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On necessity and robustness of dissipativity in economic
model predictive control

Matthias A. Müller, David Angeli, and Frank Allgöwer

Abstract— In this paper, we study a dissipativity property which was
recently used in several results on economic model predictive control to
ensure optimal operation of a system at steady-state as wellas stability.
In particular, we first investigate whether this dissipativity property is not
only sufficient, but also necessary for optimal steady-state operation. In
the most general case, this is not true; nevertheless, underan additional
controllability assumption, we show that dissipativity is in fact necessary.
Second, we provide a robustness analysis of the dissipativity property with
respect to changes in the constraint set, which can result ina change in
the considered supply rate.

I. I NTRODUCTION

In recent years, model predictive control (MPC) has become
one of the most successful control strategies with an ever growing
number of applications in various industries, thanks to itsability to
satisfy hard state and input constraints and to directly incorporate
a performance criterion. When designing an MPC controller,the
underlying optimization problem is usually formulated as atracking
problem, i.e., the control objective is to track a certain (given) setpoint
or trajectory the system has to follow (see, e.g., [2, 3] and the
references therein). This translates to requiring that therespective
stage cost function is positive definite with respect to the considered
setpoint or trajectory. In order to ensure certain theoretical properties
of the closed-loop system such as stability and robustness,different
MPC schemes have been proposed in the literature, eitherwith [2]
or without [3] additional (terminal) constraints and/or cost terms.

However, the above mentioned basic assumption that the stage
cost function is positive definite with respect to a given target set,
need not be satisfied in general. Hence recently, a more general MPC
framework has been introduced where this assumption is not needed,
which was termedeconomic MPC [4]. The wording is due to the
fact that such a setup was motivated and is in particular useful when
optimizing process economics, where the assumption of positive
definiteness of the cost is not satisfied (for some recent examples,
see, e.g., [5–7]). Again, different economic MPC formulations either
with [4, 6, 8–12] or without [13] additional (terminal) constraints have
been proposed and analyzed recently. One of the key featuresof
economic MPC is that due to the use of a general cost function,
the resulting closed-loop system is not necessarily convergent. Hence
one of the key questions is what an optimal trajectory looks like, e.g.,
whether operation of the system at some steady-state or someperiodic
behavior is optimal in the sense that no other feasible trajectory
leads to a smaller (average) cost. Furthermore, in case thatsteady-
state operation is optimal, it is desirable that the closed-loop system
resulting from application of an economic MPC algorithm does in fact
converge to the optimal steady-state. For both of the above questions,
a certain dissipativity condition has turned out to play a crucial
role [4, 9–11, 13]. Namely, in these references it is assumedthat a
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storage functionλ exists such that the considered open-loop system
is (strictly) dissipative with respect to a supply rates depending on
the stage cost function and also the constraint set, in termsof the
optimal feasible steady-state (see Section II-B for a more detailed
setup). This dissipativity condition was then shown to be sufficient
for optimal steady-state operation of a system [4, 9] and it was also
used for convergence and stability analysis [4, 10, 11, 13].

The goal of this paper is to thoroughly investigate and provide
further insight into the mentioned crucial dissipativity condition used
in economic MPC. In particular, the following two main contributions
are obtained. First, we examine whether this dissipativitycondition
is not only sufficient, but also necessary for a system to be optimally
operated at steady-state (see Section III). While in the most general
case, this turns out not to be true, we show that if an additional con-
trollability/reachability condition is satisfied, dissipativity is in fact
necessary for optimal steady-state operation. The second contribution
of this paper (see Section IV) is to provide a robustness analysis of the
mentioned dissipativity condition with respect to changesin the con-
straint set. Namely, as noted above, the supply rate used in economic
MPC depends on the optimal feasible steady-state (and henceon the
constraints imposed on the system), and thus dissipativitymight be
lost if the constraints are changed. In Section IV-A, it is shown that
under certain assumptions, robustness of the dissipativity condition
with respect to small changes in the constraint set can be ensured.
Moreover, if a certain convexity assumption is satisfied, then further
results on maintaining the dissipativity property in addition to the
presented robustness analysis can be obtained, which will be shown
in Section IV-B. Finally, we remark that the proofs of some ofthe
following results are not included in this technical note, but can be
found online in the technical report [14].

II. PRELIMINARIES AND SETUP

A. Notation

Let I[a,b] denote the set of integers in the interval[a, b] ⊆ R, and
I≥a the set of integers greater than or equal toa. For a ∈ R, ⌈a⌉ is
defined as the smallest integer greater than or equal toa. As in [4],
for any vector valued bounded signalv : I≥0 → R

nv we define the
set of asymptotic averages as

Av[v] := {v̄ ∈ R
nv : ∃tn → +∞ : lim

n→∞

∑tn
k=0 v(k)

tn + 1
= v̄}. (1)

Note thatAv[v] is nonempty (as bounded sequences inR
nv have

limit points), but it need not be a singleton in general.

B. Problem setup - dissipativity in economic model predictive control

We consider discrete-time nonlinear systems of the form

x(k + 1) = f(x(k), u(k)), x(0) = x0, (2)

with k ∈ I≥0, wherex ∈ X ⊆ R
n andu ∈ U ⊆ R

m. We assume that
f is continuous in(x, u). The system is subject to (possibly coupled)
pointwise-in-time state and input constraints(x(k), u(k)) ∈ Z, k ∈
I≥0, for some compact setZ ⊆ X×U. Define the setZ0 as the largest
”forward invariant” set contained inZ, i.e., the set which contains
all elements inZ which are part of a feasible trajectory(z, v):

Z
0 :=

{

(x, u) ∈ Z : ∃v s.t. (z(0), v(0)) = (x, u),

z+ = f(z, v), (z(k), v(k)) ∈ Z ∀k ∈ I≥0,
}

⊆ Z. (3)

Denote byX0 the projection ofZ0 on X, i.e.,X0 := {x ∈ X : ∃u ∈
U s.t. (x, u) ∈ Z

0}. Furthermore, letS be defined as the set of all
feasible steady-states of system (2) , i.e.,S := {(x, u) ∈ Z : x =
f(x, u)}, which is assumed to be non-empty.
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In order to compute a control input to system (2) in a model
predictive control framework, the system (2) is equipped with a stage
cost ℓ : Rn × R

m → R which is assumed to be continuous. The
control input is then calculated by minimizing, at each timeinstantk,
a cost function

J(x, u) =
k+T
∑

i=k

ℓ(x(i|k), u(i|k)) (4)

over the finite horizonT subject to the state and input constraints,
whereu := [u(k|k), . . . , u(k + T |k)] and x := [x(k|k), . . . , x(k +
T |k)] (with initial condition x(k|k) = x(k)) denote the predicted
input and corresponding state sequences, respectively. Then, the first
part of the optimal input sequence is applied to system (2) ina
receding horizon fashion.

Remark 1: In certain economic MPC settings in the literature, a
terminal cost term and/or a terminal constraint are added to(4) (see,
e.g, [4, 6, 10, 11]), while other schemes do not use such additional
ingredients [13]. The results which will be developed in this paper
are important and find application inboth such settings with and
without additional terminal constraints and/or cost terms. Namely,
the dissipativity condition which we examine plays a crucial role in
both frameworks, and it is formulated independent of the specific
economic MPC setting. �

As explained in Section I, the stage costℓ in (4) can be a general,
possibly economic, cost function and need not be positive definite
with respect to any setpoint. We now define the setS∗ as the set of
all feasible steady-states which are optimal with respect to the stage
cost ℓ, i.e.,

S∗ := {(y, w) ∈ S : ℓ(y,w) = min
(x,u)∈S

ℓ(x, u)}. (5)

Note thatS∗ is non-empty and well defined, i.e., the minimum in (5)
exists asS is compact andℓ is continuous. In general,S∗ need not
be a singleton, i.e., there does not necessarily exist a unique optimal
feasible steady-state(x∗, u∗). In the following, by(x∗, u∗) we denote
an arbitrary element of the setS∗. As in [4, Definition 6.1], we now
define optimal operation of a system at steady-state as follows:

Definition 1: The system (2) isoptimally operated at steady-state
with respect to the cost functionℓ, if for each solution satisfying
(x(k), u(k)) ∈ Z for all k ∈ I≥0 the following holds:

Av[ℓ(x, u)] ⊆
[

ℓ(x∗, u∗),∞
)

, (6)

where (x∗, u∗) ∈ S∗ is an optimal steady-state as defined via (5).
The system (2) issuboptimally operated off steady-state, if in addition
at least one of the following two conditions holds:

Av[ℓ(x, u)] ⊆ (ℓ(x∗, u∗),∞) (7a)

lim inf
t→∞

|x(t)− x∗| = 0 (7b)
Furthermore, when examining necessity in Section III, we need

the slightly stricter definition ofuniform suboptimal operation off
steady-state:

Definition 2: The system (2) isuniformly suboptimally operated
off steady-state, if it is suboptimally operated off steady-state and in
addition for eachδ, there exists̄t ∈ I≥1 such that for each feasible
solution at least one of the following two conditions holds:

t−1
∑

k=0

ℓ(x(k), u(k))

t
≥ ℓ(x∗, u∗) for all t ≥ t̄ (8a)

|x(s)− x∗| ≤ δ for somes ∈ I[1,t̄] (8b)
Remark 2: The definition of optimal operation at steady-state is

such that no feasible solution to system (2) leads to an average
performance (measured in terms of the stage costℓ) which is better
than operation of the system at the optimal steady-state(x∗, u∗).

In the definition of uniform suboptimal operation off steady-state,
uniformity is with respect to all initial conditions and feasible
sequences. Namely, each feasible sequence either passes byarbitrarily
close at the optimal steady state within the finite time interval [1, t̄]
(which only depends on the distanceδ from x∗, but not on the specific
sequence) or has a transient performance greater or equal tosteady-
state performance for allt ≥ t̄. �

In order to study optimal steady-state operation of a system, a
certain dissipativity condition was used in [4, 9, 13]. The notion of
dissipativity was introduced in [15] (for a discrete time version
see [16]); we adapt it here to our setting including state andinput
constraints. To this end, for a setW ⊆ Z, denote byWX the
projection ofW on X, i.e., WX := {x ∈ X : ∃u ∈ U s.t. (x, u) ∈
W}.

Definition 3: The system (2) is dissipative on a setW ⊆ Z with
respect to the supply rates : X × U → R if there exists a bounded
storage functionλ : WX → R such that the following inequality is
satisfied for all(x, u) ∈ W:

λ(f(x, u))− λ(x) ≤ s(x, u). (9)

If, in addition, for some positive definite1 ρ : WX → R≥0 it holds
that for all (x, u) ∈ W

λ(f(x, u))− λ(x) ≤ −ρ(x) + s(x, u), (10)

then system (2) is strictly dissipative onW.
Note that in the original definition [15, 16], the storage function λ

is required to be nonnegative; in accordance with [4, 9–11, 13], we do
not impose this assumption here but only require that it is bounded on
the bounded set2

WX. We can now state the following result relating
dissipativity of system (2) with optimal steady-state operation, which
is a slight extension of [4, Proposition 6.4].

Theorem 1: Suppose that system (2) is dissipative (strictly dissi-
pative) onZ0 with respect to the supply rates(x, u) := ℓ(x, u) −
ℓ(x∗, u∗). Then the system (2) is optimally operated at steady-state
(uniformly suboptimally operated off steady-state). �

Proof: Sufficiency of the above dissipativity (strict dissipativity)
condition for optimal steady state operation (suboptimal operation off
steady-state) was shown in [4, Proposition 6.4]. Hence it remains to
show that strict dissipativity results inuniform suboptimal operation
off steady-state. From strict dissipativity (see (10)), itfollows that for
each feasible solution and eacht ∈ I≥0

−c := −2 sup
x∈X0

|λ(x)| ≤ λ(x(t))− λ(x(0))

≤
T−1
∑

k=0

[ℓ(x(k), u(k))− ℓ(x∗, u∗)− ρ(x(k))]. (11)

As ρ is positive definite with respect tox∗, there exists a function̂ρ ∈
K∞ such thatρ(x) ≥ ρ̂(|x − x∗|) for all x ∈ X

0. Let δ > 0 be
arbitrary but fixed, and definēt := ⌈c/ρ̂(δ)⌉ + 1. Then, from (11)
it directly follows that either

∑t−1
k=0 ℓ(x(k), u(k)) ≥ tℓ(x∗, u∗) for

all t ≥ t̄ (and hence also (8a) is satisfied), or|x(s) − x∗| ≤ δ for
at least two time instantss ∈ I[0,t̄] and hence for at least one time
instants ∈ I[1,t̄]. Namely, if both of the above were not true, i.e.,
∑t−1

k=0 ℓ(x(k), u(k)) < tℓ(x∗, u∗) for at least one time instantt ≥ t̄
and |x(s) − x∗| ≤ δ for at most one time instants ∈ I[0,t̄], one

1A function ρ is positive definite with respect to some pointx̄ ∈ X if
it is continuous,ρ(x̄) = 0 and ρ(x) > 0 for all x ∈ X with x 6= x̄. In
the following, when speaking of strict dissipativity, we take x̄ = x∗, i.e.,
the functionρ is assumed to be positive definite with respect to the optimal
steady-statex∗ defined via (5).

2In fact, one could then also just add a constant to makeλ nonnegative.
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would obtain that
t−1
∑

k=0

[ℓ(x(k), u(k))− ℓ(x∗, u∗)− ρ(x(k))]

≤ −(t̄− 1)ρ̂(δ) +

t−1
∑

k=0

[ℓ(x(k), u(k))− ℓ(x∗, u∗)]

< −(t̄− 1)ρ̂(δ) = −⌈c/ρ̂(δ)⌉ρ̂(δ) ≤ −c,

which contradicts (11). Hence we conclude that system (2) isuni-
formly suboptimally operated off steady-state. �

Remark 3: When actually searching for a storage functionλ
for a given system and constraint sets, one might rather consider
the possibly larger setZ instead ofZ0 and establish dissipativity
there, asZ0 is in general difficult to compute. We will take this
approach in Section IV, where we describe the setZ via inequality
constraints. However, the results presented there can analogously be
stated withZ0 instead, if this set can also be described by inequalities.
�

Besides being sufficient for optimal steady-state operation, the
strict dissipativity assumption of Theorem 1 can furthermore be used
for stability analysis in the context of economic MPC with [4, 11]
and without terminal constraints [13]. Now define the function

γ(x, u) := ℓ(x, u)− ℓ(x∗, u∗) + λ(x)− λ(f(x, u)). (12)

The dissipativity assumption of Theorem 1 implies that for all
(x, u) ∈ Z

0, γ(x, u) ≥ 0 in case of dissipativity andγ(x, u) ≥
α(|x − x∗|) for someα ∈ K∞ in case of strict dissipativity. In
Section IV, in some places we will use a slightly stronger assumption
than strict dissipativity, namely that(x∗, u∗) is a unique minimizer
of γ(x, u) on Z, i.e., there exists a functionα ∈ K∞ such that
γ(x, u) ≥ α(|(x− x∗, u− u∗)|) for all (x, u) ∈ Z.

In the following, we will more closely examine the dissipativity
condition of Theorem 1. In Section III, we discuss whether itis
not only sufficient, but also necessary for steady-state optimality,
before examining robustness properties with respect to changes in
the constraint sets (and hence in the supply rates) in Section IV.

III. N ECESSITY OF DISSIPATIVITY FOR OPTIMAL STEADY-STATE

OPERATION

In this section, we examine under what conditions the dissipativity
condition in Theorem 1 is not only sufficient, but also necessary for
optimal operation of system (2) at steady-state. In the mostgeneral
case, it turns out that this is not true, as we showed in our previous
work [17] by means of two counterexamples, in which a system was
optimally operated at steady-state but not dissipative with respect to
the supply rates(x, u) = ℓ(x, u)−ℓ(x∗, u∗). Nevertheless, under an
additional controllability assumption on the system, in the following
we obtain two (partial) converse results of Theorem 1 concerning
necessity of dissipativity for optimal steady-state operation and
uniform suboptimal operation off steady-state, respectively. We first
recall the definition of available storage from [15, Definition 3] and
slightly adapt it to our setting with state and input constraints.

Definition 4: For a given supply rates : Z0 → R and eachx ∈
X

0, theavailable storage Sa of system (2) subject to state and input
constraints(x, u) ∈ Z

0 is defined as

Sa(x) := sup
T≥0

z(0)=x, z(k+1)=f(z(k),v(k))

(z(k),v(k))∈Z
0 ∀k∈I≥0

T−1
∑

k=0

−s(z(k), v(k)) (13)

Note thatSa(x) is nonnegative for allx ∈ X
0, asT = 0 is allowed

in (13) and by convention the empty sum is zero. In [15], it was

shown that the available storage plays a crucial role for establishing
dissipativity of a system.

Theorem 2 ([15, Theorem 1]): System (2) is dissipative onZ0

with respect to the supply rates if and only if the available storageSa

defined in (13) is bounded onX0. Moreover,Sa is a storage function
according to Definition 3, Equation (9). �

Remark 4: The original proof in [15] was done for continuous-
time systems without state and input constraints; however,it can
straightforwardly be adapted to our setting of discrete-time systems
with state and input constraints. Furthermore, as already mentioned
above, the definition of dissipativity in [15] is such that the storage
function λ is required to be nonnegative, while we require that it is
bounded onX0. Again, the proof in [15] can straightforwardly be
adapted to this modified setting. �

A. Necessity of dissipativity under a controllability / reachability
condition

In this section, we show that dissipativity with respect to the supply
rate s(x, u) = ℓ(x, u) − ℓ(x∗, u∗) is in fact necessary for optimal
steady-state operation under a certain controllability/reachability con-
dition. To this end, we need the following definitions. For a given
N ∈ I≥1, denote byXN ⊆ X the set of states which can be steered
to the optimal steady-statex∗ in N steps in a feasible way, i.e.,

XN := {x ∈ X : ∃v s.t. z(0) = x, z+ = f(z, v), z(N) = x∗,

(z(k), v(k)) ∈ Z ∀k ∈ I[0,N−1]}. (14)

Next, let RN be the set of states which can be reached from the
optimal steady-statex∗ in N steps in a feasible way, i.e.,

RN := {x ∈ X : ∃v s.t. z(0) = x∗, z+ = f(z, v), z(N) = x,

(z(k), v(k)) ∈ Z ∀k ∈ I[0,N−1]}. (15)

Note thatXN ∩ RN 6= ∅, as by definitionx∗ is contained in both
XN andRN . Now define the setZN as the set of state/input pairs
which are part of a feasible state/input sequence pair(z, v) which is
such thatz(·) stays in the intersection ofXN andRN for all times:

ZN :=
{

(x, u) ∈ Z : ∃v s.t. (z(0), v(0)) = (x, u), z+ = f(z, v),

(z(k), v(k)) ∈ Z, z(k) ∈ XN ∩RN ∀k ∈ I≥0,
}

⊆ Z
0.

(16)

Finally, denote the projection ofZN on X by XN , i.e.,

XN := {x ∈ X : ∃u ∈ U s.t. (x, u) ∈ ZN}. (17)

Note thatXN ⊆ XN∩RN ⊆ X2N , where the first inequality directly
follows from the definition ofZN and the second follows from the
fact that for eachy ∈ XN ∩RN , there exist a feasible state sequence
with x(0) = x∗, x(N) = y, andx(2N) = x∗, which implies that
y ∈ X2N . We can now state the following result concerning necessity
of dissipativity for optimal steady-state operation.

Theorem 3: Suppose that system (2) is optimally operated at
steady-state. Then, for eachN ∈ I≥1, system (2) is dissipative onZN

with respect to the supply rates(x, u) := ℓ(x, u)− ℓ(x∗, u∗). �

Proof: Fix an arbitraryN ∈ I≥1. For simplicity and without loss
of generality, in the following we assume thatℓ(x∗, u∗) = 0. Assume
for contradiction that the system is optimally operated at steady-state,
but it is not dissipative onZN . Applying Theorem 2 withZ0 andX0

replaced byZN andXN , respectively, it follows that this is equivalent
to the fact that the available storage (see Definition 4 withZ

0 replaced
by ZN ) is unbounded onXN , and hence for eachr ≥ 0 there exists
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somey ∈ XN such that

inf
T≥0

z(0)=y
z(k+1)=f(z(k),v(k))

(z(k),v(k))∈ZN ∀k∈I≥0

T−1
∑

k=0

ℓ(z(k), v(k)) ≤ −r. (18)

This means that for eachr ≥ 0, there exist somey ∈ XN and
a state/input sequence pairxr(·), ur(·) together with a time instant
Tr ∈ I≥0, such thatxr(0) = y, (xr(k), ur(k)) ∈ ZN for all k ∈ I≥0

and
Tr−1
∑

k=0

ℓ(xr(k), ur(k)) ≤ −r. (19)

Now fix somer ≥ 1+2N max(x,u)∈Z ℓ(x, u). By definition ofZN ,
we havexr(Tr) ∈ RN ∩ XN . Hence there exists a state/input
sequence pairx′(·), u′(·) satisfyingx′(0) = xr(Tr), x′(N) = x∗,
x′(2N) = xr(0) = y and (x′(t), u′(t)) ∈ Z for all t ∈ I[0,2N].

Now define the following input sequence:

û(k(Tr + 2N) + i) =

{

ur(i) k ∈ I≥0, i ∈ I[0,Tr−1]

u′(i) k ∈ I≥0, i ∈ I[Tr ,Tr+2N−1]

(20)

which results in a cyclic state sequence withx̂(k(Tr+2N)) = y for
all k ∈ I≥0. This state/input sequence pair fulfills(x̂(t), û(t)) ∈ Z

for all t ∈ I≥0 by construction, and furthermore we obtain for all
k ∈ I≥0:

Tr+2N−1
∑

i=0

ℓ
(

x̂(k(Tr + 2N) + i), û(k(Tr + 2N) + i)
)

(20)
=

Tr−1
∑

i=0

ℓ(x̂(i), û(i)) +
2N−1
∑

i=0

ℓ(x′(i), u′(i))

(19)
≤ −r + 2N max

(x,u)∈Z

ℓ(x, u) ≤ −1.

But this implies that

lim inf
T→∞

T−1
∑

k=0

ℓ(x̂(k), û(k))

T

(20)
=

1

Tr + 2N

Tr+2N−1
∑

i=0

ℓ(x̂(i), û(i)) ≤ −
1

Tr + 2N
< 0

contradicting (6), i.e., optimal steady-state operation.Hence we
conclude that the system (2) is dissipative onZN with respect to
the supply rates(x, u) := ℓ(x, u)− ℓ(x∗, u∗). �

Combining Theorems 1 and 3, we arrive at the following corollary.
Corollary 1: Suppose thatZN = Z

0 for someN ∈ I≥1. Then
system (2) is optimally operated at steady-state if and onlyif it is
dissipative onZ0. �

Remark 5: The results of Theorem 3 are still valid for a slightly
different definition ofZN . Namely, in (16), the setsXN andRN can
also be defined by replacingx∗ in (14) and (15), respectively, with
any other statey ∈ X.

B. Necessity of dissipativity under a local controllability condition

It is easy to show thatZN = Z
0 for someN ∈ I≥1 if and only

if XN = X
0 for someN ∈ I≥1, which means that the system is

weakly reversible (see [18, Section 4.3]) inX0, i.e., eachx ∈ X
0

can be reached from and controlled to the optimal steady-state x∗ in
a finite number of steps. In case that this reversibility condition is
not satisfied, Theorem 3 only provides a partial converse result in the
sense that dissipativity can only be ensured on a subset ofZ

0. In the
following, we show that if a system is not only optimally operated

at steady-state, but uniformly suboptimally operated off steady-state,
then this reversibility condition is not needed in order to establish
necessity of dissipativity onZ0, but a local controllability condition
is enough. To this end, we assume that the functionf is once
continuously differentiable in(x, u) at (x∗, u∗), i.e., the linearization
of f at (x∗, u∗) exists.

Theorem 4: Suppose that system (2) is uniformly suboptimally
operated off steady-state, that the linearization of (2) atthe optimal
steady-state(x∗, u∗) is controllable, and that(x∗, u∗) ∈ int(Z).
Then, system (2) is dissipative onZ0 with respect to the supply
rates(x, u) := ℓ(x, u)− ℓ(x∗, u∗). �

Proof: The proof of Theorem 4 can be found in Section I of the
technical report [14]. �

Remark 6: The proof of Theorem 4 reveals that the obtained
result is still correct if we assume the system to be locally con-
trollable at the optimal steady-state instead of imposing the (in
general stricter [18, Section 3.7]) requirement that the linearization
is controllable. However, note that the latter is an easily verifiable
condition while the former is, in general, not. �

In summary, the results of Section III reveal that dissipativity with
respect to the supply rates(x, u) = ℓ(x, u) − ℓ(x∗, u∗) is not only
sufficient, but also necessary for optimal steady-state operation if
a certain controllability condition is satisfied, and hencea lack of
dissipativity despite optimal steady-state operation such as in the
examples in [17] can only occur if the system exhibits some uncon-
trollable behavior. Furthermore, we note that the results presented
in this section are also of importance in the context of stability
and convergence analysis of economic MPC, for which the same
(strict) dissipativity condition as in Theorem 1 is typically used [4,
10, 11, 13]. Namely, while for linear systems with convex constraints
and cost function, methods exist how a storage functionλ can be
determined [10, 19], for general nonlinear systems with nonconvex
constraints and cost function this can be a difficult task and, to the
best of the authors’ knowledge, no systematic procedure exists. Yet,
in the above references, existence of a storage functionλ is sufficient
for the stability analysis of the closed-loop system, butλ does not
have to be known for implementing the economic MPC algorithm,
and Theorems 3 and 4 guarantee the existence of such a storage
function λ based on certain dynamic properties (controllability and
optimal steady-state operation) of the considered system.

IV. ROBUSTNESS OF DISSIPATIVITY UNDER CHANGING

CONSTRAINT SETS

The supply rate of interest in economic MPC,s(x, u) = ℓ(x, u)−
ℓ(x∗, u∗), depends on the state and input constraints which act on
the system, namely through the optimal steady-state(x∗, u∗). In this
section, we examine what happens if the constraints are changed,
and hence also the supply rate is altered. In general, dissipativity of
system (2) with respect to the above supply rate may be lost even for
arbitrarily small changes in the constraint set (see [1, Section III] for
a simple example of this fact). In the following, we give conditions
under which such a situation cannot occur. In particular, wefirst
provide a robustness analysis of the considered dissipativity property
with respect to small changes in the constraints, and then show
that further results are possible if a certain convexity assumption is
satisfied. To this end, in the following we consider several different
optimization problemsP(y, f0, h, g) of the form

minimize
y

f0(y) (21)

subject toh(y) = 0, g(y) ≤ 0,

with y ∈ R
ny and some functionsf0 : Rny → R, h : Rny → R

nh

andg : Rny → R
ng .
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A. Robustness of dissipativity with respect to changing supply rate

In this section, we establish robustness of the considered dissi-
pativity property with respect small changes in constraints. To this
end, in the following we assume that the state and input constraint
setZ is given in the form of inequality constraints, which dependon
additional parametersε ∈ R

s, i.e.,

Zε := {(x, u) : g(x,u; ε) ≤ 0} (22)

for some functiong : Rn × R
m × R

s → R
r. We assume that there

exists someεmax > 0 and some compact setZmax such that for
all 0 ≤ |ε| ≤ εmax, the setZε is non-empty andZε ⊆ Zmax.
The sets of feasible and optimal steady-states can now be defined
analogously to Section II-B, i.e.,Sε := {(x, u) ∈ Zε : x = f(x, u)}
and

S∗
ε := {(y, w) ∈ Sε : ℓ(y, w) = min

(x,u)∈Sε

ℓ(x, u)}.

We assume thatSε (and hence alsoS∗
ε ) are non-empty for all0 ≤

|ε| ≤ εmax. As above, in the following(x∗(ε), u∗(ε)) denotes
an arbitrary element ofS∗

ε . Note that (x∗(ε), u∗(ε)) is a global
minimizer of problem

Pℓ[ε] := P([x u], ℓ, x− f(x, u), g) (23)

as defined in (21). The question we are interested in is under what
circumstances there exists a storage functionλ(x; ε) such that, if
system (2) is dissipative with respect to the supply rates(x, u; ε) =
ℓ(x, u)− ℓ(x∗(ε), u∗(ε)) for ε = 0, it remains dissipative onZε for
changingε. This means that the function

γ(x, u; ε) := ℓ(x, u)− ℓ(x∗(ε), u∗(ε)) + λ(x; ε)− λ(f(x, u); ε)
(24)

satisfiesγ(x, u; ε) ≥ 0 for all (x, u) ∈ Zε, i.e., (x∗(ε), u∗(ε)) is a
global minimizer of problem

Pγ [ε] := P([x u], γ, 0, g) (25)

as defined in (21) withγ(x∗(ε), u∗(ε); ε) = 0. The following
Theorem shows under what conditions robustness of the dissipativity
property with respect to small changes inε can be guaranteed.

Theorem 5: Suppose that the following is satisfied:

(i) The functionsf, ℓ andg are twice continuously differentiable in
(x, u). Furthermore,g as well as its first and second derivatives
with respect to(x, u) are continuous inε.

(ii) For ε = 0, S∗
0 is a singleton, i.e.,(x∗(0), u∗(0)) is the unique

optimal steady-state. Furthermore,(x∗(0), u∗(0)) is the unique
global minimizer of problemPγ [0], i.e., system (2) is dissipative
on Z0 with respect to the supply rates(x, u; 0) = ℓ(x, u) −
ℓ(x∗(0), u∗(0)), and the corresponding storage functionλ(x; 0)
is twice continuously differentiable inx.

(iii) The optimal steady-state(x∗(0), u∗(0)) is regular and satisfies
the strong second order sufficiency condition (see [20, 21])for
problemsPℓ[0] andPγ [0].

Then there exists̄ε with 0 < ε̄ ≤ εmax such that for all|ε| ≤ ε̄
the system (2) is dissipative onZε with respect to the supply rate
s(x, u; ε) = ℓ(x, u) − ℓ(x∗(ε), u∗(ε)) and with storage function
λ(x; ε) := λ(x; 0) + λ̃(ε)Tx, where λ̃(ε) is continuous inε with
λ̃(0) = 0. �

Theorem 5 means that the storage functionλ(x; ε) can be mod-
ified continuously with changing parametersε such that the system
remains dissipative with respect to the supply rates(x, u; ε) =
ℓ(x, u) − ℓ(x∗(ε), u∗(ε)). The proof of Theorem 5, which can be
found in Section II.A of the technical report [14], uses the sensitivity
analysis in nonlinear programming [20–22] to conclude thatunder the

given assumptions, the minimizer of problemPℓ[ε] is continuous inε
for small|ε|. Then, it is shown that the storage functionλ(x; ε) can be
modified continuously inε such that the minimizer of problemPγ [ε]
coincides with the minimizer of problemPℓ[ε]. In particular, the
(in general nonlinear) storage functionλ can be modified by an
additional linear termλ̃(ε)Tx in order to still serve as a storage
function for the system under changing constraints.

Remark 7: In view of Theorem 1, with the help of Theorem 5 one
can ensure that system (2) is robustly optimally operated atsteady-
state with respect to small changes in the state and input constraints.
�

Remark 8: The results of Theorem 5 can be extended in a
straightforward way to the case where also the stage cost function ℓ
and the system dynamicsf depend on the additional parametersε,
i.e., robustness of dissipativity with respect to small changes in the
cost function and the system dynamics can be established. Further-
more, the results of Theorem 5 can also be extended to an economic
MPC setting including average constraints, i.e., constraints on average
quantities of input and state variables. For such a setting,it was shown
in [4, Section V.B] that a relaxed dissipativity condition involving an
additional free multiplier in the supply rate is sufficient for optimal
steady-state operation. Similar to the proof of Theorem 5, one can
show that both the storage functionλ and this multiplier can be
modified continuously inε such that dissipativity is maintained under
small changes inε. Finally, we note that the presented robustness
results can be extended to the case of general parameter dependent
supply ratess(x, u; ε), different from the specific one considered
above, and hence might be of interest also beyond an economicMPC
context. This is shown in more detail in Section III of the technical
report [14]. �

B. Convex case

In this section, we show that further results beyond the robustness
analysis of Section IV-A can be obtained if a certain convexity
assumption is satisfied. Namely, instead of considering small pertur-
bations in the constraint set as in Section IV-A (which were expressed
by the parameterε), we now look at additional constraintsgad which
are imposed on the system and can alter the optimal steady-state to
a large extend. Hence in the following, we drop the dependence of
the various functions and optimization problems onε, but instead
define the setsZad := {(x, u) : g(x, u) ≤ 0, gad(x, u) ≤ 0},
Sad := {(x, u) ∈ Zad : x = f(x, u)} andS∗

ad := {(y, w) ∈ Sad :
ℓ(y,w) = min

(x,u)∈Sad

ℓ(x, u)}. Analogous to above, let(x∗
ad, u

∗
ad)

denote an arbitrary element ofS∗
ad, and define the optimization

problemsPℓ,ad := P([x u], ℓ, x − f(x, u), [g gad]) and Pγad
:=

P([x u], γad, 0, [g gad]) with

γad(x, u) := ℓ(x, u)− ℓ(x∗
ad, u

∗
ad) + λad(x)− λad(f(x, u)) (26)

for some storage functionλad(x). The following Theorem shows that
if γ as defined in (12) is convex, then for each feasible steady-state
(y,w) ∈ S there exists a functiongad such that(y, w) is an optimal
steady-state under the additional constraints, i.e.,(y,w) ∈ S∗

ad, and
dissipativity with respect to the new supply ratesad(x, u) = ℓ(x, u)−
ℓ(x∗

ad, u
∗
ad) is maintained with the same storage functionλad(x) =

λ(x).
Theorem 6: Suppose that the following is satisfied:

(i) The functionsf, g andℓ are continuously differentiable in(x, u)
andg is convex.

(ii) There exist a continuously differentiable storage function λ(x)
such that system (2) without additional constraints is dissipative
on Z with respect to the supply rates(x, u) = ℓ(x, u) −
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ℓ(x∗, u∗), and the corresponding functionγ defined in (12) is
convex onZ.

Then, for each feasible steady-state(y,w) ∈ S, there exists an
additional constraint functiongad which is convex and continuously
differentiable in(x, u) such that(y, w) ∈ S∗

ad and the system (2)
is dissipative onZad with respect to the supply ratesad(x, u) =
ℓ(x, u)− ℓ(x∗

ad, u
∗
ad) and with storage functionλad(x) = λ(x).

Conversely, if for a given convex and continuously differentiable
additional constraint functiongad, a steady-state(y, w) ∈ S together
with someν = [νT

gad
νT
g ]T satisfies the Karush-Kuhn-Tucker (KKT)

conditions (see, e.g., [23]) for problemPγ,ad with λad(x) = λ(x),
then(y, w) ∈ S∗

ad and system (2) is dissipative onZad with respect
to the supply ratesad(x, u) = ℓ(x, u)−ℓ(x∗

ad, u
∗
ad) and with storage

function λad(x) = λ(x). �

Proof: The proof of Theorem 6 can be found in Section II.B of
the technical report [14]. �

Remark 9: The convexity assumption onγ in (ii) is always
satisfied ifℓ is strictly convex and system (2) is linear. In this case,
if Slater’s condition is satisfied, strong duality holds andthe storage
functionλ in (12) can be chosen as a linear function [10]. However,
note that forγ to be convex, neitherℓ has to be convex nor the
system (2) has to be linear. �

Remark 10: If γ is not convex, the statements of Theorem 6 still
hold for each steady-state(y, w) ∈ S such thatγ can be lower
bounded onZ by a convex and continuously differentiable functionγ̂
satisfying γ̂(y,w) = γ(y,w). Namely, asγ̂ is convex, one can
establish as in the proof of Theorem 6 that(y, w) minimizes γ̂
overZad. But then, aŝγ is a lower bound forγ onZ and furthermore
γ̂(y,w) = γ(y,w), it follows that (y,w) also minimizesγ (and
hence alsoγad) overZad, i.e., the system is again dissipative onZad

with respect to the supply ratesad(x, u) = ℓ(x, u)−ℓ(x∗
ad, u

∗
ad) and

with storage functionλad(x) = λ(x). �

V. CONCLUSIONS

In this paper, we investigated a dissipativity condition which
was recently used in several papers on economic MPC in order to
establish optimal steady-state operation as well as convergence and
stability of the closed-loop system. As a first main contribution, we
established two (partial) converse theorems showing that dissipativity
is in fact necessary for optimal steady-state operation, given that
a certain controllability condition is satisfied, which means that
dissipativity is a precise characterization of optimal steady-state
operation and not only a rather conservative sufficient condition for
it. Furthermore, the obtained results are also of importance in the
context of stability analysis of economic MPC, as there typically
the existence of a storage functionλ is sufficient butλ does not
have to be known. Second, we provided a robustness analysis of the
dissipativity property with respect to changes in the constraint set.
We showed that under a certain regularity assumption, robustness
with respect to small changes in the constraints can be guaranteed.
Furtermore, stronger results on maintaining the dissipativity property
under possibly large changes in the constraints were obtained given
that a certain convexity assumption is satisfied.

REFERENCES
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