used for training, depend on a rela-
ively small number of hyperparameters (e.g., the parameter associated
o regularization, the number of layers, the “learning rate ”,...). These
yperparameters are usually optimized considering the performance of
he lower level trained system on a validation set, different from the
ne used for training. In general, thus, the objective function to be op-
imized at this level is neither known, nor cheap, and is modeled as
 black box. GO methods for expensive cost functions are among the
rimary choices for this tuning. We will not even try to summarize
he overwhelming quantity of reports recently published on this sub-
ect on arXiv. Although excellent research is sometimes found in that
ynamically exploding repository, here we chose to refer exclusively
o papers published in high quality refereed journals. A nice survey of
tate-of-the-art approaches in Bayesian Optimization can be found in
razier (2018) , while in Zhan and Xing (2020) several different objec-
ive functions based on variation of the originally proposed Expected
mprovement are presented and discussed. In Mathesen et al. (2020) an
nteresting generalization of Bayesian Optimization models is proposed,
n which the “acquisition function ” takes into account the desire to im-
rove the exploration capabilities, as the exploitation is delegated to a
rust-region based local search which takes into account the available
udget of function evaluations. It is interesting how, even in an expen-
ive function setting, the idea of performing local optimization can be
ffectively exploited. In Ahmed et al. (2020) it is suggested to use an
stimate of the Lipschitz constant in order to improve the search for the
ext observation point, an approach which, at least for moderately sized
roblems, might have some relevance. Instead, in Bemporad (2020) the
roposed approach is not based on a stochastic model of the objective
unction, but, taking inspiration from those models, the author proposes
 surrogate function composed of three elements: an interpolation of ob-
erved sample values, a distance from the points in the sample, distance
f the objective function values. This acquisition function is optimized
n order to decide where the next observation should be placed. 

A recent stream of research has started exploring the possibility of
pplying the idea of Bayesian Optimization to large scale GO prob-
ems. The main tool used to greatly increase the dimension of problems
hich can be solved through this approach is the idea of random em-

eddings . The philosophy of these approaches (see Binois et al., 2020;
oriconi et al., 2020; Wang et al., 2016 ) relies on the assumption that

or large dimensional problems there exists a true “low effective dimen-
ionality ”, which can be considered as a low–dimensional linear em-
edding such that the objective function does not change when mov-
ng along directions which are orthogonal to this embedding. A differ-
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nt approach to large-scale adaptation of these methods is reported in
noek et al. (2015) , where a neural network is used to learn a set of
asis functions to be used to build a Bayesian linear regressor which
ubstitutes the computationally expensive classical one. 

Among the most interesting approaches in the Bayesian Optimization
iterature, it seems worth citing extensions to the constrained case and,
n particular, to the case in which also the constraints are expensive,
lack-box, functions. Hernández-Lobato et al. (2016) present a detailed
urvey of constrained Bayesian Optimization methods. A novel frame-
ork is also introduced for the case where at each iteration a new sample
oint needs to be generated at which both the objective function as well
s the constraints have to be evaluated. However, in the proposed ap-
roach, it is assumed that functions (objective and constraints) might
e at least partially separable into parts (so called “tasks ”) – as a simple
xample, the objective function might be evaluated on a CPU while the
onstraints are defined in a way that enables to exploit the parallelism of
 GPU. In these cases, the merit (or “acquisition ”) function which guides
he search for the next evaluation point, should be defined in such a way
s to support a similar decomposition. In that paper, a novel acquisi-
ion function, called PESC (Predictive Entropy Search with Constraints)
s proposed as particularly well suited in this framework. Constrained
ayesian Optimization is also considered in Feliot et al. (2017) , mostly

n the context of an extension of the basic approach to multi-objective
ptimization, an interesting topic which is, however, out from the scope
f this paper. 

On a different line of research, in Garrido-Merchán and Hernández-
obato (2020) the problem is considered of adapting the approach to in-
eger and categorical variables, both ordered as well as unordered. The
nterest on such a kind of extension has been greatly stimulated by the
pplication of GO to hyperparameter calibration in machine learning,
here, e.g., in a neural network, one might wish to calibrate the num-
er of neurons, of layers, of filters on a convolution, which are integer–
alued parameters. Otherwise hyperparametrs can be associated, e.g.,
o the activation function at a neuron, or to the loss function, or to the
ernel function used in a Support Vector Machine; each of these can be
een as an example of categorical unordered parameter. The field has
een much expansion and interest in the scientific community and pa-
ers started to appear describing novel software implementations, like,
.g., Kandasamy et al. (2020) ; Martinez-Cantin (2014) . 

We conclude this subsection by citing Kim (2020) , a recent theo-
etical paper which provides a rational explanation on how Bayesian
ptimization algorithms proceed by alternating exploitation, or learn-

ng, phases with exploration, or optimization. Exploitation is connected
ith a greedy cost optimization strategy, while exploration is associated

o variance regularization. The whole process, analyzed in the context
f Dynamic Programming, is analyzed and it is shown how the temporal
iscount factor of a Markov Decision Process plays the role of trade–off
arameter between exploration and exploitation. 

.4. Methods on the intersection between machine learning and GO 

The title of this subsection refers to methods in which the search
owards a global optimum, or, at least, a good local one, is guided by
ome form of “learning ”, much in the spirit of modern machine learn-
ng approaches. In this part we would like to include the re-discovery
f clustering methods. These methods, as recalled in Section 2 , were
ased on the idea of learning, from the sample, the shape of differ-
nt basins of attractions of local optima, before starting expensive lo-
al searches. Clustering is one of the pillars of unsupervised learning
nd it might be of interest to look to those methods as early imple-
entations of machine learning tools for GO. In Bagattini et al. (2018,
019) and, Schoen and Tigli (2021) we proposed different strategies in
rder to overcome the limitations of original clustering methods. In par-
icular, we showed that the idea of those algorithms can be successfully
pplied to much more refined algorithms than the standard Multistart,
5 
y showing how a memetic Differential Evolution variant, inspired by
abassi and Locatelli (2016) , can profitably save a very large number
f useless local searches while maintaining the quality of the original.
oreover, we showed how to use the same ideas with methods based on

ocal search methods which are, in a sense, more refined and “global ”
han standard, gradient-based, local optimization tools. Finally, some
xperiments on random projections enabled us to extend the approach
o high dimensional problems. 

It is worth noticing also that in the field of chemical physics
any approaches are proposed in which GO methods (in particular,

ariations of basin hopping) are guided by knowledge on the prob-
em domain obtained through machine learning. As an example, in
eldgaard et al. (2018) , low dimensional features are extracted from

he original variables of atomic clustering problems and regression is
sed to assign an energy contribution to each atom in order to let GO
lgorithms focus on the parts of the current solution which contribute
ost to the objective function. 

We conclude this section citing a paper which does not belong to the
iterature on algorithms but is quite relevant to the subject. The paper
awaguchi (2016) deals with a conjecture on the absence of local optima
hich are not global when using a quadratic loss in training a deep
eural network. The results proven there are interesting, as the problem
s neither convex nor concave, yet it seems that training with a local
ptimization algorithm can always lead to a global optimum solution,
hus partially explaining the success of local methods in training neural
etworks. 

. Exact GO methods 

While in the previous section we discussed heuristic approaches, in
his section we deal with exact GO methods. We will first discuss ”easy ”
O problems, i.e., GO problems which can be reformulated as (tractable)
onvex problems or, at least, can be solved in polynomial time with re-
pect to the size of the problem data and the inverse of the required pre-
ision (we refer, e.g., to Ben-Tal and Nemirovski (2001) for a detailed
iscussion about computational complexity in the context of continu-
us optimization problems and, in particular, in the context of convex
ptimization problems). Later on, we will discuss exact GO methods (ba-
ically, branch-and-cut approaches) which are usually applied to ’highly
tructured’ GO problems. We will often refer to Quadratic Programming
QP) problems, which arise in many different contexts. Applications of
Ps include the reformulation of some combinatorial optimization prob-

ems, like, e.g., max-clique and max-cut, portfolio optimization, packing
roblems, blending and pooling problems. More applications of QPs can
e found in Furini et al. (2019) , where a QP library is introduced. 

.1. “Easy ” GO problems 

Global optimization is, in general, a hard task. Even highly struc-
ured GO problems, like, e.g., Standard Quadratic Programming (StQP),
here a quadratic form is minimized over the unit simplex, have been
roved to be NP-hard. All the same, there are some classes of GO prob-
ems, in particular some QP problems, solvable in polynomial time.
hese include problems having the so called hidden-convexity property:
hough not convex, these problems can be reformulated as (tractable)
onvex problems. The best known of such problems is the trust region

roblem, where a quadratic function is minimized over the unit ball.
t has been shown in Rendl and Wolkowicz (1997) that this problem
dmits a semidefinite reformulation. In fact, in Ben-Tal and den Her-
og (2014) it has been shown that the trust region problem and, ac-
ually, a generalization where the unit ball constraint is replaced by
 more generic quadratic constraint, can be reformulated as a sim-
ler convex conic quadratic problem under the assumption that the
essian matrices of the objective and constraint functions are simul-

aneously diagonalizable. After transforming both the objective and the
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onstraint into separable functions, the conic quadratic problem is ob-
ained by first introducing new variables 𝑦 𝑖 and the related constraints
 𝑖 = 𝑥 2 

𝑖 
, and then relaxing these equalities into inequalities 𝑥 2 

𝑖 
≤ 𝑦 𝑖 .

he work Jiang et al. (2018) proposes a Second Order Cone Program-
ing (SOCP) reformulation for this problem without requiring the as-

umption of simultaneous diagonalization. The paper Wang and Kilinç-
arzan (2020) proposes a convex reformulation in the original space
f variables. Further problems with the property of hidden-convexity
ave been introduced in the last two decades. In Pong and Wolkow-
cz (2014) it is shown that, under suitable assumptions, a semidefinite
elaxation for the problem of minimizing a quadratic function over a
egion defined by a two-sided quadratic constraint (i.e., a lower and
pper bound are imposed over a quadratic function), is exact. For the
ame problem Jiang et al. (2018) presents a SOCP reformulation. The
ork Beck and Teboulle (2009) introduces a semidefinite reformulation

or the problem of minimizing the ratio of two quadratic functions over
 possibly degenerate ellipsoid. In Burer and Anstreicher (2013) and
turm and Zhang (2003) it has been proven that problems with a
uadratic objective function, a unit ball constraint and a single lin-
ar cut can be reformulated as semidefinite problems with an addi-
ional SOC-RLT (Second Order Cone - Reformulation Linearization Tech-
ique) constraint. The result has been extended in Burer and Anstre-
cher (2013) to the case of two parallel linear cuts and later on, in
urer and Yang (2015) , generalized to the case of an arbitrary num-
er of linear constraints, provided that such constraints do not intersect
n the interior of the unit ball. For problems with a quadratic objective
unction and two quadratic constraints, in Ye and Zhang (2003) it is
roved that if all the quadratic functions are homogeneous (i.e., there
re no linear terms), then an exact SDP relaxation exists. 

Many papers in the literature provide conditions under which some
onvex relaxation of a class of nonconvex problems turns out to be
xact. For QCQP problems (problems where objective and constraint
unctions are all quadratic), the work Kim and Kojima (2003) provides
ome sign conditions about the data under which SDP and SOCP relax-
tions are exact. The paper Sojoudi and Lavaei (2014) considers QCQP
roblems without linear terms, i.e., with objective function 𝑥 ⊤𝐴 0 𝑥 and
onstraints 𝑥 ⊤𝐴 𝑘 𝑥 ≤ 0 , 𝑘 = 1 , … , 𝑚 (but it also discusses a way to in-
lude also linear terms). For these problems a graph  is built with
 nodes (one for each variable) and an edge ( 𝑖, 𝑗) exists if and only if
 

𝑘 
𝑖𝑗 
≠ 0 for some 𝑘 ∈ {0 , 1 , … , 𝑚 } . Next, exactness of SDP and SOCP re-

axations are related to some sign conditions and to the structure of this
raph. For instance, exactness holds if for each edge ( 𝑖, 𝑗) all entries 𝐴 𝑘 

𝑖𝑗 
,

 ∈ {0 , 1 , … , 𝑚 } , have the same sign, and graph  is acyclic. The paper
eyakumar and Li (2014) considers the problem of minimizing quadratic
unctions over a feasible region defined by a ball constraint and lin-
ar constraints. A so called dimension condition is introduced under
hich the SDP relaxation turns out to be exact. Following Ben-Tal and
en Hertog (2014) , in Locatelli (2015b, 2016a) a simpler convex conic
uadratic relaxation is considered and in Locatelli (2016a) it is shown
hat such relaxation is equivalent to the SDP one. Then, a condition for
xactness of the relaxation more general than the dimension condition
s derived from the KKT conditions of the convex conic quadratic relax-
tion. The paper Ho-Nguyen and Kilinç-Karzan (2017) considers a SOCP
elaxation in the original space of variables for problems with quadratic
bjective function, a unit ball constraint and constraints 𝐴𝑥 − 𝑏 ∈  ,
here 𝐴 ∈ ℝ 

𝑚 ×𝑛 , 𝑏 ∈ ℝ 

𝑚 , and  ⊂ ℝ 

𝑚 is a closed convex cone. The pa-
er introduces conditions under which the relaxation is tight. Moreover,
iven the epigraph of the problem, with the additional variable 𝑡 and the
dditional constraint ℎ ( 𝑥 ) ≤ 𝑡 , where ℎ is the objective function, condi-
ions are provided for the derivation of its convex hull. In Burer and
e (2020) diagonal QCQPs are considered, where all the Hessian ma-
rices of the quadratic functions are diagonal. In this case the work
rovides some conditions related to the feasibility of suitably defined
olyhedral sets, which guarantee the existence of rank-one solutions of
he SDP relaxations and, thus, exactness of the relaxation. The work

ang and Kilinç-Karzan (2021) presents an exactness condition for a
6 
lass of QCQPs which includes the diagonal ones, and it is shown that
he condition implies the result proved in Burer and Ye (2020) when
pplied to diagonal QCQPs. In Jeyakumar and Li (2018) a class of min-
max QCQPs is addressed (the objective is the maximum of a finite set
f quadratic functions). A SOCP reformulation of the Lagrangian dual
s presented. Exactness of this SOCP problem is proved when the epi-
raphical set (the epigraph of all the quadratic functions involved in
he objective and in the constraints) is closed and convex. The Celis–
ennis–Tapia (CDT) problem, where a quadratic function is minimized
ver the intersection of two ellipsoids, has been investigated in some
orks. For instance, Ai and Zhang (2009) gives a necessary and suf-
cient condition for the exactness of the Lagrangian relaxation for
his problem. Different papers investigate the possibility of narrowing
or closing) the duality gap by adding SOC-RLT constraints Burer and
nstreicher (2013) , by solving two subproblems with SOC constraints
uan et al. (2017) , by adding lifted RLT cuts Yang and Burer (2016) ,
y adding KSOC cuts Anstreicher (2017) (we refer to Section 4.2.4 for
 discussion of all these cuts). It is also worthwhile to mention the re-
ult in Yang et al. (2018) stating that the addition to QCQPs of further
everse convex constraints, imposing that feasible points cannot lie in
he interior of non-intersecting ellipsoids, does not lead to more difficult
roblems. More precisely, the existence of a tight SDP relaxation for the
roblem without such constraints implies the existence of a tight SDP
elaxation also for the problem with these constraints. 

For some problems exact convex reformulations are not known but
till the problem can be solved in polynomial time. The polynomial
ethods usually enumerate all the (polynomially bounded) KKT points

or these problems. An example of such enumerative methods is pro-
osed in Bienstock and Michalka (2014b) for problems with a quadratic
bjective function, some ball constraints, some reverse ball constraints
i.e., constraints which impose that points cannot lie in the interior of a
all), and some linear constraints. The method runs in polynomial time
rovided that the number of ball and reverse ball constraints is fixed,
nd that the number of faces of the polyhedron defined by the set of lin-
ar inequalities having a nonempty intersection with the set defined by
he ball constraints is polynomially bounded. The papers Consolini and
ocatelli (2017) and Sakaue et al. (2016) provide a polynomial-time
ethod to solve a generalization of the CDT problem, where one of the

wo quadratic constraints is allowed to be nonconvex. The proposed
ethod identifies all the KKT points of the problem by solving a bi-

ariate polynomial system with polynomials of degree at most 2 𝑛 and
ith the two unknowns corresponding to the Lagrange multipliers of

he two quadratic constraints. The algorithm has a polynomial com-
lexity but with a large exponent (six) with respect to the number 𝑛 of
ariables. Interestingly, a rather different polynomial-time approach for
his problem has been presented in Bienstock (2016) . In this approach a
equence of feasibility problems for systems of quadratic inequalities is
olved by a polynomial-time algorithm based on Barvinok’s construction
arvinok (1993) . The algorithm is hard to implement but the approach
an also be extended to any fixed number of quadratic constraints, pro-
ided that one of them is strictly convex. 

We conclude this section by mentioning problems for which a
olynomial-time solution algorithm is not available but for which
olynomial-time approximation schemes are available. In Bomze and
e Klerk (2002) a Polynomial Time Approximation Scheme (PTAS) is
ntroduced for the StQP problem. The PTAS is based on the evaluation
f the objective function over a uniform grid. In de Klerk et al. (2006) ,
he result has been extended to the minimization of polynomials of fixed
egree 𝑑 over the unit simplex. In Depetrini and Locatelli (2011) a Fully
olynomial Time Approximation Scheme (FPTAS) has been proposed for
inear Fractional-Multiplicative Programming problems, where sums or
roducts of a fixed number of ratios of affine functions are minimized
ver polytopes. The FPTAS is based on the solution of LP problems over
 nonuniform grid. The approach has also been extended to a more
eneral class of problems in Locatelli (2013) and Mittel and Schulz
2013) . 
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.2. Exact methods for “difficult ” GO problems 

Branch-and-Cut (B&C) methods are most widely employed for the
xact solution of GO problems. In what follows we briefly sketch how
hey work. A collection  of subsets of the feasible region is maintained
hroughout the algorithm. The collection is initialized with a single set
orresponding to the whole feasible region. Then, during the execution
f the algorithm the problem is subdivided into subproblems by branch-

ng operations. Each branching operation replaces a subset in  by other
ubsets which cover it. For each subproblem a relaxation , often a con-
ex relaxation, is defined whose solution gives a lower bound for the
ubproblem. The relaxation can be strengthened through the introduc-
ion of cutting planes , which are guaranteed not to remove feasible or, at
east, optimal solutions. A global upper bound is possibly updated each
ime a feasible point is detected, e.g., as a result of the solution of the
onvex relaxation. Fathoming rules are applied, and, in particular, all
ubproblems in the collection  whose lower bound is not lower than
he current upper bound (possibly decreased by a tolerance value 𝜀 ) are
emoved from the collection . The algorithm stops as soon as the col-
ection  is empty. In some cases, a further collection  is maintained.
uch collection contains all subsets over which the lower bound is not
igher than the current upper bound. Then, when the algorithm stops
i.e., when the collection  is empty), the subsets in the collection 
ontain all feasible solutions whose objective function value differ from
he optimal value by at most the tolerance value 𝜀 . The theoretical is-
ue of the finiteness of B&C methods has been widely investigated in
he past and for this we refer to GO textbooks like Horst and Parda-
os (1995) , Horst et al. (2001) and Horst and Tuy (1993) . In what follows
e discuss the most recent developments related to the main operations
f B&C approaches emphasized above. Note that we are not going to
iscuss operations like upper bounding and fathoming since these are
ather standard operations for which significant developments cannot
e expected. For what concerns fathoming we only observe that, be-
ides the standard rule based on the comparison between lower and
pper bounds, in some cases it is possible to introduce fathoming rules
ased on optimality conditions. In particular, one can remove subsets
rom  for which it is possible to guarantee that they do not contain
oints fulfilling necessary optimality conditions. 

.2.1. Branching 

Branching operations can be subdivided into two broad classes, spa-

ial branching and KKT branching . Spatial branching can be applied to
eneric GO problems. The feasible region of the GO problem is initially
nclosed into a region with a simple geometrical form. Then, branch-
ng is performed by subdividing this region into smaller regions, often,
ut not necessarily, with the same geometrical form. The intersections of
hese smaller regions with the original feasible set give rise to the subsets
ntering the collection . The most common geometrical form is a box,
ince lower and upper bounds for the variables are often already part
f the GO problem description or, alternatively, can be easily computed
y solving auxiliary problems. But other geometrical forms have been
dopted in the literature. For instance, simplices and polyhedral cones
ave been often employed, see again the textbooks ( Horst and Pardalos,
995; Horst et al., 2001; Horst and Tuy, 1993 ). Note that in all these
ases (boxes, simplices, polyhedral cones) the branching operation sub-
ivides a subset into smaller subsets, whose interiors do not overlap, but
hich can share some common face. Some papers ( Cartis et al., 2015;
e Angelis et al., 2004; Fowkes et al., 2013; Hager and Phan, 2009;
e Thi, 2000 ) employ ellipsoids, exploiting the fact that quadratic func-
ions and also some cubic functions can be efficiently minimized over
hese sets. In this case the subsets generated by a branching operation
ay have overlapping interiors. We also mention Tóth et al. (2016) ,
here a subdivision into regular simplices is proposed, which also leads

o subsets with overlapping interiors. 
For some specific problems further geometrical forms have been con-

idered. For QCQP problems, Linderoth (2005) employs cartesian prod-
7 
cts of rectangles and right-angled triangles. For linear sum-of-ratios
roblems in Kuno (2005) cartesian products of trapezoids are used,
hile for the same problem Locatelli (2015a) employs cartesian prod-
cts of rectangles and right-angled triangles as in Linderoth (2005) . The
se of these geometrical forms is strictly related to the development
f tight under- and over-estimators for bilinear and bivariate fractional
unctions over the two-dimensional regions appearing in the cartesian
roducts, i.e., rectangles, right-angled triangles and trapezoids. 

The subdivision can be performed either in a problem-independent
r in a problem-dependent way. In the former a subregion is subdivided
nto subregions of equal size. The most common problem-independent
ubdivision is bisection, where the subregion, say a box, is split into two
ubregions through a subdivision of the longest edge performed at its
idpoint (for ellipsoids the longest edge is replaced by the longest axis).

nstead, problem-dependent subdivisions take the solution of the convex
elaxation into account. If the objective function is underestimated by
 convex function, the subdivision is performed in such a way that the
rror at the optimal solution of the convex relaxation, i.e., the difference
etween the objective function and the convex underestimating function
valuated at such optimal solution, is reduced as much as possible in
he newly generated subregions. Note that it is important to reduce the
rror at the optimal solution of the convex relaxation, since the value of
he convex underestimating function at this point is equal to the lower
ound computed over the subregion. Then, reducing the error usually
eans improving (increasing) the lower bound of the newly generated

ubregions with respect to the lower bound over the original subregion.
KKT branching has a more limited applicability with respect to spa-

ial branching. It is employed for QP problems with linear constraints.
n particular, for Box QP problems (problems with a quadratic objec-
ive function and box constraints) in Vandenbussche and Nemhauser
2005a,b) it is observed that these problems can be reformulated by re-
lacing the original feasible region with the one defined by the KKT
onditions. This requires the addition of the variables corresponding
o the Lagrange multipliers of the box constraints, while the original
uadratic objective function can be replaced by a linear one, involv-
ng also the additional variables. The only nonconvex constraints of the
eformulation are those corresponding to the complementarity condi-
ions. These are initially omitted, while KKT branching first selects a
onstraint according to some rule (usually the one with the largest vi-
lation of the complementarity condition at the solution of the convex
elaxation), and then splits the current subregion into two new subre-
ions by imposing that in one subregion the constraint is active, while
n the other the corresponding Lagrange multiplier is set equal to 0. The
ork Burer and Vandenbussche (2008) extends the approach to feasi-
le regions which are general polytopes. While the idea is the same, the
imple approach of omitting the complementarity conditions in order
o get a convex (linear) relaxation does not work in the general case
ince it leads to a trivial bound. Therefore, in Burer and Vandenbuss-
he (2008) an SDP relaxation is introduced. A different SDP relaxation
as been proposed in Burer and Vandenbussche (2009) for Box QP prob-
ems with further developments in Chen and Burer (2012) , which reports
ery good computational results for problems with a dense Hessian ma-
rix. KKT branching is also employed in Audet et al. (1999) for a special
P case, the case of disjoint bilinear programming. It is also worthwhile

o point out here that the reformulation of QP problems based on KKT
onditions has also been used to convert the solution of these problems
nto the solution of Mixed Integer Linear Programming (MILP) prob-
ems, where additional binary variables are used to establish whether a
onstraint is active or, alternatively, its Lagrange multiplier is equal to
ero (see, e.g., Xia et al. (2020) where good results, especially for StQP
roblems, are reported). 

.2.2. Convex underestimating functions 

Convex underestimating functions or, analogously, concave overesti-
ating functions, are essential for the definition of convex relaxations.
he ability of detecting them and evaluating their tightness, i.e., how
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lose they are to the original function, strictly depends on the proper-
ies of the original function and on the region over which the underesti-
ation takes place. For some functions and regions of relatively simple

orm it is possible to compute the tightest convex underestimator, also
nown as convex envelope. More formally, given a function 𝑓 and a re-
ion 𝑋, the convex envelope of 𝑓 over 𝑋 is defined as follows for each
 ∈ 𝑋: 

𝑜𝑛𝑣 𝑓 ,𝑋 ( 𝑥 ) = sup { 𝑐( 𝑥 ) ∶ 𝑓 ( 𝑦 ) ≥ 𝑐( 𝑦 ) , ∀𝑦 ∈ 𝑋, 𝑐 is convex } , 

.e., 𝑐𝑜𝑛𝑣 𝑓 ,𝑋 is the largest convex underestimator of 𝑓 over 𝑋 (note
hat in the above definition ’ 𝑐 is convex’ can be replaced with ’ 𝑐 is
ffine’). Analogously, we can define concave envelopes, i.e., tightest
oncave overestimators. In what follows we will always refer to con-
ex envelopes, since the concave envelope of 𝑓 over 𝑋 can easily be
een to be the opposite of the convex envelope of − 𝑓 over 𝑋. Besides
ome results for specific functions, the best known of which is probably
cCormick convex envelope for bilinear terms over rectangles, some

eneral results appeared in the literature. The first general results were
ostly related to so called polyhedral convex envelopes. A function 𝑓

dmits a polyhedral convex envelope over a region 𝑋 if its convex en-
elope is the maximum of a finite number of affine functions. In partic-
lar, if 𝑋 is a polytope, a function 𝑓 is said to admit a vertex polyhedral
onvex envelope if its convex envelope is equal to the convex enve-
ope of the same function over the vertex set of 𝑋. In fact, according to
ikun (1997) polyhedral convex envelopes are always vertex polyhedral
onvex envelopes for continuously differentiable functions 𝑓 . The condi-
ion of edge-concavity (concavity along each segment parallel to an edge
f 𝑋) guarantees the existence of a vertex polyhedral convex envelope
 Meyer and Floudas, 2005a; Tardella, 2003; 2008 ). For instance, multi-
inear functions always admit vertex polyhedral convex envelopes over
oxes. In Meyer and Floudas (2005a) it is shown that these envelopes
re strictly related to triangulations of the polytope 𝑋 with a number
f simplices which can be very large (e.g., of size 𝑛 ! for 𝑛 -dimensional
oxes). Identification of the triangulation may be a rather difficult task,
xcept for some special cases. In particular, when 𝑋 is the unit box and
is submodular over the vertex set of 𝑋, the convex envelope is the

ovász extension of 𝑓 (see Tawarmalani et al., 2013 ). Recently, differ-
nt results about non-polyhedral convex envelopes have been presented.
ost of them require that 𝑋 is a box, while 𝑓 is required to satisfy differ-

nt assumptions. In Tawarmalani and Sahinidis (2001) 𝑓 is assumed to
e convex if we fix the value of one variable and concave if the remain-
ng 𝑛 − 1 variables are fixed. In Jach et al. (2008) the Hessian of 𝑓 is
ssumed to have at least one negative eigenvalue over the box and 𝑓 is
onvex if the value of one variable is fixed. In Khajavirad and Sahinidis
2012, 2013) 𝑓 is a product function ℎ ( 𝐳 ) 𝑔( 𝐲 ) , where ℎ and 𝑔 must fulfill
ome conditions (e.g., ℎ must be nonnegative and convex and with some
pecific form, 𝑔 must be nonnegative and component-wise concave). In
allerstein and Michaels (2014) and Locatelli (2016b) 𝑓 is required to
e (strictly) convex if we fix the values of 𝑛 − 1 variables, while if we
x the value of the remaining variable, the minimum of the function

s attained at a vertex of the corresponding ( 𝑛 − 1) -dimensional box. In
ll the above works, the required properties for 𝑓 imply that the con-
ex envelope of 𝑓 over the box is equivalent to the convex envelope
f the same function over the border of the box. In Locatelli (2020) a
ase where this does not hold has been discussed, namely the convex
nvelope of bivariate cubic functions over rectangles. 

The convex (and concave) envelopes of some functions of relatively
imple form (usually, univariate or bivariate functions) can also be em-
loyed to underestimate and/or overestimate functions with a more
omplicated form. This is the case for factorable functions, i.e., functions
hich can be progressively decomposed into the sum and product of

imple univariate and bivariate functions, for which convex and concave
nvelopes are available (see, e.g., Khajavirad et al., 2014; Scott et al.,
011; Tawarmalani and Sahinidis, 2004 ). For instance, given the fac-
orable function 𝑒 𝑥 1 𝑥 2 𝑥 3 , we first introduce the new variables 𝑥 4 = 𝑥 1 𝑥 2 ,
 = 𝑒 𝑥 4 , and 𝑥 = 𝑥 𝑥 , and then these equality constraints are replaced
5 6 5 3 

8 
y inequalities where the left-hand side is imposed to be not lower than
he convex envelope (over a suitable rectangle or interval) of the right-
and side, and not larger than its concave envelope. A simple example
f factorable function is the sum of bilinear terms 

∑𝑛 

𝑖,𝑗=1 , 𝑖 ≠𝑗 𝐴 𝑖𝑗 𝑥 𝑖 𝑥 𝑗 . A
ossible convex underestimator (concave overestimator) for this func-
ion over the unit hypercube can be obtained by summing McCormick’s
onvex envelope (McCormick’s concave envelope) of each single bi-
inear term over the unit square. Unfortunately, the convex underes-
imator is not the convex envelope of the overall sum (in general, the
onvex envelope of a sum is not the sum of the convex envelopes of
he single terms of the sum). Similarly, for the concave overestimator.
owever, there are some results which bound the difference between

he concave overestimator and the convex underestimator. In particu-
ar, in Luedtke et al. (2012) it is shown that such difference cannot be
arger than the difference between the concave and the convex enve-
ope over the unit hypercube times a 𝑂( 𝑛 ) constant, while in Boland
t al. (2017) the order of magnitude of the constant has been refined to
( 
√
𝑛 ) . 

For a poorly structured function 𝑓 the best known approach for un-
erestimating 𝑓 is the one proposed within the framework of the 𝛼-BB
pproach (see Adjiman et al. (1998a, 1996, 1998b) ). In this case, 𝑓 is
nly assumed to be twice-continuously differentiable and a nonnegative
unction 𝑞 is introduced such that the Hessian of 𝑓 − 𝑞 is semidefinite
ositive over a box 𝑋 or, stated in another way, 𝑓 − 𝑞 is a convex un-
erestimator of 𝑓 over 𝑋. In the original 𝛼-BB approach 𝑞 was defined
s 

( 𝑥 ) = 

𝑛 ∑
𝑖 =1 
𝛼𝑖 ( 𝑥 𝑖 − 𝓁 𝑖 )( 𝑢 𝑖 − 𝑥 𝑖 ) , 

here 𝓁 𝑖 , 𝑢 𝑖 are, respectively, the lower and upper bound for variable
 𝑖 within the box 𝑋, while the values 𝛼𝑖 are suitably chosen in or-
er to guarantee convexity of 𝑓 − 𝑞 over 𝑋. Later on, different func-
ions 𝑞 have been proposed in the literature, like, e.g., spline functions
eyer and Floudas (2005b) , obtained by first subdividing the box 𝑋

nto smaller sub-boxes and then computing different (and sharper) 𝛼 val-
es over these sub-boxes, or exponential functions ( Akrotirianakis and
loudas, 2004 ). In the recent work Kazazakis and Adjiman (2018) a fur-
her variant has been proposed, where the original function is replaced
y a so called 𝜇-subenergy function, with the property that its eigen-
alues have a smaller magnitude with respect to those of the original
unction in the regions far away from global minimizers, thus allowing
o choose tighter 𝛼 values in those regions. 

For poorly structured GO problems we should also mention meth-
ds based on interval arithmetic. These are rigorous methods, i.e., they
uarantee the detection of a solution within a prescribed tolerance even
n the presence of rounding errors. The overall number of contributions
n this field in the last two decades is relatively limited, but there are
ome interesting works. We first mention the two surveys ( Araya and
eyes, 2016; Neumaier, 2004 ), to which we refer for a more detailed
iscussion about the topic. In some works first and second order infor-
ation are employed both to define linear and quadratic underestimat-

ng functions and to fathom (or shrink) boxes which are guaranteed not
o include points satisfying first and second order necessary optimality
onditions (see, e.g., Hansen et al., 2007; Markot and Schichl, 2014;
artinez et al., 2004 ). Note that the original 𝛼-BB approach exploits

econd order information to derive a convex quadratic underestimating
unction. In Borradaile and Van Hentenryck (2005) , Kearfott (2011) and
eumaier and Shcherbina (2004) safe linear underestimators are dis-
ussed. These are linear relaxations which take into account numeri-
al errors in the computation of the coefficients of the linear functions.
he paper Berenguel et al. (2013) presents ways to take into account
eparability of the objective function. In Carrizosa et al. (2004) it is
hown that simple translations of the variables allow to derive bet-
er inclusion functions through interval arithmetic. A discussion about
ifferent branching rules for the subdivision of a box into sub-boxes
an be found in Csallner et al. (2000) and Markót et al. (2006) . In
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ansson et al. (2007) interval arithmetic is applied to compute rigor-
us error bounds for the optimal value of semidefinite programs. In
omes and Neumaier (2016) it is shown that the information extracted

rom local optimization, namely the approximated local optimizer as
ell as the corresponding Lagrange multipliers, can be exploited to

orm an aggregated redundant constraint which turns out to be power-
ul in order to tight the bounds on the variables (see also the following
ection 4.2.5 ). The authors also remark that such aggregate constraints
re able to reduce the so called cluster effect , i.e., the presence of a large
luster of unfathomed small boxes in the regions around the global min-
mizer, which is a serious obstacle to the efficiency of B&C approaches.

e also mention the successful application of an interval method to the
ircle packing problem (see Markót and Csendes, 2005 ). 

We conclude this section by observing that up to now we have talked
bout convex underestimators. However, as discussed in Section 4.1 ,
here are some nonconvex problems which can be solved efficiently.
o, in some cases nonconvex underestimators can be employed. For in-
tance, in Cartis et al. (2015) and Fowkes et al. (2013) the objective
unction is underestimated by quadratic and cubic functions, whose min-
mizers can be efficiently computed over spheres, which are the regions
enerated by the branching operation adopted in those works. If the
ranching operation generates polyhedral sets with a limited number
f vertices, then concave underestimators can be employed. Indeed, the
inimum value of a concave function over a polytope is attained at a

ertex of the polytope. This is done, e.g., in the context of Lipschitz op-
imization (see, for instance, Hendrix and Tóth, 2010; Paulavi ̆cius and
 ̆ilinskas, 2014 ), where a concave lower bounding function based on
he Lipschitz condition is minimized over a simple polyhedral region
in particular, a simplex). 

.2.3. Problem reformulations and convex relaxations 

For some nonconvex problems a convex relaxation can be derived by
rst reformulating the problem, usually with the addition of new vari-
bles, and then removing or relaxing the nonconvex constraints of the
eformulation. A typical example is the well known Shor relaxation for
CQPs, where the additional matrix variable 𝑋 and the equality con-

traint 𝑋 = 𝑥𝑥 ⊤ are introduced. This way, each quadratic form 𝑥 ⊤𝑄𝑥

an be replaced by the linear term 𝑄 ∙𝑋 = 

∑𝑛 

𝑖,𝑗=1 𝑄 𝑖𝑗 𝑋 𝑖𝑗 . Nonconvex-

ty only lies in the rank-one constraint 𝑋 = 𝑥𝑥 ⊤. A convex relaxation is
btained by replacing the equality constraint with the semidefinite con-
traint 𝑋 ⪰ 𝑥𝑥 𝑇 , i.e., it is required that the matrix 𝑋 − 𝑥𝑥 ⊤ is positive
emidefinite. The resulting SDP bound has a good quality but is costly.
onversely, SOCP relaxations, obtained by replacing quadratic functions
ith convex quadratic underestimating functions, have a poorer qual-

ty but are faster to compute. For this reason in Burer et al. (2014) it
s proposed to construct mixed SOCP-SDP relaxations which allow for a
alance between the quality of the bound and the time needed to com-
ute it. 

The work Burer (2009) introduces an exact reformulation for QP
roblems with quadratic objective function and linear constraints, pos-
ibly with some binary variables. The reformulation is based on the con-
ex cone of 𝑛 × 𝑛 completely positive matrices 

 

∗ 
𝑛 
= { 𝑋 ∈ ℝ 

𝑛 ×𝑛 ∶ 𝑋 = 

∑
𝑘 ∈𝐾 

𝑥 𝑘 𝑥 
⊤
𝑘 
, |𝐾| has finite cardinality , 𝑥 𝑘 ∈ ℝ 

𝑛 
+ , 

∀𝑘 ∈ 𝐾} , 

nd its dual cone, the dual cone of copositive matrices: 

 𝑛 = { 𝑋 ∈ ℝ 

𝑛 ×𝑛 ∶ 𝑥 ⊤𝑋𝑥 ≥ 0 ∀𝑥 ∈ ℝ 

𝑛 
+ } . 

n Burer (2009) it is proved that, under mild assumptions, any QP prob-
em with linear constraints and, possibly, some binary variables, can be
eformulated as a problem over the convex cone of completely positive
atrices (we refer, e.g., to the survey paper Bomze et al. (2012) for
 discussion about problems over this cone and over the dual cone of
opositive matrices). This result has some predecessors and different
9 
uccessors. The predecessors are copositive reformulations for some sub-
lasses of QP problems. In particular, the first of such results is a copos-
tive reformulation of StQP problems presented in Bomze et al. (2000) .
n the successors of Burer (2009) , completely positive and copositive
eformulations have been extended to other classes of optimization
roblems. In fact, in Burer (2009) itself the result is extended also to
ases where some quadratic equality constraints appear. In Burer and
ong (2012) it is shown that QCQPs can be reformulated as general-

zed copositive programs, i.e., problems defined over the generalized
ompletely positive cone, where the requirement 𝑥 𝑘 ∈ ℝ 

𝑛 
+ , ∀𝑘 ∈ 𝐾, is

eplaced by 𝑥 𝑘 ∈  , ∀𝑘 ∈ 𝐾, where  is a convex cone. The paper
maral et al. (2014) reformulates the problems of minimizing the ratio
f two quadratic functions over a polyhedral region as problems over
he cones of completely positive matrices and of copositive matrices. In
ai et al. (2016) it is shown that, under suitable assumptions, QCQP
roblems whose variables are constrained to belong to  ∩ , where
 is a convex cone and  is a region defined by linear equality con-

traints, can be reformulated as problems over the cone of completely
ositive matrices. In Bomze et al. (2017) it is shown that, besides the
ne presented in Burer (2009) , other equivalent completely positive re-
ormulations for mixed-binary QPs are possible. The interest of these
quivalent reformulations lies in the fact that, once the completely pos-
tive cone is relaxed into a tractable one, the new reformulations may
ead to tighter bounds. In Bomze et al. (2018) it is shown that for QP
roblems with quadratic objective function, two quadratic constraints
nd some further linear constraints, under suitable assumptions a copos-
tive reformulation exists. For some problems, a completely positive re-
ormulation is not available but still they admit completely positive re-
axations. In Bomze (2015) it is proved that for QCQPs bounds returned
y completely positive relaxations dominate Lagrangian dual bounds.
his result has been extended to polynomial programming problems in
uang and Zuluaga (2018) after the introduction of completely positive

ensors. 
Unfortunately, though convex, the cones of copositive and com-

letely positive matrices are not tractable, i.e., problems over these
ones cannot be solved in polynomial time by interior point methods
ecause the computation of their self-concordant barrier functions can-
ot be performed in polynomial time. All the same, reformulations over
he completely positive or copositive cone allow to define polynomi-
lly solvable convex relaxations by replacing these cones with tractable
ones. The cone of nonnegative matrices and the cone of semidefinite
atrices are tractable and they outer approximate  ∗ 

𝑛 
and, being self-

ual, they inner approximate  𝑛 . The intersection of these two cones
s the cone of doubly nonnegative matrices, which inner approximates
 𝑛 (in fact, equality holds for 𝑛 < 5 ), while its dual cone, i.e., the cone
ade up by matrices which can be obtained by summing a nonneg-

tive and a semidefinite matrix, outer approximates  ∗ 
𝑛 
. Different hi-

rarchies of cones {  

𝑟 
𝑛 
} have been proposed in the literature such that

𝑟 ∶  

𝑟 
𝑛 
⊃  

𝑟 +1 
𝑛 
⊃  ∗ 

𝑛 
, i.e., the cones are finer and finer outer approxima-

ions of the completely positive cone and, conversely, their dual cones
re finer and finer inner approximations of  𝑛 (see de Klerk and Pasech-
ik, 2002; Parrillo, 2000; Peña et al., 2007 ). Although the bounds based
n these hierarchies tend to become sharper as 𝑟 increases, the main
rawback is that the size of these problems tends to increase rapidly
ith 𝑟 , since they involve 𝑛 𝑟 +1 × 𝑛 𝑟 +1 matrices or a comparable number
f 𝑛 × 𝑛 matrices. Thus, from the computational point of view only the
se of small values for 𝑟 is feasible. In Bundfuss and Duer (2009) , after
bserving that a matrix 𝐴 is copositive if and only if 𝑥 ⊤𝐴𝑥 ≥ 0 for all
 ∈ Δ𝑛 , where Δ𝑛 is the 𝑛 -dimensional unit simplex (see also Tóth et al.,
021 ), polyhedral inner and outer approximations of the copositive
one are proposed, based on simplicial subdivisions of the unit sim-
lex. It is shown that, under suitable assumptions, bounds computed
y replacing the copositive cone with these approximations tend to con-
erge to the optimal value of the copositive problem, provided that the
ength of the largest edge of the simplices in the partition converges
o 0. 
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𝑆

In order to strengthen the bound obtained by replacing  ∗ 
𝑛 

with a
ractable cone, we may also proceed as follows. Let 𝑋 

⋆ be the opti-
al solution obtained by solving the relaxation over the tractable cone
 ⊃  ∗ 

𝑛 
. Then, either 𝑋 

⋆ ∈  ∗ 
𝑛 

or 𝑋 

⋆ ∈  ⧵  ∗ 
𝑛 
. In the former case 𝑋 

⋆ is
lso an optimal solution of the completely positive problem. Otherwise,
y definition of dual cone, there exists some 𝐶 ∈  𝑛 such that 𝐶 ∙𝑋 

⋆ < 0 .
hus, adding the inequality 𝐶 ∙𝑋 ≥ 0 to the previous relaxation, we are
ble to strengthen the previously computed bound. In other words, a
eparation problem is solved. Such an approach has been explored in
urer and Dong (2013) and also in Bomze et al. (2010) for what con-
erns the completely positive reformulation of the max-clique problem.
ote that this topic would also fit into the following Section 4.2.4 about
utting planes. 

Reformulations and relaxations have also been proposed for poly-
omial programming problems. The unconstrained minimization of a
olynomial 𝑓 with degree 𝑑 can easily be reformulated as: 

up 𝛼

𝑓 ( 𝑥 ) − 𝛼 ∈  𝑛,𝑑 , 

here  𝑛,𝑑 is the set of nonnegative polynomials of degree at most
. However, the set of nonnegative polynomials is not easily repre-
entable. Therefore, a tractable relaxation can be obtained by replac-
ng it with the set of Sum-Of-Squares (SOS) polynomials of degree at
ost 𝑑, i.e., polynomials which can be written as a sum of a finite num-

er of square of polynomials of degree at most 𝑑 2 . The nice feature of
OS polynomials is that they are representable by a positive semidefi-
ite condition imposed over matrices with dimension 𝑂 

(
𝑛 𝑑∕2 

)
. In fact,

app and Yildiz (2019) discusses an alternative and cheaper way to rep-
esent SOS polynomials. The bound based on the SOS relaxation (and
ts dual counterpart, the moment relaxation, see Lasserre, 2001 ) has
een strengthened with the definition of hierarchies of bounds both for
he unconstrained and the (polynomially) constrained case, which have
een discussed in different papers such as, e.g., de Klerk et al. (2017a,b) ,
asserre (2001, 2005, 2006) , Laurent (2007) , Nie (2013) , Nie (2014) ,
ie et al. (2006) and Vui and So’n (2008) . 

.2.4. Outer approximation and cutting planes 

When the feasible region 𝑆 is not convex, we need to outer approx-
mate it with a convex region in order to derive a convex relaxation.
he tightest convex outer approximation of 𝑆 is called convex hull of
and is denoted by 𝑐ℎ𝑢𝑙 𝑙 ( 𝑆) . One possibility to derive a convex outer

pproximation is to replace each constraint 𝑔( 𝑥 ) ≤ 0 defining 𝑆, 𝑔 non-
onvex, with a constraint 𝑐( 𝑥 ) ≤ 0 , where 𝑐 is a convex underestimator
f 𝑔 over 𝑆, so that all the material discussed in Section 4.2.2 could
e applied here. The tighter the convex underestimator, the tighter is
he convex outer approximation. However, replacing each nonconvex
unction 𝑔 with its convex envelope over a suitable region containing

leads to a convex outer approximation, but this is not necessarily
he convex hull. A simple example is the following. Given the region
 = {( 𝑥, 𝑦 ) ∈ [1 , 2] ∶ 𝑥𝑦 ≥ 3} , according to the previous discussion the
onconvex function 𝑥𝑦 should be replaced by its concave envelope over
1 , 2] 2 , i.e., by min { 𝑥 + 2 𝑦 − 2 , 2 𝑥 + 𝑦 − 2} . But the resulting convex re-
ion {( 𝑥, 𝑦 ) ∈ [1 , 2] ∶ 𝑥 + 2 𝑦 − 2 ≥ 3 , 2 𝑥 + 𝑦 − 2 ≥ 3} is not the convex
ull of 𝑆, since 𝑆 is already a convex set (just note that 𝑥𝑦 ≥ 3 can be
ewritten as 𝑥 ≥ 3∕ 𝑦 ). More generally, in Anstreicher (2012) for QCQPs,
ith additional linear constraints defining a polytope 𝑃 , it is shown that

eplacing the quadratic terms with their convex envelopes over 𝑃 leads
o a convex relaxation which is dominated by the one obtained through
he convex hull of the set {(1 𝑥 )(1 𝑥 ) ⊤, 𝑥 ∈ 𝑃 } (note, however, that both
he convex envelope and the convex hull may be hard to compute). 

Many results about convex hulls have been presented in the recent
iterature. The work Vandenbussche and Nemhauser (2005b) , within
he framework of a branch-and-bound approach for Box QP problems
ased on KKT branching (see Section 4.2.1 ), considers convex hulls of
he regions defined by the KKT conditions related to each single variable
10 
 𝑖 of the problem. Again for Box QP, in Burer and Letchford (2009) first
he objective function is linearized with the addition of the variables 𝑋 𝑖𝑗 

nd the related constraints 𝑋 𝑖𝑗 = 𝑥 𝑖 𝑥 𝑗 , and then the convex hull of the
et 

( 𝑥, 𝑋) ∈ [0 , 1] 𝑛 + 𝑛 ( 𝑛 +1)∕2 ∶ 𝑋 𝑖𝑗 = 𝑥 𝑖 𝑥 𝑗 , 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 
}
, 

s analyzed. Many facet-inducing inequalities for this set are de-
ived from valid inequalities for the Boolean quadric polytope (see
adberg (1989) ): 

( 𝑥, 𝑋) ∈ {0 , 1} 𝑛 + 𝑛 ( 𝑛 −1)∕2 ∶ 𝑋 𝑖𝑗 = 𝑥 𝑖 𝑥 𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 
}
. 

or QP problems or, more generally, for polynomial programming prob-
ems, a convex relaxation can be strengthened by the Reformulation-
inearization Technique (RLT), introduced in Sherali and Tunc-
ilek (1992) . If the linear constraints 𝑎 ⊤1 𝑥 ≥ 𝑏 1 and 𝑎 ⊤2 𝑥 ≥ 𝑏 2 are present,
hen first the additional quadratic constraint ( 𝑎 ⊤1 𝑥 − 𝑏 1 )( 𝑎 ⊤2 𝑥 − 𝑏 2 ) ≥ 0 ,
mplied by the two linear constraints, is added, and then this constraint
s linearized by replacing the terms 𝑥 𝑖 𝑥 𝑗 with the additional variables
 𝑖𝑗 . A typical example are the RLT constraints obtained by multiplying

he box constraints 0 ≤ 𝑥 𝑖 , 𝑥 𝑗 ≤ 1 : 

 𝑖𝑗 ≥ 0 , 𝑋 𝑖𝑗 ≥ 𝑥 𝑖 + 𝑥 𝑗 − 1 , 𝑋 𝑖𝑗 ≤ 𝑥 𝑖 , 𝑋 𝑖𝑗 ≤ 𝑥 𝑗 , 

hich also correspond to the classical McCormick envelopes. In
nstreicher (2009) it is shown that for Box QPs and some QCQPs,

ncluding both the semidefinite condition on the variable matrix 𝑋
nd RLT constraints, leads to significatively better bounds than us-
ng the semidefinite condition or the RLT constraints alone. The paper
nstreicher and Burer (2010) derives convex hulls for quadratic forms
ver small-dimensional regions (triangles and boxes) based on semidefi-
ite and nonnegative conditions over matrices and, possibly, additional
LT constraints. In Bienstock and Michalka (2014a) cutting planes are
efined for the characterization of 𝑐ℎ𝑢𝑙 𝑙 ( 𝑆) when 

 = {( 𝑥, 𝑞) ∈ ℝ 

𝑑 × 𝑅 ∶ 𝑞 ≥ 𝑄 ( 𝑥 ) , 𝑥 ∈ ℝ 

𝑛 ⧵ 𝑖𝑛𝑡 ( 𝑃 )} , 

here 𝑄 is convex and differentiable and 𝑖𝑛𝑡 ( 𝑃 ) denotes the interior
f set 𝑃 . A polynomial separation algorithm is proposed for the case
hen 𝑄 is quadratic and strictly convex, while 𝑃 is a polyhedron or
n ellipsoid. The work Burer and Kilinç-Karzan (2017) derives convex
elaxations and, under suitable assumptions, even convex hulls for the
ntersection of the following sets: 

• a SOC representable cone  , i.e., given a matrix 𝐵 ∈ ℝ 

𝑛 ×( 𝑛 −1) and
𝑏 ∈ ℝ 

𝑛 ,  = { 𝑥 ∶ ‖𝐵 ⊤𝑥 ‖ ≤ 𝑏 ⊤𝑥 } ; 
• a cone  defined by a homogeneous quadratic function, i.e.,  =

{ 𝑥 ∶ 𝑥 ⊤𝐴𝑥 ≤ 0} , for some matrix 𝐴 ∈ ℝ 

𝑛 ×𝑛 ; 
• an affine hyperplane. 

Based on the observation that 𝐴 ⪰ 𝑂 and 𝐵 ⪰ 𝑂 implies 𝐴 ⊗𝐵 ⪰ 𝑂,
here ⊗ denotes the Kronecker product, in Anstreicher (2017) so called
ronecker product constraints are introduced. Let 𝐻( 𝑥 ) ⪰ 𝑂 and 𝐺 ( 𝑥 ) ⪰
be semidefinite constraints where single components of both matrices

re affine functions of 𝑥 . Then, a Kronecker product constraint is ob-
ained by replacing in 𝐻( 𝑥 ) ⊗𝐺( 𝑥 ) ⪰ 𝑂 each term 𝑥 𝑖 𝑥 𝑗 with 𝑋 𝑖𝑗 . These
onstraints are generalization both of the classical RLT constraints ob-
ained from two linear inequality constraints, and of the SOC-RLT con-
traints obtained from one linear inequality constraint and a SOC con-
traint. In Wang and Kilinç-Karzan (2021) for some QCQPs, conditions
re given under which the convex hull of the epigraph of the QCQP is
he projection of the epigraph of its Shor relaxation. In Del Pia and Kha-
avirad (2017, 2018) in the context of binary polynomial problems, i.e.,
roblems with a polynomial objective function, some binary variables
nd some other variables constrained to belong to the interval [0,1],
alid inequalities are derived to characterize the convex hull of multi-
inear sets: 

 = 

{ 

( 𝑥, 𝑦 ) ∶ 𝑦 𝐼 = 

∏
𝑖 ∈𝐼 
𝑥 𝑖 , 𝐼 ∈ , 𝑥 ∈ {0 , 1} 𝑛 

} 

, 
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here  is a collection of subsets of {1 , … , 𝑛 } with cardinality not lower
han two. 

The paper ( Nguyen et al., 2018) presents the (non polyhedral)
onvex hulls for the intersection of cubes with regions {( 𝑥, 𝑦, 𝑧 ) ∶
 

𝑏 1 𝑦 𝑏 2 ≥ 𝑧 } and with regions {( 𝑥, 𝑦, 𝑧 ) ∶ 𝑥𝑦 𝑏 2 ≤ 𝑧 } for 𝑏 1 , 𝑏 2 ≥ 1 . In
avarnia et al. (2017) a description is given for the convex hull of sets 

𝑆 = {( 𝑥, 𝑦, 𝑧 ) ∶ 𝑥 ∈ [0 , 1] 𝑛 , 𝐸𝑥 ≥ 𝑓, 𝑦 ∈ ℝ 

𝑚 , 𝑦 ≥ 0 , 𝑒 ⊤
𝑚 
𝑦 ≤ 1 , 

 𝑘 = 𝑦 ⊤𝐴 𝑘 𝑥, 𝑘 = 1 , … , 𝐾} , 

here 𝐸 ∈ ℝ 

𝑡 ×𝑛 , 𝑓 ∈ ℝ 

𝑡 , 𝑒 𝑚 is the 𝑚 -dimensional vector with all compo-
ents equal to one, 𝐴 𝑘 ∈ ℝ 

𝑚 ×𝑛 . Then, 𝑥 belongs to a polyhedral subset
f the unit box, 𝑦 belongs to the 𝑚 -dimensional unit simplex, while 𝑧
s obtained by bilinear terms involving 𝑥 and 𝑦 . An application to net-
ork interdiction problems is presented. In Bonami et al. (2019) some

utting planes to strengthen linear relaxations of QPs with linear con-
traints are proposed. The cutting planes are based on a well known
esult by Motzkin and Straus (see Motzkin and Strauss (1965) ) about
ax clique problems. For this reason, they are called Motzkin-Straus

lique inequalities. The work Santana and Dey (2020) establishes
hat the convex hull of the intersection of the region defined by a
uadratic equality constraint and a polytope is SOCP representable. In
ienstock et al. (2020) valid inequalities are introduced for sets 𝑆 ∩ 𝑃 ,
here 𝑆 is a closed set and 𝑃 is a polyhedron. A cutting plane algorithm

s proposed. Given an oracle returning the distance of some point from
, the algorithm generates cutting planes which are able to approximate
ℎ𝑢𝑙 𝑙 ( 𝑆 ∩ 𝑃 ) in an arbitrarily precise way. An application to polynomial
rogramming is presented. In Luedtke et al. (2020) non polyhedral con-
ex hulls are given for subsets of ℝ 

5 , arising in pooling problems and
efined by some linear constraints and a nonconvex bilinear constraint.

.2.5. Bound tightening 

Rather special cutting planes are those involving lower and upper
ounds on single variables. Strengthening these bounds is also known
s bound tightening . Given a lower and upper bound 𝓁 and 𝑢 for vari-
bles 𝑥 , a bound tightening procedure can be viewed as a function re-
eiving the box [ 𝓁, 𝑢 ] in input and returning a box [ 𝓁 ′, 𝑢 ′] ⊆ [ 𝓁, 𝑢 ] , such
hat [ 𝓁, 𝑢 ] ⧵ [ 𝓁 ′, 𝑢 ′] does not contain any feasible point (feasibility-based
ound tightening) or, more powerfully, does not contain any optimal so-
ution (optimality-based bound tightening). The importance of bound-
ightening is due to the fact that it does not only reduce the feasible re-
ion of a convex relaxation, but it also improves the quality of (convex)
nderestimating functions for the objective and constraint functions. In-
eed, in many cases the underestimating functions depend on the lower
nd upper limits for the variables and they tend to become tighter as
hese limits become tighter. The importance of bound-tightening for an
fficient solution of nonconvex problems is proved by the fact that many
O solvers (such as BARON Sahinidis (2017) , BMIBNB Lofberg (2004) ,
OUENNE Belotti et al. (2006) , SCIP Gamrath et al. (2020) ) include
rocedures to perform it. 

A simple way to perform bound tightening is by minimizing and
aximizing each variable over a convex relaxation of the feasible re-

ion (feasibility-based bound tightening), or over the same relaxation
ith an additional constraint imposing that a convex underestimating

unction for the objective function is not larger than the current known
pper bound (optimality-based bound tightening, since the additional
onstraint may remove feasible points but no optimal solution). Since,
s previously commented, convex underestimating functions usually de-
end on variable bounds, once all bounds have been tightened, the new
ounds improve the quality of the underestimating functions so that
 further round of bound-tightening may allow to further reduce the
ounds. This can be iteratively repeated until convergence. Such itera-
ive procedure has been theoretically and computationally investigated
n Caprara and Locatelli (2010) and Caprara et al. (2016) . Note, how-
ver, that such iterative procedure, while providing tight bounds, is
uite expensive, requiring the solution of many convex subproblems.
11 
n Gleixner et al. (2017) three techniques are introduced to keep the
omputational cost of these bound tightening techniques under control.
he work Tawarmalani and Sahinidis (2004) presents a general theo-
etical framework for bound-tightening techniques and discusses ways
o exploit dual solutions of convex subproblems in order to perform the
ightening. Constraint propagation techniques are also widely employed
o tighten bounds. For factorable functions, first a directed acyclic graph
DAG) is built, where the nodes correspond to the variables (both the
riginal variables and the additional variables introduced to model fac-
orable functions), while the arcs represent the dependencies between
he variables. Then, bound tightening is performed by forward and back-
ard propagation along this graph. This technique is discussed in dif-

erent papers such as Belotti et al. (2009) , Messine (2004) , Schichl and
eumaier (2005) , Vu et al. (2009) and Wechsung et al. (2015) . In
uranik and Sahinidis (2017) it is observed that, in order to perform
ptimality-based bound tightening, besides the previously mentioned
dditional constraint involving a convex underestimating function of
he objective, one could also add constraints imposing necessary opti-
ality conditions or, more precisely, a convex relaxation of such con-
itions. This is also done in Zhang et al. (2020) where some topics are
ddressed such as how to bound the dual variables appearing in the
ptimality conditions, for which explicit bounds are not given. 

. Computational aspects, test problems and solvers 

Most of the papers cited in this work report computational experi-
ents on different sets of test problems and with different solvers. Dis-

ussing in detail computational experiences, test functions and solvers
s beyond the scope of the current work. However, we make a few ob-
ervations and, for the interested reader, we provide pointers to papers
nd web sites where these aspects are presented in more detail. 

.1. Computational aspects 

Here we briefly discuss a couple of observations which are well
nown but should always be taken into account when evaluating and
omparing different solution approaches. 

The first observation is that we should never search for the ’best’
pproach to solve GO problems. This is obviously true for the whole
lass of GO problems, since such wide class encompasses problems with
airly different properties and characteristics, which lead to fairly differ-
nt approaches for their solution. But it is also true for much narrower
ubclasses of GO problems. In particular, we mention here a subclass
f problems which attracted a lot of attention in the recent literature,
amely the class of nonconvex QP problems with linear constraints. Well
nown commercial software products like CPLEX and GUROBI have re-
ently introduced solvers for the solution of problems within this class.
hese QP problems can be tackled in many different ways. As already
entioned at the end of Section 4.2.1 , in Xia et al. (2020) the problem

s reformulated as a Mixed Integer Linear Program (MILP) after refor-
ulating it with the inclusion of the KKT conditions. Binary variables

re included to model the nonconvex complementarity conditions. In
hen and Burer (2012) the problem is still reformulated with the inclu-
ion of KKT conditions and KKT branching is applied, but semidefinite
elaxations are considered. In Bonami et al. (2018) a spatial branch-and-
ut approach is proposed with the addition of valid cuts for the Boolean
uadric Polytope. In Liuzzi et al. (2021) another spatial branch-and-
ound approach with intensive bound-tightening has been applied to a
lass of QP problems arising from an application in game theory. 

The outcome of the computational experiments reported in all these
orks is that none of the proposed methods strictly dominates the oth-

rs. The method proposed in Xia et al. (2020) , as well as problem spe-
ific ones proposed in Gondzio and Yildrim (2021) , Liuzzi et al. (2019) ,
re the best performing over the subclass of StQP problems. The ap-
roach proposed in Bonami et al. (2018) performs quite well over the
ubclass of Box QP problems and techniques proposed in that paper have
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een successfully incorporated in CPLEX . However, for Box QP prob-
ems with dense Hessian matrices the best approach appears to be the
ne proposed in Chen and Burer (2012) . Finally, the approach proposed
n Liuzzi et al. (2021) is the best performing over the subclass of QP
roblems presented in that work (but ongoing experiments prove its ef-
ectiveness over more general QP problems with linear constraints). 

The second observation we should always keep in mind is that when-
ver we deal with a class of special structured GO problems, incorporat-
ng as much as possible the special structure into a solution approach
llows for significant improvements. That holds true both for exact and
or heuristic methods. We just mention a couple of examples taken from
ur own personal experiences, but many other examples could be given.

Circle packing problems are special structured QCQPs with many
onconvex quadratic constraints, namely the nonoverlapping con-
traints. The best exact methods for this problem (see, e.g., Markót and
sendes (2005) for circle packing into a unit square) are those which

ncorporate tools based on special properties of the circle packing prob-
em, such as symmetry-breaking tools. Special purpose methods strongly
utperform general purpose methods for QCQPs when applied to circle
acking problems. 

Molecular conformation problems lead to challenging GO problems,
ith a number of local minimizers which grows exponentially with the
umber of atoms. Exact methods can be applied only at very small
imensions (i.e., with a small number of atoms). But many excellent
euristic approaches exist. Also in this case the best performing ap-
roaches strongly rely on special properties (in particular, geometrical
roperties) of the molecular conformation problems (see, e.g., Ferreiro-
erreiro et al., 2019; Wales, 2018; Zhao et al., 2017 ). 

.2. Test problems 

Test problems for GO have been proposed in different papers, like,
.g., Furini et al. (2019) for QP problems. We also recall the book
loudas et al. (1999) . Currently, there are different web sites which pro-
ide large sets of GO test problems. In Neumaier (2021) many academic
s well as real-life GO test problems are reported. Large collections of
est functions have been reported in Gavana (2021) ; this quite recent
eb site reports results of some GO algorithms over the presented test

unctions and, based on these results, a classification of the difficulty of
he test functions is proposed. Through different editions of the GECCO

orkshop on Real-Parameter Black-Box Optimization Benchmarking
BBOB), a collection of test problems has been collected. Details can
e found in Auger et al. (2019) . Another conference, the IEEE Congress
n Evolutionary Computation (CEC), organised different competitions
n Large Scale Global Optimization, providing many test functions (see,
.g., Š kvorc et al. (2019) and the web site IEEE TfLsgo (2021) ). 

.3. Solvers and their comparison 

In previous sections we mentioned some GO solvers such as BARON ,
MIBNB , COUENNE , SCIP and for nonconvex QPs with linear con-
traints also CPLEX and GUROBI . But others are available (see, e.g.,
eumaier (2021) for quite an extensive list). The work Biscani and

zzo (2020) describes pagmo and pygmo , C++/Python libraries for
assively parallel global, possibly multi-objective, optimization. The
eb site Johnson (2021) makes available NLopt , another quite large

et of software tools for nonlinear and global optimization. Even SciPy
ones et al. (2001–) includes a set of implemented general purpose
O algorithms. Most of the sites containing test problems also present
etailed numerical comparisons among different solvers. Many papers
ompare a newly proposed approach with a limited set of existing GO
pproaches. But only few papers make a systematic comparison between
 large set of different solvers. Here we mention Neumaier et al. (2005) ,
here different GO exact methods are compared, and Rios and Sahini-
is (2013) , which presents many different derivative-free algorithms for
ound constrained problems. We also mention Beiranvand et al. (2017) ,
12 
hich discusses some guidelines to perform a fair comparison be-
ween different solvers. Finally, CEC competitions offer the opportunity
f comparing with many different algorithms, while within the con-
ext of GECCO-BBOB workshops, the Comparing Continuous Optimizers
COCO) platform allows for automated benchmarking. Users can bench-
ark their own solvers over a wide set of test functions and compare

heir results with those of other solvers. 

onclusions 

In this paper we presented our view on what we consider as relevant
n the recent GO literature. It can be immediately seen, by simply brows-
ng the rich list of references below, how the field is attracting more and
ore active research and novel computational paradigms. Large scale
O problems are no more out of the scope of solution algorithms, to the
oint that even professional solvers like GUROBI and CPLEX now in-
lude some GO solver, at least for nonconvex quadratic optimization. Al-
hough we tried our best to cover many recent advances, we do not claim
o have given account of all relevant papers in the field. This survey re-
ects our personal points of view on the subject and we are perfectly
ware that omissions are inevitable. Besides alternative approaches to
he GO problems presented in this paper, we deliberately did not even
ention other relevant fields, like multi-objective GO, stochastic GO,

i-level optimization, parallel, distributed, GPU based or quantum com-
uting. These topics might become the subject of a different survey. 
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