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Stochastic quasi-cycles for a two species model of the excitatory-inhibitory type, arranged on a
triangular loop, are studied. By increasing the strength of the inter-nodes coupling, one moves the
system towards the Hopf bifurcation and the amplitude of the stochastic oscillations are consequently
magnified. When the system is instead constrained to evolve on specific manifolds, selected so as to
return a constant rate of deterministic damping for the perturbations, the observed amplification
correlates with the degree of non normal reactivity, here quantified by the numerical abscissa. The
thermodynamics of the reactive loop is also investigated and the degree of inherent reactivity shown
to facilitate the out-of-equilibrium exploration of the available phase space.

PACS numbers: 02.50.Ey,05.40.-a, 87.18.Sn, 87.18.Tt, Ey,87.23.Cc, 05.40.-a

INTRODUCTION

Deterministic models are customarily invoked to re-
produce in silico the intertwined dynamics of large pop-
ulations of microscopic actors [I]. Stationary attractors
can be identified and their inherent stability assessed, via
standard techniques. By tuning an apt control parame-
ter, a stable fixed point can turn unstable via e.g. a Hopf
bifurcation, the canonical route to time periodic solu-
tions. The dynamical system under inspection loses sta-
bility, as a pair of complex conjugate eigenvalues - stem-
ming from the linearized version of the problem - crosses
the complex plane imaginary axis. Small-amplitude limit
cycle branches from the fixed point, a dynamical tran-
sition which is intimately bound, under the determin-
istic paradigm, to positive (real parts of the) Jacobian
eigenvalues. Stochastic perturbation can however play a
role of paramount importance [2] [3]. Finite size correc-
tions, arising from the system graininess, manifest as an
endogenous source of disturbance, termed demographic
noise. Under specific condition, the noisy contribution
can shake the system from the inside yielding almost reg-
ular oscillations, the quasi-cycles, also when the under-
lying deterministic dynamics displays an asymptotically
stable equilibrium, hence negative defined eigenvalues of
the Jacobian matrix [4H8]. Quasi-cycles are often mod-
est in size, their amplitude being set by the strength of
the imposed noise source. This fact constitutes a prac-
tical limitation, which needs to be attentively pondered,
when targeting real life applications. To circumvent this
impediment, we showed, in a recent work [9], that gi-
ant stochastic oscillations, with tunable frequencies, can
be obtained, by replicating a minimal model for quasi-
cycle amplification along a directed chain. Endogenous

noise fuels a coherent amplification across the array by
instigating robust correlations among adjacent interact-
ing populations. It was argued that the observed phe-
nomenon, explained in [9] by resorting to the linear noise
approximation, reflected the non normal character of the
imposed interaction scheme.

A linear system, in arbitrary dimension, is non normal
when its governing matrix does not commute with its
conjugate transpose [I0]. Non normal systems may dis-
play a short time growth for the norm of the system state
once a perturbation is injected, even when this latter is
destined to fade away at equilibrium [IIHI4]. The ele-
mental ability of a non normal system to prompt an ini-
tial rise of the associated norm, stimulated by an endur-
ing stochastic drive, could eventually secure the sought
amplification process [IGHI7]. The aim of this paper is
to challenge this interpretative picture, by considering a
variant of the model presented in [9]. More specifically,
we will inspect the dynamics of excitatory and inhibitory
populations, organized in a loop, with varying coupling
strength and degree of asymmetry. By forcing the sys-
tem to evolve in a region of parameters where the homo-
geneous fixed point is stable, while freezing the (negative
real part of the) largest eigenvalue to a constant amount,
one can drive a sensible increase in the amplitude of the
stochastic quasi-cycles by acting on the clout of non-
normality. It is consequently speculated that triangular
loops of the type here analyzed might define the minimal
modules for self-sustained stochastic amplification in na-
ture. Feedforwad networks with triangular architecture
are often assumed in neuroscience as fundamental stor-
age and computational units [I8, 19]. In this respect,
our conclusions point at the crucial role that might be
exerted by the non-normal nature of neuronal connectiv-
ity in the functional dynamics of cortical networks, in



agreement with [I7]. The system being examined works
as a veritable out-equilibrium thermal device under sta-
tionary conditions. The asymptotic entropy associated
to steady operation increases with non normality, hint-
ing to a novel ingredient to be included in the microscopic
foundation of out-of-equilibrium thermodynamics.

The paper is organized as follows: in the next sec-
tion we will introduce the stochastic model to be probed.
We will then turn to discussing its deterministic limit
and study the stability of the homogeneous fixed point
in the relevant parameters plane. We will also charac-
terize the degree of non normal reactivity of the model,
as witnessed by the numerical abscissa. The stochastic
contribution is then analyzed, in Section III, under the
linear noise approximation: the amplitude of the quasi-
cycle will be quantified and shown to positively correlate
with the degree of reactivity displayed by the system.
In Section IV, a thermodynamic interpretation is built
and the concept of non normal reactivity discussed with
reference to this generalized framework.

STOCHASTIC MODEL

Consider the scheme depicted in Figure Two pop-
ulations of agents are made to mutually interact via a
non linear excitatory and inhibitory circuit [20], reminis-
cent of the celebrated Wilson Cowan model for neuronal
dynamics [21H24]. The agents are dislocated on three
different patches (nodes) defining the edges of triangular
loop. The coupling among adjacent nodes is controlled
by two parameters: D sets the strength of the interac-
tion, while e € [1/2,1] stands for the degree of imposed
asymmetry. The model is formulated as a simple birth
and death process, as we shall detail in the following. As
such, it accounts for demographic stochasticity, an in-
evitable source of disturbance which originates from the
granularity of the inspected medium.

Denote by X; (resp. Y;), one individual of the excita-
tory (resp. inhibitory) species, onnodei (i € {1,--- ,Q =
3}). Label with n,, and n,, the number of active excita-
tory and inhibitory neurons on node i, respectively. Fur-
thermore, assume V; to identify the volume of the i—th
node. Then, the stochastic model is fully specified by the
following chemical equations:

Loy
Lo
F(s2)) (1)

X;
Y;
0 —X;
0 ——

f i
(sy;) )/Z
where f() = ﬁ is a sigmoidal function which mim-
ics the process of neuronal activation. Networks of ex-
citatory and inhibitory neurons represent in fact the

FIG. 1: The scheme of the model is illustrated. Two popula-
tions, labeled respectively X and Y, are distributed on three
distinct nodes of a triangular loop and therein interact via
an activator-inhibitor cycle. The nodes of the collection are
coupled together, through a non linear sigmoidal function.
D controls the strength of the inter-nodes interaction, while
€ € [1/2,1] sets the degree of the coupling asymmetry.

primary computational units in the brain cortex. No-
tably, inhibitory and excitatory loops, triggered by self-
regulated threshold activation, are also found in genetic
and metabolic cycles. Irrespectively of the specific do-
main of pertinence, and in light of its inherent simplicity,
the above stochastic framework can be readily adapted
to all those settings where inhibition-excitation reaction
schemes are at play.
The arguments of the sigmoid function read:

Q
Ny, 1 Ny . Ny,
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Q
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where I';; are the entries of the Laplacian matrix and 7 is
a local control parameter. The spatial arrangement epit-
omized in Figure|l|yields the following adjacency matrix

A

Then one can readily write I';; = A;; — k:gm)éij, where

kgm) = Y, Ay denotes the strength (hereafter also re-
ferred to as to connectivity) of node 4. In extended form
-1 e 1l—e
'=jl1-¢ -1 € |. (4)
e l1l—€e -1



The state of the system is completely described by the
vector n = (Mg, Ny, 5 oy Nag s Nyg ). Label with P(n, t) the
probability for the system to be in the state n at time
t. Under the Markov hypothesis, the chemical equations
(1)) are equivalent to a master equation for P(n,t):

oPrP / /
E(m t) = Z T(nn")P(n',t)

n’#n

—T(n'|n)P(n,t). (5)

The non vanishing transition rates T'(n’|n) from state
n to state n’, compatible with the former, are (let us
observe that for a sake of clarity we only mentioned the
changed variable in the new state)

N,
T(ng, —1lln) = — 6
(2, —1|n) v (6)
n i
T(ny, —1n) = 5 (7)
and
T(ny, +1n) = f (sy,) .- (9)
To proceed with the analysis we assume V; to be large

and y; = “//’1 = O(1) Vi, and seek for an approximate

form of the master equation via a standard Kramers
Moyal expansion [2]. The ensuing calculations are analo-
gous to those reported in [9] and for this reason omitted
in the following. To illustrate the result of the analysis
we define the macroscopic time 7 = V% and introduce the
vector

Z:($1,y17-~7$97yﬂ) (10)

where x; = v S Y = ‘ﬁ’ are the concentrations of the

active excitatory and 1nh1b1tory neurons at node i, with
i =1,2,3. Notice that in our approach V; is an unspeci-
fied macroscopic parameter fixing the volume of node 1,
and, accordingly, the amplitude of the fluctuations due
to demographic noise (see Egs. and ) Then,
the master equation can be approximated by a Fokker-
Planck equation

20 20
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with

(T (na; + 1|n) T (ng, —1n))

(T (ny, + 1) = T (ny, — 1)) | 1%
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and

2 (T (g, +1m) + T (g, — 1]n)
B L@, +1m)+ 70, 1y [+ Y

The Fokker-Planck equation is equivalent to the fol-
lowing nonlinear Langevin equations for the stochastic
concentrations of the involved species

4, L a4 L F e
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where < )\El) (r) >= 0 and < )\gl) (1) A§m) (r) >=
0ij0imd (T —7') with 4,5 =1,...,Qand [,m =1, 2.

DETERMINISTIC LIMIT

In the limit V3 — +o00 one readily obtains the following
deterministic equations

N
mi—% [f(s2,) il (16)

. 1
Yi = f[f(syi) -y (17)
1
where the dot stands for the derivative with respect to
the macroscopic time 7. Equations — are comple-
mented by the self-consistent conditions:

Q
1
B (y - 2) DS Tyla; — ) (18)
j=1
1 Q
Sy, = r(;(;i — 2> + Dzrij({l:j — yj)- (19)
j=1

Sybtem admits a homogeneous fixed point
T =y = Vz To assess its stability, we proceed
by hnearlzlng the dynamics around the aforementioned
equilibrium. To this end we set x; = %—1—5301-, Y = %—kéyi
and expand in power of the perturbation amounts. By
arresting the expansion to the first order, one obtains the
following system of linear equations:

6.76@ = % —533i — %5% + % Z?:l Fij(él‘j — 5y])

1
Vi



which can be cast in matricial form as

d
E&x = Jox (20)
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To compute the eigenvalues of the Jacobian, and even-
tually elaborate on the stability of the equilibrium solu-
tion, we introduce the eigenvectors (;b(’B ) of the Laplacian
matrix:

Te®) — A®Ip®) g_1,..0 (25)

where A®) are the associated eigenvalues. We can then
decompose the perturbation on the basis of the eigenvec-
tors which corresponds to setting:

Q
ox; = Z c exp<>\ﬁT> ng,Eﬂ) (26)
5=1 Vi
¢ A
oy; = Z bs exp(jT> qbgﬁ) (27)
p=1 '

where cg, bg, Ag are constants and Ag sets the rate of the
exponential growth (or damping), as obtained under the
linear approximation. Inserting the above ansatz into the
governing equation and performing the calculation, one
readily gets:

D T D
<)\5 —?l: 1 _DZA(/;()B) 7+ 41\35)(/3)) <Cg> —0. (29
-1 7A Ag+1+FA bs

A non trivial solution of the above system exists, pro-
vided the determinant of the associated matrix is identi-
cally equal to zero, or stated it differently, if the rates Ag
solve the quadratic equation

r

T 2DAP) =0 (29)

A +2X0+1+

that yields the closed formula

Ag=—-1=% \/—1T6(7" +2DAB)), B=1,..,09. (30)
The eigenvalues of Laplacian I, specified in eq. reads

AW =0, ACS = 3 & z§(1 — 2¢). Hence, it is imme-
diate to get:

Az =—14 gi = —1 % iwp. (31)

The second eigenvalue A®) yields

Asg=—1% %ﬁ (32)
and A®)
Asg=—1+ %\/% (33)
with
2= % {31) —r+3Di(1 - 26)} : (34)

and where z stands for the complex conjugate of z.
By separating the real and imaginary parts returns

1 R

A3qa=—1=% 5 WTGZ +isgn(Imz)w; (35)
1 R

As=—1%£ 5 WTGZ +isgn(Imz)wy (36)

where
1 /|z| — Rez
wy = 5\/ — (37)

We also define « as the supremum of the real part of the
spectrum of 7, in formula:

1 R
a=supRe(Ag)=—-1+ = M. (38)
5 2V 2

A straightforward calculation allows one to isolate the
domain in the plane (e, D) where the homogeneous fixed
point proves stable. The stability is enforced by setting
D < D, where:

12 4 4/144 4 (472 + 64)3(e — 1)?
D. = \/ dr 3(e 2). (39)

3 1\2

37(e—3)
This is a decreasing function of e, suggesting that
asymmetry anticipates the onset of the instability. Fur-

thermore, D, displays a minimum in r, and the critical
value D, diverges for r — 0. It is therefore possible to




select arbitrarily large values of D, provided r is suffi-
ciently small, while still constraining the system in the
region of stable homogeneous fixed point.

The set of computed eigenvalues exhibits two distinct
imaginary contributions, for € # %, and D < D¢ wy =
r/4, as introduced in equation , and w; associated to
the remaining set of eigenvalues and defined as follows:

1 \/r[(?)D —7)2 +3D2(1 — 2¢)2] — (3D — 1)
w1, = —
4 2

(40)

Interestingly, the frequency w; can be both smaller
or bigger than wy: indeed it is possible to show that
w1 > wg if D > D* :47"/(1726)2 If D=D* wy=uws.
In the limiting condition of a symmetric loop, € = %,
the Laplacian displays a real spectrum. More specif-
ically, z = (3D —r) is real. Thus, A34 = X565 =
—1+1/3BD —r). In this case, D, = § + 32. For,
D <D= %, the system is stable and two frequencies
are active, wp and wy = 5./]5(3D — )
D < D < D, the system is stable but the frequency wy
disappears. For any choice of €, at D = D,, two complex
conjugate eigenvalues cross the vertical imaginary axis,
signaling a Hopf bifurcation and the consequent incep-
tion of a limit cycle. In the following, we shall operate
in the region of the plane (¢, D) where the system is pre-
dicted to stably converge to a homogeneous equilibrium,
obtained by replicating on each node of the collection the
trivial fixed point (1/2,1/2).

The fate of any imposed perturbation is eventually set
by the spectrum o (J) of the Jacobian matrix J, the
matrix that governs the linear dynamics of the system
around the examined equilibrium. Perturbations fade
away when a < 0 — for our specific case study, this
amounts to setting D < D, — and the system converges
back to its deputed equilibrium. A transient growth of
the perturbation can however be seen, at short times, if J
is non normal and reactive. A matrix is said non-normal,
if it does not commute with its adjoint [10]. Asymme-
try, as reflecting a non trivial balance between intrinsic
dynamics and enforced non local couplings, is thus a nec-
essary condition for non normality to emerge. Since, in
our case, J is real, taking the adjoint is identical to con-
sidering the transpose of the matrix. In formulae, J
is non-normal, provided [7,J7] = JJT - J*'J # 0,
where the apex T identifies the transpose operation. It
is immediate to conclude that the matrix J, as defined
in , is non-normal when D > 0.

A straightforward manipulation [I0} T3] yields the fol-
lowing equation for the evolution of the norm of the per-
turbation ||0x]|:

|. Conversely, for

dlléx||  oxTH(T)ox
dr [lox]|

(41)

where H(J) = L7 " stands for Hermitian part of 7.
The evolution of the perturbation, at short times, is
intimately related to the so called numerical abscissa,
w = supo(H(J)). If w > 0, the system is termed re-
active, and perturbation may display an initial, transient
growth. In this paper, we are interested in shedding light
on the interplay between reactivity, i.e. the inherent abil-
ity of the system to yield a short time enhancement of
a deterministic perturbation, and the stochastic contri-
bution stemming from demographic fluctuations. As we
shall see, the amplification of quasi-cycles, self-sustained
oscillations driven by granularity, correlates with the de-
gree of reactive non normality, as displayed by the system
in its linearized version. To proceed in the analysis, we
set to compute the eigenvalues of H(J) and get the fol-
lowing closed expression for the reactivity index w:

w:—1+§\/3(62—6+1). (42)

4 .
7\/@ Notice

that Dy, the lower bound in D for the onset of a reac-
tive response, is independent of 7, and solely function of
€.

Hence, w > 0 when D > Dyy =

The above results are summarized in Figure [2| were
the boundaries of stability are depicted in the reference
plane (e, D), for a fixed, although representative, value
of r. The upper dashed line stands for D, as given in
equation . The lower dashed line refers instead to
Dy pn and marks the boundary of the domain where ma-
trix J is found to be reactive. Level curves traced at
constant values of a (see color bar depicted on the left)
and w (refer to the color bar reported on the right) fo-
liate the scanned portion of the plane. Moving along
iso-« lines implies freezing the rate of exponential damp-
ing of the perturbation to a constant value, or, stated
it differently visiting the subset of points that are, to
some extent, equidistant from the frontier of the Hopf
bifurcation. When crawling on iso-w lines, instead, one
forces constant the (largest) rate of short time growth,
as seeded by reactive non-normality. While it is straight-
forward to obtain a closed analytical expression for iso-
w curves, upon trivial inversion of equation (42f), more
tricky proves the calculation that yields an explicit rep-
resentation of iso-« lines. Label with & < 0 the selected
iso-a. Then, after a cumbersome derivation, one gets the
following expression for D, as function of both & and €



—12(6+ 1) + \/144(3 + 142 + [64(a + 1)* +4(@ + 1)2r2)3r2(2¢ — 1)2

D =

3r2(2¢ — 1)2

which is employed for tracing the iso-« lines displayed in
Figure Starting from this setting, we shall hereafter
elaborate on the role of non-normality in a stochastic
framework. To anticipate our findings, we will prove that
the amplitude of noise driven oscillations grows with the
degree of reactivity.
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FIG. 2: The domain of stability of the homogeneous equi-
librium is depicted in the reference plane (¢, D) and for
r = 50. The upper dashed curve stands for the Hopf bifurca-
tion. Above the lower dashed curve the non-normal Jacobian
matrix J is found to be reactive. Iso-a and iso-w curves are
traced, and colored with apt codes which reflect their associ-
ated level, as specified in the annexed bars.

LINEAR NOISE APPROXIMATION

To quantify the role of stochastic fluctuations around
the deterministic equilibrium, we shall operate under the
linear noise approximation. In concrete, we rewrite the
stochastic densities z; and y;, for all nodes of the collec-
tion, as the sum of two distinct contributions: the de-
terministic fixed point, on the one side, and a stochastic
perturbation, on the other. This latter is assumed to be
modulated by a scaling factor 1/1/V;, which follows the
central limit theorem. In formulae, we postulate:

L&
P = = 44
x 5 + SV (44)
P = — , 45
yi=g+ N (45)
and introduce
CZ (517n1a"'a§QanQ) (46)

(

to label the vector of fluctuations. Inserting the above
ansatz in the governing master equation and perform-
ing the expansion at the first order in 1/1/V; (see [9] for
details about the technical steps involved in the calcu-
lations), one eventually gets the following set of linear
Langevin equations:

%Ci =(JC)i+\i (47)

where X\ stands for a Gaussian noise that satisfies the
following conditions

<A>=0, (48)

< )\i(T)Aj(T/) >= BijS(T — T/). (49)

The diffusion matrix B;; is defined by its diagonal ele-

ments
1 1 1 1
3:<) (50)
1N Yo Y0

When the volumes are equal, the diffusion matrix simply
reduces to B;; = d;;.

The above Langevin equations admits an equiva-
lent formulation in terms of an associated Fokker-Planck
equation which can be formally cast in the form:

10°
20¢?

d 2 9
EH = —; e (T¢)I + B;I1. (51)

This latter describes the evolution of probability distri-
bution II(¢, 7) of the fluctuations.

The solution at any time of the above Fokker-Planck
equation is a multivariate normal distribution

(¢, 7) = e
(2m)2(C|
(52)

where |C| is the determinant of the correlation matrix.
The sought probability distribution II(¢, 7) is hence com-
pletely characterized in terms of the first and second mo-
ments of the fluctuations, < ¢; > and < (;(;, >. These
latter quantities obey the following differential equations

[9]:

exp {5 (¢ <€) ¢ e < >



d

o <G >=(JC);

d 2Q

T < >=2< (TG > B =2 Ty < GG > +B (53)

j=1

The stationary moments can be analytically computed
by setting to zero the time derivatives on the left hand
side of equations and solving the system that is con-
sequently obtained. The first moments are immediately
found to be identically equal to zero asymptotically. De-
termining the second moments implies dealing with a lin-
ear system, which can be drastically simplified, by invok-
ing translation invariance across the loop. In particular,
< (? > take two distinct values, respectively reflecting
the typical amplitude of the fluctuations, as displayed by
excitators and inhibitors.

In Figure 3} < [|¢[|> > /3 = 35, (€2 + n?)/3, the sta-
tionary norm of fluctuations on one node of the collec-
tion, is plotted against the reactivity index w, moving on
(different) iso-a lines. Solid lines stand for the analytical
calculations, as follows equations , while the symbols
refer to the homologous quantities computed from di-
rect simulation of the non linear Langevin equations ,
via the Euler-Maruyama algorithm [25]. The satisfying
agreement between theory and simulations testify on the
adequacy of the linear noise approximation. The posi-
tive correlation between < ||¢||> > /3 and w, suggests
that non normality controls the amplitude of emerging
quasi cycles. The effect becomes more pronounced when
w > 0, i.e. when the reactivity of the non normal Jaco-
bian drives a self-consistent growth for the norm of the
injected stochastic perturbation. Notice that w is found
to increase when crawling on the iso-« curves, from right
to left, in the plane (¢, D): it is remarkable that the pro-
gressive gain in reactivity is triggered by a steady reduc-
tion in €, which implies forcing the system to be sym-
metric, at odd with intuition. Despite the fact that we
have here chosen to display the cumulative contribution,
the norm of both the activators and inhibitors species is
found to grow, with the reactivity index w, when w > 0.
Moreover, the ensuing amplification can be made more
conspicuous by differentiating the volumes V;, across the
loop.

To further characterize the amplification of the
stochastic cycles, against w, at fixed «, we compute the
power spectrum of the fluctuations around the determin-
istic fixed point. To this end we apply the temporal
Fourier transform on both sides of and obtain the

2Q
7 < ClCm >=< (jC)lCm >+ < (jC)mQ >= Zt%] < Cm{j > +jmj < Cle >

Jj=1

following equation
— iwGi(w) = (T + A (54)

where (N stands for the Fourier transform of (. Then,
define the matrix ®;; = —iwd;; — J;;. The solution of
can be written as

C=d"'A (55)

The power spectrum density matrix (PSDM) is conse-
quently defined by the elements

Pij(w) =< Gi(w)C (w) > . (56)
A straightforward calculation yields

Pij(w) = (7' w)B(@™H) (W), (57)

ij
whose diagonal elements represent the power spectra of
the signals. In Figure [d] three different power spectra,
relative to the inhibitory species, are represented for dis-
tinct choices of the reactivity parameter w. When w is
made to increase, while keeping « fixed, the power spec-
trum shifts towards the left, as prescribed by the formula
for wy, which sets the position of the peak. In agreement
with the above, the peak gains in potency when the de-
gree of reactivity is augmented. Moving along iso-« lines
is essential to prevent spurious contributions that might
set in when the system is pushed towards the edge of the
Hopf bifurcation. A gain of the quasi-cycles amplitude,
is in fact observed when € is kept constant and D mod-
ulated in the range from 0 to D.(€), as demonstrated in
Figure [5] Although interesting per se, this phenomenon
is, to a large extent, dictated by the progressive reduc-
tion in the value of «, which is enforced by making D
approach its critical value D,.. Disentangling this lat-
ter contribution from the contextual raise in reactivity is
arduous, and this is ultimately the reason why we have
chosen to foliate the relevant parameters space in curves
characterized by a constant damping factor «. Similar
conclusion holds when monitoring the power spectra of
fluctuations relative to the excitatory species.

The above analysis suggests that the conversion of a
stochastic input into regular oscillations is more efficient,
in terms of amplification gain, when the reactivity of the
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FIG. 3: Panel (a): the asymptotic norm of the fluctua-
tions < [[¢|]> > /3 = 32 (&2 + n?)/3, as displayed on
each individual node, is plotted versus w — ||, moving along
iso-lines @. Different curves refer to different choices of &
(= —0.8,—0.6, —0.4, from bottom to top). Solid lines stands
for the analytical solution after equations . Symbols are
obtained from direct simulations of the non linear Langevin
equations , averaging over M = 300 independent realiza-
tions. Here, Vi = Vo = V3 = 10° and r = 50: Panel (b):
stochastic trajectories are displayed, relative to the inhibitors
on the first node, i.e. species y1, for different values of the
numerical abscissa. The red (small amplitude) trajectory is
obtained for w = —0.24 (e = 1), while the blue (large ampli-
tude) trajectory refers to w = 5.18 (e = 0.506). Here r = 50
and Vi = Vb = V3 = 10°.

system gets more pronounced. This observation provides
an alternative angle to interpret the mechanism of noise
driven amplification, as originally discussed in the [9]. It
can be in fact proven, that the Jacobian matrix that rules
the self-consistent amplification as displayed in [9] is non
normal: its inherent reactivity grows with the coupling
strength among adjacent nodes, i.e. with the parameter
that boosts the exponential magnification of fluctuations
along the unidirectional chain. In the setting explored in
[9], the analogue of the damping factor « is always con-
stant and, as such, independent on the strength of the
imposed coupling. This is at variance with the current
implementation, where excitatory and inhibitory species
are arranged on a triangular loop and iso-« curves are non

linear functions of the parameters of the model. The in-
tertwingled activity of excitatory-inhibitory populations
gets self-consistently amplified by circulating the signal
across a symmetric or asymmetric cyclic loop, a minimal
computational unit which constitutes the fundamental
building block of any large networks, notwithstanding
their diverse and variegated topology. In the following,
we will continue elaborating along this line and show,
from a thermodynamical perspective, that the reactivity
promotes the out-of-equilibrium dynamics of the scruti-
nized system. As such, it holds promise to result in an
additional ingredient to lay the foundation of stochastic
thermodynamics from the micro to the macro realms.

0.8 b

FIG. 4: The theoretical power spectrum of the inhibitory
species, P22, is plotted with a solid line against w. Different
curves refer to different choices of (D,e) constrained to move
across the iso-a line @ = —0.4. The degree of reactivity, as
quantified by the numerical abscissa w, increases from right to
left (w = 0.1,4.6,5.2): the peak of the power spectrum gains
correspondingly in power. Symbols refer to direct numerical
simulations, based on equations , averaging over M = 200
independent realizations. Here, Vi = Vo = V3 = 10% and
r = 50. Notice that P2 = Pss = Pes, due to translational
invariance across the loop.

THERMODYNAMICS OF A REACTIVE LOOP.

The goal of this section is to analyze the process of
noise driven amplification across the circular loop from
a thermodynamic point of view. In doing so we shall
provide a novel angle to contextualize the implications
of reactive non normality. To this end we recall that
II(¢, 7), the distribution of fluctuations obeys to the
Fokker-Planck equation , in the linear noise approx-
imation. Label with f; = (J¢); the non conservative
forces that define the drift term in the aforementioned
Fokker-Planck equation; B; stands instead for the diffu-
sive contribution.

The Fokker-Planck equation can be written in the
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FIG. 5: The theoretical power spectrum of the inhibitory
species, Pa2, is plotted with a solid line against w, for dif-
ferent choices of D (from right to left D = 0,6,8). Sym-
bols refer to direct numerical simulations, based on equations
, averaging over M = 200 independent realizations. Here,
Vi = Vo = Vs = 105 Pay = Pys = Pes, due to translational
invariance across the loop and r = 50.

form of a continuity equation:

o1l 0
—=-V.-IT=- —I; 58
where we have defined the probability density current
B; 0
i =fll - ——1I
f 5 3G, (59)

and use has been made of the fact that B; are constants.
In the limit 7 — oo, stationarity is achieved

o

— =0 60
or (60)

and the probability current is a solenoidal vector field
V.-Z=0. (61)

Equilibrium represents a very specific stationary solu-

tion, attained by imposing a vanishing probability cur-
rent, namely Z = 0. Hence,

B; 0
fi=%

2 0¢

If we suppose that the system is in contact with just one

thermal bath (B; = B Vi), or restating the assumption in

the context of interest, assuming that v; = y; = 1 Vi, the
following consistency requirement should be matched:

In(II). (62)

0 0
= ac
9¢; G
The above expression implies that the forces must be

conservative, i.e. they can be obtained by a generalized
potential U

fi (63)

)
fi= _a@u (64)

The definition of the current becomes therefore

0 B 0

and the above expression can be readily integrated to
return the usual Boltzmann-Gibbs distribution

11(6) = Kexp (- 54(¢)) (66)

where K stands for a proper normalisation constant.
More interesting is the setting where the forces are non
conservatives and the system evolves towards a station-
ary state, different from the conventional equilibrium. To
explore this possibility we set to introduce the entropy
functional S(7) from the probability distribution II(¢, 7)
as [26H28]:

S(r)= - /V K¢ (I(CT)  (67)

where V is the sample space of the dynamical variables.
The Fokker-Planck equation sets the temporal evolution
of the entropy. Taking the derivative of @ with respect
to time 7, and making use of the Fokker-Planck equation,
one obtains [27, 2§]:

dS o1l 0T;
= V&<1nn+1)dc—/vg% (InTI + 1) dC.

(68)
Assuming that the probability current vanishes at the
boundary of the volume V', a simple integration by parts
returns:

ds d
- =" Z /V 7 3 In TId¢. (69)

By recalling the definition of the probability current, one
can write:

InIl= —f; — —=. (70)

Finally, by substituting the above expression in the for-
mula for the temporal evolution of the entropy, one even-
tually obtains [27, 28]:

dS
i g — Pg (71)
where
_ 2 [ TZ( )
Ts=2.5 J, Ten (2
and

5= 83 /V F(OT(C,m)dC (73)



The quantity IIg is always positive and can be inter-
preted as the entropy production rate given by the non
conservative forces f;. On the other hand, &g can be
either positive or negative, and can be identified as the
entropy flux rate. If &g > 0 the flux is from the sys-

J
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tem towards the environment, the opposite scenario cor-
responding to @g < 0. By invoking the definition of the
current and performing a few integrations by parts, one
derives a compact formula for the entropy flux rate:

2 2 B, . 0
QSSZ;Bi/VfiL‘dCZEBi/V(ff“‘zfiaci“>d<:

2 B 0
:ZE/V (fz‘QH""_QH%fi

which, by expliciting the forces f;, yields:

)dg:Z(;<f§>+<;;fi>>

(

2 2
Ps =) 5 TuTuCix+ ) 5Tk <G >< G >+ Ju=

4,9,k .5,k

:Z%(jCJt)ii+Z§[(J<C>)i]2+Trj.

In the stationary state:
2
(®5)o0 = Z g (767", =6 (76)

where use has been made of the fact that the first mo-

J

(75)

ments of the distribution II vanish in the stationary states
and that TrJ = —2(1+ ’y% + ,y%) = —6. Here, C; stands
for the stationary correlation matrix. Similarly, following
an analogous pathway, one can prove that:

2 1
Hg=>Y" 5 (JCT"),;+2TrT +5 DB+

i

+ZB%[(J <P HAT <C>), (T <¢>) 2B [(c <¢>))

In the stationary state, for the setting of interest where
the nodes share the same volume (v; = 1 Vi), the en-
tropy production rate matches the expression:

(s)oo = 2Tr (TC.T) + 270 + JTrC . (78)

A straightforward, although lengthy, calculation con-

(

firms that (IIs)oo = (P5)wo, i-6. the condition for sta-
tionarity should be obviouvsly met. The entropy can be
calculated, at any time 7, by inserting in the definition
(67) the general solution of the Fokker-Planck equation
. This is the multivariate Gaussian of equation .
Carrying out the calculations returns [29] :



st =5 [men [e-<¢»"e

The second term in the above integral gives simply
In ( (27)** |C), because of the normalisation of the prob-
ability distribution The first term can be calculated as
follows. Observe that C is a symmetric positive definite
matrix and its elements are real. It is hence possible to
construct its Cholesky decomposition C = EET. Per-
form now the transformation ¢ = Es+ < ¢ >, which
yields (¢— < ¢ >)TC’1 ((— < ¢ >) = s”s. The proba-
bility distribution expressed as a function of the variables
s reads

(217r)mexp {—;STS} (80)

and consequently the first integral in gives

II(s) =

<sTs >=20 (81)

In conclusion, S(r) = 3[2Q + 111((27r)2Q Ic))] =
21n( (2me)*? IC]) and Soo = 21n ( (2me)* |Cs|) with an
obvious meaning of the symbols involved.

In Figure [0] the stationary entropy S is plotted
against w moving on iso-« lines: the stationary entropy
grows with the reactivity of the system. The reactivity,
as stemming from non normality, facilitates hence the ex-
ploration of the available phase space, pushing the system
out of equilibrium. In the transient phase, IIg > ®g, as
it can be appreciated in the main panel of Figure[7, where
IIs —®g is represented against 7. The two curves refer to
different pairs (e, D), chosen on the iso-a line &@ = —0.6.
During the initial violent relaxation, the curves are al-
most indistinguishable, but then separate to proceed on
distinct tracks. More importantly, the out-of-equilibrium
transient regime seems to persist for longer times, when
the value of w is made larger (solid vs. dashed lines).
Indeed, the smaller w, the sooner the stationary condi-
tion I1g = ®g is established, as illustrated in the inset of
Figure[7] Here, the quantities ITg and ¢ are monitored
as a function of time, in lin-log scale, for the same choice
of parameters as in the main panel.

CONCLUSIONS

Finite size corrections represent an unavoidable source
of endogenous disturbance, which can significantly im-
pact the dynamics of the system under examination.
Macroscopic order can materialize from the microscopic
disorder, as stemming from the inherent demographic
noise. Under specific operating conditions, quasi-cycles

11

- <¢>) +In((2m)* o)) | a¢ (79)
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FIG. 6: The stationary entropy S is plotted against w mov-
ing on iso-« lines. Here, & (= —0.8,—0.6, —0.4, from bottom
to top). Solid lines stand for the analytical solutions. Sym-
bols follow from direct simulations of the Langevin equations
, upon averaging over M = 300 independent realizations.
Here, Vi = Vo = V3 = 10° and r = 50.
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FIG. 7: Main panel: ITs—®5 is plotted in lin-log scale against
T, for two choices of the parameters D, € constrained to return
constant &« = @ = —0.6. The solid (red) line refers to w =
5.25, while the dashed (blue) line stands for w = —0.24. In the
inset I1s and &g are reported for the choices of parameters,
as operated in the main panel. Here, » = 50.

can develop via a resonant mechanism, triggered by the
stochastic component of the dynamics. In general, quasi-
cycles are modest in size and it is interesting to elaborate
on the possible strategies, of either artificial or natural
inspirations, that yield a coherent amplification of the
stochastic signal. In a recent paper [9], it was shown
that giant, noise assisted oscillations can develop when
replicating a minimal model of excitatory and inhibitory
units, on a large one dimensional lattice subject to uni-



directional couplings. The parameters are assigned in
such a way that the deterministic analogue of the scru-
tinized stochastic model displays a stable homogenous
equilibrium. Fluctuations generated by the microscopic
granularity yield seemingly regular oscillations, with tun-
able frequency, which gain amplitude across the lattice.
The rate of amplification is controlled by the coupling
constant, among adjacent patches. Motivated by this
analysis, we have here considered a variant of the model
discussed in [9] to shed light onto the fundamental ingre-
dients which cooperate for the onset of the amplification.
The species are assigned to populate a spatially extended
loop made of three nodes. Triangular loops define the
simplest non trivial closed paths in large network com-
plexes: for this reason, it is instructive to elaborate on
their putative role in assisting the stochastic amplifica-
tion of quasi-cycles. A sensible increase in the stochastic
oscillations is indeed obtained when propagating the sig-
nal across the loop, while forcing the system in a region
where the deterministic homogeneous fixed point proves
stable. The larger the coupling constant the more pro-
nounced the measured gain. When the coupling is made
stronger, one approaches the boundary of stability for
the underlying equilibrium: the damping of fluctuations
is consequently reduced and this explains the increase
of oscillations’ amplitude against D. More interesting
is the amplification detected when freezing the disper-
sion relation, i.e. setting to a constant the largest (nega-
tive real part of the) eigenvalue of the Jacobian. In this
case, the degree of amplification is controlled by the reac-
tivity index, a parameter that quantifies the short time
growth of the norm of an imposed perturbation. The
larger the reactivity of the non normal Jacobian matrix
— associated to the spatially extended system — the more
pronounced the stochastic driven oscillations. Non con-
servative forces push the system out of equilibrium and
the stationary value of the entropy is found to increase
with the reactivity, here measured by the numerical ab-
scissa. Based on these observations, we argue that non
normality, and, more specifically, reactivity, should be
thoroughly considered, when bridging stochastic dynam-
ics and out-of-equilibrium thermodynamics. More than
that, we want to remark that we are facing an important
and unconventional thermodynamic scenario. In fact, in
the presence of non conservative forces the system con-
verges asymptotically to a genuine nonequilibrium steady
state, after a transient during which the entropy produc-
tion rate monotonically vanishes and the system reaches
a maximum of the entropy. This shows that a varia-
tional principle based on entropy maximization is com-
patible with the presence of a nonzero (entropy) current.
This is because in our model all nodes are subjected to
the same effective temperature (i.e. v = 7 = 1 Vi).
We conjecture that when assuming different values of the
volumes of the nodes and of the corresponding tempera-
tures, the system converges to the more standard scenario
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of another genuine nonequilibrium state, which is a con-
sequence of the variational principle of minimization of
the entropy production rate, constant at any node of the
system. In conclusion, we have here shown that minimal-
istic loops of intertangled excitatory and inhibitory units
might trigger a coherent amplification of the stochastic
oscillations, as exhibited on each isolated patch. More-
over, deterministic non normality should be maximized
for the the stochastic system to grow giant coherent os-
cillations.
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