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Chapter 1

Introduction

Networks constitute the backbone of complex systems, i.e. systems com-

posed of many elements interacting with each other. Network science is an

interdisciplinary research field that has been attracting the interest of many

scientists in the last years. From the human brain [19, 105] to community

interactions [75], ecology [52] to biological processes [88], a lot of physical

phenomena occurring in nature can be described through complex systems,

as collective dynamics which emerge at the macroscopic level from the inter-

actions of microscopical constituents [53,97].

Phenomena belonging to all the different fields cited above, and many

others, are strictly related to the structure of the underlying networks. In-

deed, the brain consists of many interconnected neurons, ecosystems are

made of interacting species, social systems are constructed over interactions

among individuals, just to mention a few examples.

In general, complex networks can be described as organized structures

composed of a large number of units, individuals, components or agents, in-

terconnected through intricated patterns of interactions. Over the years, sci-

entific research has been focused on the individual components of a complex

system and their interactions. Two papers proved fundamental in network

science: the first one, by Duncan Watts and Steven Strogatz, was about

small-world networks [185], and the second one, on scale-free networks, writ-

ten by Albert-László Barabási and Réka Albert [25]. These works draw

attention to the non-trivial underlying networks of real-world complex sys-

tems, being them very different from the simplest structures of lattices or

random graphs; indeed, large scale networks are tipically characterized by
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2 Introduction

complex topologies and heterogeneous architectures. At the same time, some

structural properties are universal and common to networks originating from

different (biological, social or man-made) complex systems. Their structures

play a crucial role also in the dynamics of complex systems, acting on the

emergence of collective behaviours.

In this respect, the potential implications of networks for the questions con-

cerning the dynamical processes hosted on top of them, attracted a lot of

attention. Resilience of networks, their synchronization properties, consen-

sus formation, disease spreading, represent some examples taken from dif-

ferent contexts for the applicability of concepts of dynamical models hosted

on complex networks.

Dynamical processes on networks can be described by identifying each

node of the network with a single element, or a group of elements, of the sys-

tem, such as for example peoples, animals, or chemical species. Such models

require to introduce the notion of a corresponding variable σi for each node

i, characterizing its dynamical state. Considering a specific dynamical pro-

cess on a network, the knowledge of the state variable of all nodes defines

the microscopic state of the entire system, whose configuration at time t is

described by the vector variable x(t) = (x1(t), x2(t), . . . , xN (t)), where N

stands for the number of nodes constituting the network. The evolution of

the system is described by the dynamics of the configuration σ(t) in the

phase space, defined by all the possible configurations x that the system can

assume. Due to the large number of variables and the stochastic nature of

most phenomena, it is often impossible to focus on the microscopic dynamics

of such systems, so the description is tipically based on the so-called mas-

ter equation. In this approach, the investigated variable is the probability

P (x, t) to find the system at time t in a given configuration x and the master

equation represents an evolution probability equation for P (x, t).

Noise is a key ingredient in the dynamical description of many real-

world phenomena [80, 182]. Stochastic perturbations can derive from an

external noise, due for example to thermal fluctuations, or can stem from

an endogeneous noise, reflecting the inherent discreteness of the scrutinized

medium [26,38,56,127,182]. In the first case, noise manifests as an external

contribution while, in the second one, it is intrinsically related to the system.

The dynamics can derive from simple interactions between adjacent nodes,

like diffusion or other linear processes, or also involve a local reaction on

the single nodes. For instance, for reaction-diffusion processes the elements
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interact depending on specific self-reactions and diffuse across the spatial

medium defined by the network [19, 136,139,152,178]. Turing patterns rep-

resent the most celebrated example of collective phenomena emerging in

reaction-diffusion models for chemical species [178], but applications can

also be found in ecology [96] or for epidemic spreading [137].

A lot of dynamical systems are well described by classical networks

[24, 116, 147], however it can happen that the basic interactions in many

other cases involve more than two nodes at the same time [27,113], as for in-

stance in the case of brain networks [162], protein interaction networks [68],

ecological communities [85] and co-authorship networks [158]. These sys-

tems necessitate to be described by a structure accounting for multi-body

interactions, like hypergraphs [29, 67, 81]. In mathematics, a hypergraph is

a graph in which a ”generalised” edge can join any number of vertices, at

variance with an ordinary graph where an edge connects exactly two ver-

tices. The research on high-order structures is attracting a lot of interest

in the scientific community, from social contagion model [57] to the study

of synchronization [109,132], passing through random walk models [40] and

diffusion [71], being them a useful tool to go beyond the limit of binary in-

teractions of classical network models.

In this thesis we focus on studying dynamical models on networks and, in

the last part, dynamical models on hypergraphs, with a particular focus on

reaction-diffusion processes. When each node represents a dynamical system,

usually nothing can be a priori said on collective behaviors once the nodes

are coupled together [173]. Examples are represented by chaotic systems

that synchronize to the same solution [160], or by stationary inhomogeneous

patterns emerging from diffusing species [19]. Particular attention is devoted

to the role of the noise and its ability to eventually guarantee an amplification

process for systems defined on networks with specific topologies, like non-

normal networks [70,188].

Most of the work is also dedicated to network generation. For reaction-

diffusion models, dynamics depends on the Laplacian matrix and its spec-

trum [1, 146, 179]. Our contribution aims at providing a novel procedure to

generate networks with any desired Laplacian spectrum, in the general chal-

lenging context of network design.

Chapter 2 is an introductory chapter, where we first recall some basic
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concepts about graphs. We further focus on reaction-diffusion processes

hosted on networks, entering into the detail of the equations and investigating

the role of the Laplacian matrix to assess the stability of such systems at

a deterministic level. The role of stochastic contributions is also presented

together with the formalism of master and Fokker-Planck equations. In the

last section of the chapter, we also introduce the formalism of hypergraphs

and the definition of the associated Laplacian matrix.

In Chapter 3 we consider the first dynamical model of this thesis, which

describes the activity of neurons arranged on a simple network made of

three nodes located at the vertices of a triangular loop. The model is a

simplified version of the Wilson-Cowan model [165, 186] for neurons in the

brain and consists of a two-species model of the excitatory-inhibitory type.

The complexity of the model is reduced to just one reaction parameter, one

coupling constant and one parameter that sets the asymmetry of the loop.

The phenomenon of stochastic quasicycles is investigated as consequence of

the interplay between endogeneous noise and non-normality of the system.

We show that, by increasing the strength of the internode coupling, one

moves the system towards the Hopf bifurcation and the amplitude of the

stochastic oscillations is consequently magnified. Non-normality is a key

ingredient to guarantee the amplification effects on noise-assisted oscillations:

when the system is constrained to evolve with a constant rate of deterministic

damping for the perturbations, the amplification correlates with the degree

of non-normal reactivity. The role of non-normality is also studied from a

thermodynamic point of view: we show that nonconservative forces push the

system out of equilibrium, and the stationary value of the entropy increases

with the reactivity index.

We carry on the study of non-normality in Chapter 4 where a stochastic

reaction-diffusion model on network is considered. On each patch of the

network, two species are assumed to interact following a non-normal reaction

scheme. When the interaction unit is replicated on a directed linear lattice,

noise gets amplified via a self-consistent process, related to the degenerate

spectrum of the embedding support. The same phenomenon holds when

the system is bound to explore a quasi-degenerate network, in the sense

that the eigenvalues of the Laplacian operator accumulate in a compact

region of the complex plane. Non-normality and quasi-degenerate spectrum

may, therefore, amplify the inherent stochasticity and consequently alter the

perception of stability, as quantified via conventional deterministic methods.
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The concept of system stability is of paramount importance as it relates

to resilience, the ability of a system to oppose to external perturbations. It

is then crucial to investigate on possible strategies to enforce stability in a

desired system. In many cases of interest, the spectrum of the underlying

graph Laplacian sets the system stability and ultimately shapes the matter

or information flow. This motivates devising suitable strategies, with rigor-

ous mathematical foundation, to generate Laplacians that possess prescribed

spectra. In Chapter 5, we show that a weighted Laplacian can be constructed

so as to exactly realize a desired complex spectrum. In a special case, we are

able to write analytical expressions for the entries of the Laplacian matrix

and consequently speculate on the conditions to have positive non diagonal

elements in such matrix. The networks obtained with the presented pro-

cedure are fully connected, so we present two sparsification procedures to

remove unessential links. The generation method is tested for two examples

of coupled oscillators, i.e. the Stuart-Landau and the Kuramoto models.

Unlike the previous chapters where we focused on networks, in Chapter

6 we consider high-order interactions studying hypergraphs and dynamical

systems defined on top of them. To analyze the stability of the associated

homogeneous equilibria we use the master stability function approach with

applications to reaction-diffusion systems and synchronization models. We

will show that the role of the localization property of the Laplace opera-

tor is fundamental in emerging of collective behavior. We also investigate

the localization property aiming to expand this analysis in a more formal

way. The idea is to perform a numerical analysis to predict this eigenvector

property. In this respect, the paper [92] proves fundamental: localization

properties of random networks can be predicted by the perturbation theory.

In a very similar way, we apply the perturbation theory [95,167] to the Lapla-

cian matrix defined for hypergraphs and, as a preliminar result, we obtain an

approximation for the Laplacian eigenvalues reproducing qualitatively well

the original ones.
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Chapter 2

Dynamics on complex networks

2.1 Complex networks

A complex network is, from a mathematical point of view, a graph. In graph

theory [147,179], a graph is a structure made of a set of objects in which pairs

of objects are related. The objects are called nodes, or vertices, and each

of the related pairs of vertices is called link, or edge. Network theory is the

study of graphs as a representation of relations between discrete objects; it

has applications in many disciplines including engineering, biology, sociology

and many others. Network science [5,34] has proved successful in describing

many real-world systems [24, 116, 147], which, despite inherent differences,

share common structural features. Real systems are represented as a set of

nodes connected by links characterized by different weights accounting for the

strength of the connections. In these cases the networks are called weighted

and signed, if the weights can also assume negative values. The edges of a

network may be directed or undirected depending on the symmetry of the

relation between connected nodes; if at least one edge is directed, the network

is consequently called directed, otherwise, if every edge is undirected, it is

called undirected.

A network is completely defined by the adjacency matrix A ∈ RN×N ,

where N is the number of nodes constituting the network. Suppose to label

the nodes with an index i = 1, . . . , N . The generic entry Aij is equal to

the weight of the link from node j to node i, and is zero if the connection

does not exist. For unweighted networks, the entries of A are only zeros and

ones, and this matrix is called binary. In general, the adjacency matrix of

7



8 Dynamics on complex networks

a network is asymmetric, except for undirected networks whose adjacency

matrices are symmetric.

Given a graph, one can define the Laplacian matrix

Lij = Aij − kini δij (2.1)

where Aij denotes the entries of the adjacency matrix of the graph and

kini :=
∑
j Aij the ingoing connectivity of generic node i, that is the number

of incoming edge in node i; δij stands for the usual Kronecker δ. For graphs

with non-negative weights, the Laplacian matrix is always characterized by

N −1 eigenvalues with negative real part and one null eigenvalue, associated

to a basis of N (possibly generalized) eigenvectors, which encode the network

structure. The Laplacian matrix can be interpreted as a matrix represen-

tation of a particular case of the Laplace operator (its name is due to this

similarity). Suppose to consider a heat distribution across a graph described

by a vector variable φ, where φi is the heat at vertex i. If two nodes i and j

are connected, the heat transferred between them is proportional to φi−φj ;
otherwise, no heat is transferred. For heat capacity c, this is described by

the Newton’s law

dφi
dt

= −c
∑
j

Aij(φi − φj) = −c
∑
j

Aijφi + c
∑
j

Aijφj

= −c
(
kouti φi −

∑
j

Aijφj
)

= −c
∑
j

(
δijk

out
i −Aij

)
φj =

∑
j

Lijφij . (2.2)

Notice that this equation takes the same form of the heat equation where

the matrix L is replacing the Laplacian operator ∇2.

In general, a diffusion process defined on a network can be described by

an equation of the form

ẋi =
∑
j

Lijxj (2.3)

where the Laplacian matrix Lij is defined above. The diffusion process refers

to the flow of a substance from regions of high concentration to regions of low

concentration; in the case of a discrete support, the system evolves toward

an asymptotic state called synchronization [12,163] or consensus [58], corre-

sponding to an N dimensional vector with all entries equal to 1
N

∑
i xi(0).

This vector corresponds to the normalized right eigenvector of L associated

to 0.
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The graphs may have different properties depending on the characteris-

tic of the corresponding interactions; we can have complete graphs where

each pair of nodes is joined by a link, or connected graphs where each pair

of nodes is connected by a path, just to cite a few. Lattices are the sim-

plest graphs we can mention, being made of regular geometrical structures

periodically repeated, like for example the crystalline material. It is also

worth mentioning random graphs and the Erdös-Rényi model [66] to build

this kind of network. A random graph is obtained by starting with a set of

N isolated vertices and adding successive links between them at random. In

general, random graphs may be described by a probability distribution or

by a random process which generates them. For instance, in [125] use has

been made of these networks to model ecosystems. One of the most studied

class of networks are scale-free networks whose degree distribution follows

a power law, that is the fraction pk of nodes having k connections to other

nodes goes for large values of k as pk ∼ k−γ . Many networks describing

real world phenomena have been reported to be scale-free, like the World

Wide Web [69], the interactions in biological cells [4] and others, where the

value of γ tipically ranges from 2 to 3. There are many different ways to

build a network with a power-law degree distribution but the most famous

model is the Barabási-Albert model [25], based on the preferential attach-

ment method. Scale-free networks and random graphs will be used in what

follows as a benchmark for our analysis.

Another class of paradigmatic networks is the so-called small-world networks.

In [185], Watts and Strogatz proposed a random graph generation model that

produces graphs with small-world properties, including short average path

lengths and high clustering. Small-world networks have been found in many

different fields, for example biology, sociology and business [3, 145,183].

2.2 Reaction-diffusion processes on networks

Many examples of real-world phenomena can be described by reaction-diffusion

processes on networks, from the spreading of infectious diseases [9, 100]

to traffic behavior in technological systems [157], passing through meta-

population models [49]. Reaction-diffusion systems are tipically described

by an equation of the form

ẋi = fi(xi) +D
∑
j

Lijxj (2.4)
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where fi is a generic nonlinear function accounting for the local reactions on

each node i, the elements Lij stand for the entries of the Laplacian matrix

associated to the network and D represents the diffusion constant. Thus,

equation (2.4) comprises a reaction term and a diffusive term; often local

dynamics are combined with diffusive processes to describe the evolution of

interacting species [19,136].

In the continuum limit, where the spatial support is replaced by a con-

tinuous space region, the most known phenomena arising from the inter-

play between local dynamics and diffusive coupling is the formation of self-

organizing patterns called Turing patterns. These appeared for the first time

in 1952 in the seminal paper of Alan Turing [178] and have been theoretically

analyzed and experimentally confirmed for chemical, biological and ecological

systems later. They are also supposed to be connected to morphogenesis in

biology [91] and to animal coats and skin pigmentation [129, 136]. At vari-

ance with the idea of diffusion as a stabilizing and homogenizing process,

Alan Turing proposed the concept that a locally stable system under small

perturbations can become unstable when a diffusion-like spatial coupling is

introduced. In other words, if the examined system tends to a linearly stable

uniform steady state in absence of diffusion, then spatially non-homogeneous

patterns can result from diffusion-driven instability under certain conditions.

This is the so-called phenomenon of Turing instability.

Collective behaviors consisting of spontaneously emerging spatio-temporal

patterns can emerge also in systems defined on networks, hence on discrete

systems. For the first time in 1971, Othmer and Scriven observed this phe-

nomenon trying to describe multi-cellular morphogenesis [152], where they

hypothesized that the differentiation between cells could be induced by the

diffusion of the morphogens on the network of inter-cellular connections.

A more recent work by Nakao and Mikhailov [139] focused on nonlinear

patterns emerging in large random networks, in particular on an activator-

inhibitor network system, where the combined effect of local reaction and

network diffusion leads to a spontaneous differentiation of the network nodes

into activator-rich and activator-low groups. A generalization of this model is

proposed by Asllani, Di Patti and Fanelli [20] considering also finite size fluc-

tuations. Here, it is proven that, due to the stochastic effects, self-organized

patterns emerge also outside the region of deterministic Turing instability.
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2.3 Equilibria stability in deterministic sys-

tems

In this section we introduce some concepts useful to analyze the stability of

a reaction-diffusion system defined on a network. Let us consider a network

made up of an arbitrary number N of nodes and suppose that the dynamical

variable xi is an m-dimensional vector. Suppose also that the function fi is

identical for each node of the network. The equation can thus be written as

ẋi = f(xi) +D

N∑
j=1

Lijxj (2.5)

Such system always admits homogeneous equilibrium of the form xi = x∗ for

any i, which can be either a (stationary) fixed point or a (time-dependent)

limit cycle. To investigate the stability of this kind of equilibria we suppose

to perturb the homogeneous state with a non-uniform small perturbation

δxi, thus we consider the perturbed state x∗+ δxi. The Taylor expansion of

(2.5) gives

δẋi = ∂xf(x∗)δxi +D

N∑
j=1

Lijδxj =

N∑
j=1

Jijδxj (2.6)

where use has been made of the Laplacian property
∑
j Lij = 0. The matrix

∂xf(x∗) is an m×m dimensional matrix of derivatives and J ∈ RmN×mN is

the Jacobian matrix. To facilitate the calculations and reduce the dimension

of the problem, in the case of a diagonalizable Laplacian matrix , we can ex-

pand the perturbation vector on the basis of its eigenvectors. The expansion

of the state vector δxi on such basis represents an analogy with the Fourier

series expansion, that one would obtain replacing the network with a regular

lattice: the eigenvalues and eigenvectors of the network Laplacian can be

identified with the Fourier wavelengths and modes for a continuous support.

Then, we diagonalize the Laplacian matrix∑
j

Lijφ
(α)
j = Λ(α)φ

(α)
i (2.7)

and express the perturbation on this basis

δxi(t) =

N∑
α=1

cα(t)φ
(α)
i (2.8)
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where cα ∈ Rm. Inserting the expression (2.8) in (2.6), we get

N∑
α=1

ċα(t)φ
(α)
i = ∂xf(x∗)

N∑
α=1

cα(t)φ
(α)
i +D

N∑
α=1

Λ(α)cα(t)φ
(α)
i (2.9)

which, due to the linear independence of the eigenvectors, reduces to a set

of N decoupled m-dimensional systems

ċα(t) = Jαcα(t) (2.10)

where the m ×m matrix Jα = ∂xf(x∗) + DΛ(α) is the α-th diagonal block

of the Jacobian with respect to the eigenvector basis.

If the homogeneous solution x∗ is a fixed point, the Jacobian is constant

in time and the solution of (2.10) is simply

cα(t) = cα(0) expJαt . (2.11)

Imposing that the determinant of the matrix Jα−λ(α)Im is zero guarantees

to have a non-trivial solution of the system (2.10). This condition also gives

the expressions of the eigenvalues λ(α) of the block matrix Jα; the maximum

eigenvalue corresponds to the largest Lyapunov exponent of (2.10) and is

also denoted as Master Stability Function [98,159].

Otherwise, if the homogeneous solution is a limit cycle, the Jacobian is

periodic in time, that is Jα(t+T ) = Jα(t), and we must refer to the Floquet

theory [44, 86, 123]. In this way, the temporal dependence of the perturba-

tion δxi is expressed by the exponential function expµ
(α)
k t, where µ

(α)
k are the

Floquet exponents defined by µ
(α)
k = log

(
ρ

(α)
k

)
/T and ρ

(α)
k are the eigen-

values of the constant matrix B such that det(B) = exp[
∫ T

0
tr(Jα(t)) dt]. In

both cases, to investigate the stability of the examined system, it is con-

venient to exploit the tools of dispersion relation, i.e. the relation between

the maximum real part of λ(α) or µ(α) and the Laplacian eigenvalues. This

is the generalization of the dispersion relation defined on a continuous sup-

port. We can conclude that the system is stable if the exponents λ(α) or µ(α)

are negative for every α; otherwise, if even just one of them has a positive

real part, then the perturbation grows along the direction associated to the

corresponding eigenvector, and consequently the system displays a behavior

distant from the equilibrium.

In the case of a non-diagonalizable Jacobian matrix, the solution of (2.6)

can still be written in a closed analytical form using the generalized eigen-

vectors. In this case, as we will show in Chapter 4, the perturbation is
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characterized by some multiplicative polynomials in t. These terms may

promote the short-time amplification of the norm of the perturbation and

consequently bring the system out of the equilibrium [133,149].

The Laplacian spectrum and the dispersion relation will be the key in-

gredients of our analysis in the next chapters. As previously mentioned,

many complex real-world phenomena are well described by dynamical net-

work models. For many of such systems, dynamics depend on the graph

Laplacian and its spectrum [126,140]. Thus, controlling the spectrum is one

of the most interesting challenges in spectral graph theory. Recently, an ana-

lytical procedure to realize any real desired spectrum on a positively weighted

network was presented by Forrow, Woodhouse and Dunkel [74]. The Lapla-

cians obtained in this way are, by construction, symmetric. In [148] we

propose a generalization of this method to the case of directed networks, de-

signing an arbitrary complex Laplacian spectrum. This will be the subject

of Chapter 5.

2.4 Finite size corrections on dynamical sys-

tems

Stochasticity plays a fundamental role in the dynamical description of many

real-world phenomena [80, 182]. We can recognize two kinds of noise; an

external noise, due for example to thermal fluctuations, that does not depend

on the system, and conversely an endogeneous noise, intrinsically related to

the system. In this respect, we mention the effects due to the finite size

system, that can be neglected only in the assumptions of an infinite volume.

In Chapter 3 we will focus on such corrections studying an excitatory-

inhibitory model for neural dynamics. A deterministic description is in fact

insufficient to study some complex phenomena that take place in the brain

and stochastic contributions must be considered. The key ingredient in the

analysis of such systems is the master equation [80]. In this section we want

to recall some fundamental concepts that will be useful in the following.

Let us consider a network consisting of N nodes, each being labelled

with an index i varying from 1 to N . Suppose to have several, chemical or

physical, components arranged on this network, so we introduce the notation
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X = (x1,x, . . . ) (2.12)

where xi denotes a vector whose components xi,a are the numbers of agents

of species Xa in cell, or node, i. Suppose that each cell has volume Vi. Using

the language of chemical reactions, we can represent the interactions between

the components of the system in this generic formulation

∑
a

NA
a Xa

k+
A



k−A

∑
a

MA
a Xa (2.13)

where the coefficient NA
a is the number of molecules, or species, involved on

the left and MA
a is the number involved on the right. This description is

not limited to the chemical field, because many classes of systems evolve in

time thanks to the interactions between members of some population: think

for example to population systems which die, give birth, mate and consume

each other, or to systems of epidemics in which diseases are transmitted

from individual to individual by contact. For convenience, we introduce the

vector notation NA = (NA
1 , N

A
2 , . . . ) , MA = (MA

1 ,M
A
2 , . . . ) and we define

rA = MA−NA; it is evident that, if the reaction A proceeds one step in the

forward direction

xi → xi + rA (2.14)

otherwise, if it proceeds in the backward direction

xi → xi − rA. (2.15)

The rate constants are defined by

t+A(xi) = k+
A

∏
a

xi,a!

(xi,a −NA
a )!

(2.16)

t−A(xi) = k−A
∏
a

xi,a!

(xi,a −MA
a )!

(2.17)

which are respectively proportional to the number of ways of choosing the

combination NA or MA from xi molecules. The vector X must be read as a

stochastic variable characterized by a time-dependent probability distribu-

tion P (Xi, t). We then introduce the notation

P (Xi, t) ≡ P (x1,x2, . . . , t). (2.18)
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In general, the Master equation can be written as

∂tP (X, t) =
∑
i

∑
A

{[t−A(xi + rA)P (xi + rA, t)− t+A(xi)P (xi, t)]

+ [t+A(xi − rA)P (xi − rA, t)− t−A(xi)P (xi, t)]}. (2.19)

Master equations are tipically not solvable, so one can resort to stochastic

simulations to numerically solve (2.19), for example the Gillespie algorithm.

Otherwise, if the assumption of (finite) large volumes Vi holds, the Kramers-

Moyal expansion allows to obtain a valid approximation of (2.19). Without

entering into the details, the resulting approximated equation reads as

∂tP (X, t) = −
∑
i

∑
a

∂a[Aa(xi)P (xi, t)] +
1

2

∑
i

∑
a,b

∂a∂b[Bab(xi)P (xi, t)]

(2.20)

where

Aa(xi) =
∑
A

rAa [t+A(xi − t−A(xi))] (2.21)

Bab(xi) =
∑
A

rAa r
A
b [t+A(xi) + t−A(xi)]. (2.22)

Eq.(2.20) is the so-called Fokker-Plank equation associated to (2.19), with

the usual drift and diffusion terms [89]. Due to the strong nonlinearity of this

equation with respect to the variables xi, it is often convenient to consider its

associated Langevin equation. At variance with the Fokker-Plank equation

that describes the evolution of the probability, the Langevin equation focuses

on the realization of a single stochastic process.

As mentioned before, in Chapter 3 we will consider an excitatory-inhibitory

model for neurons in the brain, formulated in terms of a birth-death stochas-

tic process. For this model we will specifically write master equation, Fokker-

Planck equation and consequently Langevin equations.

2.5 Higher-order networks: hypergraphs

A lot of dynamical systems are well described by classical networks, however

it can happen that the basic interaction in many other cases involves more

than two nodes at the same time [27, 113]. These systems necessitate to be

described by a structure accounting for multi-body interactions, like hyper-

graphs. In mathematics, a hypergraph is a graph in which a ”generalised”
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edge can join any number of vertices, at variance with an ordinary graph

where an edge connects exactly two vertices.

In this section we introduce the hypergraph formalism that will be useful

in the following.

Let us consider a hypergraph H(V,E), where V = {v1, . . . , vn} denotes

the set of n nodes and E = {E1, . . . , Em} the set of m hyperedges, that is for

all α = 1, . . . ,m: Ei ⊂ V , i.e. an unordered collections of vertices. Note that

if Eα = {u, v}, i.e. |Eα| = 2, then the hyperedge is actually a “standard”

edge denoting a binary interaction among u and v. If all hyperedges have

size 2 then the hypergraph is actually a network. If a hyperedge contains all

its subsets, then we recover a simplicial complex.

We can define the incidence matrix of the hypergraph 1, eiα, carrying

the information about how nodes are shared among edges (see middle panel

Fig. 2.1), more precisely

eiα =

{
1 vi ∈ Eα
0 otherwise .

(2.23)

With such matrix one can construct the n × n adjacency matrix of the

hypergraph, A = eeT , whose entry Aij represents the number of hyper

edges containing both nodes i and j. Note that often the adjacency matrix

is defined by setting to 0 the main diagonal. Let us also define the m ×m
hyperedges matrix C = eT e, whose entry Cαβ counts the number of nodes

in Eα ∩ Eβ .

The adjacency matrix allows to define a Laplace matrix [104,132], whose

entries are given by kiδij − Aij , where ki =
∑
j Aij denotes the number

of edges incident with node i. This matrix generalises the (combinatorial)

Laplace matrix for networks, however it doesn’t take in full account the

higher-order structures encoded by the hypergraph, notably the sizes of the

incident hyperedges are neglected.

To overcome this issue, authors of [40] have studied a random walk pro-

cess defined on a generic hypergraph using a new (random walk) Laplace

matrix; it is worth mentioning that the transition rates of the associated

process, linearly correlate with the size of the involved hyperedges, stated

differently exchanges are favoured among nodes belonging to the same and

1We will adopt the convention of using roman indexes for nodes and greek ones for

edges.
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large hyperedge, describing in this way the tightness of the high-order inter-

action among “close nodes”. More precisely,

Lrwij = δij −
kHij∑
` 6=i k

H
i`

,

where the entries of KH are given by

kHij =
∑
α

(Cαα − 1)eiαejα = (eĈeT )ij −Aij ∀i 6= j , kHii = 0 , (2.24)

and Ĉ is a matrix whose diagonal coincides with that of C and it is zero

otherwise.

From this random walk Laplace operator one can straightforwardly derive

the (combinatorial) Laplace matrix,

LH = D−KH , (2.25)

where the matrix D contains on the diagonal the values kHi =
∑
` 6=iAi` and

zeros otherwise. It is clear from its very definition that KH takes into account

both the number and the size of the hyperedges incident with the nodes. It

can also be noted that KH can be considered as a weighted adjacency matrix

whose weights have been self-consistently defined to account for the higher-

order structures encoded in the hypergraph (see right panel of Fig. 2.1). It

is worth emphasising that the dynamics defined on this weighted network is

equivalent [46] to the dynamics on the hypergraph; this allows us to exploit

the existing tools available for networks to the hypergraph framework, in

particular the equations determining the evolution of the system state will

depend on a n×n matrix, being n the number of nodes, making the resulting

analysis simpler than the one for the simplicial complexes, because the latter

require the use of tensors (see Section 6.2).

Given a hypergraph one can construct the projected network, that is the

network obtained by mapping the nodes belonging to a hyperedge into a

clique of suitable size (see left panel Fig. 2.1). If the hypergraph contains

only simple hyperedges, then this projection is invertible and given a network

one can construct a unique hypergraph whose projection is the former given

network [40]. Let us observe that the projected network keeps track of the

many body interactions only through the cliques, i.e. relying on binary ones.

Let us conclude this section by remarking that the operator (2.25) admits

(1, . . . , 1)T as eigenvector associated to the zero eigenvalue. The existence



18 Dynamics on complex networks

of such homogeneous solution will open the way to study (in)stability ques-

tions for dynamical systems where high-orders interactions, modelled using

hypergraphs, are present. Such phenomena, strongly depend on the spectral

properties of suitable operators, e.g. the Laplace matrix or coupling matrix.

We postpone the study of the dynamics and we describe in Chapter 6 some

main properties of the hypergraph spectra.
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Figure 2.1: Hypergraph and networks. In the middle panel, a hyper-

graph is displayed. Hyperedges are coloured according to their size (blue for

size 2, red for size 3 and green for size 4). The hypergraph’s characteris-

tics are encoded in the incidence matrix eiα. Here the information on how

nodes are shared among hyperedges is stored. For ease of visualisation, we

coloured the entries of eiα by using the same colour-code that was used to

highlight the size of the hyperedges. From the hypergraph, we can construct

the projected network, specified by the adjacency matrix A
(π)
ij (left panel),

where nodes belonging to the same hyperedge form a complete clique of the

suitable size. Alternatively, one can construct the equivalent weighted net-

work (right panel) where the links of the cliques of the projected network are

now weighted according to the entries of matrix KH . The link (25) belongs

to a hyperedge of size 3 and to another one of size 4. It is therefore the most

important of the collection and because of this it receives the largest weight,

kH25 = 5. Observe also the link (28): it belongs to two hyperedges of size 3

and it is assigned a weight kH28 = 4, larger than the one associated to the

links that insist on the hyperedge of size 4.
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Chapter 3

Non-normal amplification

effects on complex systems

3.1 Non-normal dynamics in networked sys-

tems

As already mentioned in the previous section, noise is known to have signif-

icant effects on many different systems, changing the behavior predicted by

a deterministic approach.

In this section, we examine what happens when stochastic contributions

are combined with non-normal dynamics, as characterized below. Non-

normality was studied for the first time in the context of hydrodynam-

ics [177]. In [142] it was applied to the field of discrete structures by Neubert

and Caswell proving that non-normal ecosystems manifest a high fragility

to external perturbations. The non-normality properties have been solely

studied by the ecologists’ community for a long period with the only excep-

tions represented by the works of Murphy and Miller [134], and Hennequin et

al. [94] in neuronal dynamics. However, non-normality is a recurring char-

acteristic in real world networks, as described in [21]. In this paper the

authors present a detailed study of a large dataset of networks belonging to

various fields, proving that non-normality is a common property of empirical

complex networks.

To explain the results of this chapter, we need at first to introduce the

concept of non-normal system.

21
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Consider the linear system

ẋ = Ax, (3.1)

where A is a stable asymmetric matrix [176], namely its spectral abscissa is

negative, α(A), where α(A) = supRe(σ(A)) and σ(A) denotes the spectrum

of the matrix A. By definition, A is non-normal if it satisfies AAT 6= ATA.

Here, we call non-normal a network whose adjacency matrix A is non-normal

[17]. It is thus clear that A needs to be asymmetric to be non-normal or,

equivalently, the network needs to be directed to be non-normal.

The stability of the fixed point of (3.1) is determined by the eigenvalues

of the matrix A: if all the eigenvalues are real and negative, the perturbed

system converges back to the fixed point. Thus, the spectrum of A gives

information on the asymptotic behavior of the system. In situations when

the supporting network is non-normal, however, more complex patterns may

emerge, because the spectrum of the characteristic matrix A does not ac-

count for the short-time behavior of the system. If A is non-normal [176],

it can happen that the numerical abscissa, namely ω(A) = sup(σ(H(A)))

is positive, ω(A) > 0, being H(A) = (A + A∗)/2 the Hermitian part of

A. When this condition is satisfied, the system displays a transient growth

before converging to zero or, in other words, the stable linear system can

briefly evolve away from its stable point.

This phenomenon can be illustrated and measured by the norm of the

state vector x as shown in Fig.3.1 [18]. The investigation of the local stability

of any dynamical system with sufficiently smooth dynamics can be traced

back to the study of a linear system of the type (3.1), by linearizing the

dynamics around the fixed point. In this case, the above discussions are

valid by replacing the matrix A with the Jacobian matrix J associated to

the system.

In case nonlinear terms were present such transient phase could bring the

system far away from the equilibrium, and thus non-normality can definitely

reshape the dynamical behaviour of nonlinear systems [17]. For nonlinear

systems, the typical transient due to the non-normality can be enforced even

when a moderate perturbation is imposed, taking the system out of the basin

of attraction of equilibrium [17, 19]. This especially holds when stochastic

effects are taken into account, in fact noise can continuously bring the system

far from the equilibrium, combined with the non-normality.

For the sake of completeness, we mention another methodological tool

useful to debate on this topic: the pseudo-spectrum. The pseudo-spectrum
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Figure 3.1: Time evolution of the norm of the solution of the linear ODE

(3.1) for two transition matrices. The red curve corresponds to a non-normal

matrix ω(A2) = 3.52 while the blue curve to a normal one ω(A1) = −0.79.

The comparison between the two curves highlights the temporal growth of

the norm for the non-normal system. In the inset the norm of the solution is

reported in logarithmic scale to emphasise the short time behaviour described

by the numerical abscissa (the straight black line has slope 3.52) and the long

time related to the spectral abscissa (the dashed and dot dashed straight lines

have slope −1). This figure is extracted from [18].

is defined for all ε > 0 as σε(A) = σ(A + E), for any perturbation ‖E‖ ≤ ε.
We remember that a complex number z is an eigenvalue of A if a bounded

inverse of ‖zI−A‖ does not exist. The pseudo-spectrum defines regions of

the complex plane where ‖(zI −A)−1‖ is larger than a prescribed positive

number ε−1. Practically, the pseudospectrum defines regions where eigen-

values of a matrix can be found because of a small perturbation, A + ∆A,

with ‖∆A‖ < ε. In case of normal matrices, these perturbations involve

small variations of the spectrum, otherwise they become more important in

the case of non-normal matrices. In what follows we will not enter into the

detail of this tool; the interested reader can examine in depth the analysis

in [176].
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3.2 Non-normal amplification of stochastic qua-

sicycles

We have seen that the norm of the solutions of a non-normal system may

display a short time growth, even when the system is stable, when a pertur-

bation is injected [17, 21, 143, 144]. The ability of a non-normal system to

stimulate an initial rise of the associated norm, combined with the presence

of stochastic contributions, could eventually yield a pronounced amplifica-

tion process [31,63,94].

In this section, we focus on this peculiar aspect of non-normal systems,

considering a variant of the model presented in [70]. In this work the authors

consider the dynamics of excitatory and inhibitory populations arranged on a

directed lattice. They showed that giant stochastic oscillations, with tunable

frequencies, can be obtained, by replicating a minimal model for a quasicycle

along a unidirectional chain. Endogenous noise enhances a coherent ampli-

fication across the array by instigating robust correlations among adjacent

interacting populations. Resorting to the linear noise approximation, it is

shown that the observed phenomenon reflects the non-normal character of

the imposed interaction scheme. Quasicycles are regular oscillations in the

concentration of the interacting species, due to the finite size corrections

and demographic fluctuations, as specified in Section 2.4, and they disap-

pear when the number of agents is infinite. The oscillations are tipically

small in size, their amplitude being set by the strength of the imposed noise

source, that is the inverse of the square root of the system size. Moreover,

the power spectrum of the signal is generally broad. The results presented

in [70] thus allow to circumvent these limitation. Here, we will inspect the

dynamics of excitatory and inhibitory populations as in [70], organized in a

loop, with varying coupling strength and degree of asymmetry. By forcing

the system to evolve in a region of parameters where the homogeneous fixed

point is stable, while freezing the (negative real part of the) largest eigenvalue

to a constant amount, one can drive a sensible increase in the amplitude of

the stochastic quasicycles by acting on the reactivity index, a measure that

quantify the amount of non-normality. It is consequently speculated that

triangular loops of the type here analyzed might define the minimal modules

for self-sustained stochastic amplification in nature.

Feed-forward networks with triangular architecture are often assumed in

neuroscience as fundamental storage and computational units [82, 124]. In



3.2 Non-normal amplification of stochastic quasicycles 25

this respects, our conclusions point at the crucial role that might be exerted

by the non-normal nature of neuronal connectivity in the functional dynam-

ics of cortical networks, in agreement with [94]. The system being examined

works as a veritable out-equilibrium thermal device under stationary condi-

tions. The asymptotic entropy associated to steady operation increases with

non-normality, hinting to a novel ingredient to be included in the microscopic

foundation of out-of-equilibrium thermodynamics. The three-node setting

explored here defines the minimal nontrivial (beyond simplistic binary con-

nections) closed-loop which can sustain stochastic amplification, following

consecutive iterations across the loop itself. Loops with more nodes display

analogous dynamical features, but analytical inspection proves cumbersome,

due to the progressive increase in the number of interacting populations.

The chapter is organized as follows: in the next section we will introduce

the stochastic model to be probed. We will then turn to discussing its

deterministic limit and studying the stability of the homogeneous fixed point

in the relevant parameters plane. We will also characterize the degree of non-

normal reactivity of the model, as witnessed by the numerical abscissa. The

stochastic contribution is then analyzed, in Section 3.2.3, under the linear

noise approximation: the amplitude of the quasi-cycle will be quantified

and we will show that it positively correlate with the degree of reactivity

displayed by the system. In Section 3.2.4, a thermodynamic interpretation

is built and the concept of non-normal reactivity discussed with reference to

this generalized framework.

3.2.1 Stochastic model

Consider the scheme depicted in Figure 4.1. Two populations of agents

are made to mutually interact via a non linear excitatory and inhibitory

circuit [187], reminiscent of the celebrated Wilson-Cowan model for neuronal

dynamics [55, 141, 165, 184]. The agents are dislocated on three different

patches (nodes) defining the edges of triangular loop. The coupling among

adjacent nodes is controlled by two parameters: D sets the strength of the

interaction, while ε ∈ [1/2, 1] stands for the degree of imposed asymmetry.

The model is formulated as a simple birth and death process, as we shall

detail in the following. As such, it accounts for demographic stochasticity,

an inevitable source of disturbance which originates from the granularity of

the inspected medium.
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Figure 3.2: The scheme of the model is illustrated. Two populations, labeled

respectively X and Y , are distributed on three distinct nodes of a triangular

loop and therein interact via an activator-inhibitor cycle. The nodes of the

collection are coupled together, through a nonlinear sigmoidal function. D

controls the strength of the inter-node interaction, while ε ∈ [1/21] sets the

degree of the coupling asymmetry.

Denote by Xi (resp. Yi), one individual of the excitatory (resp. in-

hibitory) species, on node i (i ∈ {1, · · · ,Ω = 3}). Label with nxi and nyi
the number of, respectively, excitatory and inhibitory elements on node i .

Furthermore, assume Vi to identify the volume of the i−th node. Then, the

stochastic model is fully specified by the following chemical equations:

Xi
1−→ ∅

Yi
1−→ ∅

∅ f(sxi )−−−−→ Xi

∅ f(syi )−−−−→ Yi

(3.2)

where f(·) = 1
1+e−(·) is a sigmoidal function which mimics the process of

neuronal activation. Networks of excitatory and inhibitory neurons repre-

sent, in fact, the primary computational units in the brain cortex. Notably,

inhibitory and excitatory loops, triggered by self-regulated threshold acti-

vation, are also found in genetic and metabolic cycles. Irrespectively of
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the specific domain of pertinence, and in light of its inherent simplicity, the

above stochastic framework can be readily adapted to all those settings where

inhibition-excitation reaction schemes are at play.

The arguments of the sigmoid function read:

sxi = −r
(
nyi
Vi
− 1

2

)
+D

Ω∑
j=1

Γij

(
nxj
Vj
− nyj

Vj

)
(3.3)

syi = +r

(
nxi
Vi
− 1

2

)
+D

Ω∑
j=1

Γij

(
nxj
Vj
− nyj

Vj

)
, (3.4)

where Γij are the entries of the Laplacian matrix. The spatial arrangement

epitomized in Figure 4.1 yields the following adjacency matrix A

A =

 0 ε 1− ε
1− ε 0 ε

ε 1− ε 0


namely, Aij 6= 0 if there is a link from j to i of weight ε or 1 − ε. Then

one can readily write Γij = Aij − k(in)
i δij , where k

(in)
i =

∑
lAil denotes the

strength (hereafter also referred to as to connectivity) of node i. In extended

form

Γ =

 −1 ε 1− ε
1− ε −1 ε

ε 1− ε −1

 . (3.5)

The state of the system is completely described by the vector n =

(nx1 , ny1 , ..., nxΩ , nyΩ). Label with P (n, t) the probability for the system

to be in the state n at time t. Under the Markov hypothesis, the chemical

equations (3.2) are equivalent to a master equation for P (n, t):

∂P

∂t
(n, t) =

∑
n′ 6=n

T (n|n′)P (n′, t)− T (n′|n)P (n, t) (3.6)

The nonvanishing transition rates T (n′|n) from state n to state n′, com-

patible with the former, are (let us observe that for the sake of clarity we

only mention the changed variable in the new state)

T (nxi − 1|n) =
nxi
Vi

(3.7)
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T (nyi − 1|n) =
nyi
Vi

(3.8)

and

T (nxi + 1|n) = f (sxi) (3.9)

T (nyi + 1|n) = f (syi) (3.10)

To proceed with the analysis, we assume V1 to be large and γi = Vi
V 1 =

O(1) ∀i, and seek for an approximate form of the master equation via a stan-

dard Kramers-Moyal expansion [80]. The ensuing calculations are analogous

to those reported in [70] and for this reason omitted in the following. To

illustrate the result of the analysis we define the macroscopic time τ = t
V1

and introduce the vector

z = (x1, y1, . . . , xΩ, yΩ) (3.11)

where xi =
nxi
Vi

, yi =
nyi
Vi

are the concentrations of the species on the node i,

with i = 1, 2, 3. Notice that in our approach Vi is an unspecified macroscopic

parameter fixing the volume of node i and, accordingly, the amplitude of the

fluctuations due to demographic noise [see (3.15) and (3.16)]. Then, the

master equation can be approximated as a Fokker-Planck equation

∂P

∂τ
= −

2Ω∑
i=1

∂

∂zi
AiP +

2Ω∑
i=1

1

2V1

∂2

∂z2
i

BiP (3.12)

with

A =



...

...
1
γi

(T (nxi + 1|n)− T (nxi − 1|n))
1
γi

(T (nyi + 1|n)− T (nyi − 1|n))

...

...


(3.13)

and

B =



...

...
1
γ2
i

(T (nxi + 1|n) + T (nxi − 1|n))
1
γ2
i

(T (nyi + 1|n) + T (nyi − 1|n))

...

...


. (3.14)
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The Fokker-Planck equation (3.12) is equivalent to the following nonlinear

Langevin equations for the stochastic concentrations of the involved species:

d

dτ
xi =

1

γi
[f (sxi)− xi] +

1√
V1

1

γi

√
xi + f (sxi)λ

(1)
i (3.15)

d

dτ
yi =

1

γi
[f (syi)− yi)] +

1√
V1

1

γi

√
yi + f (syi)λ

(2)
i (3.16)

where < λ
(l)
i (τ) >= 0 and < λ

(l)
i (τ)λ

(m)
j (τ) >= δijδlmδ (τ − τ ′).

3.2.2 Deterministic limit

In the limit V1 → +∞, one readily obtains the following deterministic equa-

tions

ẋi =
1

γi
[f(sxi)− xi] (3.17)

ẏi =
1

γi
[f(syi)− yi] (3.18)

where the dot stands for the derivative with respect to the macroscopic

time τ . Equations ((3.17)-(3.18)) are complemented by the self-consistent

conditions:

sxi = −r
(
yi −

1

2

)
+D

Ω∑
j=1

Γij(xj − yj) (3.19)

syi = r

(
xi −

1

2

)
+D

Ω∑
j=1

Γij(xj − yj) (3.20)

System ((3.17)-(3.18)) admits a homogeneous fixed point xi = yi = 1
2 ,

∀i. To assess its stability, we proceed by linearizing the dynamics around the

aforementioned equilibrium. To this end we set xi = 1
2 +δxi, yi = 1

2 +δyi and

expand in power of the perturbation amounts. By arresting the expansion

to the first order, one obtains the following system of linear equations:
δẋi = 1

γi

[
−δxi − r

4δyi + D
4

∑Ω
j=1 Γij(δxj − δyj)

]
δẏi = 1

γi

[
−δyi − r

4δxi + D
4

∑Ω
j=1 Γij(δxj − δyj)

]
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which can be cast in matrix form as

d

dτ
δz = Jδz (3.21)

where δz = (δx1, δy1, . . . , δxΩ, δyΩ) and the Jacobian matrix is given by

J =

Li Mi Ni
Ni Li Mi

Mi Ni Li

 (3.22)

being

Li =
1

γi
L =

1

γi

[−1− D
4 − r4 + D

4
r
4 − D

4 −1 + D
4

]
(3.23)

Mi =
1

γi
M =

1

γi

[
Dε
4 −Dε4
Dε
4 −Dε4

]
(3.24)

Ni =
1

γi
N =

1

γi

[
D(1−ε)

4 −D(1−ε)
4

D(1−ε)
4 −D(1−ε)

4

]
(3.25)

To compute the eigenvalues of the Jacobian, and eventually elaborate on

the stability of the equilibrium solution, we introduce the eigenvectors φ(α)

of the Laplacian matrix:

Γφ(β) = Λ(β)φ(β) β = 1, ...,Ω (3.26)

where Λ(β) are the associated eigenvalues. Assuming the eigenvectors to

form a complete basis, we can then decompose the perturbation on such a

basis which corresponds to setting:

δxi =

Ω∑
α=1

cβ exp

(
λ

γi
τ

)
φ

(β)
i (3.27)

δyi =

Ω∑
α=1

bβ exp

(
λ

γi
τ

)
φ

(β)
i (3.28)

where cα, bα, λα are constants and λi sets the rate of the exponential growth

(or damping), as obtained under the linear approximation. Inserting the

above ansatz into the governing equation and performing the calculation,

one readily gets:(
λ+ 1− D

4 Λ(β) r
4 + D

4 Λ(β)

− r4 − D
4 Λ(β) λ+ 1 + D

4 Λ(β)

)(
cβ
bβ

)
= 0 (3.29)



3.2 Non-normal amplification of stochastic quasicycles 31

A non trivial solution of the above system exists, provided the deter-

minant of the associated matrix is identically equal to zero, or stated it

differently, if the rates λα solve the quadratic equation

λ2 + 2λ+ 1 +
r

16
(r + 2DΛ(β)) = 0 (3.30)

that yields the closed formulae

λ = −1±
√
− r

16
(r + 2DΛ(β)) β = 1, ...,Ω (3.31)

The eigenvalues of Laplacian Γ, specified in (3.5) reads Λ(1) = 0, Λ(2,3) =

− 3
2 ± i

√
3

2 (1− 2ε). Hence, it is immediate to get:

λ1,2 = −1± r

4
i = −1± iω0 (3.32)

The second eigenvalue Λ(2) yields

λ3,4 = −1± 1

2

√
χ (3.33)

and Λ(3)

λ5,6 = −1± 1

2

√
χ̄ (3.34)

with

χ =
r

4

[
3D − r +

√
3Di(1− 2ε)

]
, (3.35)

and where χ̄ stands for the complex conjugate of χ. Separating the real and

imaginary parts returns

λ3,4 = −1± 1

2

√
|χ|+ Re{χ}

2
± i sgn(Imχ)ω1 (3.36)

λ5,6 = −1± 1

2

√
|χ|+ Re{χ}

2
± i sgn(Imχ̄)ω1 (3.37)

where

ν1 =
1

2

√
|χ| − Re{χ}

2
. (3.38)

We also define α as the supremum of the real part of the spectrum of J , in

formulae:

α = sup
k

Re (λk) = −1 +
1

2

√
|χ|+ Re{χ}

2
(3.39)
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A straightforward calculation allows one to isolate the domain in the

plane (ε, D) where the homogeneous fixed point proves stable. The stability

is enforced by setting D < Dc where the critical strength of interactions is

explicitly given as a function of the imposed degree of asymmetry by

Dc(ε) =
−12 +

√
144 + (4r2 + 64)3

(
ε− 1

2

)2
3
2r
(
ε− 1

2

)2 ; (3.40)

This is a decreasing function of ε, suggesting that asymmetry anticipates

the onset of the instability. Furthermore, Dc displays a minimum in r, and

the critical value Dc diverges for r → 0. It is therefore possible to select

arbitrarily large values of D, provided that r is sufficiently small, while still

constraining the system in the region of stable homogeneous fixed point.

The set of computed eigenvalues exhibits two distinct imaginary contri-

butions, for ε 6= 1
2 , and D < Dc: ω0 = r/4, as introduced in equation (3.32),

and ν1 associated to the remaining set of eigenvalues, which reads

ν1 =
1

4

√
r[(3D − r)2 + 3D2(1− 2ε)2]− r(3D − r)

2
. (3.41)

Interestingly, the frequency ν1 can be both smaller or bigger than ν0:

indeed it is possible to show that ν1 > ν0 if D > D∗ = 4r/(1 − 2ε)2. If

D = D∗, ν0 = ν1. In the limiting condition of a symmetric cycle, ε = 1
2 ,

the Laplacian displays a real spectrum. More specifically, χ = r
4 (3D − r) is

real. Thus, λ3,4 = λ5,6 = −1 ± 1
2

√
r
4 (3D − r). In this case, Dc = r

3 + 16
3r .

For, D < D̂ = r
3 , the system is stable and two frequencies are active, ν0 and

ν1 = 1
2

√∣∣ r
4 (3D − r)

∣∣. Conversely, for r/3 < D < Dc the system is stable

but the frequency ν1 disappears. For any choice of ε, at D = Dc(ε), two

complex conjugate eigenvalues cross the vertical imaginary axis, signaling

a Hopf bifurcation and the consequent inception of a limit cycle. In the

following, we shall operate in the region of the plane (ε,D) where the system

is predicted to stably converge to a homogeneous equilibrium, obtained by

replicating on each one of the collection the trivial fixed point (1/2, 1/2).

The fate of any imposed perturbation is eventually set by the spectrum

σ (J ) of the Jacobian matrix J , the matrix that governs the linear dynam-

ics of the system around the examined equilibrium. Perturbations fade away

when α < 0 – for our specific case study, this amounts to setting D < Dc

– and the system converges back to its deputed equilibrium. A transient

growth of the perturbation can however be seen, at short times, if J is non
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normal and reactive. A matrix is said non-normal, if it does not commute

with its adjoint [176]. Asymmetry, as reflecting a non trivial balance between

intrinsic dynamics and enforced non local couplings, is thus a necessary con-

dition for non-normality to emerge. Since, in our case, J is real, taking the

adjoint is identical to considering the transpose of the matrix. In formulae,

J is non-normal, provided [J ,J T ] ≡ JJ T − J TJ 6= 0, where the apex

T identifies the traspose operation. It is immediate to conclude that ma-

trix J , as defined in (3.22), is non-normal, for each choice of the involved

parameters.

A straightforward manipulation [17,176] yields the following equation for

the evolution of the norm of the perturbation ‖δz‖:

d‖δz‖
dt

=
δzTH(J )δz

‖δz‖ (3.42)

where H(J ) = J+J T
2 stands for Hermitian part of J . The evolution of the

perturbation, at short times, is intimately related to the so called numerical

abscissa, w = supσ

(
H(J ))

)
. If w > 0, the system is termed reactive,

and perturbation may display an initial, transient growth. In this paper,

we are interested in shedding light on the interplay between reactivity, i.e.

the inherent ability of the system to yield a short time enhancement of a

deterministic perturbation, and the stochastic contribution stemming from

demographic fluctuations. As we shall see, the amplification of quasi-cycles,

self-sustained oscillations driven by granularity, correlates with the degree of

reactive non-normality, as displayed by the system in its linearized version.

To proceed in the analysis, we set to compute the eigenvalues of H(J ), the

Hermitian part of J , and get the following closed expression for the reactivity

index w:

w(J) = −1 +
D

4

√
3(ε2 − ε+ 1). (3.43)

Hence, w(J) > 0 when D > Dreact(ε) = 4√
3(ε2−ε+1)

. Notice that Dreact(ε),

the lower bound in D which sets the onset of a reactive response, is inde-

pendent of r, and solely function of ε.

The above results are summarized in Figure 3.3, were the boundaries

of stability are depicted in the reference plan (D, ε), for a fixed, although

representative, value of r. The upper dashed line stands for Dc as given in

equation (3.40). The lower dashed line refers instead to Dreact(ε) and marks

the boundary of the domain where matrix J is found to be reactive. Level
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Figure 3.3: The domain of stability of the homogeneous equilibrium is de-

picted in the reference plane (ε, D) and for r = 10. The upper dashed

curve stands for the Hopf bifurcation. Above the lower dashed curve the

non-normal Jacobian matrix J is found to be reactive. Iso-α and iso-w(J)

curves are traced and colored with relevant codes which reflect their associ-

ated level, as specified in the bars on either side.

sets traced at constant values of α (see the color bar depicted on the left)

and w(J) (refer to the color bar reported on the right) foliate the scanned

portion of the plane. Moving along iso-α lines implies freezing the rate of

exponential damping of the perturbation to a constant value, or, stated it

differently, visiting the subset of points that are, to some extent, equidistant

from the frontier of the Hopf bifurcation. When crawling on iso-α lines,

instead, one forces constantly the (largest) rate of short time growth, as

seeded by reactive non-normality. While it is straightforward to obtain a

closed analytical expression for iso-w(J) curves, upon trivial inversion of

equation (3.43), the calculation that yields an explicit representation of iso-

α lines proves trickier. Label with ᾱ < 0 the selected iso-α. Then, after a

cumbersome derivation, one gets the following expression for D, as function

of both ᾱ and ε
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Diso−α(ε)

=
−12(ᾱ+ 1)2r +

√
144(ᾱ+ 1)4r2 + [64(ᾱ+ 1)4 + 4(ᾱ+ 1)2r2] 3

4r
2(2ε− 1)2

3
8r

2(2ε− 1)2

(3.44)

which is employed for tracing the iso-α lines displayed in Figure 3.3. Starting

from this setting, we shall hereafter elaborate on the role of non-normality

in a stochastic framework. To anticipate our findings, we will prove that the

amplitude of noise-driven oscillations grows with the degree of reactivity.

3.2.3 Linear noise approximation

To quantify the role of stochastic fluctuations around the deterministic equi-

librium, we shall operate under the linear noise approximation. In concrete,

we rewrite the stochastic densities xi and yi, for all nodes of the collection, as

the sum of two distinct contributions: the deterministic fixed point, on the

one side, and a stochastic perturbation, on the other. This latter is assumed

to be modulated by a scaling factor 1/
√
Vi, which follows the central limit

theorem. In formula, we postulate:

xi =
1

2
+

ξi√
Vi

(3.45)

yi =
1

2
+

ηi√
Vi
, (3.46)

and introduce

ζ = (ξ1, η1, . . . , ξΩ, ηΩ) (3.47)

to label the vector of fluctuations. Inserting the above ansatz in the governing

master equation and performing the expansion at the first order in 1/
√
V1

(see [70] for details about the technical steps involved in the calculations),

one eventually gets the following set of linear Langevin equations:

d

dτ
ζi = (J ζ)i + λi (3.48)

where λ stands for a Gaussian noise that satisfies the following conditions

< λ >= 0, (3.49)
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< λi(τ)λj(τ
′) >= Bijδ(τ − τ ′), (3.50)

The diffusion matrix Bij is defined by its diagonal elements

Bi =

(
1

γ1
,

1

γ1
, . . . ,

1

γΩ
,

1

γΩ

)
. (3.51)

When the volumes are equal, the diffusion matrix simply reduces to Bij = δij .

The above Langevin equations (3.48) admits an equivalent formulation

in terms of an associated Fokker-Planck equation which can be formally cast

in the form:

∂

∂τ
Π = −

2Ω∑
i=1

∂

∂ζi
(J ζ)iΠ +

1

2

∂2

∂ζ2
i

BiΠ. (3.52)

This latter describes the evolution of the probability distribution Π(ζ, τ) of

the fluctuations.

The solution at any time of the above Fokker-Planck equation is a multivari-

ate normal distribution

Π(ζ, τ) =
1√

(2π)n|C|
exp

{{
−1

2
(ζ− < ζ >)

T C−1 (ζ− < ζ >)

}}
(3.53)

where |C| is the determinant of the correlation matrix. The sought proba-

bility distribution Π(ζ, τ) is hence completely characterized in terms of the

first and second moments of the fluctuations, < ζi > and < ζlζm >. These

latter quantities obey the following differential equations [70]:

d

dτ
< ζi >= (J ζ)i (3.54)

d

dτ
< ζ2

l >= 2 < (J ζ)lζl > +Bl = 2

2Ω∑
j=1

Jlj < ζlζj > +Bl (3.55)

d

dτ
< ζlζm >=< (J ζ)lζm > + < (J ζ)mζl >=

2Ω∑
j=1

Jlj < ζmζj > +Jmj < ζlζj > .

(3.56)

The stationary moments can be analytically computed by setting to zero

the time derivatives on the left hand side of (3.54) and solving the system

that is consequently obtained. The first moments, at equilibrium, are im-

mediately found to be identically equal to zero. Determining the second



3.2 Non-normal amplification of stochastic quasicycles 37

moments implies dealing with a linear system, which can be drastically sim-

plified, by invoking translation invariance across the loop. In particular,

< ζ2
i > take two distinct values, respectively reflecting the typical amplitude

of the fluctuations, as displayed by excitators and inhibitors.

In Figure 4.2 < ||ζ||2 > /3 =
∑3
i=1(ξ2

i + η2
i )/3, the stationary norm of

fluctuations on one node of the collection, is plotted against the reactivity

index w, moving on (different) iso-α lines. Solid lines stand for the analytical

calculations, as follows from (3.54), while the symbols refers the the homolo-

gous quantities computed from direct simulation of the non linear Langevin

equations (3.15), via the Euler-Maruyama algorithm [64]. The satisfying

agreement between theory and simulations testify on the adequacy of the

linear noise approximation. The positive correlation between < ||ζ||2 > /3

and w, suggests that non-normality controls the amplitude of emerging qua-

sicycles. The effect becomes more pronounced when ω > 0, i.e. when the

reactivity of the non-normal Jacobian drives a self-consistent growth for the

norm of the injected stochastic perturbation. Notice that w is found to in-

crease when crawling the iso-α curves, from right to left, in the plane (ε,D):

it is remarkable that the progressive gain in reactivity is triggered by a steady

reduction in ε, which implies forcing the system symmetric, at odd with in-

tuition. Despite the fact that we have here chosen to display the cumulative

contribution, the norm of both the activators and inhibitors species is found

to grow, with the reactivity index w. Moreover, the ensuing amplification

can be made more conspicuous by differentiating the volumes Vi, across the

loop.

To further characterize the amplification of the stochastic cycles, against

w, at fixed α, we compute the power spectrum of the fluctuations around

the deterministic fixed point. To this end we apply the temporal Fourier

transform on both sides of (3.48) and obtain the following equation

−iωζ̃i(ω) = (J ζ̃)i + λ̃i, (3.57)

where ζ̃ stands for the Fourier transform of ζ. Then, define the matrix

Φij = −iωδij − Jij . The solution of (3.57) can be written as

ζ̃ = Φ−1λ̃. (3.58)

The power spectrum density matrix (PSDM) is consequently defined by the

elements

Pij(ω) =< ζ̃i(ω)ζ̃∗j (ω) > (3.59)
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Figure 3.4: Panel (a): the asymptotic norm of the fluctuations < ||ζ||2 >
/3 =

∑3
i=1(ξ2

i + η2
i )/3, as displayed on each individual node, is plotted

versus w(J) − |α|, moving on iso-lines ᾱ. Different curves refer to different

choices of ᾱ (= −0.8,−0.6,−0.4, from bottom to top). Solid lines stands

for the analytical solution after equations (3.54). Symbols are obtained from

direct simulations of the non linear Langevin equations (3.15), averaging over

M = 300 independent realizations. Here, V1 = V2 = V3 = 106 and r = 50:

Panel (b): stochastic trajectories are displayed, relative to the inhibitors on

the first node, i.e. species y1, for different values of the numerical abscissa.

The red (small amplitude) trajectory is obtained for w(J) = −0.24(ε = 1),

while the blue (large amplitude) trajectory refers to w(J) = 5.18(ε = 0.506).

Here r = 50 and V1 = V2 = V3 = 106.
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A straightforward calculation yields

Pij(ω) =
(
Φ−1(ω)B(Φ−1)†(ω)

)
ij
, (3.60)

whose diagonal elements represent the power spectra of the signals. In Fig-

ure 3.5, three different power spectra, relative to the inhibitory species, are

represented for distinct choices of the reactivity parameter w. When w is

made to increase, while keeping α fixed, the power spectrum shifts towards

the left, as prescribed by the formula for ω1, which sets the position of the

peak. In agreement with the above, the peak gains in potency when the

degree of reactivity is augmented. Moving along iso-α is essential to prevent

spurious contributions that might set in when the system is pushed towards

the edge of the Hopf bifurcation. A gain of the quasicycles amplitude, is in

fact observed when ε is kept constant and D modulated in the range from

0 to Dc(ε), as demonstrated in Figure 3.6. Although interesting per se, this

phenomenon is, to a large extent, dictated by the progressive reduction in the

value of α, which is enforced by making D to approach its critical value Dc.

Disentangling this latter contribution from the contextual raise in reactivity

is arduous, and this is ultimately the reason why we have chosen to foliate

the relevant parameters space in curves characterized by a constant damp-

ing factor α. Similar conclusion holds when monitoring the power spectra of

fluctuations relative to the excitatory species.

The above analysis suggests that the conversion of a stochastic input into

regular oscillations is more efficient, in terms of amplification gain, when the

reactivity of the system gets more pronounced. This observation provides an

alternative angle to interpret the mechanism of noise-driven amplification,

as originally discussed in [70]. In fact, it can be proven that the Jaco-

bian matrix that rules the self-consistent amplification as displayed in [70] is

non-normal: its inherent reactivity grows with the coupling strength among

adjacent nodes, i.e. with the parameter that boosts the exponential magnifi-

cation of fluctuations along the unidirectional chain. In the setting explored

in [70], the analogue of the damping factor α is always constant and, as such,

independent on the strength of the imposed coupling. This is at variance

with the current implementation, where excitatory and inhibitory species are

arranged on a triangular loop and iso-α curves are nonlinear function of the

parameters of the model. The intertwingled activity of excitatory-inhibitory

populations gets self-consistently amplified by circulating the signal across a

symmetric or asymmetric cyclic loop, a minimal computational unit which

constitutes the fundamental building block of any large networks, notwith-
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standing their diverse and variegated topology. In the following, we will

continue elaborating along this line and show, from a thermodynamical per-

spective, that the reactivity promotes the out-of-equilibrium dynamics of the

scrutinized system. As such, it holds promise to result in an additional in-

gredient to lay the foundation of stochastic thermodynamics from the micro

to the macro realms.
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Figure 3.5: The theoretical power spectrum of the inhibitory species, P22, is

plotted with a solid line against ω. Different curves refer to different choices

of (D,ε) constrained to move across the iso-α line ᾱ = −0.4. The degree

of reactivity, as quantified by the numerical abscissa w(J), increases from

right to left (w(J) = 0.1, 4.6, 5.2): the peak of the power spectrum gains

correspondingly in power. Symbols refer to direct numerical simulations,

based on equations (3.15), averaging over M = 200 independent realizations.

Here, V1 = V2 = V3 = 106 and r = 50. Notice that P22 = P44 = P66, due to

translational invariance across the loop.

3.2.4 Thermodynamics of a reactive loop

The goal of this section is to analyze the process of noise-driven amplifica-

tion across the circular loop from a thermodynamic point of view. In doing

so we shall provide a novel angle to contextualize the implications of reac-

tive non-normality. To this end we recall that Π(ζ, τ), the distribution of

fluctuations, obeys to the Fokker-Planck equation (3.52), in the linear noise

approximation. Label with Fi ≡ (J ζ)i the nonlinear forces that define the



3.2 Non-normal amplification of stochastic quasicycles 41

6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

Figure 3.6: The theoretical power spectrum of the inhibitory species, P22, is

plotted with a solid line against ω, for different choices of D. Symbols refer

to direct numerical simulations, based on equations (3.15), averaging over

M = 200 independent realizations. Here, V1 = V2 = V3 = 106; P22 = P44 =

P66, due to translational invariance across the loop and r = 50.

drift term in the aforementioned Fokker-Planck equation; Bi stands instead

for the diffusive contribution.

The Fokker-Planck equation (3.52) can be written in the form of a con-

tinuity equation:
∂Π

∂τ
= −∇ · I = −

∑
i

∂

∂zi
Ii (3.61)

where we have defined the probability density current

Ii = FiΠ−
Bi
2

∂

∂zi
Π (3.62)

In the limit t→∞, stationarity is achieved

∂Π

∂τ
= 0 (3.63)

and the probability current is a solenoidal vector field

∇ · I = 0 (3.64)

Equilibrium represents a very specific stationary solution, attained by im-
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posing a vanishing probability current, namely I ≡ 0. Hence,

Fi =
Bi
2

∂

∂zi
ln(Π). (3.65)

If we suppose that the system is in contact with just one thermal bath, or

restating the assumption in the context of interest, assuming that γi = γ1

∀i, the following consistency requirement should be matched:

∂

∂zj
Fi =

∂

∂zi
Fj (3.66)

The above expression implies that the forces must be conservative, i.e. they

can be obtained by a generalized potential U satisfying

fi = − ∂

∂zi
U . (3.67)

The definition of the current becomes therefore

− ∂

∂zi
U =

Bi
2

∂

∂zi
ln(Π) (3.68)

and the above expression can be readily integrated to return the usual

Boltzmann-Gibbs distribution

Π(z) = K exp

(
− 2

Bi
U (z)

)
(3.69)

where K stands for a proper normalisation constant. More interesting is

the setting where the forces are non conservatives and the system evolves

towards a stationary state, different from the conventional equilibrium. To

explore this possibility we set to introduce the entropy functional S(τ) from

the probability distribution Π(z, τ) as [112,114,175]:

S(τ) = −
∫
V

dzΠ(z, τ) ln (Π (z, τ)) (3.70)

where V is the sample space of the dynamical variables. The Fokker-Planck

equation sets the temporal evolution of the entropy. Taking the derivative of

(3.70) with respect to time τ , and making use of the Fokker-Planck equation,

one obtains [114,175]:

dS
dτ

= −
∫
V

∂Π

∂τ
(ln Π + 1) dz =

∫
V

∑
i

∂Ii
∂zi

(ln Π + 1) dz (3.71)
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Assuming that the probability current vanishes at the boundary of the vol-

ume V , a simple integration by parts returns:

dS
dτ

= −
∑
i

∫
V

Ii
∂

∂zi
ln Πdz (3.72)

By recalling the definition of the probability current, one can write:

∂

∂zi
ln Π =

2

Bi
Fi −

2

Bi
Ii
Π
. (3.73)

Finally, by substituting the above expression in the formula for the temporal

evolution of the entropy, one eventually gets [114,175]:

dS
dτ

= ΠS − ΦS (3.74)

where

ΠS =
∑
i

2

Bi

∫
V

I2
i (z, τ)

P (z, τ)
dz (3.75)

and

ΦS =
∑
i

2

Bi

∫
V

Fi(z)Ii(z, τ)dz. (3.76)

The quantity ΠS is always positive and can be interpreted as the entropy

production rate given by the non conservative forces fi. On the other hand,

ΦS can be either positive or negative, and can be identified as the entropy

flux rate. If ΦS > 0, the flux is from the system towards the environment,

the opposite scenario corresponding to ΦS < 0. By invoking the definition of

the current and performing a few integrations by parts, one derive a compact

formula for the entropy flux rate:

ΦS =
∑
i

2

Γi

∫
V

FiIidz =
∑
i

2

Γi

∫
V

(
f2
i P −

Γi
2
Fi

∂

∂zi
P

)
dz =

=
∑
i

2

Γi

∫
V

(
F 2
i P +

Γi
2
P
∂

∂zi
Fi

)
dz =

∑
i

(
2

Γi
< F 2

i > + <
∂

∂zi
Fi >

)
(3.77)

which, by making explicit the forces Fi, yields:

ΦS =
∑
i,j,k

2

Bi
JijJikCjk +

∑
i,j,k

2

Bi
JijJik < ζj >< ζk > +

∑
i

Jii =

=
∑
i

2

Bi
(
J CJ t

)
ii

+
∑
i

2

Bi
[

(J < ζ >)i
]2

+ TrJ .
(3.78)
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In the stationary state:

(ΦS)∞ =
∑
i

2

Bi
(
J CsJ t

)
ii
− 6 (3.79)

where use has been made of the fact that the first moments of the distribution

Π vanish in the stationary states and that TrJ = −2(1 + 1
γ2

+ 1
γ3

) = −6.

Here, Cs stands for the stationary correlation matrix. Similarly, following

an analogous pathway, one can prove that:

ΠS =
∑
i

2

Bi
(
J CJ t

)
ii

+ 2TrJ +
1

2

∑
i

BiC−1
ii +

+
∑
i

2

Bi
[(J < ζ >)i]

2
+ 4 (J < ζ >)i

(
C−1 < ζ >

)
i
+ 2Bi

[(
C−1 < ζ >

)
i

]2
(3.80)

In the stationary state, for the setting of interest where the nodes share

the same volume (γi = γ1 ∀i), the entropy production rate matches the

expression:

(ΠS)∞ = 2Tr (J CsJ ) + 2TrJ +
1

2
TrC−1

s (3.81)

A straightforward, although lengthy calculation, confirms that (ΠS)∞ =

(ΦS)∞, i.e. the condition for stationarity should be obviouvsly met. The en-

tropy can be calculated, at any time t, by inserting in the definition (3.70) the

general solution of the Fokker-Planck equation (3.52). This is the multivari-

ate Gaussian of equation (3.53). Carrying out the calculations return [115]:

S(τ) =
1

2

∫
Π (ζ, τ)

[
(ζ− < ζ >)

T C−1 (ζ− < ζ >) + ln
(

(2π)
n |C|

)]
dζ

(3.82)

The second term in the above integral gives simply ln
(

(2π)
n |C|

)
, because

of the normalisation of the probability distribution The first term can be

calculated as follows. Observe that C is a symmetric positive definite matrix

and its elements are real. It is hence possible to construct its Cholesky

decomposition C = EET . Perform now the transformation ζ = Es+ <

ζ >, which yields (ζ− < ζ >)
T C−1 (ζ− < ζ >) = sT s. The probability

distribution expressed as a function of the variables s read

Π(s) =
1

(2π)n
exp

{
−1

2
sT s

}
(3.83)
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and consequently the first integral in (3.82) gives

< sT s >= n (3.84)

In conclusion, S(τ) = 1
2

[
n+ln

(
(2π)

n |C|
)]

= 1
2 ln

(
(2πe)

n |C|
)

and S∞ =
1
2 ln

(
(2πe)

n |Cs|
)

with an obvious meaning of the involved symbols.

In Figure 3.7, the stationary entropy S∞ is plotted against w moving

on iso-α lines: the stationary entropy grows with reactivity of the system

system. The reactivity, as stemming from non-normality, facilitates hence

the exploration of the available phase space, pushing the system out of equi-

librium. In the transient phase, ΠS > ΦS , as it can be appreciated in the

main panel of Figure 3.8, where ΠS − ΦS is represented against τ . The two

curves refer to different pairs D, ε, chosen on the iso-α line ᾱ = −0.6. Dur-

ing the initial violent relaxation, the curves are almost indistinguishable, but

then separate to proceed on distinct tracks. More importantly, the out-of-

equilibrium regime seems to persist for longer times, when the value of w is

made larger (solid vs. dashed lines). Indeed, the smaller w, the sooner the

stationary condition ΠS = ΦS is established, as illustrated in the inset of

Figure 3.8. Here, the quantities ΠS and ΦS are monitored as a function of

time, in lin-log scale, for the same choice of parameters as in the main panel.
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Figure 3.7: The stationary entropy S∞ is plotted against w moving on iso-

α lines. Here, ᾱ (= −0.8,−0.6,−0.4, from bottom to top). Solid lines

stands for the analytical solutions. Symbols follow from direct simulations

of the Langevin equations (3.15), on averaging over M = 300 independent

realizations. Here, V1 = V2 = V3 = 106 and r = 50.
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Figure 3.8: Main panel: ΠS−ΦS is plotted in lin-log scale against τ , for two

choices of the parameters D, ε constrained to return constant α = ᾱ = 0.6.

The solid (red) line refers to w = 5.25, while the dashed (blue) line stands

for w = −0.24. In the inset ΠS and ΦS are reported for the choices of

parameters, as given in the main panel. Here, r = 50.

3.3 Conclusion

Finite size corrections represent an unavoidable source of endogenous distur-

bance, which can significantly impact the dynamics of the system under ex-

amination. Macroscopic order can materialize from the microscopic disorder,

as stemming from the inherent demographic noise. Under specific operat-

ing conditions, quasi-cycles can develop via a resonant mechanism, triggered

by the stochastic component of the dynamics. In general, quasi-cycles are

modest in size and it is interesting to elaborate on the possible strategies,

of either artificial or natural inspirations, that yield a coherent amplification

of the stochastic signal. In a recent paper [70], it was shown that giant,

noise assisted oscillations can develop when replicating a minimal model of

excitatory and inhibitory units, on a large one dimensional lattice subject to

unidirectional couplings. The parameters are assigned in such a way that the

deterministic analogue of the scrutinized stochastic model displays a stable

homogenous equilibrium. Fluctuations generated by the microscopic graini-

ness, yield seemingly regular oscillations, with tunable frequency, which gain

amplitude across the lattice. The rate of amplification is controlled by the
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coupling constant, among adjacent patches. Motivated by this analysis, we

have here considered a variant of the model discussed in [70] to shed light

onto the fundamental ingredients which cooperate for the onset of the ampli-

fication. The species are assigned to populate a spatially extended loop made

of three nodes. Triangular loops define the simplest non trivial closed path

in large network complexes: for this reason, it is instructive to elaborate on

their putative role in assisting the stochastic amplification of quasicycles. A

sensible increase in the stochastic oscillations is indeed obtained when prop-

agating the signal across the loop, while forcing the system in a region where

the deterministic homogeneous fixed point proves stable. The larger the cou-

pling constant the more pronounced the measured gain. When the coupling

is made stronger, one approaches the boundary of stability for the underlying

equilibrium: the damping of fluctuations is consequently reduced and this

explains the increase of oscillations’ amplitude against D. More interesting is

the amplification detected when freezing the dispersion relation, i.e. setting

to a constant the largest (negative real part of the) eigenvalue of the Jaco-

bian. In this case, the degree of amplification is controlled by the reactivity

index, a parameter that quantifies the short time growth of the norm of an

imposed perturbation. The larger the reactivity of the non normal Jacobian

matrix – associated to the spatially extended system – the more pronounced

the stochastic driven oscillations. Nonconservative forces push the system

out of equilibrium and the stationary value of the entropy is found to increase

with the reactivity, here measured by the numerical abscissa. Based on these

observations, we argue that non normality, and, more specifically, reactiv-

ity, should be thoroughly considered, when bridging stochastic dynamics and

out-of-equilibrium thermodynamics. More than that, we want to remark that

we are facing an important and unconventional thermodynamic scenario. In

fact, in the presence of nonconservative forces the system converges asym-

potically to a genuine nonequilibrium steady state, after a transient during

which the entropy production rate monotonically vanishes and the system

reaches a maximum of the entropy. This shows that a variatonal principle

based on entropy maximization is compatible with the presence of a nonzero

(entropy) current. This is because in our model all nodes are subjected to

the same effective temperature (i.e. γi = γ1 = 1∀i). We conjecture that

when assuming different values of the volumes of the nodes and of the corre-

sponding temperatures, the system converges to the more standard scenario

of another genuine nonequilibrium state, which is a consequence of the vari-
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ational principle of minimization of the entropy production rate, constant at

any node of the system. In conclusion, we have here shown that minimalistic

loops of intertangled excitatory and inhibitory units might trigger a coher-

ent amplification of the stochastic oscillations, as exhibited on each isolated

patch. Moreover, deterministic non normality should be maximized for the

stochastic system to grow giant coherent oscillations.



Chapter 4

Resilience for stochastic systems

interacting via a

quasi-degenerate network

The previous chapter highlights the consequences of nontrivial interplay be-

tween stochastic forcing and network arrangement for a model of reactive

populations.

In this chapter, we show that a resonant amplification can be obtained

when replicating a non-normal reactive scheme on the nodes of a directed

and quasi-degenerate network, also for stable, hence resilient, systems. Non-

normality and quasi-degenerate networks may, therefore, amplify the inher-

ent stochasticity and so contribute to altering the perception of resilience,

as quantified via conventional deterministic methods. Resilience represents

the inherent ability of a given system to oppose external disturbances and

eventually recover the unperturbed state. The concept of resilience is par-

ticularly relevant to ecology [87,142]. Here, perturbations of sufficient mag-

nitude may force the system beyond the stability threshold of a reference

equilibrium. When the threshold is breached, recovery is not possible and

the system under scrutiny steers towards an alternative attractor, distinct

from the original one. The capacity of the system to withstand changes is

however important in different fields ranging from climate change to material

science, via information security and energy development [73].

To grasp the mathematical essence of the phenomenon, one can rely

on a straightforward linear stability analysis of the governing dynamical,

49
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supposedly deterministic, equations. If the largest real part of the Jacobian

eigenvalues is negative, the examined system is deemed stable, against tiny

disturbances [136, 170, 171]. However, a linearly stable equilibrium can be

made unstable, through non-linearities, by a sufficiently large perturbation

amount: this occurs for instance when the enforced disturbance takes the

system outside the basin of attraction, i.e. the set of initial conditions leading

to long-time behavior that approaches the attractor [130]. In the following,

we shall focus on sufficiently small perturbations, so that the linear stability

holds true. A transient growth can, however, take place, at short times,

before the perturbation fades eventually away, as established by the spectrum

of the Jacobian matrix. This short time amplification is instigated by the

non-normal character of the interaction scheme and may trigger the system

unstable, also when the eigenvalues of the Jacobian display a negative real

part [176]. The elemental ability of a non-normal system to prompt an initial

rise of the associated norm, can be made perpetual by an enduring stochastic

drive [70,150], as described in Chapter 3. This evidence suggests that caution

should be exercised when quantifying the resilience of systems driven by non-

normal coupling and shaked by stochastic forcing. As a side remark, let us

observe that non normal arrangement of coupled sensors could boost the

performances of devices implementing the principle of stochastic resonance

[28,78]. Suitable strategies of stochastic control could also be devised which

exploit the ability of the system to trigger punctual amplification on key

nodes of the collection [72].

We shall be, in particular, interested in interacting multi-species models,

diffusively coupled via a networked arrangement [16, 19, 35, 41, 44, 61, 62, 93,

108,138,139,153,154]. The investigated systems are assumed to hold an ho-

mogeneous equilibrium. For a specific choice of the involved parameters, the

homogeneous fixed point can turn unstable upon injection of a non homoge-

neous perturbation, which activates the diffusion component. The ensuing

symmetry breaking instability, as signaled by the so called dispersion rela-

tion [159], constitutes the natural generalization of the celebrated Turing

instability [178] to reaction-diffusion systems hosted on a complex network.

In [133], the authors showed that non-normal, hence asymmetric, net-

works may drive a deterministic system unstable, also if this latter is pre-

dicted stable under the linear stability analysis. As we shall here prove, the

effect is definitely more remarkable when the non-normal system is made

inherently stochastic [15, 22, 80, 182]. At variance with the analysis in [31],
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it is the non-normality of the network to yield the self-consistent amplifi-

cation of the noisy component, a resonant mechanism which prevents the

resilient recovery. To elaborate along these lines, we will consider a generic

reaction-diffusion model defined on a directed one-dimensional lattice, like

that presented in Section 2.2. The degenerate spectrum of the Laplacian

that governs the diffusive exchanges between adjacent nodes sits at the root

of the generalized class of instability that we shall here address. Making the

directed lattice longer, i.e. adding successive nodes to the one-dimensional

chain, allows for the perturbation to grow in potency, and for the system

to eventually cross the boundary of stability [188]. A similar scenario is

met when the hosting network is assumed quasi-degenerate, meaning that

the Laplacian eigenvalues are densely packed within a limited portion of the

complex plane.

Many real networks have been reported to possess a pronounced degree

of non-normality [17, 21]. In particular, it was shown that their adjacency

matrix is almost triangular (when properly re-organizing the indexing of the

nodes) which, in spectral terms, implies enhancing the probability of yielding

a degenerate spectrum for the associated Laplacian matrix. Networks that

display a triangular adjacency matrix are known as directed acyclic graphs

(DAG).

The chapter is organized as follows. In Section 4.1, we shall introduce

our reference setting, a reaction-diffusion system anchored on a directed

one-dimensional lattice. In particular, we will show that a self-consistent

amplification of the noisy component of the dynamics is produced, when

successively incrementing the number of nodes that form the chain. Moving

from this preliminary information, in Section 4.1 we will modify the lattice

structure by accommodating for, uniform and random, return loops. This

breaks the degeneracy that arises from the directed lattice topology. The

coherent amplification of the stochastic drive is however persistent as long

as the spectrum is close to degenerate. Random directed acyclic graphs

with quasi-degenerate spectrum can also be created, so as to make reaction-

diffusion systems equally prone to the stochastically driven instability. This

topic will be discussed in Section 4.2.
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4.1 Reaction-diffusion dynamics on a directed

lattice

We begin by considering the coupled evolution of two species which are

bound to diffuse on a (directed) network [1, 6, 33, 146]. Introduce the index

i = 1, ...,Ω to identify the Ω nodes of the collection and denote by φi and ψi
the concentration of the species on the i-th node. The local (on site) reac-

tive dynamics is respectively governed by the non-linear functions f(φi, ψi)

and g(φi, ψi). The structure of the underlying network is specified by the

adjacency matrix A: Aij is different from zero if a weighted link exists which

connects node j to node i. The species can relocate across the network trav-

eling the available edges. With reference to species φi, the net flux at node

i reads Dφ

∑Ω
j=1Aij(φj − φi), where Dφ stands for the diffusion coefficient

and the sum is restricted to the subset of nodes j for which Aij 6= 0. Fur-

thermore, we shall assume that the dynamics on each node gets perturbed

by an additive noise component of amplitude σi. In formulae, the system

under investigation can be cast as:

d

dt
φi = f (φi, ψi) +Dφ

Ω∑
j=1

∆ijφj + σi(µφ)i (4.1a)

d

dt
ψi = g (φi, ψi) +Dψ

Ω∑
j=1

∆ijψj + σi(µψ)i (4.1b)

where ∆ij = Aij−kiδij stands for the discrete Laplacian and ki =
∑
j Aij is

the incoming connectivity. Here, (µφ)i and (µψ)i are Gaussian random vari-

ables with zero mean and correlations 〈(µφ)i(t)(µφ)j(t
′)〉 = 〈(µψ)i(t)(µψ)j(t

′)〉 =

δijδ(t− t′) and 〈(µφ)i(t)(µψ)j(t
′)〉 = 0. Here δij = 1 if and only if i = j and

δij = 0 otherwise, denotes the Kronecker delta. Conversely, δ(t − t”) = 1 if

and only if t = t′ and δ(t − t′) = 0 otherwise, denotes the Dirac delta. In

this section, we will assume a directed lattice as the underlying network. A

schematic layout of the system is depicted in Fig. 4.1. The Ω×Ω Laplacian

matrix associated to the directed lattice admits a degenerate spectrum, an

observation that will become crucial for what follows. More precisely, the

eigenvalues of the Laplacian operators are Λ(1) = 0, with multiplicity 1, and

Λ(2) = −1, with multiplicity Ω−1. Notice that the eigenvalues are real, even

though the Laplacian matrix is asymmetric.
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Figure 4.1: The scheme of the model is illustrated. Two populations, re-

spectively denoted by φ and ψ, are distributed on a collection of Ω nodes.

The nodes are arranged so as to form a one-dimensional lattice subject to

unidirectional couplings, as outlined in the scheme. The weight of the link

between adjacent nodes is set to one. The local, on site, interaction among

species is ruled by generic nonlinear functions of the concentration amount.

4.1.1 The deterministic limit

To continue with the analysis, we will assume that the local reactive dynam-

ics admits an equilibrium (φ∗, ψ∗), i.e. f(φ∗, ψ∗) = 0 and g(φ∗, ψ∗) = 0. In

turn, this implies that the deterministic analogue of system (4.1a)-(4.1b) (ob-

tained when setting σi = 0, ∀i) admits the homogeneous fixed point φi = φ∗

and ψi = ψ∗ for any i. Furthermore, we will assume that the aforementioned

fixed point is stable against homogeneous perturbation, a working assump-

tion which can be formally quantified by considering the associated Jacobian

matrix:

J =

(
fφ fψ
gφ gψ

)
(4.2)

where fφ stands for the partial derivative of f(φ, ψ) with respect to φ, eval-

uated at the fixed point (φ∗, ψ∗). Similar definitions hold for fψ, gφ and gψ.

The homogeneous fixed point is stable provided that tr(J) = fφ+gψ < 0 and

det(J) = fφgψ − fψgφ > 0. Here, tr(...) and det(...) denote, respectively, the

trace and the determinant. When the above inequalities are met, the largest

real part of the eigenvalues of the Jacobian matrix J is negative, pointing to

asymptotic stability. Peculiar behaviors however arise when the spectrum of

J is degenerate, namely when the eigenvalues come in identical pairs.

In this case, the solution to the linear problem ruled by matrix J contains

a secular term, which, depending on the initial conditions, might yield a

counterintuitive growth of the perturbation, at short time. For long enough

time, the exponential damping takes it over and the system relaxes back to

the stable equilibrium (or, equivalently, the imposed perturbation is damped
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away). Short-time transients can also be found in stable linear systems,

ruled by non-normal matrices. A matrix is said non-normal, if it does not

commute with its adjoint [176] . For the case at hand, J is assumed to be

real. Hence, taking the adjoint is identical to considering the transpose of

the matrix. In formulae, J is non-normal, provided [J, JT ] = JJT − JTJ 6=
0, where the superscript T denotes the transpose operation. Assume that

the non-normal matrix J is stable, hence its eigenvalues have negative real

parts. Consider then the Hermitian part of J , a symmetric matrix defined

as H(J) = (J + JT )/2. If the largest eigenvalue of H is positive, then

the linear system governed by J can display a short time growth, for a

specific range of initial conditions. Systems characterized by stable Jacobian

matrix, with an associated unstable Hermitian part, are termed reactive. In

the following we shall consider a reactive two-component system, namely a

two species model that possesses the elemental ability to grow the imposed

perturbation at short times, also when deemed stable. This latter ability

will be considerably augmented by replicating such fundamental unit on the

directed chain, and so engendering a secular behavior which eventually stems

from the degenerate structure of the associated Jacobian.

Heading in this direction we shall first make sure that the examined sys-

tem is stable when formulated in its spatially extended variant, namely when

the two species dynamical system is mirrored on a large set of nodes, coupled

diffusively via unidirectional links. A non homogeneous perturbation can be

in fact imposed, which activates the diffusion component and consequently

turns, under specific conditions, the homogenous solution unstable. The sub-

tle interplay between diffusion and reaction weakens therefore the resilience

of the system, by opposing its ability to fight external disturbances and even-

tually regain the unperturbed (homogeneous) state. The conditions for the

onset of the diffusion-driven instability are obtained via a linear stability

analysis, that we shall hereafter revisit for the case at hand. The analysis

yields a dispersion relation which bears information on the outbreak of the

instability. This latter constitutes a straightforward generalization of the cel-

ebrated Turing mechanism [178] to the case of a discrete, possibly directed

support [19].

To further elaborate along this axis, we focus on the deterministic version

of system (4.1a)-(4.1b) and impose a, supposedly small, non homogeneous
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perturbation of the homogenous equilibrium. In formulae, we set:

φi = φ∗ + ξi (4.3)

ψi = ψ∗ + ηi

where ξi and ηi stand for the imposed perturbation. In the following we will

label ζ = (ξ1, η1, ..., ξΩ, ηΩ) the vector which characterizes the fluctuations

around the fixed point. Insert now the above condition in the governing

equation and linearize around the fixed point, assuming the perturbation to

be small. This readily yields a 2Ω× 2Ω linear system in the variable ζ:

d

dt
ζ = J ζ (4.4)

where

J =


J 0 . . .

D J−D 0 . . .

0 D J−D
...

. . .
. . .

. . .

 (4.5)

and D =

(
Dφ 0

0 Dψ

)
is the diagonal diffusion matrix. The spectrum of the

generalized Jacobian matrix J conveys information on the asymptotic fate

of the imposed perturbation. If the eigenvalues display negative real parts,

then the perturbation is bound to fade away, at sufficiently large times. The

system hence recovers the unperturbed homogeneous configuration. Con-

versely, the perturbation grows when the eigenvalues possess a positive real

part. A Turing-like instability sets in and the system evolves towards a

different, non homogeneous, attractor.

To compute the eigenvalues λ of matrix J , we label εi = J + D∆ii for

i = 1, . . . ,Ω. Then, the characteristic polynomial of J reads:

0 = det(J − λI) =

N∏
i=1

det(εi − λI) (4.6)

= det(ε1 − λI) [det(ε2 − λI)]
Ω−1

(4.7)

where I stands for the 2× 2 identity matrix and

det(ε1 − λI) = λ2 − tr(J)λ+ det(J) (4.8)

det(ε2 − λI) = λ2 − tr(J′)λ+ det(J′)
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where we have introduced the matrix J′ = J − D. The spectrum of the

generalized Jacobian is hence degenerate if Ω > 2 and the multiplicity of the

degeneracy of the spectrum grows with Ω, the number of nodes that compose

the lattice. In formulae:

λ1,2 =
tr(J)±

√
tr2(J)− 4 det(J)

2
(4.9)

and

λ3,4 =
tr(J′)±

√
tr2(J′)− 4 det(J′)

2
(4.10)

with degeneracy Ω− 1. The stability of the fixed point (φ∗, ψ∗) to external

non homogeneous perturbation is hence determined by (λre)max, the largest

real part of the above eigenvalues.

For Ω > 2, the solution of the linear system (4.4) can be cast in a closed

analytical form, by invoking the concept of generalized eigenvectors. Denote

with v0 and w0 the ordinary eigenvectors associated to the non degenerate

eigenvalues λ1 and λ2. The ordinary eigenvectors v1 and w1, respectively

associated to λ3 and λ4, are non degenerate (i.e. the geometric multiplicity is

one). This can be proven for a generic dimension 2Ω of the matrix J due to

the simple block structure of the matrix. We then introduce the generalized

eigenvectors associated to λ3, λ4 as:

(J − λ3I)ivi+1 = vi, i = 1, . . . ,Ω− 2 (4.11)

(J − λ4I)iwi+1 = wi, i = 1, . . . ,Ω− 2. (4.12)

The solution of (4.4) reads therefore:

ζ = c0e
λ1tv0 + d0e

λ2tw0

+ [c1v1 + c2(v1t+ v2) + c3(v1t
2 + v2t+ v3)

+ · · ·+ cΩ−1(v1t
Ω−2 + v2t

Ω−3 + · · ·+ vΩ−1)]eλ3t

+ [d1w1 + d2(w1t+w2) + d3(w1t
2 +w2t+w3) + . . .

+ dΩ−1(w1t
Ω−2 +w2t

Ω−3 + · · ·+wΩ−1)]eλ4t. (4.13)

Secular terms, which bear the imprint of the spectrum degeneracy, may

boost the short time amplification of the norm of the imposed perturbation.

Remind that the transient growth occurs for (λre)max < 0, i.e. when the

perturbation is bound to fade away asymptotically. Interestingly, the degree
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of the polynomial increases with the lattice size. This implies, in turn, that

the short time amplification of a stable system could progressively grow, as

the number of lattice nodes gets increased.

Without loss of generality, and to test the implication of the above reason-

ing, we shall hereafter assume the Brusselator model, as a reference reaction

scheme. The Brusselator is a paradigmatic testbed for nonlinear dynam-

ics, and it is often invoked in the literature as a representative model of

self-organisation, synchronisation and pattern formation [76]. Our choice

amounts to setting

f (φi, ψi) = 1− (b+ 1)φi + cφ2
iψi (4.14a)

g (φi, ψi) = bφi − cφ2
iψi (4.14b)

where b and c stand for positive parameters. The system admits a trivial

homogeneous fixed point for (φi, ψi) = (1, b/c). This latter is stable to ho-

mogeneous perturbation provided that c > b − 1. We can then isolate, in

the parameter plane (b, c), the domain where (λre)max > 0, or stated differ-

ently, the region that corresponds to a generalized Turing instability. The

result of the analysis is displayed in Fig. 4.2, for a specific choice of the

diffusion parameters, with Dφ > Dψ: the region of Turing instability falls

inside the black solid lines (the red line follows the analysis of the stochastic

analogue of the model, as we will explain in the following). The symbols

identify two distinct operating points, positioned outside the region of deter-

ministic instability. Working in this setting, after a short time transient, the

perturbations get exponentially damped and the system relaxes back to its

homogeneous equilibrium. The effect of the short time amplification should

get more visible for increasing values of Ω, the lattice size, and the close the

operating point is to the threshold of instability. This scenario is confirmed

by inspection of Fig. 4.3, where the norm of the perturbation is plotted

against time, for the chosen parameter values. To further elaborate on this

observation, in Fig. 4.4 we display the density of species φ, on different

nodes of the chain, versus time. Panel (a) refers to the choice of parameters

that corresponds to the blue square in Fig. 4.2, while panel (b) follows for

the parameters associated to the orange circle. By making the chain longer,

one better appreciates the initial growth of the perturbation which material-

izes in transient patterns. For sufficiently long time, the patterns disappear

and the system converges back to the unperturbed homogeneous fixed point.

The time for equilibration grows with the size of the lattice, i.e. with the
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number of nodes Ω. Transient patterns are more pronounced and persistent,

the closer to the region of deterministic instability.
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Figure 4.2: The region of instability is depicted in the parameter plane

(b, c). This is the portion of the plane contained in between the two black

solid lines. The symbols refer to two distinct operating points, positioned

outside the domain of deterministic instability. The two points are located

at b = 2, and have respectively c = 2.8 and c = 4.3. The red line delimits the

upper boundary of the parameters region where the stochastic amplification

can eventually take place, as discussed in the remaining part of the section.

Here, Dφ = 1 and Dψ = 10.

4.1.2 The stochastic evolution

We shall here move on to consider the effect produced by a perpetual noise.

This amounts to assuming σi 6= 0 in (4.1a)-(4.1b) [80]. For the sake of

simplicity we will set in the following σi = σ. We anticipate however that

our conclusions still hold when accounting for an arbitrary degree of hetero-

geneity in the strength of the noise. By linearizing the governing dynamical

system around the fixed point yields a set of linear Langevin equations [30]:

d

dτ
ζi = (J ζ)i + λ̂i (4.15)

where λ̂ is a 2Ω vector of random Gaussian entries with zero mean, < λ̂ >=

0, and correlation given by < λ̂i(τ)λ̂j(τ
′) >= σ2δijδ(τ − τ ′).

The linear Langevin equations (4.15) are equivalent to the following

Fokker-Planck equation [89] for the distribution function Π of the fluctu-
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Figure 4.3: The evolution of the norm of the perturbation is displayed for

different choices of the reaction parameter c, corresponding to the two points

selected in Fig. 4.2 (at b = 2). (a) Here c = 2.8, the lower point (blue square)

in Fig. 4.2. The solid line refers to Ω = 5 while the dashed line is obtained

for Ω = 10. (b) Here c = 4.3, the upper point (orange circle) in Fig. 4.2. The

solid line stands for Ω = 5 while the dashed line refers to Ω = 25. Notice

that the amplification gets more pronounced the closer the working point

is to the deterministic transition line. Also, the peak of the norm against

time shifts towards the right as the power of the leading secular terms is

increased. Here, Dφ = 1 and Dψ = 10.

ations

∂

∂τ
Π = −

2Ω∑
i=1

∂

∂ζi
(J ζ)i Π +

1

2
σ2 ∂

2

∂ζ2
i

Π (4.16)

The solution of the Fokker-Planck equation is a multivariate Gaussian that

we can univocally characterize in terms of the associated first and second

moments. It is immediate to show that the first moment converges in time

to zero. We focus instead on the 2Ω×2Ω family of second moments, defined

as 〈ζlζm〉 =
∫
ζlζmΠdζ. A straightforward calculation returns [70]:

d

dτ
< ζ2

l >= 2 < (J ζ)l ζl > +σ2 = 2

2Ω∑
j=1

Jlj < ζlζj > +σ2 (4.17)

d

dτ
< ζlζm >=< (J ζ)l ζm > + < (J ζ)m ζl >=

2Ω∑
j=1

Jlj < ζmζj > +Jmj < ζlζj >

(4.18)
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for respectively the diagonal and off-diagonal (l 6= m) moments. The sta-

tionary values of the moments can be analytically computed by setting to

zero the time derivatives on the left hand side of equations (4.17)-(4.18) and

solving the linear system that is consequently obtained. Particularly rele-

vant for our purposes is the quantity δi = 〈ζ2
i 〉, the variance of the displayed

fluctuations, around the deterministic equilibrium, on node i. The value of

δi, normalized to δ1, is plotted in Fig. 4.5, for both species of the Brusselator

model. The parameters correspond to the working point identified by the

blue square in Fig. 4.2. The solid line stands for the, analytically deter-

mined, variance of the fluctuations predicted for species φ, while the dashed

line refers to species ψ. The symbols are obtained after direct stochastic

simulations of system (4.1a)-(4.1b), assuming the Brussellator as the refer-

ence reaction scheme. As it can be appreciated by visual inspection of Fig.

4.5, the fluctuations grow progressively node after node. The predicted vari-

ances nicely agree with the result of the simulations on the first nodes of the

collection. For Ω > 15, deviations are abruptly found and the linear noise

approximation fails. Our interpretation goes as follows: the amplification

mechanism is manifestly triggered by the imposed noise, which resonates

with the peculiar topology of the embedding support. Due to this inter-

play, noise-seeded fluctuations grow across the chain and make it possible

for the system to explore the phase space landscape, beyond the local basin

of attraction to which it is deterministically bound.

From here on, it is no longer legitimate to simplify the dynamics of the

system as if it was evolving in the vicinity of the homogeneous solution and

the assumption that sits at the root of the linear noise estimate are con-

sequently invalidated. The time evolution of species φ is plotted, with an

appropriate color code, on different nodes of the chain and versus time in Fig.

4.6. Noise secures the stabilization of complex dynamical patterns, which are

perpetually maintained in the stochastic version of the model, so breaking

the spatial symmetry that characterizes the asymptotic deterministic solu-

tion. The amplification mechanism driven by the stochastic component can

solely occur within a closed domain of the parameter space (b, c) adjacent

to the region of deterministic instability. The domain of interest is delim-

ited by the red solid line in Fig. 4.2: for the parameters that fall below the

red line, the variance of the fluctuations is analytically predicted to increase

along the chain. Even more importantly, the system may be frozen in the

heterogenous state, when silencing the noise (so regaining the deterministic
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limit) after a transient of the stochastic dynamics. This is clearly the case,

provided that the deterministic dynamics possesses a stable non homoge-

neous attractor, for the chosen parameter set. In Fig. 4.7 (a) the pattern is

stably displayed, only when the noise is active. When the stochastic forcing

is turned off (at the time identified by the white dashed line), the system

regains the homogenous equilibrium. A selection of individual trajectories,

recorded on specific nodes of the chain, is plotted in Fig. 4.7 (b) and yields

the same qualitative conclusion. A different scenario is instead met when

operating with a slightly smaller value of the parameter c (still outside the

region of deterministic Turing instability). When turning off the noise, the

system spontaneously sediments in a Chimera like pattern, see Fig. 4.7 (c), a

superposition of homogeneous (in the beginning of the chain) and heteroge-

nous states (at the bottom of the chain) [2, 156, 168]. The same conclusion

is reached upon inspection of Fig. 4.7 (d). Here, the deterministic attrac-

tor is represented with a collection of crosses. A straightforward calculation

confirms that it is indeed one of the different non homogeneous and stable

attractors displayed by the system in its deterministic version.

4.2 Quasi-degenerate directed lattice

This section is devoted to generalize the above analysis to the relevant setting

where the degeneracy of the problem is removed by the insertion of return

links, among adjacent nodes. More specifically we will assume that an edge

with weight ε exists that goes from node i to nodes i − 1, for all i > 1. At

the same time the strength of the corresponding forward link is set to 1− ε,
so as to preserve the nodes’ strength (for i > 1), when modulating ε (see

Fig. 4.8). In the following we will consider ε to be small. In particular, for

ε → 0 one recovers the limiting case discussed in the previous section. On

the other hand, the introduction of a tiny return probability suffices to break

the degeneracy of the problem: the Ω eigenvalues become distinct and the

eigenvectors of the Laplacian define a basis which can be used to solve the lin-

ear problem (4.4), which stems for the deterministic version of the inspected

model [19, 139]. Denote by vα the eigenvector of ∆ relative to eigenvalue

Λ(α), with α = 1, ..,Ω. In formulae,
∑Ω
j=1 ∆ijv

α
j = Λαvαi . The perturba-

tion ζ in equation (4.4) can be expanded as ζi =
∑Ω
α=1 cαe

λαtvαi , where

the constants cα are determined by the initial condition. By inserting the

aforementioned ansatz into the linear system (4.4) yields the self-consistent
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Figure 4.4: The time evolution of species φ is displayed with an appropriate

color code, on different nodes of the chain and against time. The Brusselator

reaction scheme is assumed. Diffusion constants are set to Dφ = 1 and

Dψ = 10. Panel (a) refers to the values of b and c associated to the blue

square in Fig. 4.2 (i.e. closer to the transition line), while panel (b) follows

the parameters attributed by assuming the orange circle as the operating

point (further away from the transition line).

condition

det

(
fφ +DφΛα − λα fψ

gφ gψ +DψΛα − λα

)
= 0. (4.19)

The stability of the homogenous fixed point can therefore be determined

from the above condition, by computing λα as a function of the Laplacian

eigenvalues Λ(α). This is the generalization of the so called dispersion relation

to a setting where the spatial support is a network. In Fig. 4.9, we plot the

dispersion relation for a chain made of Ω = 10 nodes and for different values

of ε, assuming the Brusselator model as the reference scheme. The reaction
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Figure 4.5: The phenomenon of noise driven amplification is illustrated:

δi/δ1 is plotted against the node’s number along the chain. The solid

(dashed) line refers to the variance of the fluctuations, as predicted for species

φ (ψ). The symbols stand for the homologues quantities as computed via

direct stochastic simulations. The Brussellator model is assumed as the ref-

erence reaction scheme and parameters refer to the blue square displayed in

Fig. 4.2.

parameters are set so as to yield the square symbol in Fig.4.2. Remarkably,

the spectrum of the Laplacian operator is real and the largest eigenvalue is

Λ(1)=0, as it readily follows by its definition. The remaining Ω−1 eigenvalues

are real and cluster in the vicinity of Λ̄ = −1, the smaller ε is, the closer

they get to this value, as illustrated in Fig. 4.9. The case of a degenerate

chain can be formally recovered by sending ε to zero, which in turn implies

that the non trivial portion of the dispersion curve, as depicted in Fig. 4.9,

collapses towards an asymptotic attractor located at (Λ̄, λ(Λ̄)). Building on

this observation, it can be shown that the solution of the deterministic linear

problem (4.4), for the system defined on a degenerate chain, can be obtained

by performing the limit for ε→ 0 of the non degenerate linear solution.

It is hence tempting to speculate that the stochastically driven insta-

bility, as outlined in the preceding section, can readily extend to a setting

where the chain is non degenerate, provided that ε is sufficiently small. The

remaining part of this section is entirely devoted to explore this interesting

generalization.

Following the strategy discussed above, we can set to calculate the sta-

tionary values for the moments of the stochastic fluctuations. In Fig. 4.10,

the stationary values of the moments δi = 〈ζ2
i 〉 are normalized to δ1 and



64
Resilience for stochastic systems interacting via a

quasi-degenerate network

50 100 150 200 250 300 350

20

40

60

80 0.5

1

1.5

2

2.5

3

3.5

a)

50 100 150 200 250 300 350

20

40

60

80

0.8

1

1.2

1.4

1.6

b)

Figure 4.6: The time evolution of species φ is displayed with an appropriate

color code, on different nodes of the chain and against time. The Brusselator

reaction scheme is assumed and the choice of the parameters reflects that

made in Fig. 4.4. The pattern displayed in panel a) is obtained for the

parameters associated to the blue square in Fig. 4.2. Panel b) follows the

position of the orange circle. By integrating the stochastic dynamics on a

sufficiently long chain yields a robust pattern, which holds permanently, at

variance with its deterministic analogue (see Fig. 4.4).

plotted against the node label across the chain. In analogy with the above,

the solid line stands for the variance of the fluctuations associated to species

φ, while the dashed line stands for species ψ. As expected, the fluctuations

magnify along the chain, as it happens when the system is made to evolve

with ε = 0. The predicted variances agree with the results of the stochastic

simulations, up to a critical length of the chain above which the system be-

gins feeling the nonlinearities that will steer it towards a non homogeneous

attractor. Noise stabilizes the heterogeneous patterns which become hence

perpetual in the stochastic version of the model, as it can be appreciated by

inspection of Fig. 4.11. As a further attempt to grasp the complexity of the

phenomenon, we consider again a chain with return links, but assume the
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Figure 4.7: Panels (a) and (c). The time evolution of species φ is displayed

with an appropriate color code, on different nodes of the chain and against

time. The vertical dashed line identifies the instant in time when the external

noise is turned off: from here on the system evolves according to a purely

deterministic scheme. The Brusselator reaction scheme is assumed with the

same parameters choice of Fig. 4.5, except for c. In (a), the pattern fades

eventually away. Here c = 2.8, as in Fig. 4.5. In (c), the system sediments in

a stationary pattern of the Chimera type. Here c = 2.4. In Figs. (b) and (d),

the density of species φ is displayed on few nodes of the collection (one node

each five, across the chain). In panel (b) (corresponding to pattern (a)), the

system converges to the homogeneous fixed point (black cross). In panel (d)

(corresponding to pattern (c)), the system reaches a stable heterogeneous

attractor.

weights ε to be random entries drawn from a Gaussian distribution, centered

in ε̄, with variance ηε̄. The spectrum of the Laplacian operator is now com-

plex (at variance with the case where the ε are all equal) and the discrete

dispersion relation is no longer bound to the idealized continuum curve, see

Fig. 4.12. For a sufficiently small ε̄, and modest scattering around the mean,

the negative portion of the dispersion relation clusters in the vicinity of the

point (Λ̄, λ(Λ̄)), which stems from the fully degenerate solution. Arguing as

above, one can expect that noise and spatial coupling will cooperate also in

this setting to yield robust stochastic patterns, in a region of the parameters
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Figure 4.8: The scheme of the model is illustrated for the case where for-

ward and backward links are present. The weights of the connections are

modulated by the parameter ε.

for which deterministic stability is granted. In Fig. 4.13, we show that the

signal amplification for the stochastic Brusselator model defined on a chain

with random return weights, is on average identical to that observed when

the ε are equal and set to the average value ε̄. The depicted points are com-

puted after averaging over 100 realization of the random quasi-degenerate

network and the error in the computed quantities is of the order of the sym-

bols size. The ensuing stochastic pattern is reported in Fig. 4.14.

In conclusion, we have shown that a generic reaction model, which is sta-

ble when defined on a continuous or lattice-like support, can turn unstable

due to the cooperative interplay of two effects, noise and the quasi-degenerate

nature of the generalized Jacobian operator, as reflecting the specific spatial

support here assumed. An increase in the node number yields a progressive

amplification of the fluctuations on the rightmost end of the direct chain, a

process which eventually drives the uniform attractor unstable. In the re-

ciprocal space, one gains a complementary insight into the scrutinized phe-

nomenon. Driving stochastically unstable a system, which is deemed stable

under the deterministic angle, requires packing within a bound domain of the

complex plane a large collection of Laplacian eigenvalues. The eigenmodes

associated to the quasi-degenerate spectrum provide effective route to ve-

hiculate the instability. One could therefore imagine to generate networks

prone to the instability, by hierarchically assembling nodes in such a way that

the associated Laplacian possesses a quasi-degenerate spectrum, according

to the above interpretation. To challenge this view in the simplest scenario

possible, we implemented a generative scheme which builds on the following

steps. First we consider two nodes, linked via a direct edge that goes from

the first to the second. The Laplacian associated to this pair displays two
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Figure 4.9: Laplacian eigenvalues on the real axis in correspondence with

their respective points on the dispersion relation for different values of ε [(a)

ε = 0.01, (b) ε = 0.05, (c) ε = 0.1] and Ω = 10. The solid lines stand for the

dispersion curves obtained when placing the system on a continuous spatial

support. Vertical dashed lines are a guide for the eye to project the discrete

dispersion relation back to the real axis where the spectrum of the Laplacian

falls. The red circle is positioned at −1, the value where the eigenvalues

accumulates when sending ε→ 0.
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Figure 4.10: δi/δ1 is plotted against the node’s number along the chain.

Here we set ε = 0.01. The solid (dashed) line refers to the variance of

the fluctuations as predicted for species φ (ψ). The symbols stand for the

homologous quantities as computed via direct stochastic simulations. The

parameters refer to the blue square displayed in Fig. 4.2.
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Figure 4.11: The time evolution of species φ is displayed with an appropriate

color code, on different nodes of the chain and against time. Here ε = 0.01

and the Brusselator reaction scheme is assumed with the same parameters

choice of Fig. 4.10
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Figure 4.12: Dispersion relation for ε selected randomly, for each couple

of nodes, from a Gaussian distribution with mean ε̄ = 0.01 and variance

ηε̄ = 10−4. Here the chain is assumed to be Ω = 80 node long.
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Figure 4.13: The ratio between the norm of the fluctuations on the last and

first nodes of the chain is plotted against the length of the chain. The solid

line refers to the norm as predicted. The symbols stand for the homologous

quantities as computed via direct stochastic simulations. Blue diamonds

refer to fixed weights ε = 0.01, red squares to random weights (averaging over

25 realizations) chosen from a Gaussian distribution centered in ε̄ = 0.01,

with variance ηε̄ = 10−4. The parameters are the same as those in Fig. 4.10.

eigenvalues, one in zero and the other localized in −1. We then add a third

node to the collection. We select at random a node, from the pool of exist-

ing ones, and identify it as target of a link that originates from the newly

added node. The strength of the link is chosen randomly from a Gaussian
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Figure 4.14: The time evolution of species φ is displayed with an appropriate

color code, on different nodes of the chain and against time. Here we assume

the weights ε to be random entries chosen from a Gaussian distribution

centered in ε̄ = 0.01 with variance ηε̄ = 10−4. The parameters are the same

as those in Fig. 4.10.

distribution with given mean and standard deviation. We then compute the

spectrum of the obtained network and accept the move if the new eigenvalue

falls sufficiently close to −1, or reject it otherwise. The procedure is iter-

ated for a maximum number of times which scales extensively with the size

of the network. Once the third node is aggregated to the initial pair, we

move forward to adding the fourth node according to an identical strategy

that we iterate forward. One exemplary of networks generated according to

this procedure is displayed in Fig. 4.15. This is the skeleton of a distorted

one-dimensional directed chain, short segments being added on the lateral

sides, and fall in the class of the so called random directed acyclic graphs.

The Brussellator model evolved on this network (see Fig. 4.16) returns noise

triggered patterns which share similar features with those obtained earlier.

In principle, one could devise more complicated networks, that would return

a patchy distribution of eigenvalues, engineered to densely populate distinct

regions of the complex plane. This extension is left for future work.

4.3 Conclusion

To investigate the stability of an equilibrium solution of a given dynamical

system, it is customary to perform a linear stability analysis which aims
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Figure 4.15: Example of network generated with the procedure described in

the text made of Ω = 80 nodes. The Brusselator reaction scheme is assumed

with the parameter choice of blue square in Fig. 4.2.
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Figure 4.16: The time evolution of species φ is displayed with an appropriate

color code, on different nodes of the network of Fig. 4.15 and against time.
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at characterizing the asymptotic evolution of an imposed perturbation. In

doing so, one obtains a Jacobian matrix, evaluated at the fixed point of

interest, whose eigenvalues bear information on the stability of the system.

If the eigenvalues of the Jacobian matrix display negative real parts, the

system is resilient, meaning that it will eventually regain the equilibrium

condition, by exponentially damping the initial perturbation. Non-normal

reactive components may however yield a short time amplification of the

disturbance, before the crossover to the exponential regime that drives the

deterministic system back to its stable equilibrium. Particularly interesting

is the interplay between noise, assumed as a stochastic perpetual forcing,

and the inherent non-normality, as stemming from the existing interactions.

Patterns have been for instance reported to occur for spatially extended

stochastic models, with a pronounced degree of non-normal reactivity and

outside the region of deterministic instability. Building on these premises,

we have here taken one step forward towards the interesting setting where

the degree of inherent non-normality is magnified by the embedding spatial

support. Indeed, by replicating a two-species model on diffusively coupled

patches of a directed lattice, we enhanced the ability of the system to grow

perturbation at short time. This effect is the byproduct of the degeneracy

in the spectrum of the Jacobian matrix associated to the examined system,

and which ultimately reflects the architecture of couplings between adjacent

units. A non trivial amplification of the noise across the lattice is observed

and explained, which materializes in self-organized patterns, that are instead

lacking in the deterministic analogue of the analyzed model. Our conclusions

are then extended to a quasi-degenerate support: the ingredient that we have

identified as crucial for the onset of the amplification is the presence of a

compact region in the complex plane where the eigenvalues of the Laplacian

operators accumulate. Beyond a critical size of the system, expressed in

terms of number of nodes that define the support, the system may lose its

deterministic resilience. In fact, it can eventually migrate towards another

attractor that is stably maintained, also when the noise forcing is turned off.

Taken all together, our investigations point out the importance of properly

accounting for the unavoidable sources of stochasticity when gauging the

resilience of a system: non normality and quasi-degenerate networks might

alter dramatically the deterministic prediction turning unstable a system

that would be presumed otherwise stable under a conventional deterministic

perspective. Furthermore, our findings bear a remarkable similarity with the
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phenomenon of convective instability, [59,103,117,118], a possible connection

that we aim at investigating in a future contribution. In perspective, it

would be also interesting to build an ideal bridge with the analysis reported

in [65,166] where complex patterns of synchrony have been observed in feed-

forward networks with degenerate architectures.
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Chapter 5

Generating directed networks

with prescribed Laplacian

spectra

In Chapter 4 we introduced the concept of resilience, the ability of a given

system to oppose to external perturbations. Moreover, we elaborated on the

relation between resilience and stability for a class of networked systems.

As we have previously seen in Section 2.2, for reaction-diffusion systems

defined on networks, the stability of the inspected equilibrium is ultimately

dictated by the spectrum of the discrete Laplacian matrix [1, 146,179]. The

eigenvalues of the Laplacian define in fact the support of the dispersion rela-

tion, the curve that sets the rate for the exponential growth of the imposed

perturbation. More specifically, external disturbances can, in general, be

decomposed on the basis formed by the eigenvectors of the Laplacian oper-

ator. Each eigenvector defines an independent mode, which senses the web

of intricate paths made accessible across the network: the perturbation can

eventually develop, or, alternatively, fade away, along the selected direction,

depending on the corresponding entry of the dispersion relation, as fixed by

its associated eigenvalues.

Based on the above, it is hence essential to devise suitably tailored recipes

for generating networks, which display a prescribed Laplacian spectrum,

compatible with the stability constraint [41–43]. As a representative ex-

ample, synchronization, a widespread phenomenon in distributed systems,

can be enforced by properly adjusting the spectrum of the matrix which

75
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encodes for intertwined pairings. Examples of control of Laplacian spectra

are present in the literature. In [41], a method is presented to enforce stabi-

lization for a spatially extended multispecies model, through the redefinition

of the inter-node couplings. In [42], an ad hoc rewiring of the couplings is

studied to stabilize an ecosystem, acting on the spectrum of the Jacobian

matrix which governs the stability of the system. Our work represents a step

forward in this direction.

The problem of recovering a network from a set of assigned eigenvalues

has been tackled in the literature, both from an algorithmic [54,102,155] and

formal [90, 128] standpoints. In [90], a procedure is discussed to generate

an undirected and weighted graph from its spectrum. The result extends

beyond the well-known theorem of Botti and Merris [37] which states that the

reconstruction of non-weighted graphs is, in general, impossible since almost

all (non-weighted) trees share their spectrum with another non-isomorphic

tree. In [131], a method is proposed to obtain a, directed or undirected,

graph whose eigenvalues are constrained to match specific bounds, which

ultimately reflect the node degrees, as well as the associated weights. In [74],

a mathematically rigorous strategy is instead developed to yield weighted

graphs which exactly realize any desired spectrum. As discussed in [74],

the method translates into an efficient approach to control the dynamics of

various archetypal physical systems via suitably designed Laplacian spectra.

The results are however limited to undirected Laplacians, characterized by

a real spectrum.

The purpose of this chapter is to expand beyond these lines, by propos-

ing and testing a procedure which enables one to recover a signed Laplacian

operator which displays a prescribed complex spectrum. Signed Laplacians

are often used in the literature for applications which relate to social con-

tagion, cluster synchronization or repulsive-attractive interactions [7,39]. In

engineering, they are often employed in modeling microgrid dynamics [45].

The chapter is organized as follows. Section 5.1 is devoted to illustrating

the devised method, focusing on the mathematical aspects. We then turn

to discussing the implementation of the scheme and elaborate on the spar-

sification algorithms that are run to cut unessential links. In Section 5.3.1,

we elaborate on the conditions that are to be met to generate a positively

weigthed network. This discussion is carried out with reference to a specific
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setting. Then, we apply the newly introduced technique to the study of an

ensemble made up of coupled Stuart-Landau oscillators [11, 79, 181] and to

(a simplified version of) the Kuramoto model [110,172].

5.1 A recipe to obtain a Laplacian with as-

signed complex eigenvalues

Consider a network consisting of Ω nodes and label with A the (weighted)

adjacency matrix, were structural information is encoded. More precisely,

the element Aij is different from zero provided a directed link exists which

goes from j to i. The entries of the matrix A are real numbers and their

signs reflect the specificity of the interaction at play: negative signs stand for

inhibitory (or antagonistic) couplings, while positive entries point to excita-

tory (or cooperative) interaction. From the adjacency matrix, one can define

its associated Laplacian operator. This is the matrix L, whose elements read

Lij = Aij − kiδij , where ki =
∑
j Aij represents the natural extension of the

concept of (incoming) connectivity to the case of a weighted network.

We shall here discuss a procedure to generate a Laplacian matrix, which

displays a prescribed set of eigenvalues. As anticipated above, we will focus in

particular on directed Laplacians, which yield, in general, complex spectra.

Concretely, we begin by introducing a collection of Ω = 2N + 1 complex

quantities defined as: 1

{Λi} = {Λ1,Λ2, . . . ,Λ2N ,Λ2N+1 = 0} (5.1)

The first 2N elements come in complex conjugate pairs and we set in partic-

ular Λi = Λ∗i+N , ∀ i = 1, ..., N , where (·)∗ stands for the complex conjugate

operation. The aim of this section is to develop a rigorous procedure to

construct a directed (and weighted) graph G with 2N + 1 vertices, whose

associated Laplacian has {Λi} for eigenvalues. Remark that {Λi} contains

the null element since this latter is, by definition, a Laplacian’s eigenvalue.

The procedure that we are going to detail in what follows exploits the

eigenvalue decomposition of the Laplacian matrix. To this end, we will seek

1We shall assume all the eigenvalues but 0 to be complex numbers. Let us remark

that the method here developed straightforwardly generalizes to the case where also real

eigenvalues are present. It is in fact sufficient to set to zero the imaginary components of

a sub-portion of the selected eigenvalues.
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to introduce a proper eigenvector basis such that

L = V DV −1 (5.2)

is a Laplacian. In (5.2), D is a diagonal matrix where the sought Laplacian

eigenvalues are stored. More specifically, Dii = Λi−1 for i = 2, .., 2N + 1

and D11 = Λ2N+1 = 0. The problem is hence traced back to constructing

V , whose columns are the right eigenvectors of L. We also recall that rows

of the inverse matrix V −1 are the left eigenvectors of L. As outlined in [41],

Laplacian (right and left) eigenvectors should satisfy a set of conditions. The

columns of V which refer to complex conjugate eigenvalues, must be complex

conjugate too. The same condition holds for the rows of V −1. Moreover, the

columns of V (resp. the rows of V −1) corresponding to eigenvalues different

from 0 should sum up to zero. Finally, the right eigenvector relative to the

null eigenvalue ought to be uniform. In light of the above, we put forward

for V the following structure:

V =

 c vT vT
∗

cu iU −iU
cu U U

 (5.3)

where c is an arbitrary constant, i stands for the imaginary unit, U is an

N × N invertible matrix having real entries. Further, vector u = (1 . . . 1)T

has dimension N × 1 and vector v is defined as

v = −(1 + i)uTU. (5.4)

The first column of V is hence a uniform vector, candidate to be the eigen-

vector corresponding to the null eigenvalue. By construction, every other

column sums up to zero, that is Eq. (5.4). In the following we will set Djj =

αj + iβj , which in turn implies Dj+N,j+N = αj − iβj , for j = 2, . . . , N + 1.

Here, αj and βj are real quantities and respectively denote the real and

imaginary parts of the j-th eigenvalue. To proceed further, one needs to

determine the inverse of V .

To achieve this goal we begin by considering a generic matrix W , which

satisfies the general constraints that are in place for V −1. In formulae:

W =

 d duT duT

(1− i)w S −iS∗
(1 + i)w∗ S∗ iS

 (5.5)
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where

w = − 1

1− i (Su− iS
∗u) (5.6)

Note that the jth and (N+j)th rows ofW , for j = 1, .., N+1, are complex

conjugated, as requested. Moreover, summing all the elements of each row

(but the first) yields zero, a condition that the inverse of V should meet, as

anticipated above. Building on these premises, we shall here determine the

unknown S, w and d so as to match the identity WV = I, where I stands for

the (2N +1)× (2N +1) identity matrix. This implies in turn that W ≡ V −1

due to the uniqueness of the inverse matrix.

A straightforward manipulation yields the following conditions for re-

spectively d and w 
d = 1

c(2N+1)

wvT = i(S − iS∗)EU
wvT

∗
= (S − iS∗)EU

(5.7)

where use has been made of the identity uTu = N and where

E = uuT =

1 . . . 1
...

. . .
...

1 . . . 1

 (5.8)

The quantity d is completely specified by the first of Eqs. (5.7) and solely

depends on c and N , the size of the system. By making use of the identities

(5.4) and (5.6), one can progress in the analysis of the second and third

conditions (5.7) to eventually get:

SB + S∗A = I (5.9)

SA− S∗B = 0 (5.10)

where:

A = EU − iEU − iU (5.11)

B = iEU + EU + iU (5.12)

It is therefore immediate to conclude

S = (B +AB−1A)−1 (5.13)

S∗ = (B +AB−1A)−1AB−1 (5.14)
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The analysis can be pushed further to eventually relate S to matrices U and

E. The calculation, detailed in the annexed Appendix, yields

S = − i
2
U−1

[
I − 1 + i

1 + 2N
E

]
(5.15)

The expression for S∗ can be immediately obtained by taking the complex

conjugate of the above equation. In conclusion, the matrix W defined in

(5.5) is the inverse matrix of V , provided d and S are respectively assigned

as specified above.

Eventually, matrix L defined in (5.2) has the desired spectrum (5.1). We

should however prove that L is a Laplacian. This amounts to show that L

is a real matrix, whose columns sum up to zero. The proof is given in the

following

Proposition: From (5.3) and (5.5), one can readily compute the ele-

ments of L via matrix products and taking advantage of the block structures

of V and W , to prove that L is real. Notation-wise, Re(·) is introduced to

represent the real part of (·). The results of the calculation are reported

below. The generic element Lst can be written as

Lst = (V DW )st =

2N+1∑
k=1

Vsk(DW )kt =

2N+1∑
k=1

Vsk

2N+1∑
k′=1

Dkk′Wk′t(5.16)

=

2N+1∑
k=2

VskDkkWkt (5.17)

due to the diagonal structure of the matrix D, by recalling that D11 = 0.

By making use of the specific form of V and W , one gets:

Lst =

N+1∑
k=2

VskDkkWkt +

2N+1∑
k=N+2

VskDkkWkt (5.18)

=

N+1∑
k=2

VskDkkWkt +

N+1∑
k=2

(VskDkkWkt)
∗ (5.19)

=

N+1∑
k=2

2 Re(VskDkkWkt) (5.20)

since αβ + α∗β∗ = 2 Re(αβ), for any complex numbers α and β. One can

thus conclude that L, as generated by the above procedure, is real.
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Proposition: Each column of L sums up to zero. Because of the

diagonal structure of D: ∑
i

Lij =
∑
il

VilDllV
−1
lj (5.21)

Then: ∑
i

Lij =
∑
l

V −1
lj Dll

∑
i

Vil = 0 (5.22)

since (i) D11 = 0 and (ii) every eigenvector corresponding to eigenvalues

different from 0, sums up to zero. Notice that this result can also be proven,

by observing that the uniform vector d1 is the left eigenvector corresponding

to 0, that is

d1L = 0 (5.23)

From (5.23), it follows that
∑
i Lij = 0, for every j.

Proposition: L is balanced. We can also show that
∑
j Lij = 0 i.e.

that the sum of all the elements of any given row i returns zero. According

to (5.2), the first column of V is the right eigenvector corresponding to

eigenvalue 0, namely

Lc1 = cL1 = 0 (5.24)

This implies in turn
∑
j Lij = 0 ∀i, which ends the proof. The Laplacian is

hence balanced, as performing the sum on the rows and on the (correspond-

ing) columns returns the same result.

From the generated Laplacian operator, one can readily calculate the

adjacency matrix of the underlying network. In general, for any assigned

spectrum, the recovered adjacency matrix is fully connected, meaning that

links exist which connect every pair of nodes within the collection. Links are

weighted and signed. The weights can be small or have a modest impact on

the spectrum of the associated Laplacian. This motivates one to implement-

ing a dedicated sparsification procedure, which seeks to remove unessential

links, in terms of their reflection on the ensuing Laplacian spectrum. The

next section is devoted to elaborating along these lines.
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5.2 Results and discussion

5.2.1 Examples and sparsification

In this section we discuss a sparsification procedure, which aims at a posteri-

ori simplifying the structure of the recovered network. To this end we begin

by generating a network following the strategy outlined in the preceding sec-

tion, and which yields an assigned spectrum for the associated Laplacian.

The Laplacian spectrum that we seek to recover is made of Ω = 2N + 1

complex entries, the eigenvalues, which we here confine in the left portion of

the complex plane, by setting Re(Λj) = αj < 0 for j ≥ 2, see blue crosses in

Fig. 5.1 (a). This choice is somehow arbitrary, and ultimately amounts to

forcing stable a linear system of the type:

dxi
dt

=
∑
j

Lijxj (5.25)

where xi is the i-th entry of the Ω-dimensional state vector x. In the final

part of the paper we will turn to considering more complex scenarios where

the stability of the examined dynamics is also influenced by local reaction

terms being at play.

The network that we obtain, following the scheme outlined in the pre-

ceding Sections and which yields a Laplacian with the prescribed spectrum,

is in general fully connected. In other words, a weighted link exists between

each couple of nodes. The weights of the link can be in principle very small

and, as such, bear a modest imprint on the ensuing Laplacian spectrum.

Motivated by this observation, we perform an a posteriori sparsification of

the obtained network: this is targeted to identifying and then removing, the

finite subset of links that appear to have a modest impact on the eigenvalues

of the associated Laplacian.

The first sparsification procedure that we have considered, aims at re-

moving unessential links while confining the spectrum of the Laplacian op-

erator within a bounded region of the complex plane. More precisely, we

focus on the links which display a weight in the range (-σ, σ), where σ

is a small, arbitrarily chosen, cut off. All links whose weight is smaller

than σ in absolute value, are selected, in a random order. The selected

link is removed and the modified Laplacian spectrum computed. Label

Λ̃j , for j = 2, ..., 2N + 1, the Laplacian eigenvalues obtained upon re-

moval of the link. The change to the network arrangement becomes per-
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Figure 5.1: The recipe discussed in the main text is applied to generate a

network of Ω = 2N +1 = 101 nodes, whose associated Laplacian displays the

spectrum depicted (blue stars) in panel (a). The spectrum of the Laplacian

obtained from the sparsified network is shown with red circles. We here fol-

low the first sparsification recipe as illustrated in the main body of the paper.

More specifically, we trim unessential links, chosen among those that bear

very modest weights, while confining the Laplacian spectrum in a bounded

domain, located in the negative portion of the complex plane. Here, σ is 0.01

and δ = 0.5. In panel (b), the sparsity pattern of the adjacency matrix ob-

tained upon application of the sparsification algorithm is shown. The entries

of the adjacency matrices, before and after the sparsification are respectively

plotted, with an apt color-code, in panels (c) and (d). The main structure of

the network is preserved upon application of the devised sparsification proto-

col.
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manent, if |minj
[
Re(Λ̃j)

]
− minj [Re(Λj)] | < δ and |maxj

[
Im(Λ̃j)

]
−

maxj [Im(Λj)] | < δ, for j = 2, ..., N . Here Im(·) stands for the imaginary

part of (·) and δ is an arbitrary threshold which quantifies the amount of per-

turbation that is deemed acceptable for the problem at hand. As a further

condition, we check that Re(Λ̃j) < 0 for j = 2, ..., 2N + 1, which in turn cor-

responds to preserving the stability of the linear system (5.25). Clearly, the

order of extraction of the links which are candidate to be trimmed matters.

Different realizations of the procedure of progressive sparsification illustrated

above might hence result in distinct final outcomes. In Fig. 5.1(a), the eigen-

values obtained after the sparsification algorithm are plotted (red circles) for

two choices of the cutoff δ. The sparsity pattern of the adjacency matrix ob-

tained at the end of the above procedure is displayed in panel (b) of Fig.

5.1. In panels (c) and (d) of Fig. 5.1 we plot, with an appropriate color

code, the entries of the adjacency matrices, before and after the sparsifica-

tion. Only weights which are significantly different from zero (see annexed

colorbars) are displayed. As appreciated by visual inspection, the skeleton

of the network is not altered by the applied sparsification. To monitor how

the eigenvalues get redistributed within the bounded domain to which they

belong, we introduce the following indicators:

Ix =

2N+1∑
i=2

(βi)
2 (5.26)

Iy =

2N+1∑
i=2

(
αi −

1

2N + 1

2N+1∑
j

αj

)2

(5.27)

The quantity Ix measures the dispersion along the imaginary axis, by

weighting the squared distance of each eigenvalue from the horizontal axis.

Conversely, Iy reflects the scattering of the eigenvalues about their mean, in

the direction of the real axis. In Fig. 5.2, Ix and Iy, normalized to their

respective values obtained before application of the sparsification algorithm,

are shown against N , an indicator of the size of the generated networks. The

sparsification procedure shrinks the eigenvalues in the x-direction, while the

opposite tendency is observed for the distribution along the y-direction.

The second sparsification method implements a more stringent constraint.

Just like before, we select the links with weights in the range (-σ, σ), where

σ acts as a small threshold amount. At variance with the former case, we

now eliminate the selected link only if the change produced on the norm of
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Figure 5.2: Panel (a): Ix as measured at the end of the sparsification and

normalized to the corresponding value, before the sparsification is plotted

against N , the size of the explored network. Panel (b): Iy, calculated af-

ter the sparsification and normalized to the corresponding value, before the

sparsification is depicted versus N . In both cases, blue symbols are com-

puted, as the average over 15 different realizations of the generated network

(with the same given spectrum). For each value of N , the real and imaginary

components of the eigenvalues are random number, drawn from a normal dis-

tribution. The solid line is a guide for the eye. Here, δ = 0.5 and σ = 0.01.
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Figure 5.3: The percentage of links that are cut against the imposed pertur-

bation δ. Blue symbols refer to 10 indendent realizations, for each value of δ.

The black line goes through the average values, computed from the collection

of independent runs, at fixed δ. Here, N = 50 (Ω = 2N + 1 = 101) and

σ = 0.01.
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Figure 5.4: Effect of the second method of sparsification on a network made

of Ω = 2N + 1 = 101 nodes. The original spectrum is plotted with (blue)

stars. The modified one with (red) circles. Panel (a) refers to δ = 0.5 while

panel (b) to δ = 1. Here, σ = 0.01.

each of the N eigenvalues is smaller than δ, namely if |Λj − Λ̃j | < δ, for

j = 2, ..., 2N + 1. In Fig. 5.4, the eigenvalues obtained after the sparsifica-

tion algorithm are plotted (red circles) for two choices of the cutoff δ. The

number of links that can be effectively removed grows with δ, the size of the

allowed perturbation, as clearly demonstrated in Fig. 5.3.

As mentioned above, this latter method implements a local, hence strin-

gent, constraint. By allowing modest re-arrangements of individual eigen-

values yields a spectral distribution in the complex plane which is by con-

struction close to the original one. This method is better suited when the

room for maneuver is limited, due to the specific constraint that the reac-

tive model implements. On the other hand, the number of pruned links can

be scanty, when small local perturbations are solely allowed for. A global

re-organization of the operator’s spectrum, which entails a significant reduc-

tion in the associated number of active links, might be instead accomplished

when the eigenvalues are constrained to fall within a compact domain in the

complex plane, as follows the former sparsification procedure.

Summing up, we have developed and tested a procedure to generate a

network which returns an associated Laplacian matrix with a prescribed

complex spectrum. The weighted network obtained following the above pro-
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cedure is in general fully connected. Dedicated sparsification strategies can

be applied to remove the links which carry a small weight, and bear a modest

imprint in the ensuing Laplacian spectrum. In the following, we will consider

a specific setting of the aforementioned generation scheme, which makes it

possible for the Laplacian elements to be accessed analytically.

5.3 Focusing on the special case U = qI

In the previous sections, we described a general method to generate a Lapla-

cian matrix which displays a designated spectrum. The method assumes a

generic matrix U , which can be randomly assigned. In the following, we will

focus on the specific case where U is proportional to the identity matrix and

progress with the analytic characterization of the obtained Laplacian. As

we shall argue in the following, working in this framework allows us to de-

rive a set of closed conditions for constraining the weights of the underlying

network to strictly positive values. To proceed in this direction we set:

U = qI (5.28)

where I stands for the identity matrix and q is a scalar quantity.

A straightforward calculation returns the following expression for matrix

S:

S =


a+ ib a− ia . . . a− ia
a− ia a+ ib

. . . a− ia
. . .

. . .
. . .

...

a− ia . . .
. . . a+ ib

 (5.29)

while w is a uniform vector with identical entries equal to Na+((N−1)a−b)i
and the quantities d, a, b are specified by

d =
1

(2N + 1)c
(5.30)

a =
−1

2(2N + 1)q
(5.31)

b = 2Na (5.32)

The equations (5.16), (5.18) open up the possibility to obtain a closed

expression for each element of the Laplacian matrix, as function of the eigen-

values entries. The interested reader can find the detailed computations in



88Generating directed networks with prescribed Laplacian spectra

Appendix A.2; we thus limit ourselves to hereby report the final formulas.

The diagonal elements satisfy:

L11 =
2

2N + 1

N+1∑
k=2

αk (5.33)

Lss =
2Nαs + βs

2N + 1
s = 2, . . . , N + 1 (5.34)

Lss =
2Nαs − βs

2N + 1
s = N + 2, . . . , 2N + 1 , (5.35)

where use has been made of the identity Re(Dkk) = αk. The first row and

column are given by:

Lt1 =
−αt + βt
2N + 1

t = 2, . . . , N + 1 (5.36)

Lt1 =
−αt − βt
2N + 1

t = N + 2, . . . , 2N + 1 (5.37)

L1t =
1− 2N

1 + 2N
αt − βt +

2

2N + 1

N+1∑
k=2,k 6=t

αk t = 2, . . . , N + 1(5.38)

L1t =
1− 2N

1 + 2N
αt + βt +

2

2N + 1

N+1∑
k=2,k 6=t−N

αk

t = N + 2, . . . , 2N + 1 (5.39)

while the remaining elements are obtained as:

Lst =
−αs + βs
2N + 1

s = 2, . . . , N + 1 and t = N + 2, . . . , 2N + 1 with t 6= s−N (5.40)

Lst =
−αs − βs
2N + 1

s = N + 2, . . . , 2N + 1 and t = 2, . . . , N + 2 with t 6= s−N (5.41)



5.3 Focusing on the special case U = qI 89

Ls,s+N =
−αs − 2Nβs

2N + 1
s = 2, . . . , N + 1 (5.42)

Ls,s−N =
−αs + 2Nβs

2N + 1
s = N + 2, . . . , 2N + 1 (5.43)

Lst =
−αs + βs
2N + 1

t, s = 2, . . . , N + 1 and s 6= t (5.44)

Lst =
−αs − βs
2N + 1

s, t = N + 2, . . . , 2N + 1 and s 6= t. (5.45)

5.3.1 Controlling the sign of non-diagonal Laplacian en-

tries

The Laplacian matrix that one obtains with the procedure illustrated above

has both positive and negative entries. Signed Laplacian are often used in

consensus problems, where negative weights model antagonistic interactions.

In other contexts, when e.g. the Laplacian are stemming from diffusive in-

teractions, non diagonal entries are constrained to positive values. In the

following, we will provide a set of necessary conditions for the assigned spec-

trum to eventually yield a Laplacian with positive extra diagonal elements,

Lij > 0 for i 6= j. Clearly, Lii < 0, as summing on the rows should return

zero. The underlying network displays hence positive weights, as its adja-

cency matrix is basically found from the Laplacian matrix by replacing the

diagonal elements with zeros.

Further, we will set Re(Λj) = αj < 0 for j ≥ 2, an assumption which, we

recall, corresponds to dealing with a stable linear system of the type given in

((5.25)). This request immediately yields L11 < 0, as it follows from relation

(A.9). We will also operate in the setting analyzed above, i.e. assuming

U = I. The obtained expressions for the Laplacian elements allow to recast

the sought conditions on their signs as:

2Nαt < βt < −2Nαt

βt > − 1−2N
2N+1αt − 2

2N+1

∑N+1
k=2,k 6=t αk

βt <
1−2N
2N+1αt + 2

2N+1

∑N+1
k=2,k 6=t αk

αt < βt < −αt
αt
2N < βt < − αt

2N

(5.46)

where the inequalities hold for t = 2, . . . , N + 1.

The above conditions can be simplified using some algebraic manipula-
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tions to return

4N

4N2 − 1

∑
k

αk < αt <
2

2N + 1

∑
k

αk (5.47)

and

αt −
2

2N + 1

∑
k

αk < βt < − αt +
2

2N + 1

∑
k

αk . (5.48)

The interested reader can access the detailed steps in Appendix A.3.

Assume that the assigned Laplacian spectrum matches the above condi-

tions, while having αk < 0 for k > 2. Then the Laplacian matrix that we

obtain following the procedure outlined above, with U = I, displays positive

non diagonal entries.

Let us explore the consequences of conditions (A.75) and (A.76). To this

end, introduce ᾱ, the average of the non-negative real parts of the Laplacian

eigenvalues. In formulae, ᾱ = (
∑
k αk)/(2N). A straightforward analysis

allows us to conclude that the generated Laplacian returns positive non-

diagonal elements, if the assigned non trivial eigenvalues (i.e. Λk, with k > 1)

fall in a bounded rectangular domain of the complex plane. More specifically,

the rectangular region is symmetric, with respect to the horizontal (real) axis,

and extends along the vertical direction (imaginary axis) of ±2Nᾱ/(4N2−1).

The rectangle is completed by two vertical sides, positioned at 4N2

4N2−1 ᾱ and
2N

2N+1 ᾱ. Working at fixed N , the larger |ᾱ| the more extended the rectangle

along the vertical direction. Conversely, when making N larger, the rectangle

shrinks in the horizontal direction and becomes eventually degenerate for

N →∞. In other words, for large values of N , eigenvalues should align on a

vertical segment positioned at ᾱ, and whose extension increases linearly with

|ᾱ| (while decreasing withN). This is shown in Fig. 5.5, where three different

spectra are depicted (for different choices of ᾱ) which yield a Laplacian with

positive off diagonal elements.

In the following section we will apply the method of Laplacian genera-

tion here discussed to the study of two prototypical examples of dynamical

systems on networks.

5.4 Selected applications

In this section we consider two different models of interacting oscillators, de-

fined on a network. In both cases, the coupling between individual oscillators
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Figure 5.5: Examples of discrete spectra (red symbols) which yield a Lapla-

cian with positive non diagonal entries. The rectangular boxes identify the

region where eigenvalue should fall for the ensuing network to display posi-

tive weights and are traced according to the conditions derived in the main

body of the paper. Here, Ω = 2N + 1 = 21 (a), Ω = 2N + 1 = 41 (b) and

Ω = 2N + 1 = 81 (c).

is implemented via a discrete Laplacian operator, which reflects the specific

network arrangement. We will show that a suitable network arrangement

can be a priori established, building on the procedure illustrated above, so

as to make the inspected systems stable against external perturbations.

5.4.1 Coupled Stuart-Landau oscillators

Consider an ensemble made of 2N + 1 nonlinear oscillators and label with

Wi their associated complex amplitude. We assume the oscillators to be

mutually coupled via a diffusive-like interaction which is mathematically ex-

emplified via a discrete Laplacian operator. Each oscillator obeys a complex

Ginzburg-Landau equation. The dynamics of the system can be cast in the

form:

d

dt
Wj = Wj − (1 + ic2)|Wj |2Wj + (1 + ic1)K

∑
k

LjkWk (5.49)

where c1 and c2 are real parameters. The index j runs from 1 to 2N + 1,

the total number of oscillators. Here, K is a suitable parameter setting the

coupling strength. Without loss of generality, in what follows we suppose

K = 1; Lij = Aij − kiδij is the Laplacian, Aij a directed and weighted

adjacency matrix and ki =
∑
j Aij .

The system admits a homogeneous limit cycle solution in the formWLC(t) =

e−ic2t. To characterize the stability of the cycle, one can introduce a non
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homogeneous perturbation in polar coordinates as:

Wi(t) = WLC [1 + ρi(t)]e
iθi(t) (5.50)

By linearizing around the limit cycle solution (ρi(t) = 0, θi(t) = 0), one gets:

d

dt

(
ρj
θj

)
=

( −2 0

−2c2 0

)(
ρj
θj

)
+

(
1 −c1
c1 1

)∑
k

∆jk

(
ρk
θk

)
(5.51)

To proceed further one expands the perturbations ρj and θj on the Laplacian

eigenvectors basis, that is(
ρj
θj

)
=

2N+1∑
α=1

(
ρ(α)

θ(α)

)
eαt(v(α))i (5.52)

By inserting this expansion in (5.51) and using the relation∑
j

Lij(v(α))j = Λ(α)(v(α))i (5.53)

for α = 1, . . . , 2N + 1, we obtain a condition formally equivalent to the

expression of the continuous dispersion relation

λmax(Λ(α)) = −Λ(α) − 1 +

√
−c21

(
Λ(α)

)2 − 2c1c2Λ(α) + 1 (5.54)

If λRe = Re(λmax) is positive for some Λ(α), the perturbation grows exponen-

tially in time, and the initial homogeneous state proves unstable. Conversely,

if λRe = Re(λmax) ≤ 0, for every Λ(α), the perturbation gets re-absorbed

and the system converges back to the fully synchronized state. The condi-

tion λRe < 0 can be further processed analytically, as discussed in [41]. In

particular, one can show that the latter condition is fulfilled, if the Laplacian

eigenvalues fall in a specific portion of the parameter plane, which reflects

the choice made for the reaction parameters c1, c2 and K. The region of in-

terest is the one enclosed between the two solid lines, displayed in Fig. 5.6(a)

for the specific selection of the parameters operated. The blue symbols de-

picted in Fig. 5.6(a) are randomly generated so as to fall in the region of

the complex plane where stability holds. They represent the spectrum of the

Laplacian that we seek to recover following the method illustrated above. In

Fig. 5.6(b), λRe is plotted against −ΛRe = −Re(Λ), confirming the stability

of the homogeneous solution.
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We now proceed by generating a Laplacian matrix, which is constructed

so as to yield the spectrum depicted in Fig. 5.6(a), see crosses (in blue).

Circles (in red) refer to the spectrum obtained after the sparsification. In

this case we operated with the more sparsification protocol, the second of

those introduced above. This latter appears more suited to the case at hand

because of the shape of the domain where the eigenvalues should eventually

fall to enforce stability. As an additional condition to the algorithm, we ac-

cepted only the sparsification moves which prevent the eigenvalues to invade

the region of the complex plane associated to instability.

The sparsified adjacency matrix A defines the network of interactions be-

tween coupled oscillators, as follows (5.49). We hence integrate numerically

the governing equations, assuming the initial state to be a perturbation of

the homogenous synchronized equilibrium. As expected, the perturbation

fades away and the system regains its unperturbed, fully synchronized, equi-

librium.

5.4.2 Coupled Kuramoto oscillators

As a second example we set to study a Kuramoto model. Consider a system

made up of 2N + 1 oscillators, label θi the phase of the i-th oscillator, and

ωi its natural frequency. The oscillators evolve as dictated by the following

system of 2N + 1 coupled differential equations:

θ̇i = ωi +

2N+1∑
j=1

Aij sin(θj − θi) i = 1, .., 2N + 1 (5.55)

Here, Aij stands for the entries of the adjacency matrix A which sets

the interactions between pairs of oscillators. The matrix is, in principle,

weighted, and may display positive and negative entries as reflecting the

specific interaction (excitatory or inhibitory) being at play.

As an additional assumption, we will here focus on the simplified setting

where ωi = ω ∀i. We can then introduce the new variable ψi = θi − ωt, and

write the governing equations in the equivalent form:

ψ̇i =

2N+1∑
j=1

Aij sin(ψj − ψi) i = 1, .., 2N + 1 (5.56)

A homogeneous solution always exists with Ψ = ψi ∀i, and for any constant

Ψ ∈ [0, 2π), as it can be immediately checked by substitution. To assess
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Figure 5.6: Panel (a): the system of coupled Landau-Stuart oscillators is

stable if the eigenvalues of the Laplacian operator fall in the portion of the

complex plan comprised in between the two solid lines. Crosses (in blue)

represent the (randomly assigned) eigenvalues of the Laplacian that we aim

at recovering following the procedure introduced in the early part of this paper.

Circles (in red) refer to the spectrum obtained as follows the sparsification

(see main body of the paper). In the sparsification procedure we assumed

σ = 0.01 and δ = 5. The percentage of the pruned links is around 35%

of the total. Panel (b): λRe is plotted against −ΛRe = −Re(Λ). This

is an alternative way to show that the system is stable with the prescribed

Laplacian spectrum. The solid line stands for dispersion relation obtained in

the continuum limit, when the discrete Laplacian is replaced by a standard

differential operator. Panel (c): the time evolution of the real components

Re(Wj) is shown, with an appropriate color code. Here, the weighted network

which specifies the coupling between the nodes is obtained from the sparsified

Laplacian. Here, c1 = 3, c2 = 2.4224 and K = 1.
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the stability of the solution one sets ψi = Ψ + δi, and expands (5.56) at the

leading order in the δi. In doing so, one gets:

δ̇i =

2N+1∑
j=1

Aij(δj − δi) =

2N+1∑
j=1

Lijδj (5.57)

where Lij = Aij−kiδij is the Laplacian operator which stems from Aij . The

stability of the simplified Kuramoto model here considered is eventually con-

trolled by a linear system of the type introduced in (5.25), with the obvious

replacement of xi with δi. The system proves hence stable if the (non trivial)

eigenvalues of the Laplacian operator display negative real parts. Our aim

is here to generate a Laplacian (and therefore a matrix of binary weighted

connections among oscillators) which warrants the stability of the system.

To this end, we assign the eigenvalues (which appear in conjugate pairs) to

belong to the negative portion of the complex plane, see Fig. 5.7(a). The

null eigenvalue is clearly included into the pool. Running the procedure dis-

cussed in the first part of the paper, we obtain the corresponding Laplacian

and compute the associated adjacency matrix. The first of the two sparsi-

fication procedures is then applied to remove unessential links, yielding the

spectrum of the associated Laplacian depicted with (red) circles in Fig 5.7(a).

The Kuramoto model (5.56) is then integrated numerically by assuming the

recovered expression for A. As predicted, the system is stable to external

perturbations as one can clearly appreciate by inspection of Fig. 5.7(b).

5.5 Conclusion

Studying the dynamics of an ensemble made of interacting units on a net-

work is central for a large plethora of applications. In many cases of interests,

individual units evolve under the influence of homologous constituents, the

interaction being in general mediated by binary exchanges. Distinct fun-

damental units are assigned to different nodes of the collection, paired via

physical or virtual links. For a relevant subclass of problems, the stability

of the ensuing equilibrium can be traced back to the spectrum of the Lapla-

cian operator, computed from the adjacency matrix which defines the net-

work arrangement. Symmetric networks yields Laplacian operators with real

spectrum, while directionality in the couplings reflects in an imaginary spec-

trum. Methods exist which allow one to generate symmetric network, hence

Laplacian, with a prescribed real spectrum. Starting from these premises,
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Figure 5.7: Panel (a): crosses (in blue) represent the spectrum of the Lapla-

cian operator that we seek to recover. The eigenvalues are distributed in the

left portion of the complex plane to assure stability of the inspected Kuramoto

model. Circles (in red) stand for the spectrum of the Laplacian after the

sparsification procedure. We here apply the first sparsification algorithm as

discussed in the main body of the paper. More specifically, unessential links

with modest weights are removed, while confining the Laplacian spectrum in

a bounded domain, locate in the negative portion of the complex plane. Here,

σ = 0.01 and δ = 0.2. The percentage of trimmed links is around 9% of the

total. Panel (b): θi vs. time. Here, the adjacency matrix employed in the

numerical integration follows from the sparsified. As an initial condition,

we perturb the homogenous solution (assumed Ψ = 0) by a random hetero-

geneous amount. After a transient, the perturbation gets absorbed and the

oscillators evolve in unison. Here Ω = 2N + 1 = 51.
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we have here proposed and tested a novel procedure to generate a (signed

and directed) Laplacian which returns an a priori assigned (complex) spec-

trum. A special case has also been considered, which enables one to recover

closed analytical expressions for the entries of the sought Laplacian matrix.

Working in this setting, we can elaborate on the conditions that are to be

matched for the ensuing Laplacian to solely display positive non diagonal

elements. Dedicated sparsification procedures are also discussed to help re-

moving unessential links in terms of their impact on the associated spectrum.

The algorithm for Laplacian generation has been successfully tested with ref-

erence to two prototypical examples of coupled oscillators. Taken together,

our work explores possible strategies for network generation with the em-

phasis placed on dynamical, rather than structural, features. The dynamics

is indirectly modulated by the spectrum of the Laplacian operator, which is

here constraining the generative algorithm.
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Chapter 6

Many body interactions systems

So far we considered systems defined on networks. As known, networks

encode for binary relationships among units. This descriptive framework

is sufficiently accurate in many cases of interest, although several examples

exist of systems for which it holds true just as a first order approximation [27,

113]. The relevance of high-order structures has been indeed emphasised in

the context of functional brain networks [120,162], in applications to protein

interaction networks [68], to the study of ecological communities [85] and

co-authorship networks [40,158].

Starting from this observation, higher-order models have been devel-

oped so as to capture the many body interactions among interacting units

whose most notable examples are simplicial complexes [51, 60, 161] and hy-

pergraphs [29, 67, 81], non trivial mathematical generalisations of ordinary

networks that are currently attracting a lot of interest. The concept of

simplicial complexes has been for instance invoked to address problems in

epidemic spreading [36,101] or synchronisation phenomena [77,122].

Our work is positioned in the framework of hypergraphs, a domain of

investigation which is still in its infancy. In this respect, we mention appli-

cations to social contagion models [57], to the modeling of random walks [40]

and to the study of synchronisation [109,132] and diffusion [71]. Hypergraphs

constitute indeed a very flexible paradigm: an arbitrary number of agents are

allowed to interact, thus extending beyond the limit of binary interactions of

conventional network models. On the other hand, hypergraphs define a leap

forward as compared to simplicial complexes. In this latter case, in fact, if

(say) 3 agents form a 2-simplex, also all binary interactions are accounted

99
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for. On the other hand, agents interacting via a hypergraph do form a hy-

peredge, a unifying frame which encompasses the many body interactions as

a whole. Imagine that a subgroup of agents organized in the hyperedge, also

interact with each other, via a distinct channel. This yields a new hyperedge,

included in the former. A hypergraph can reproduce, in a proper limit, a

simplicial complex and, in this respect, provides a more general tool for ad-

dressing many body simultaneous interactions. Furthermore, the analysis of

the models in the framework of hypergraphs turns out to be simpler as com-

pared to their simplicial complexes homologues. In these latter settings, the

involved formulas get rapidly cumbersome and, for this reason, applications

are limited to low dimensional simplexes, i.e. 2 or 3-simplex. At variance,

one can efficiently handle very large hyperedges and, even more importantly,

heterogenous distribution of hyperedges’ sizes, because all the information

on the high-order structure of the embedding support are stored in a matrix

whose dimension depends only on the number of nodes.

Starting on these premises, it is clear that many body interactions con-

stitute a relevant and transversal research field that is still in its embryonic

stage, in particular as concerns studies that relate to hypergraphs. Indeed,

novel light could be shed on a large plethora of systems, usually defined on

standard networks, by accounting for generalized hypergraph architectures.

This chapter aims at taking one first step in this direction, by expanding

along different axis. We will begin by adapting to the hypergraph setting

the Master Stability Function [159] formalism. We will then consider the

condition for the emergence of Turing patterns [178] for reaction-diffusion

systems on hypergraphs, the synchronisation of nonlinear oscillators [12] and

of chaotic orbits. It is here anticipated that for theoretical progress to be

made one needs to characterize the spectral properties of a properly defined

operator, which implements diffusion on hypergraphs.

The Master Stability Function (MSF), is a powerful technique developed

in [159] to analyse synchronisation and it basically amounts to perform-

ing a linear stability analysis around a given equilibrium, for a system of

coupled interacting units. A straightforward application of linear stability

analysis is for instance found in the context of the celebrated Turing in-

stability, once the reference orbit is indeed a homogeneous fixed point. In

his seminal paper [178], Alan Turing set the mathematical basis of pattern

formation. Initially proposed to explain the richness and diversity of forms

displayed in Nature, it is nowadays an universally accepted paradigm of self-
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organisation [23, 135, 151]. The onset of patterns originates from the loss of

stability of an homogeneous equilibrium, as triggered by diffusion. Turing

instabilities have been initially studied for systems defined on continuous

spatial domains and regular lattices [152]. More recently, the realm of ap-

plication of Turing ideas has been extended to account for reaction-diffusion

dynamics hosted on a complex network [140] and other related structures,

such as multilayer network [13, 107] or multigraph [14] just to mention a

few. It is hence a natural question to generalise these studies to the broad

framework of hypergraphs.

Turing patterns emerge from the destabilisation of a homogeneous equi-

librium, that is a stationary solution of the examined model. In many real

cases, however the system is not bound to evolve close to a stationary solu-

tion, but instead displays periodic oscillations. Examples ranges from biology

to ecology, passing through physics [12,163]: individual nonlinear oscillators

can synchronise and thus exhibit a coherent collective behaviour. Synchro-

nization, the spontaneous ability of coupled oscillators to operate in unison,

has been studied for systems interacting via a complex and heterogeneous

network of interlaced connections. To the best of our knowledge, however,

this analysis has never been attempted for systems defined on hypergraphs

of the type here considered. Let us observe that, although similar in their

conception, the works [32, 169] deal with hypernetworks, namely a network

where several different links can connect two nodes, also called multigraph

in the literature. The interactions are hence pairwise.

The formalism of the MSF can be also applied to chaotic oscillators. The

synchronisation of chaotic systems defined on hypergraphs has been studied

in [109] using the formalism of the MSF under two main assumptions: (i) the

work has been limited to p-hypergraphs, namely assuming all the hyperedges

have the same size; (ii) the coupling function was assumed to be invariant

with respect to permutations of the nodes, within each hyperedge. In this

paper, we will relax both assumptions to deal with general hypergraphs with

heterogenous hyperedge size distribution and without putting forward any

hypothesis on the form of the coupling function.

In a recent work [132], the synchronisation phenomenon has been stud-

ied again by means of the MSF, by using however a Laplace operator [104]

which cannot fully account for the high interaction at play. The employed

operator is defined from the hyper-adjacency matrix, which is solely capa-

ble to encode for the number of incident hyperedges withouth gauging their
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sizes. Moreover authors assumed the coupling function to depend on the av-

erage (arithmetic or geometric) value of the involved variables. Again, both

assumptions are relaxed in the present work, because our Laplace operator

takes into account both the number of incident hyperedges but also their

size. We will moreover make use of a generic coupling function.

We already introduced the formalism of hypergraphs in Section 2.5 and,

among other relevant quantities to be used in the subsequent analysis, a new

Laplace matrix for hypergraphs; hence, the chapter is organised as follows.

We discuss on the spectrum of the newly introduced Laplacian by empha-

sising its localisation properties. We perform also a numerical analysis using

the perturbation theory to predict these eigenvector properties. We present

the analytical derivation and we present the results about the eigenvalues ap-

proximation. Then, we present three applications, following the logic path

outlined above, and elaborate on the impact of the high-order structures.

6.1 Localisation of eigenvectors

One can prove [40] that the Laplace matrix LH (2.25) defined in Chapter 2,

is symmetric, non-negatively defined and the smallest eigenvalue equals 0.

Moreover let (ΛαH)1≤α≤n be the set of its eigenvalues, then ΛnH ≥ . . .Λ2
H >

Λ1
H = 0, and its eigenvectors,

(
~φα
)

1≤α≤n
form an orthonormal basis, ~φα ·

~φβ = δαβ . As already observed ~φ1 ∝ (1, . . . , 1). Finally LH reduces to

the Laplace matrix defined on networks once all the hyperedges have size

2. In the following we will denote by (Λα)1≤α≤n the eigenvalues of the

Laplace operator of the projected network, L and
(
~ψα
)

1≤α≤n
the associated

eigenvectors. Based on the well known properties of L and assuming the

network to be connected, we have Λn ≥ . . .Λ2 > Λ1 = 0 and the eigenvectors

do form an orthonormal basis.

Localisation of eigenmodes is a phenomenon relevant to many fields of

science, e.g. the Anderson localisation in disordered systems [8, 84], with a

particular relevance to the dynamics. For this reason we decided to start

our analysis by studying the localisation properties of the Laplacian eigen-

vectors for the hypergraph (2.25) and compare them with the corresponding

quantities obtained for the projected network. Results reported in Fig. 6.1

show that the localisation is more evident for a hypergraph, than for the
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associated projected network. In the left panel of Fig. 6.1, we present the

eigenvectors for the Laplace matrix stemming from the hypergraph (ordered

for increasing eigenvalue ΛαH) as a function of the nodes indexes (ordered for

increasing kHi ). In the right panel, the same quantity is displayed for the

Laplace matrix computed from the projected network. By visual inspection

(entries larger than 0.015 are coloured in black while the remaining ones are

drawn in white), one can clearly appreciate the dark squarish zones, associ-

ated to small or medium rank eigenvectors, which appear in the left panel

of Fig. 6.1: eigenvectors are found with relatively large entries, i.e. a strong

localisation, on a subset of nodes. On the right panel, similar structures are

present but much weaker. A substantially analogous behaviour is observed

for high ranked eigenvectors, e.g. α & 400 in the left panel and α ∼ 500 in

the right one, for which only few entries display very large values, pointing

hence to an even stronger localisation (see the thin dark “line” in the top

right corners in both panels).

To illustrate our results, we employed as projected network a Scale Free

network made by n = 500 nodes, built using the configuration model with

γ = −2 and kmin = 2 [116]. The associated hypergraph is obtained by

transforming all the maximal m-cliques into hyperedges of size m. The

distribution of hyperedges sizes is reported in Fig. 6.2.

A more quantitative measure of the localisation can be obtained using

the Inverse Participation Ratio (IPR) [126], that for a n-dimensional vector,

v, it is defined by

P (v) =

∑
i v

4
i

(
∑
i v

2
i )

2 . (6.1)

The above quantity ranges in [1/n, 1], where the lower bound is attained for

a vector with uniform entries. The upper limit is hit when all the entries are

0 but one which equals 1. In Fig. 6.3 we report the IPR computed for the

eigenvectors of the hypergraph (blue dots) and the projected network (black

dots) used in Fig. 6.1. We can observe that in the case of the hypergraph,

the IPR is always larger than the same quantity computed for the projected

network, except for very high ranked eigenvectors (say the last 5 ones).

In the next sections, we will show that the localisation which manifests

on hypergraphs, leaves macroscopic imprints on the dynamics of systems

subject to many-body, higher-order interactions.
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Figure 6.1: Laplacian eigenvectors. We report the absolute values of

the components of the eigenvectors, ~φα, ordered for increasing eigenvalues

and nodes degree (right panel) and nodes hyper degree (left panel). Entries

larger than 0.015 are pictured in black, while the remaining ones in white.

The projected network is a scale free network made of 500 nodes and gen-

erated by using the configuration method with γ = −2 and kmin = 2. The

corresponding hypergraph is obtained from the latter by transforming all the

m-cliques into a hyperedge of size m.

6.1.1 Perturbation analysis of the Laplacian matrix

It is known [92] that localization properties of random networks can be pre-

dicted by using the perturbation theory. This approach is indeed used in [92]

to analyze eigenvalues and eigenvectors for scale-free networks generated by

the Barabási-Albert preferential attachment algorithm, classical Erdös-Rényi

random network and real neural network of C. elegans. A similar method was

used by Kim and Motter to analyze the Laplacian eigenvalues of scale-free

networks [106].

Does this theory also work for hypergaphs? In this section, we try to

answer to this question. For this reason, we apply the perturbation theory

[95, 167] to the Laplacian matrix (2.25). The diagonal elements of matrix

(2.25) are of the order O(< kH >), while non-diagonal elements are O(KH
ij ).

We introduce an expansion parameter ε =< KH > / < kH > and we rewrite

the Laplacian matrix as

LH = L0 + εL1 (6.2)



6.1 Localisation of eigenvectors 105

2 3 4 5 6 7 8 9 10 11 12 13 14
0

100

200

300

400

500

Figure 6.2: Distribution hyperedges sizes. We report the distribution

of hyperedges sizes for a hypergraph whose Scale Free projected network is

made by 500 nodes and built using the configuration method with γ = −2

and kmin = 2. One can observe the presence of relatively large hyperedges

responsible for the high-order interactions.

whose elements

L0,ij = −kHi δij (6.3)

L1,ij =
< kH >

< KH >
KH
ij (6.4)

are of the same order O(< kH >). With the same arguments discussed

in [92], we observe that, if the hypergraph is sufficiently dense, the inequality

< kH >� KH
ij holds generally and it is expected that the perturbation

theory yields accurate approximation results.

First of all, note that L0 is not a Laplacian matrix because its rows do not

sum up to zero. Also, the zeroth-order eigenvalue ΛN0 is not zero as usual,

but equal to the smallest hyper degree −kN . It is convenient to employ

the bra-ket notation to denote the Laplacian eigenvector, i.e. ~φ(α) = |α〉,
and drop the summation symbol as

∑N
j=1 Lijφ

(α)
j = L |α〉. We expand the
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Figure 6.3: Inverse Participation Ratio. We report the IPR of the eigen-

vectors of the hypergraph (blue dots) and of the associated projected network

(black dots) used in Fig. 6.1. We can observe that in the case of the hyper-

graph the IPR is always larger than that obtained for the corresponding

projected network, while the eigenvectors associated to the largest eigenval-

ues are more localised for the case of the network.

Laplacian eigenvectors |α〉 and eigenvalues Λ(α) in series of ε as

|α〉 = |α〉0 + ε |α〉1 + ε2 |α〉2 + . . . (6.5)

and

Λ(α) = Λ
(α)
0 + εΛ

(α)
1 + ε2Λ

(α)
2 + . . . (6.6)

and we substitute these expressions into the eigenvalue equation

LH |α〉 = Λ(α) |α〉 (6.7)

where α = 1, 2, . . . , N is the index of the α-th eigenvector. The resulting

equations up to the second order are:

(L0 − Λ
(α)
0 ) |α〉0 = 0 (6.8)

(L0 − Λ
(α)
0 ) |α〉1 = −(L1 − Λ

(α)
1 ) |α〉0 (6.9)
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(L0 − Λ
(α)
0 ) |α〉2 = −(L1 − Λ

(α)
1 ) |α〉1 + Λ

(α)
2 |α〉0 . (6.10)

These three equations allow to derive the zeroth- (|α〉0) and first-order (|α〉1)

perturbations for the eigenvectors, and the zeroth- (Λ
(α)
0 ), first- (Λ

(α)
1 ) and

second- (Λ
(α)
2 ) order perturbations for the eigenvalues.

Consider at first the unperturbed system (6.8); the eigenvectors |α >0

and eigenvalues Λ
(α)
0 are given exactly as

|α〉0 (i) = 0 for i 6= α (6.11)

|α〉0 (i) = 1 for i = α (6.12)

and

Λ
(α)
0 = −k(α) (6.13)

for α = 1, . . . , N . Each eigenvector is characterized by a single non-zero ele-

ment at the hypergraph node i = α, and the corresponding eigenvalue Λ
(α)
0

is equal to the negative of the characteristic node hyper degree kα. The hy-

pergraph generally possesses multiple nodes with same degrees and, from the

zeroth-order solution (6.8), it is evident that such nodes have corresponding

degenerate eigenvectors. For this reason, we should consider the higher-order

perturbation terms and employ the degenerate perturbation theory [95,167].

From (6.8)-(6.10) we compute the approximated eigenvectors and eigenval-

ues up to the second order. The complete derivation of the perturbation

corrections for a general class of degenerate system has been reported, for

example, in [95].

6.1.2 Degenerate perturbation theory

This section is inspired by the work of Hata and Nakao [92] and represents a

generalization of this study to the emerging field of hypergraphs. The appli-

cations could be several, being the localization an aspect that influence the

dynamics of systems defined on top of networks and high-order structures,

as we will show in the following.

The derivation is analogous to the one reported in [92]. We differentiate

the eigenvectors into three classes, depending on their degeneracy: non-

degenerate vectors, vectors whose degeneracy is solved at the first order and

vectors who are still degenerate at the first order. For the sake of complete-

ness, we remind the expressions of each term of the expansion. We consider
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perturbation terms up to the second-order for eigenvalues, and terms up to

the first-order for the eigenvectors.

For non-degenerate eigenvalues the first-order correction term read as

|α〉1 =
∑
β 6=α

0 〈β|L1|α〉0
Λ

(α)
0 − Λ

(β)
0

|β〉0 , (6.14)

while, the first order correction to the eigenvalue is zero

Λ
(α)
1 = 0 〈α|L1|α〉0 , (6.15)

because of the diagonal elements of L1 are zero. The second-order correction

term to the eigenvalue is given by

Λ
(α)
2 = 0 〈α|L1|α〉1 . (6.16)

For eigenvalues whose degeneration is solved at the first order, we denote

the degenerate eigenvectors corresponding to the same eigenvalue Λ
α)
0 as

α1, . . . , αm. We introduce new zeroth-order eigenvectors so that the degen-

eration is solved at the first-order perturbation; they are defined as

|α̃i〉0 =

m∑
j=1

bi,j |αj〉0 , (6.17)

where the mixing coefficients bij are the eigenvectors of the matrix V defined

by Vij = 0 〈αi|L1|αj〉0 (i, j = 1, . . . ,m); in other words, they satisfy the

eigenvalue equation
∑m
j=1 Vkjbij = Λ

(αi)
1 bik, where Λ

(αi)
1 gives the first-order

perturbation to the Laplacian eigenvalues.

The first-order correction term for eigenvectors is given by

|α̃i〉1 =
∑
β 6=α

0 〈β|L1|α̃i〉0
Λ

(α)
0 − Λ

(β)
0

[
m∑
j=1

0 〈α̃j |L1|β〉0
Λ

(αi)
1 − Λ

(αj)
1

|α̃j〉0 + |β〉0

]
(6.18)

where the summation symbol with β 6= α indicates that the index β runs

over all eigenvectors except for the degenerate ones, i.e. α1, . . . , αm.

The second order correction to the eigenvalue is given by

Λ
(αi)
2 = 0 〈α̃i|L1|α̃i〉1 . (6.19)

Let us consider now the eigenvalues whose degeneration is not eliminated

at the first order. Suppose that a subset of eigenvalues α̃1, . . . , α̃m (n ≤ m)
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are still degenerate at the first order perturbation. In this case, the zeroth-

order eigenvectors are redefined as

∣∣ ˜̃αi〉0 =

n∑
j=1

cij |α̃j〉0 , (6.20)

where cij are the eigenvectors of the matrix

Wkj =
∑
β 6=α

( 0 〈α̃k|L1|β〉0 0 〈β|L1|α̃j〉0)/(Λ
(α)
0 − Λ

(β)
0 ). (6.21)

The first-order correction to the eigenvectors is in this last case given by

∣∣ ˜̃αi〉1 =
∑
β 6=α

0

〈
β
∣∣L1

∣∣ ˜̃αi〉0
Λ

(α)
0 − Λ

(β)
0

[
m∑

k=n+1

0 〈α̃k|L1|β〉0
Λ

(αi)
1 − Λ

(αk)
1

|α̃k〉0 + |β〉0

]
. (6.22)

and the first-order perturbation term Λ
(αi)
1 for the eigenvalues is defined as

in the previous case.

In conclusion, the second-order correction Λ
(αi)
2 is determined from the

equation
m∑
j=1

Wkjcij = Λ
(αi)
2 cik. (6.23)

If some eigenvectors are still degenerate even at the second-order perturba-

tion, one can introduce new zeroth-order eigenvectors so that the degeneracy

is solved at the third-order perturbation. In principle, one can proceed iter-

ating this method until the degeneration is resolved.

We applied the introduced theory to hypergraphs. We show here the

preliminary results about the eigenvalues approximation.

As in the previous sections, we start considering a scale free network made

of 500 nodes, generated by using the configuration method with γ = −2 and

kmin = 2. The corresponding hypergraph is obtained from this network by

transforming all the m-cliques into a hyperedge of size m. Via a numerical

implementation of the formulae presented above, we calculate an approxi-

mation for Laplacian eigenvalues at zeroth- and second-order, corresponding

respectively to Eq. (6.13) and Eq. (6.15)-(6.16). The comparison between

approximated and true eigenvalues calculated by direct numerical analysis is

illustrated in Figure 6.4. As one can clearly appreciate, the original quantities

are well reproduced, and the zeroth-order perturbation provide an already

qualitatively good estimate of eigenvalues.
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Figure 6.4: Approximation of the Laplacian eigenvalues using the perturba-

tion theory. The hypergraph is obtained transforming all the m-cliques of a

scale-free network made of 500 nodes into a hyperedge of size m. The net-

work is constructed using the configuration method with parameters γ = −2

and kmin = 2. The comparison between the true and the zeroth-order (upper

panel) and second-order (bottom panel) approximated eigenvalues is shown.

We point out the plateaux at the zeroth-order approximation displayed in the

upper panel; these correspond to degenerate eigenvectors relative to eigenval-

ues who share the same hyperdegrees, according to (6.13). The second-order

perturbation terms smooth the curve, as one can appreciate from the bottom

panel. The recovered quantities are, in both cases, in good agreement with

the original ones.



6.2 Dynamical systems on hypergraphs 111

Using the same approach, an approximation of the Laplacian eigenvectors

can be obtained. In this case, depending on the degeneracy of each node, we

should consider the correction terms written above, for all the zeroth-, first

and second-order of approximation.

Predict the localization properties of Laplacian eigenvectors for hyper-

graphs will be the subject of our future research. In principle, a random

generated hypergraph does not possess a set of strongly localized eigenvec-

tors. In this respect, it could be interesting to devise a method to design

hypergraphs with desired properties. A solution could be given by a vari-

ant of the procedure presented in Chapter 5, where we recover a network

starting from a set of assigned Laplacian eigenvalues. More specifically, once

we fixed a properly basis of Laplacian eigenvectors, with an analogous pro-

cedure based on the eigenvalue decomposition, we are able to construct a

hypergraph with specific properties. At variance with Chapter 5, in this

case the eigenvalues are located in a (a priori) unknown region of the com-

plex plane.

6.2 Dynamical systems on hypergraphs

In this section we will consider the behaviour of dynamical systems defined

on hypergraphs. In particular, we will analyse the consequences of dealing

with higher-order couplings, exploiting to this end the spectral characteris-

tics highlighted above. More specifically, assume n copies of the same low di-

mensional dynamical system to be hosted on each node of a given collection.

This defines the local dynamics of the inspected system. Units belonging

to different nodes are assumed to interact through higher-order structures

identified as hyperedges. Many body interactions promote a preferential in-

teraction among nodes belonging to the same large hyperedge. The nodes

can be imagined to identify different spatial locations. For this reason, we

will denote by aspatial the system composed by one isolated dynamical unit,

and use spatial to refer to its multi-dimensional version made of mutually

entangled components.

As already mentioned, the newly introduced (combinatorial) Laplace ma-

trix (2.25) admits a homogeneous eigenvector associated to the zero eigen-

value. This will allow us to probe (in)stability of interconnected systems

evolving close to reference orbits. For the sake of completeness, we will con-

sider three applications that cover several relevant research domains. We
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will begin by imposing a generalised diffusive coupling among nodes as ex-

emplified by the aforementioned Laplace matrix (2.25). Working in this

framework, we will study the emergence of Turing patterns, that is the exis-

tence of a stable heterogeneous solution. We will then turn to considering the

synchronisation between nonlinear oscillators, diffusively coupled via higher-

order combinatorial Laplacians. Finally, we will analyse the synchronisation

of chaotic oscillators, in the setting of interest where higher-order interac-

tions are at play. The formalism of the Master Stability Function will be

used to tackle the problem analytically. Projected networks will be employed

as reference benchmarks to bring into evidence the role of hypergraphs and

related higher order interactions.

Consider a d-dimensional system described by local, i.e. aspatial, equa-

tions:
dx

dt
= F(x) x ∈ Rd , (6.24)

and fix a reference orbit, s(t). Let us observe that the latter can also be a

fixed point. Assume further n identical copies of the above system coupled

through a hypergraph, namely each copy is represented by a node of a hy-

pergraph. Moreover, each system belongs to one (or more) hyperedge. Units

sharing the same hyperedge are tightly coupled, due to existing many body

interactions. In formulas:

dxi
dt

= F(xi)− ε
∑

α:i∈Eα

∑
j∈Eα,j 6=i

(Cαα − 1) (G(xi)−G(xj)) ,

where xi denotes the state of the i-th system, i.e. sitting on the i-th node,

ε the strength of the coupling and G a generic nonlinear coupling function.

The elements Cαα of matrix C denote the size of the hyperedge Eα. The

factor −1 accounts for the fact that j should be different from i. Recalling

the definition of eiα one can rewrite the previous formula as

dxi
dt

= F(xi)− ε
∑
α,j

eiαejα(Cαα − 1) (G(xi)−G(xj))

= F(xi)− ε
∑
j

kHij (G(xi)−G(xj)) = F(xi)− ε
∑
j

(
δijk

H
i − kHij

)
G(xj)

= F(xi)− ε
∑
j

LHijG(xj) , (6.25)

where we have used the definition of kHi =
∑
j k

H
ij and LHij given by (2.25).

Let us stress once again that all the high-order structure is encoded in a
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n × n matrix and there is no need for tensors as in the case of simplicial

complexes: this simplifies the resulting analysis.

By exploiting the fact that
∑
j L

H
ij = 0 for all i = 1, . . . , n, it is immediate

to conclude that the aspatial reference solution s(t) is also a solution of

(6.25). A natural question that arises is hence to study the stability of the

homogeneous solution for the system in its coupled variant.

To answer to this question one introduces the deviations from the refer-

ence orbit, i.e. δxi = xi − s. Assuming this deviation to be small, one can

derive a self-consistent set of linear equations for tracking the evolution of

the perturbation in time. To this end, we make use of the above expression

in (6.25) and perform a Taylor expansion by neglecting terms of order larger

than two, to eventually get:

dδxi
dt

= DF(s(t))δxi − ε
∑
j

LHijDG(s(t))δxj , (6.26)

where DF(s(t)) (resp. DG(s(t))) denotes the Jacobian matrix of the func-

tion F (resp. G) evaluated on the trajectory s(t).

Remember that LH is symmetric. Hence, there exists a basis formed by

orthonormal eigenvectors, ~φα, associated to eigenvalues ΛαH (see Section 6.1).

We can then project δxi on this basis and obtains for all α:

dδyα
dt

= [DF(s(t))− εΛαDG(s(t))] δyα , (6.27)

where δyα is the projection of δxi on the α-th eigendirection.

Let us finally conclude this section by observing that from Eq. (6.27) one

can derive the Master Stability Function, i.e. the most general framework

to address questions that pertain to the stability of the reference orbit. De-

spite its generality, the latter can only be handled numerically, except very

few exceptions. In the following, we begin by studying the setting where

s(t) is a constant solution. In this case, the previous equation simplifies

because the right hand side is no longer time dependent and the problem

translates into the onset of (generalised) Turing instability. Indeed, the right-

most term in (6.25) can be seen as a sort of generalised Fick’s diffusion (see

Section 6.2.1). If the reference orbit is instead periodic in time, one can

investigate the conditions which drive the synchronisation of regular oscilla-

tors. In this case, the Master Stability Function can be analysed by resorting

to the Floquet machinery. In the following, we have however chosen to study

the synchronisation of Stuart-Landau oscillators via higher-order couplings



114 Many body interactions systems

(see Section 6.2.2). Working in this setting, the Master Stability Function

becomes again time independent and the analysis closely resembles the one

carried out for addressing the onset of Turing instabilities. As a final step,

we will turn to studying the case where s(t) is a chaotic trajectory (see

Section 6.2.3).

6.2.1 Turing patterns on hypergraphs

The Turing instability takes place for spatially extended systems: a stable

homogeneous equilibrium becomes unstable upon injections of a heteroge-

neous, i.e. spatially dependent, perturbation once diffusion and reaction

terms are simultaneously at play. Let us first consider two generic nonlinear

functions f(u, v) and g(u, v) describing the local dynamics

{
u̇ = f(u, v)

v̇ = g(u, v)
. (6.28)

Then assume to replicate such system on all the nodes of a given hypergraphs,

and label ui and vi the corresponding concentrations. Here, the index i refers

to the specific node to which the dynamical variables are bound. Finally,

assume that two nodes, i and j, communicate if they belong to the same

hyperedge and moreover the strength of the interaction (which results into an

effective transport across the involved nodes) is mediated by both the number

of shared hyperedges and their sizes. Indeed, nodes belonging to the same

hyperedge exhibit a higher-order interaction and we consequently assume

that spreading among them is more probable than with nodes associated

with other hyperedges or smaller ones. From a microscopic point of view,

imagine to deal with a walker belonging to a given node. The walker assigns

to all its neighbours a weight that gauges the size of the hyperedges and the

number of incident hyperedges, and then performs a jump with a probability

proportional to this weight. This represents a higher-order extension of Ficks’

law: the rate of change of ui is proportional to

u̇i ∼
∑

α:i∈Eα

∑
j∈Eα,j 6=i

(Cαα − 1)(ui − uj) , (6.29)
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where use has been made of matrix C, as introduced above. Recalling the

definition of eiα, one can rewrite the previous formula as

u̇i ∼
∑
α,j

eiαejα(Cαα − 1)(ui − uj)

=
∑
j

kHij (ui − uj) =
∑
j

(
δijk

H
i − kHij

)
uj =

∑
j

LHijuj , (6.30)

where we have used the definition of kHi =
∑
j k

H
ij and LHij .

Hence, in conclusion a reaction-diffusion process on hypergraphs, where

the diffusion takes into account the higher-order interactions among nodes

in the same hyperedge, can be described by the following system{
u̇i = f(ui, vi) +Du

∑
j L

H
ijuj

v̇i = g(ui, vi) +Dv

∑
j L

H
ijvj

, (6.31)

where Du and Dv are the diffusion coefficients of species u and v. At first

sight, the above model seems to solely account for binary interactions. How-

ever, higher-order interactions are also present, as encoded in the matrix LH .

This is thus a compact formalism allowing to overcome the computational

issues intrinsic to simplicial complexes. Finally, let us observe that if the

hypergraph is a network, i.e. the hyperedges have size 2, |Eα| = 2 ∀α, then

LH reduces to the standard Laplace matrix. Thus (6.31) converges to the

standard reaction-diffusion system defined on a network.

The condition for the emergence of a Turing instability can be detected

by performing a linear stability analysis about the homogeneous equilibrium.

More precisely, the latter is assumed to be stable with respect to homoge-

neous perturbations, while it loses its stability for heterogeneous perturba-

tions once diffusion is at play, i. e. Du > 0 and Dv > 0. The linear stability

analysis can be performed by following the standard procedure: (i) by lin-

earising the model (6.31) around the equilibrium, (ui, vi) = (ū, v̄) for all i;

(ii) by expanding the perturbations on the eigenbasis of LH , and (iii) by

calculating the dispersion relation, i.e. the linear growth rate λα = λ(ΛαH)

of the eigenmode α as a function of the Laplacian eigenvalue ΛαH . The linear

growth rate is the real part of the largest root of the second order equation

λ2
α−λα [trJ0 + ΛαH(Du +Dv)]+det J0+ΛαH(Du∂vg+Dv∂uf)+DuDv(Λ

α
H)2 = 0 ,

(6.32)
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where J0 =
(
∂uf ∂vf
∂ug ∂vg

)
is the Jacobian matrix of the reaction part evaluated

at the equilibrium (ui, vi) = (ū, v̄), tr (resp. det) is its trace (resp. deter-

minant). The concept of dispersion relation is close to that of Lyapunov

exponent: the existence of eigenvalues ΛαH for which the dispersion relation

takes positive values, implies that the system goes unstable via a typical

path first identified by Alan Turing in his seminal work. At variance, if the

dispersion relation is negative, the system cannot undergo a Turing insta-

bility: any tiny perturbation fades away and the system settles back to the

homogeneous equilibrium.

To provide a concrete example, we assume the reaction kinetic to be

modelled by the Brusselator scheme [151, 164]. This is a nonlinear model

defined by f(u, v) = 1 − (b + 1)u + cu2v and g(u, v) = bu − cu2v, where

b and c act as tunable parameters. We first show an example of Turing

pattern emerging in both the hypergraph and projected network (the same

used in the previous section). In the main panels of Fig. 6.5 the dispersion

relations are reported: a subset of eigenvalues exist which is associated to

positive values of the relation dispersion, for both the hypergraph -(panel

(a))- and the projected network -(panel (b)). In the insets of Fig. 6.5 we

display the ensuing patterns. Nodes are ordered for increasing hyper degree

(resp. degree) for the hypergraph (resp. the projected network). One can

clearly observe that, in the case of the hypergraph, patterns are strongly

localised in nodes associated to larger hyper degree.

From Fig. 6.5 one can also observe that the domain of the eigenvalues for

the hypergraph covers a much wider range, as compared to that associated

projected network. This observation can open the way to settings where

patterns emerge only for systems defined on top of hypergraphs and not on

the corrsponding projected networks. In this case, patterns are the result of

the higher-order interaction among nodes. To challenge this scenario, let us

thus consider a small network built using the Barabási-Albert algorithm [5]

with 20 nodes. For each iteration of the generative algorithm, 3 new nodes

are attached to the already existing ones, according to a preferential attach-

ment scheme; because of the small size of the network, our goal here is not

to resolve the scale free nature of the network but to obtain a hierarchical

structure where 3-cliques, and larger ones, are mutually connected. We iden-

tify the complete cliques and build the associated hypergraph by assuming

each m-clique to form a hyperedge of size m. We then turn to consider the

resulting hypergraph and the associated projected network as the underlying



6.2 Dynamical systems on hypergraphs 117

Figure 6.5: Turing patterns on hypergraphs. Main panels: The Disper-

sion relation for the Brusselator model defined on the hypergraph (panel

(a)) and the projected network (panel (b)). One can observe that in both

cases there are eigenvalues for which the dispersion relation is positive (red

dots); the blue line represent the dispersion relation for the Brusselator model

defined on a continuous regular support. Being both Laplace matrices sym-

metric, the dispersion relation computed for the discrete spectra lies on top

pf the one for the continuous support. Insets: The Turing Patterns on the

hypergraph (panel (a)) and the projected network (panel (b)). We report

the time evolution of the concentration of the species ui(t) in each node as

a function of time, by using an appropriate colour code (yellow associated

to large values, blue to small ones). In the former case nodes are ordered

for increasing hyper degree while in the second panel for increasing degree.

One can hence conclude that nodes associated to large hyper degrees display

a large concentration amount for species ui. This yields a very localised

pattern. The hypergraph and the projected network are the same used in

Fig. 6.1.

support for the dynamics (6.31). The dispersion relations can be computed

(see main panels of Fig. 6.6): observe that the homogenous equilibrium is

stable even in presence of diffusion on the network while it looses its stability

in the case of the hypergraph. In this latter setting, the Turing patterns are

hence expected to develop. This can be checked by computing the time evo-

lution of the species density ui(t) both on the hypergraph and the projected

network. By inspection of Fig. 6.6, one can appreciate that heterogenous

patterns develop in the former case (see inset in the panel (a) of Fig. 6.6).

Patterns are instead lacking in the latter scenario, i.e. when the Brusselator
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model hosted on the projected network (see inset in the panel (b) of Fig. 6.6).

Figure 6.6: Many body induced Turing patterns. Main panels: The

Relation dispersion for the Brusselator model defined on the hypergraph

(panel (a)) and the projected network (panel (b)). In the former case eigen-

values are found for which the dispersion relation is positive (red dots) while

for the system defined on the projected network this conclusion does not

hold. The blue line represents again the dispersion relation for the Brussela-

tor model on a continuous support. Insets: because the condition for Turing

instability is satisfied for the hypergraph Laplace matrix, Turing Patterns

emerge on the hypergraph (panel (a)). At variance, patterns do not manifest

on the projected network (panel (b)). We report the time evolution of the

concentration of species ui(t), on each node, as a function of time by using

a proper colour code (yellow associated to large values, blue to small ones).

In the former case nodes are ordered for increasing hyper degree while in

the latter for increasing degree. The hypergraph and the projected network

are obtained by means of the Barabási-Albert algorithm [5] with 20 nodes.

Every iteration, 3 newly nodes are attached to the existing ones.

6.2.2 Synchronisation of Stuart-Landau oscillators on

hypergraphs

In the previous section we studied the emergence of Turing patterns for

reaction-diffusion systems defined on a hypergraph so as to account for many

body interactions. These patterns originate from a symmetry breaking in-

stability induced by an externally imposed perturbation acting on systems

initially close to a stationary homogeneous equilibrium. In many relevant
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problems, systems display periodic solutions. It is therefore important to

investigate the stability of isolated periodic orbits and, even more essential,

to study the dynamics of extended systems which combine several replicas of

the same nonlinear oscillators. Imagine that individual oscillators are evolv-

ing in phase and introduce a non homogeneous perturbation. If the system

is globally stable, the perturbation gets eventually re-absorbed and the os-

cillators display a synchronous dynamics [12]. Otherwise, the perturbation

develops in time and the system evolves towards a distinct, heterogeneous,

attractor.

To study the synchronisation via a hypergraph, we consider individual

units obeying to a Stuart-Landau (SL) equation [111,174]. This is a paradig-

matic model of nonlinear oscillators, often invoked for modelling a wide range

of phenomena, from nonlinear waves to second-order phase transitions, from

superconductivity and superfluidity to Bose-Einstein condensation [10]. Be-

sides, the SL equation can be considered as a normal form for systems close

to a supercritical Hopf-bifurcation. In this respect, the results here presented

are more general than the specific setting explored.

Consider an ensemble made of n nonlinear oscillators and label with Wi

their associated complex amplitude. Each oscillator obeys a complex Stuart-

Landau equation

d

dt
Wj = Wj − (1 + ic2)|Wj |2Wj ,

where c2 is a real parameter and i =
√
−1. Let us observe that the former

admits the limit cycle solution WLC(t) = e−ic2t.

We then assume the oscillators to be coupled via a many body diffusive-

like interaction which can be described by the discrete Laplacian matrix (2.25),

returning thus the system

d

dt
Wj = Wj − (1 + ic2)|Wj |2Wj − (1 + ic1)K

∑
k

LHjkWk , (6.33)

where c1 is a second real parameters and K is a suitable parameter setting

the coupling strength. Based on the properties of the Laplace matrix, one

can prove that the limit cycle solution, WLC(t), is also a solution of (6.33).

To characterise the stability of the latter to heterogeneous perturbation, we

rewrite Wj using polar coordinates as:

Wj(t) = WLC [1 + ρj(t)]e
iθj(t) . (6.34)
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Assuming |ρi(t)| and |θi(t)| to be small, one can insert (6.34) into (6.33) and

then linearise the resulting equation, to get:

d

dt

(
ρj
θj

)
=

( −2 0

−2c2 0

)(
ρj
θj

)
−K

(
1 −c1
c1 1

)∑
k

LHjk

(
ρk
θk

)
. (6.35)

Remark that, even if we are perturbing around a limit cycle, namely a time

dependent solution, the coefficients of the linearised equations do not depend

on time, owing to the specific structure of the GL equation. This observation

will simplify the successive analysis, which will follow closely that discussed in

the preceding section for the case of a Turing instability. In the next section

we will instead deal with a problem for which the linearised dynamics yields

a time dependent Jacobian.

To proceed further we expand the perturbations ρj and θj on the Lapla-

cian eigenvectors basis (
ρj
θj

)
=

n∑
α=1

(
ρα
θα

)
φαj , (6.36)

and inserting the latter into (6.35), and by using the orthonormality of the

eigenvectors, we obtain:

d

dt

(
ρα
θα

)
=

( −2 0

−2c2 0

)(
ρα
θα

)
−KΛHα

(
1 −c1
c1 1

)(
ρα
θα

)
. (6.37)

We put forward the ansatz of exponential growth for each mode, that is

ρα ∼ eλαt and θα ∼ eλαt and we eventually obtain a condition formally

equivalent to the dispersion relation

λ(Λα) = −(1 +KΛα) +
√

(1 +KΛα)2 −KΛα [2(c1c2 + 1) + (1 + c21)KΛα] .

(6.38)

Let us observe that λ(Λ1) = 0, signifying that the reference orbit is a limit

cycle and thus neutrally stable. On the other hand if Reλ(Λα) is positive

for some α > 1, the perturbation grows exponentially in time, and the initial

homogeneous state proves unstable. Conversely, if Reλ(Λα) < 0, for every

α, the perturbation fades away and the system converges back to the fully

synchronised state. Expanding (6.38) for small KΛα we get

λ(Λα) ∼ −KΛα(1 + c1c2) + . . . ,

By recalling that λ(0) = 0, K > 0 and Λα > 0 for α > 1, one can con-

clude [41] that λ(Λα) > 0 for some α if and only if 1 + c1c2 < 0, that
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is a necessary and sufficient condition for the loss of stability of the fully

synchronised solution.

The numerical results reported in Fig. 6.7 complement the previous an-

alytical theory. In panel (a) of Fig. 6.7 we present the dispersion relation

and the heterogeneous patterns emerging for both the hypergraph and the

associated projected network, for K = 1, c1 = 0.5 and c2 = −10. The disper-

sion relation is positive over a finite domain and the patterns (represented

by ReWj(t)) that develop as follow the instability are pretty localised. In

panel (b) of Fig. 6.7, the parameters are set to the values K = 1, c1 = 1

and c2 = −0.9. The dispersion relation is non positive and the system dis-

plays synchronised oscillations: the imposed perturbation dies out and the

oscillators evolve at unison.

Figure 6.7: Synchronisation for Stuart-Landau system. Main panels:

The Relation dispersion for the Stuart-Landau system defined on the hy-

pergraph and the projected network is shown for two sets of parameters.

In panel (a) (K = 1, c1 = 0.5 and c2 = 10) this choice yields to a loss of

synchronisation. Indeed there are eigenvalues associated to positive values

of the dispersion relation and the resulting patterns are heterogeneous (see

insets (a1) for the projected network and (a2) for the hypergraph). In both

insets nodes are ordered for increasing hyper degree, resp. degree, for hy-

pergraph, resp. projected network. The localisation is stronger when the

dynamics is hosted on the ypergraph. In panel (b) the chosen parameters

(K = 1, c1 = 1 and c2 = −0.9) result in the emergence of a globally syn-

chronised state, the dispersion relation being always negative. This can be

appreciated by looking at the insets ((b1) for the projected network and (b2)

for the hypergraph) where we report ReWj as function of time.
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6.2.3 Master Stability Function on hypergraphs

In the previous section we have analysed the synchronisation of an ensemble

of Stuart-Landau (SL) oscillators defined on a hypergraphs. To this end we

employed a straightforward generalisation of the techniques presented in the

section 6.2.1, when investigating the emergence of Turing patterns. The use

of the dispersion relation has been made possible because, for coupled SL

equations, the variational problem yields a time independent Jacobian, once

evaluated on the periodic homogeneous solution (6.35). This is not true for

generic nonlinear oscillators. To overcome this problem one can however

resort to the formalism of the Master Stability Function (MSF) [159], as

introduced above. The aim of this section is thus to study the MSF in its

fully generality for systems defined on hypergraph. In particular, we will set

to analyse the to the hypergraph and thus to study the synchronisation of

nonlinear chaotic oscillators coupled through a hypergraph and compare the

outcome of the analysis to that obtained when operating the system on the

corresponding projected network.

Let us consider again (6.27) ans replace now in the latter equation εΛα
by a generic parameter κ > 0 and thus also the projection δyα by a generic

”perturbation” vector δy

dδy

dt
= [DF(s)− κDG(s)] δy . (6.39)

The largest Lyapunov exponent of Eq. (6.39) is called the Master Stability

Function [159]. Let us denote it by λ(κ) to emphasise its dependence on the

parameter κ > 0. If for all κ, λ(κ) < 0, then δy decays to 0. At variance, if

there exists κ > 0 such that λ(κ) > 0, then δy will grow. Back to Eq. (6.27)

one can conclude that if for a given ε there exists α such that λ(εΛα) > 0,

then the associated δyα grows in time. Thus individual units deviate from

the reference solution s(t). On the other hand if for all α one has λ(εΛα) < 0

then the system reaches a globally synchronised state: all units will follow

at the unison the same chaotic orbit. Let us observe that λ(0) > 0 being the

reference orbit, s(t), a chaotic one.

To procees in the analysis we assume linear coupling functions [98]: in

this way the MSF simplifies, since DG is a constant matrix. Moreover, we

will assume the matrix DG to have only one non zero element, say DGba,

denoting a coupling between the a–th and the b-th component of x.

Let us observe that the variational equation still contain explicitly the

time variable through the Jacobian of the reaction part, DF(s(t)), which
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is indeed evaluated on the chaotic orbit. Hence to compute the MSF we

have to solve a non autonomous system of ODEs, to study the evolution of

the norm of δy(t) and then use the definition of the maximum Lyapunov

exponent λ(κ) = limt→∞
log ||δy(t)||

t . This can result in a tricky exercise. In-

deed if λ(κ) > 0 then the norm can quickly increase to produce an overflow.

On the other hand if λ(κ) < 0, then ||δy(t)|| shrinks below round-off error.

For this reason we employed in our analysis the Mean Exponential Growth

of Nearby Orbits, (MEGNO) [47, 48]. This is an improved chaos indica-

tor that allows to rapidly discriminate between chaotic and regular orbits.

The method allows for the Lyapunov exponent to be consequently recov-

ered. For these reasons, MEGNO has been largely used in the framework of

planetary systems [83,119], satellites and spatial debris [50,99,180] and also

generic nonlinear dynamical systems [47]. The method overcomes the above

mentioned issues being based on a sort of time average of the norm of the

deviation vector (see Appendix B.1).

Without loss of generality we will use the Lorenz model [121] for a demon-

strative application: 
ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz .

(6.40)

In the following we will fix the model parameters to the “standard values”,

β = 2, σ = 10 and ρ = 28. Once we couple the above ODE using high-order

interactions, i.e. the hypergraph, we get

d

dt

(
xi
yi
zi

)
=

(
σ(yi−xi)

xi(ρ−zi)−yi
xiyi−βzi

)
− σ

∑
j

LHijE
( xj
yj
zj

)
, (6.41)

where the constant 3 × 3 matrix E encodes the coupling among the three

variables and its entries take values 0 has only a non zero en or 1try by

hypothesis. For instance if E21 = 1, (noted for short 1 → 2) then the

growth rate of the second variable, y, depends of the first one, x, that is

ẏi ∼ −ε
∑
j L

H
ijxj (discarding the reaction part).

We are now in a position to adapt the above described theory, i.e. lin-

earise about the reference orbit and project the perturbation on the eigenbase

of the Laplace matrix, to rewrite (6.27) for the Lorenz system and eventu-

ally compute the MSF to check the stability property of the chaotic Lorenz

oscillator. In the main panel of Figs. 6.8 we report the MSF for the coupling

scheme, 1→ 1, that in the classification proposed in [98] corresponds to the
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class Γ1, namely the MSF is monotone decreasing and it has a single root, for

two values of the coupling strength ε = 3 (panel (a)) and ε = 10 (panel (b)).

For (sufficiently) small coupling strength (panel (a)), the MSF evaluated on

the discrete spectrum of the Laplace matrix for the hypergraph (green dots)

is always negative and thus the system synchronises to the chaotic refer-

ence orbit as shown in the inset (a2). On the other hand the MSF for the

projected network (red dots) takes positive values: the chaotic oscillators

cannot synchronise, as we can appreciate in the inset (a1). For large enough

coupling strength (panel (b)) both spectra yield a negative MSF (green and

red dots in panel (b)) and hence, in both cases, the systems do synchronise

(see insets (b1) and (b2)).

From these results one can draw a first conclusion. Once we fix the

coupling strength ε, the sign of the MSF depends on the spectrum of the

Laplace matrix for the hypergraph, LH . Similarly for the projected network.

However, as we observed in Section 6.1 the eigenvalues of the hypergraph

Laplacian extend over a large portion of the real axis, as compared to what it

happens when considering the projected network. Hence the coupling scheme

1→ 1 favours the synchronisation on the hypergraph, provided the coupling

strength is sufficiently small. Said figuratively, one can act on the “knob”

ε and have the spectra to slide on the MSF: by prograssively reducing the

value of ε one can force the spectrum of the projected network to enter the

zone where the MSF is positive, whereas for the same value of ε the spectrum

of the hypergraph is still associated to a negative MSF.

In Fig. 6.9 we report a similar analysis for the coupling schemes 1 → 2

(panel (a)) and 3→ 3 (panel (b)). In the classification proposed in [98] the

former corresponds the class Γ2, two zeros, while the latter to Γ3, three zeros.

From the results shown in the Figure, one can conclude that the system

behaves similarly for couplings 3→ 3 and 1→ 1: if the coupling is sufficiently

large (here ε = 20) synchronisation is found on the hypergraph but not on the

corresponding projected network. This generalises our previous observation

to all couplings belonging to an odd class Γ2m+1.

The reported behaviour is reversed once we consider coupling that belong

to an even class. As we can appreciate in Fig. 6.9 panel (a)) one can chose

a sufficiently small coupling to have the MSF negative on the projected

network (red dots), while it takes also positive values, when the problem

formulated on the hypergraph (green dots).
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Figure 6.8: Master Stability Function and synchronisation for the

Lorenz system I. We report the MSF for the Lorenz model for linear

couplings, 1 → 1 (main panels) and two choices of the coupling strengths

ε = 3 ((a) panel) and ε = 10 (panel (b)). For a small coupling strength

(panel (a)), the MSF is negative in correspondence of the eigenvalues of

the Laplace matrix defined on the hypergraph (green dots), while the MSF

can assume positive values once evaluated on the spectrum of the Laplace

matrix for the projected network (red dots). In the former case, the system

synchronises (see inset (a2)) while in the latter it does not (see inset (a1)).

For larger coupling strengths (panel (b)) the MSF is negative for both the

hypergraph and the projected network and thus, in both cases, the systems

do synchronise (see insets (b1) and (b2)).

6.3 Conclusion

In this work we took a step forward in modelling dynamical systems processes

on networks. The aim of the work is to account for high-order interactions

among coupled units. In particular we focused on the hypergraphs, a very

versatile setting where to model systems endowed with many-body interac-

tions. Indeed one can easily represent such high-order interactions via the

hyperedge, so as to overcome the limitations intrinsic to dealing with bi-

nary exchanges. Starting from a microscopic process which takes place on

the hypergraph, i.e. a random walk biases toward the size and the number

of hyperedges a node belongs to, we defined a new combinatorial Laplace

operator which generalises the concept of diffusive interaction to a multi-
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Figure 6.9: Master Stability Function and patterns for the Lorenz

system II. We report the MSF for the Lorenz model using the linear cou-

plings, 1 → 2 (panel (a)) and 3 → 3 (panel (b)). In the former case we

can observe that, for the chosen value of the coupling strength, ε = 2.4, the

projected network yields a negative MSF (red dots) and thus the system

synchronises (inset (a1)). Conversely, the hypergraph possesses unstable

eigenmodes (green dots) and the systems goes consequently unstable (in-

set (a2)). The opposite behaviour is displayed in the case of the 3 → 3

coupling for ε = 20 (panel (b)): here the projected network exhibits un-

stable eigenmodes (red dots) while the hypergraph shows a negative MSF

(green dots). The inset (b1) testifies on the absence of synchronisation for

the projected network, while in the inset (b2) synchronisation is shown to

occur on the hypergraph. Due to the coupling, the MSF is less regular in

the case shown in the panel (b), we thus reported the average of the MSF

(blue curve) computed over 200 independent simulations and the associated

standard deviation (light blue area).

dimensional setting. This operator reduces to the standard combinatorial

Laplacian once the hypergraph converges back to an ordinary network. In

this respect, the newly introduced Laplacian can be rationalised as a natural

extension of the usual operator. In this framework we considered dynam-

ical systems defined on top of hypergraphs and analysed the stability of

the associated homogeneous equilibria. In particular we extended the Mas-

ter Stability Function to this formalism and investigated the specificity of
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Turing patterns for the generalised proxy of reaction-diffusion systems on

hypergraphs. We also analysed the synchronisation of periodic and chaotic

orbits, shedding light on the role exerted by high-order couplings. In all

the analysed cases, the spectral property of the novel Laplace operator are

central in shaping the ensuing patters, which appear remarkably localised,

as illustrated with reference to the Turing setting. Further, hypergraphs

can enhance or impede the synchronisation, as compared to what it happens

on the corresponding projected network, depending on the specificity of the

imposed couplings.
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Chapter 7

Conclusion

Many real-world phenomena, from physics to biology, passing through so-

cial science, can be qualitatively described via dynamical models hosted on

networks. In this respect, network science is a powerful tool to investigate

the behavior arising from such systems, whenever networks constitute the

underlying support of the dynamics. Stochastic contributions must be con-

sidered when formulating realistic models of complex systems: macroscopic

order can emerge from the microscopic disorder and noise can completely

change the behavior predicted following a deterministic approach.

In this thesis we examined various reaction-diffusion models with a spe-

cial consideration for the role of the noise, which can be either external to

the system or intrinsically related to it. Finite size corrections represent a

source of endogeneous noise which can significantly affect the dynamics of

the investigated systems. This topic represent the main part of Chapter 3,

where a simplified version of the celebrated Wilson-Cowan model hosted on

a triangular loop made of three nodes is presented. The stochastic compo-

nent, due to demographic noise, boosts the emergence of quasicycles whose

amplitude increases with the reactivity index, a parameter that quantifies

the short-time growth of the norm of an imposed perturbation. Quasicycles

are often characterized by small amplitude oscillations and broad signal in

the power spectrum; our work overcome these gaps, resulting in a possible

strategy to amplify noise-assisted oscillations.

Non-normality and reactivity proved to be essential to enhance stochas-

tic oscillations. This observation was also confirmed in Chapter 4 where we

129
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considered a two-species models arranged on the diffusively coupled nodes of

a directed lattice. Carrying on the above premises, we studied the interplay

between the degree of non-normality and the degeneracy in the spectrum of

the Jacobian matrix, which reflects the structure of the couplings between

adjacent nodes. Self-organized patterns are observed as consequence of the

strong amplification process of the noise along the lattice, due to the orga-

nization of the Laplacian eigenvalues that overlap on the same point. This

allowed us to generalize the result to a quasi-degenerate lattice, in the sense

that the eigenvalues accumulates in a compact region (a point, potentially)

of the complex plane. The eigenmodes associated to a quasi-degenerate

spectrum represent thus a route to drive instability. Our first algorithm of

network generation arose starting from this observation: the idea is to gener-

ate networks assembling nodes in such a way that the associated Laplacian

possesses a quasi-degenerate spectrum. The networks obtained with this

procedure are distorted one-dimensional directed chains and belong to the

class of the so called random directed acyclic graphs (DAG).

Network generation is an interesting challenge in research community.

The stability of many dynamical systems is related to the spectrum of the

Laplacian matrices associated to the underlying networks. Designing net-

work with desired Laplacian spectrum is the subject of Chapter 5 where

we provide a recipe to construct a graph with any desired set of Laplacian

eigenvalues. Our result represents the generalization of an existing method

to generate undirected network with, by construction, real Laplacian spec-

trum. The networks obtained are directed and fully connected; since com-

plete graphs can be difficult to realize physically, we presented two sparsifica-

tion methods to remove unessential links from the original networks, without

altering the structure of the underlying adjacency matrices. The effects of

these procedures are investigated simulating two models of oscillators hosted

on top of the sparsified networks. In a particular case of working setting, we

were able to compute analytical expressions of the recovered Laplacians and

derivate conditions to guarantee positive entries for that matrices.

The aim of Chapter 6 was to expand our research to high-order struc-

tures, in particular to hypergraphs. We started defining a new combinato-

rial Laplace operator which generalises the concept of diffusive interaction to

this multidimensional setting. In this framework we considered dynamical

systems defined on top of hypergraphs and, to analyze the stability of the

associated homogeneous equilibria, we employed the Master Stability Func-
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tion. Further, we analysed the synchronisation of periodic and chaotic orbits.

The spectral properties of the Laplacian proved fundamental in studying the

evolution of such dynamical models. For this reason, we were interested in

predicting localization properties of the eigenmodes via the perturbation

theory. We showed the comparison between the true Laplacian eigenvalues

computed by direct numerical analysis and the approximated quantities, up

to the zeroth- and the second-order, obtained applying the perturbation the-

ory to the Laplacian matrix. The results were in good agremeent with the

original eigenvalues, and the theory provided an accurate estimate already

at the zeroth-order. In future we want to extend this analysis to Laplacian

eigenvectors, in order to to predict their localization property, developing a

novel research field with several possible applications.
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Appendix A

Generating directed networks:

supplementary materials

A.1 On the explicit expression of S

Given two arbitrary constants α and β the following identity holds

(I + αE)(I + βE) = I + (α+ β)E + αβE2 (A.1)

for every matrix E. If E is the matrix defined in (5.8) one gets:

E2 = NE (A.2)

and then

(I + αE)(I + βE) = I + (α+ β + αβN)E (A.3)

If β = − α
1+αN , from (A.3) we get

(I + αE)−1 = (I + βE) (A.4)

The above result can be used to derive the structure of matrix S, as reported

in the main body of the paper. To do this end we begin by rewriting the

matrices A and B as

A = [(1− i)E − iI]U = −i[I + (i+ 1)E]U (A.5)

B = [(i+ 1)E + iI]U = i[I + (1− i)E]U (A.6)
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From (A.4) we obtain

B−1 = −iU−1[I + (i+ 1)E]−1 = −iU−1

[
I +

i− 1

1 + (1− i)NE

]
(A.7)

and then, after some calculations, we get

B +AB−1A = i

[
I + (1− i)E + I +

3i+ 2iN + 1

1 + (1− i)N E

]
U

= 2i

[
I +

1 + i

1 + (1− i)NE

]
U

In conclusion

S = (B +AB−1A)−1 =

− i
2
U−1

[
I − 1 + i

1 + 2N
E

]
because of [

I +
1 + i

1 + (1− i)NE

]−1

=

[
I − 1 + i

1 + 2N
E

]
(A.8)

which proves the results.

A.2 About the computation of Lij

The aim of this section is to detail the computations needed to obtain ex-

plicitly the entries of the Laplace matrix L under the assumption U = qI

starting thus from Eqs. (5.16) and (5.18).

Let us begin by computing the diagonal elements of L , namely Lii for

i = 1, .., N , . For i = 1, one gets:

L11 =

N+1∑
k=2

V1kDkkWk1 (A.9)

From (5.4) and (5.6) we obtain for k = 2, . . . , N + 1:

V1k = −1− i (A.10)

Wk1 =
−1 + i

2(2N + 1)
(A.11)
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Then

L11 = 2

N+1∑
k=2

Re

[
(−1− i)Dkk

−1 + i

2(2N + 1)

]
(A.12)

= 2

N+1∑
k=2

Re

[
Dkk(−1− i) −1 + i

2(2N + 1)

]
(A.13)

=
2

2N + 1

N+1∑
k=2

αk (A.14)

where use has been made of the identity Re(Dkk) = αk.

We can proceed in analogy for the others diagonal elements of the Lapla-

cian matrix. In particular, for s = 2, . . . , N + 1, we have that

Wss = Sss =
−2Ni− 1

2(2N + 1)
, (A.15)

and then

Lss = 2

N+1∑
k=2

Re[DkkVskWks] (A.16)

= 2Re(DssVssWss) (A.17)

= 2Re

[
(αs + iβs)i

−2Ni− 1

2(2N + 1)

]
(A.18)

=
2Nαs + βs

2N + 1
(A.19)

Instead, for s = N + 2, . . . , 2N + 1, we have

Wss = iSss = i
−2Ni− 1

2(2N + 1)
, (A.20)

and consequently:

Lss = 2Re

[
(αs − iβs)i

−2Ni− 1

2(2N + 1)

]
(A.21)

=
2Nαs − βs

2N + 1
(A.22)

Let us proceed now with the other elements of the first row of L. For
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t = 2, . . . , N + 1 we can write

L1t = 2

N+1∑
k=2

Re(V1kDkkWkt) (A.23)

= 2

[
Re(V1tDttWtt) +

N+1∑
k=2,k =t

Re(V1kDkkWkt)

]
(A.24)

= 2

{
Re

[
(−1− i)(αt + iβt)

−2Ni− 1

2(2N + 1)

]
+ (A.25)

N+1∑
k=2,k 6=t

Re

[
(−1− i)(αk + iβk)

i− 1

2(2N + 1)

]}
(A.26)

=
1− 2N

1 + 2N
αt − βt +

2

2N + 1

N+1∑
k=2,k 6=t

αk (A.27)

and for t = N + 2, . . . , 2N + 1 we get

L1t = 2

{
Re

[
(−1 + i)(αt − iβt)i

−2Ni− 1

2(2N + 1)

]
+ (A.28)

2N+1∑
k=N+2,k 6=t

Re

[
(−1 + i)(αk − iβk)i

i− 1

2(2N + 1)

]}
(A.29)

=
1− 2N

1 + 2N
αt + βt +

2

2N + 1

2N+1∑
k=N+2,k 6=t

αk (A.30)

=
1− 2N

1 + 2N
αt + βt +

2

2N + 1

N+1∑
k=2,k 6=t−N

αk (A.31)

For s = 2, . . . , N + 1 and t = N + 2, . . . , 2N + 1 with t 6= s−N , we get:

Lst =

2N+1∑
k=2

VskDkkWkt (A.32)

= VssDssWst + Vs,s+NDs+N,s+NWs+N,t (A.33)

= i(αs + iβs)(−i)
−i− 1

2(2N + 1)
+ (A.34)

(−i)(αs − iβs)i
i− 1

2(2N + 1)
(A.35)

=
−αs + βs
2N + 1

(A.36)
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while, for s = N + 2, . . . , 2N + 1 and t = 2, . . . , N + 2 with t 6= s −N , the

following expression holds:

Lst = VssDssWst + Vs,s−NDs−N,s−NWs−N,t (A.37)

= (αs − iβs)
−i− 1

2(2N + 1)
+ (αs + iβs)

i− 1

2(2N + 1)
(A.38)

=
−αs − βs
2N + 1

(A.39)

For s = 2, . . . , N + 1

Ls,s+N = (A.40)

VssDssWs,s+N + Vs,s+NDs+N,s+NWs+N,s+N (A.41)

= i(αs + iβs)(−i)
2Ni− 1

2(2N + 1)
+ (A.42)

(−i)(αs − iβs)i
−2Ni− 1

2(2N + 1)
= (A.43)

−αs − 2Nβs
2N + 1

(A.44)

instead, for s = N + 2, . . . , 2N + 1, we obtain:

Ls,s−N = (A.45)

VssDssWs,s+N + Vs,s−NDs−N,s−NWs−N,s−N (A.46)

= (αs − iβs)
2Ni− 1

2(2N + 1)
+ (αs + iβs)i

−2Ni− 1

2(2N + 1)
= (A.47)

−αs + 2Nβs
2N + 1

(A.48)

For t = 2, . . . , N + 1

Lt1 = 2Re(VttDttWt1) = (A.49)

2Re

[
i(αt + iβt)

i− 1

2(2N + 1)

]
= (A.50)

−αt + βt
2N + 1

(A.51)

and for t = N + 2, . . . , 2N + 1

Lt1 = 2Re(VttDttWt1) (A.52)

= 2Re

[
(αt − iβt)

−i− 1

2(2N + 1)

]
(A.53)

=
−αt − βt
2N + 1

(A.54)
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For t, s = 2, . . . , N + 1 and s 6= t

Lst = 2Re(VssDssWst) (A.55)

= 2Re

[
i(αs + iβs)

i− 1

2(2N + 1)

]
(A.56)

=
−αs + βs
2N + 1

(A.57)

and, finally, for s, t = N + 2, . . . , 2N + 1 and s 6= t, one gets:

Lst = 2Re(VssDssWst) (A.58)

= 2Re

[
(αs − iβs)i

i− 1

2(2N + 1)

]
= (A.59)

−αs − βs
2N + 1

(A.60)

Summing up, we have here provided closed analytical expressions for all

the entries of the Laplacian matrix, as a function of the assigned spectrum.

The calculation has been carried out by assuming a specific form of the

Laplacian eigenvectors, which enables for analytical progress to be made,

and which represents a particular case of the general recipe here illustrated.

A.3 Positiveness of L

The aim of this section is to work out the algebraic steps needed to rewrite (5.46)

in the simpler form given by (A.75) and (A.76).

Let us thus rewrite (5.46)

2Nαt < βt < −2Nαt

βt > − 1−2N
2N+1αt − 2

2N+1

∑N+1
k=2,k 6=t αk

βt <
1−2N
2N+1αt + 2

2N+1

∑N+1
k=2,k 6=t αk

αt < βt < −αt
αt
2N < βt < − αt

2N

where the inequalities hold for t = 2, . . . , N + 1. Then the second and the

third conditions of system (5.46) can be matched simultaneously provided:

αt <
2

2N − 1

∑
k 6=t

αk ∀t = 2, . . . , N + 1 (A.61)
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Remark that:

2Nαt < αt <
αt
2N

(A.62)

holds for arbitrary values of αt < 0 and N . Hence, system (5.46) simplify as

follows: 
αt
2N < βt < − α

2N

αt <
2

2N−1

∑
k 6=t αk

βt > − 1−2N
2N+1αt − 2

2N+1

∑N+1
k=2,k 6=t αk

βt <
1−2N
2N+1αt + 2

2N+1

∑N+1
k=2,k 6=t αk

(A.63)

for t = 2, . . . , N + 1.

Focus now on the conditions for βt. We assume that the following con-

dition holds:

1− 2N

2N + 1
αt +

2

2N + 1

N+1∑
k=2,k 6=t

αk > −
αt
2N

(A.64)

and we set to explore its consequences. Eq. (A.64) yields:

αt <
4N

4N2 − 4N − 1

∑
k 6=t

αk =
1

N − 1− 1
4N

∑
k 6=t

αk (A.65)

For N > 1, conditions (A.63) maps therefore in the following equivalent

system: 
αt
2N < βt < − αt

2N

αt <
2

2N−1

∑N+1
k=2,k 6=t αk

αt <
1

N−1− 1
4N

∑
k 6=t αk

(A.66)

Remark that:

1

N − 1− 1
4N

N+1∑
k=2,k 6=t

αk <
2

2N − 1

N+1∑
k=2,k 6=t

αk (A.67)

due to the inequality

1

N − 1− 1
4N

>
2

2N − 1
(A.68)

which holds for every N > 1. Hence, system (A.66) takes the form:
αt
2N < βt < − αt

2N

αt <
1

N−1− 1
4N

∑
k 6=t αk

(A.69)
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System (A.69) has no solutions, under the working hypothesis that we

have put forward to deriving it. In fact:

αt +
1

N − 1− 1
4N

αt <
1

N − 1− 1
4N

∑
k

αk (A.70)

that is

αt <
1

N − 1
4N

∑
k

αk =
4N

4N2 − 1

∑
k

αk (A.71)

and summing on every t we get∑
t

αt <
4N2

4N2 − 1

∑
k

αk (A.72)

which in turn implies 4N2

4N2−1 < 1, a condition that is obviously never met. We

now go back to revise ansatz (A.64), and consider the alternative scenario:

1− 2N

2N + 1
αt +

2

2N + 1

N+1∑
k=2,k 6=t

αk < −
αt
2N

(A.73)

System (A.63) becomes
βt > − 1−2N

2N+1αt − 2
2N+1

∑N+1
k=2,k 6=t αk

βt <
1−2N
2N+1αt + 2

2N+1

∑N+1
k=2,k 6=t αk

αt <
2

2N−1

∑N+1
k=2,k 6=t αk

αt >
1

N−1− 1
4N

∑
k 6=t αk

(A.74)

Following a path analogous to the one discussed above, we get:

4N

4N2 − 1

∑
k

αk < αt <
2

2N + 1

∑
k

αk (A.75)

and

αt −
2

2N + 1

∑
k

αk < βt < − αt +
2

2N + 1

∑
k

αk (A.76)
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Details on the Master Stability

Function on hypergraphs

B.1 Compute the MSF using MEGNO

To compute the MSF one has to solve Eq. (6.26); discarding the division

into reaction and coupling part, one can rewrite the previous equation as

dδxi
dt

=
∑
j

Jij(t)δxj ,

that is a time dependent ODE, often named variational equation. The latter

should thus be solved together with the evolution of the reference trajectory

dxi
dt

= F(xi) ,

where again we put in the function F the reaction and the coupling.

Then calling δx(t) = δx(t; δx0) the solution of the variational equation

with initial datum δx(0) = δx0, the Mean Exponential Growth factor by

Nearby Orbits, MEGNO [47,48], can be defined as:

Ys(t) :=
2

t

∫ t

0

δ̇(τ)

δ(τ)
τ dτ , (B.1)

where [δ(τ)]2 = ||δx(τ)||2 = (δx(τ), δx(τ)), i.e. the norm of the vector δx,

being (·, ·) the scalar product. We also emphasised that the MEGNO is being
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computed with respect to the reference orbit s(t). A trivial computation

gives:

d

dt
δ2 = 2δδ̇

= (
d

dt
δx, δx) + (δx,

d

dt
δx) = (J δx, δx) + (δx,J δx) , (B.2)

hence
δ̇(s)

δ(s)
=

(Hδx, δx)

δ2
, (B.3)

where H = (J T + J )/2 is the Hermitian part of J .

Together with the MEGNO one usually defines also the (time)–averaged

MEGNO:

Ȳs(t) :=
1

t

∫ t

0

Ys(τ) dτ . (B.4)

While Y (t) could widely oscillate for large t and thus preventing from any

effective use of it, it can be shown that the average-MEGNO is well behaved

and allows to study the dynamics for long times. Indeed the main feature of

average-MEGNO (and/or the MEGNO) is to allows to distinguish between

regular orbits, for which ¯Y (t)→ 0, and irregular orbits, for which Ȳ (t) grows

unbounded, and more precisely Ȳ (t) ∼ λt/2 being λ the largest Lyapunov

characteristic number (or maximal Lyapunov exponent) of the orbit s(t). Let

us observe that for regular orbits MEGNO is able to differentiate between

periodic ones, Y (t)→ 0, and quasi-periodic ones, Y (t)→ 2.

Let us observe that one can overcome the problem of the growth of δ in

case of chaotic orbits using the following trick. Being δx a solution of the

variational equation, one can introduce the “reduced vector” w, w = δx/δ,

whose evolution is given by:

ẇ = Jw − (Hw,w) ;

then it can easily proved that ||w(t)|| = 1, indeed

d

dt
||w||2 = (

d

dt
w,w) + (w,

d

dt
w)

= (Jw,w)− (Hw,w)||w||2 + (w,Jw)− (Hw,w)||w||2

= 2(Hw,w)(1− ||w||2) = 0 ,

where we used the fact that ||w(0)|| = 1.



Appendix C

Publications

This research activity has led to several publications in international journals.

These are summarized below.1

International Journals

1. Nicoletti S., Zagli N., Fanelli D., Livi R., Carletti T., Innocenti G., “Non-

normal amplification of stochastic quasicycles”, Physical Review E, vol. 98,

032214, 2018.

2. Nicoletti S., Fanelli D, Zagli N., Asllani M., Battiselli G., Carletti T., Chisci

L., Innocenti G., Livi R., “Resilience for stochastic systems interacting via

a quasi-degenerate network”, Chaos, vol. 29, 083123, 2019.

3. Carletti T., Nicoletti S., Fanelli D., “Dynamical systems on Hypergraphs”,

Journal of Physics: Complexity, vol. 1, 3, 2020.

4. Nicoletti S., Carletti T, Fanelli D., Battistelli G., Chisci L., “Generating

directed networks with prescribed Laplacian spectra”, Journal of Physics:

Complexity, vol. 0, 000000, 2020.

1The author’s bibliometric indices are the following: H -index = 3, total number of

citations = 18 (source: Google Scholar on Month 2, 2021).
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[114] G. T. Landi, T. Tomé, and M. J. de Oliveira, “Entropy production in lin-

ear langevin systems,” Journal of Physics A: Mathematical and Theoretical,

vol. 46, no. 39, p. 395001, sep 2013.

[115] ——, “Entropy production in linear langevin systems,” Journal of Physics

A: Mathematical and Theoretical, vol. 46, no. 39, p. 395001, sep 2013.

[116] V. Latora, V. Nicosia, and G. Russo, Complex networks: principles, methods

and applications. Cambridge University Press, 2017.

[117] S. Lepri, A. Politi, and A. Torcini, “Chronotopic lyapunov analysis. i. a de-

tailed characterization of 1d systems,” Journal of Statistical Physics, vol. 82,

pp. 1429–1452, 03 1996.

[118] ——, “Chronotopic lyapunov analysis: Ii. toward a unified approach,” Jour-

nal of Statistical Physics, vol. 88, pp. 31–45, 01 1997.

[119] A.-S. Libert, C. Hubaux, and T. Carletti, “The global symplectic integrator:

an efficient tool for stability studies of dynamical systems. application to the

kozai resonance in the restricted three-body problem,” Monthly Notices of

the Royal Astronomy Society, vol. 414, p. 659, 2011.

[120] L.-D. Lord, P. Expert, H. Fernandes, G. Petri, T. Van Hartevelt, F. Vac-

carino, G. Deco, F. Turkheimer, and M. Kringelbach, “Insights into brain

architectures from the homological scaffolds of functional connectivity net-

works,” Front. Syst. Neurosci., vol. 10, p. 85, 2016.

[121] E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci., vol. 20, p.

130, 1963.



BIBLIOGRAPHY 153

[122] M. Lucas, G. Cencetti, and F. Battiston, “A multi-order laplacian frame-

work for the stability of higher-order synchronization,” arXiv preprint arXiv:

2003.09734v1, 2020.

[123] M. Lucas, D. Fanelli, T. Carletti, and J. Petit, “Desynchronization induced

by time-varying network,” EPL (Europhysics Letters), vol. 121, p. 50008, 03

2018.

[124] J. Macia, Francesc Posas and R. V. Solé, “Distributed computation: the new
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Grazie Gloria, sempre disponibile, amica di infinità bontà. Per avermi
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lo scoglio più grande ed è cambiato come mai avrei pensato che potesse fare,

a Olga, a cui sono indissolubilmente legata. Alla mia nonna, un pezzo del

mio cuore, e a zio, altro degno erede della vecchia Roccia, grazie perchè le
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