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On necessity and robustness of dissipativity in economic
model predictive control

Matthias A. Muller, David Angeli, and Frank Allgdwer

Abstract— In this paper, we study a dissipativity property which was
recently used in several results on economic model predigg control to
ensure optimal operation of a system at steady-state as welk stability.
In particular, we first investigate whether this dissipativity property is not
only sufficient, but also necessary for optimal steady-stat operation. In
the most general case, this is not true; nevertheless, unden additional
controllability assumption, we show that dissipativity isin fact necessary.
Second, we provide a robustness analysis of the dissipatyviproperty with
respect to changes in the constraint set, which can result ia change in
the considered supply rate.

. INTRODUCTION

In recent years, model predictive control (MPC) has beco
one of the most successful control strategies with an ewawigg
number of applications in various industries, thanks tcaldity to
satisfy hard state and input constraints and to directlpriporate
a performance criterion. When designing an MPC controliee,
underlying optimization problem is usually formulated asacking
problem, i.e., the control objective is to track a certaindg) setpoint
or trajectory the system has to follow (see, e.g., [2,3] ahd t
references therein). This translates to requiring thatréspective
stage cost function is positive definite with respect to thestdered
setpoint or trajectory. In order to ensure certain theoca¢properties
of the closed-loop system such as stability and robustrfferent
MPC schemes have been proposed in the literature, eithiar[2]
or without [3] additional (terminal) constraints and/or cost terms.

However, the above mentioned basic assumption that thes stag

cost function is positive definite with respect to a givergétrset,
need not be satisfied in general. Hence recently, a more gjéviexC
framework has been introduced where this assumption iseeded,
which was termecdeconomic MPC [4]. The wording is due to the
fact that such a setup was motivated and is in particulauugéien
optimizing process economics, where the assumption oftipesi
definiteness of the cost is not satisfied (for some recent pbesmn
see, e.g., [5-7]). Again, different economic MPC formuas either
with [4, 6, 8-12] or without [13] additional (terminal) canaints have

been proposed and analyzed recently. One of the key featires

storage functiom\ exists such that the considered open-loop system
is (strictly) dissipative with respect to a supply ratelepending on
the stage cost function and also the constraint set, in teftke
optimal feasible steady-state (see Section II-B for a mawikkd
setup). This dissipativity condition was then shown to b#idant

for optimal steady-state operation of a system [4, 9] andai$ &lso
used for convergence and stability analysis [4, 10, 11, 13].

The goal of this paper is to thoroughly investigate and mtevi
further insight into the mentioned crucial dissipativityndition used
in economic MPC. In particular, the following two main cadbtrtions
are obtained. First, we examine whether this dissipatiedpdition
is not only sufficient, but also necessary for a system to tienafly
operated at steady-state (see Section IIl). While in thet meseral
case, this turns out not to be true, we show that if an additioan-
trollability/reachability condition is satisfied, dissifivity is in fact
necessary for optimal steady-state operation. The secortdlution

moé this paper (see Section 1V) is to provide a robustnessy/aisabf the

mentioned dissipativity condition with respect to changethe con-
straint set. Namely, as noted above, the supply rate usecbimoenic

MPC depends on the optimal feasible steady-state (and fwemtee

constraints imposed on the system), and thus dissipatiright be

lost if the constraints are changed. In Section IV-A, it i®wh that
under certain assumptions, robustness of the dissipatihdition

with respect to small changes in the constraint set can beregshs
Moreover, if a certain convexity assumption is satisfiegntfurther
results on maintaining the dissipativity property in atditto the

presented robustness analysis can be obtained, which evéhbwn
in Section IV-B. Finally, we remark that the proofs of sometioé

following results are not included in this technical notet ban be
found online in the technical report [14].

Il. PRELIMINARIES AND SETUP

A. Notation

Let I, ;) denote the set of integers in the interyal b] C R, and
I>, the set of integers greater than or equaktd-ora € R, [a] is
defined as the smallest integer greater than or equal #s in [4],
for any vector valued bounded signat I~, — R" we define the
set of asymptotic averages as

tn

— 5 Ny R k’:Ov(k) =
Avv] :=={v € R™ : Ft, — 400 nhﬁn;o S 7} (1)

economic MPC is that due to the use of a general cost functiodgte that Av[v] is nonempty (as bounded sequencesRitr have

the resulting closed-loop system is not necessarily coever Hence
one of the key questions is what an optimal trajectory lodtes ke.g.,
whether operation of the system at some steady-state or geroelic

behavior is optimal in the sense that no other feasible drajg

leads to a smaller (average) cost. Furthermore, in casesteatly-
state operation is optimal, it is desirable that the cldseg- system
resulting from application of an economic MPC algorithm sloefact
converge to the optimal steady-state. For both of the aboestpns,
a certain dissipativity condition has turned out to play acal

role [4,9-11, 13]. Namely, in these references it is assuthatl a

A preliminary version of parts of this paper has been preskat the 51st
IEEE Conference on Decision and Control (CDC) 2012, see [1].
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limit points), but it need not be a singleton in general.

B. Problem setup - dissipativity in economic model predictive control
We consider discrete-time nonlinear systems of the form

w(k+1) = f(z(k), u(k)), )

with k& € I>o, wherex € X C R™ andu € U C R™. We assume that
f is continuous iz, u). The system is subject to (possibly coupled)
pointwise-in-time state and input constraifts(k), u(k)) € Z, k €
I>, for some compact sét C X xU. Define the seZ’ as the largest
"forward invariant” set contained i, i.e., the set which contains
all elements inZ which are part of a feasible trajecto(yg, v):

z(0) = zo,

7° = {(x,u) €7Z: I st. (2(0),0(0)) = (z,u),

2t = f(z,v), (2(k),v(k)) € Z Vk € 1120,} cz. (3

Denote byX" the projection ofZ° on X, i.e., X’ :={zr € X: Ju €
U s.t. (z,u) € Z°}. Furthermore, letS be defined as the set of all
feasible steady-states of system (2) , i®.,= {(z,u) € Z : x =
f(z,u)}, which is assumed to be non-empty.



In order to compute a control input to system (2) in a modeh the definition of uniform suboptimal operation off steestate,
predictive control framework, the system (2) is equippethwi stage uniformity is with respect to all initial conditions and feble
cost/ : R™ x R™ — R which is assumed to be continuous. Thesequences. Namely, each feasible sequence either pasadstiayrily
control input is then calculated by minimizing, at each timgtantk, close at the optimal steady state within the finite time idkf1, 7]

a cost function (which only depends on the distanté&rom z*, but not on the specific
k4T sequence) or has a transient performance greater or eqatdady-
J(z,u) = Z L(x(ilk), u(ilk)) (4) state performance for ail > ¢. O

i=k In order to study optimal steady-state operation of a system

over the finite horizorll" subject to the state and input constraintscertain dissipativity condition was used in [4,9, 13]. Thetion of
whereu := [u(k|k),...,u(k + T|k)] andx := [z(k|k),...,z(k+ dissipativity was introduced in [15] (for a discrete timersien
T|k)] (with initial condition z(k|k) = (k)) denote the predicted Se€ [16]); we adapt it here to our setting including state iapdt
input and corresponding state sequences, respectiveiy, The first constraints. To this end, for a s&¥ C Z, denote byWx the
part of the optimal input sequence is applied to system (2j inpProjection of W on X, i.e, Wx := {z € X: Ju € U s.t. (z,u) €
receding horizon fashion. W}.

Remark 1: In certain economic MPC settings in the literature, a Definition 3: The system (2) is dissipative on a $8t C Z with
terminal cost term and/or a terminal constraint are added)t¢see, respect to the supply rate: X x U — R if there exists a bounded
e.g, [4,6,10,11]), while other schemes do not use suchiaddit Storage functiom : Wx — R such that the following inequality is
ingredients [13]. The results which will be developed instpaper satisfied for all(z, u) € W:
are important and find application iboth such settings with and
withoutpadditional termina?lpconstraints and/or cost t?arrlNamer, Af(@,w)) = Alx) < s(z, ). ©)
the dissipativity conditiqn .which we examine plays a CrUdﬂ? ?” If, in addition, for some positive definitep : Wx — R it holds
both frameworks, a_nd it is formulated independent of theci$ioe ihat for all (z,u) €W -
economic MPC setting. |

As explained in Section I, the stage cdsn (4) can be a general, A f(z,u)) = Az) < —p(x) + s(z,u), (10)
possibly economic, cost function and need not be positivienitk ) ) o
with respect to any setpoint. We now define the Setas the set of then system (2) is strictly dissipative 6.
all feasible steady-states which are optimal with respec¢hé stage ~ Note that in the original definition [15, 16], the storagedtian A

cost/, i.e., is required to be nonnegative; in accordance with [4, 9-3]1 vie do
. ] not impose this assumption here but only require that it isided on
ST =A{(y,w) € §: L(y,w) = (zﬂql‘l)résf(xy u)}. (5)  the bounded s&fWx. We can now state the following result relating

) . ) o ) dissipativity of system (2) with optimal steady-state @ien, which
Note thatS™ is non-empty and well defined, i.e., the minimum in (5)g 5 slight extension of [4, Proposition 6.4].
exists asS' is compact and is continuous. In general™ need not  thegrem 1: Suppose that system (2) is dissipative (strictly dissi-
be a singleton, i.e., there does not necessarily exist aiarogtimal pative) onZ° with respect to the supply rate(z,u) = £(z,u) —
feasible steady-state”, u"). In the following, by(z", ") we denote ;= ;=) Then the system (2) is optimally operated at steady-state
an _alrbltrar_y element c_>f the sét". As in [4, Definition 6.1], we now (uniformly suboptimally operated off steady-state). 0
define optimal operation of a system at steady-state asiisilo Proof: Sufficiency of the above dissipativity (strict dissipatyyi
Definition 1. The system (2) isptimally operated at steady-state ;o qition for optimal steady state operation (suboptingration off
with respect to the cost functiof, if for each solution satisfying steady-state) was shown in [4, Proposition 6.4]. Hencenitaigs to
(z(k),u(k)) € Z for all k & I>o the following holds: show that strict dissipativity results imiform suboptimal operation
Av[l(z,u)] C [f(z",u"),00), (6) off steady-state. From strict dissipativity (see (10)Jpltows that for

] ) ] ) each feasible solution and eatke I
where (z*,u*) € S* is an optimal steady-state as defined via (5). -

The system (2) isuboptimally operated off steady-state, if in addition —c:= =2 sup |A(z)| < A(z(t)) — A(z(0))
at least one of the following two conditions holds: ; lweXU
Av[l(z,u)] € (£(z",u"), 00) (7a) <> (k) ulk) — £z u") = p(z(k)].  (11)
litminf lz(t) —z*| =0 (7b) k=0

Furthermore, when examining necessity in Section Ill, wedne As p is positive definite with respect to", there exists a functiop €
the slightly stricter definition ofuniform suboptimal operation off Ko such thatp(z) > p(jx — 2*|) for all z € X°. Let§ > 0 be
steady-state: arbitrary but fixed, and definé := [¢/p(6)] + 1. Then, from (11)

Definition 2: The system (2) isuniformly suboptimally operated it directly follows that eitherzf:0 Lz(k),u(k)) > tl(z"™,u") for
off steady-state, if it is suboptimally operated off steady-state and irall ¢ > ¢ (and hence also (8a) is satisfied), |@(s) — z*| < § for
addition for eachy, there exists € I, such that for each feasible at least two time instants € I;o 7 and hence for at least one time

solution at least one of the following two conditions holds: instants € I} 7. Namely, if both of the above were not true, i.e.,
1 S b(x(k),u(k)) < té(z*,u*) for at least one time instamt> ¢
Uz(k), u(k)) (", u) forallt>F (8a) and|xz(s) —z*| < & for at most one time instant € Ijo 7, one
t — ) -
k=0

|z(s) — x| <& for somes € I3 (8b) _1A function p isipositive definite with respect to some poibte X if
Remark 2: The definition of optimal operation at steady-state i‘t;‘h's continuous,p(z) = 0 and p(z) > 0 for all z € X with z # 2. In
h th feasibl luti 2 lead e following, when speaking of strict dissipativity, wekéaz = z*, i.e.,
such that no feasible solution to system (2) leads to an @eergng function, is assumed to be positive definite with respect to the optimal
performance (measured in terms of the stage €psthich is better steady-statec* defined via (5).

than operation of the system at the optimal steady-statev™). 2In fact, one could then also just add a constant to makennegative.



would obtain that shown that the available storage plays a crucial role fabdishing
dissipativity of a system.

Z[Z(x(k),u(k)) — (", u") — p(z(k))] Theorem 2 ([15, Theorem 1]): System (2) is dissipative o0&’
with respect to the supply rateif and only if the available storagg,
B -1 defined in (13) is bounded a¥°. Moreover,S, is a storage function
< =(E=1p0) + ) _[l(z(k),u(k)) — £(z", u")] according to Definition 3, Equation (9). O
B k=0 Remark 4: The original proof in [15] was done for continuous-
—(—=1)p(6) = —[c/p(0)]1p(0) < —c, time systems without state and input constraints; howeiteran

straightforwardly be adapted to our setting of discreteetisystems
with state and input constraints. Furthermore, as alreadsgtioned
above, the definition of dissipativity in [15] is such thaethktorage
function X\ is required to be nonnegative, while we require that it is
bounded onX°. Again, the proof in [15] can straightforwardly be
adapted to this modified setting. a

which contradicts (11). Hence we conclude that system (Z)nis
formly suboptimally operated off steady-state.

Remark 3: When actually searching for a storage functlan
for a given system and constraint sets, one might ratherigems
the possibly larger sef instead ofZ° and establish dissipativity
there, asZ® is in general difficult to compute. We will take this
approach in Section 1V, where we describe theZetia inequality
constraipts. prever the results presented there caogmaly be 5 Necessity of dissipativity under a controllability / reachability
stated withZ° instead, if this set can also be described by inequalitiegyndition
O

Besides being sufficient for optimal steady-state opematthe !N this section, we show that dissipativity with respectite supply
strict dissipativity assumption of Theorem 1 can furtherenoe used rate s(z,u) = £(z,u) — £(z*,u") is in fact necessary for optimal
for stability analysis in the context of economic MPC with 4] Steady-state operation under a certain controllabiég¢hability con-

and without terminal constraints [13]. Now define the fuouti dition. To this end, we need the following definitions. For iseg
N € 1I>4, denote byXn C X the set of states which can be steered
Y(@,u) = Lz, u) — £(z", u") + Az) — A(f(2, u)). (12)  to the optimal steady-state* in N steps in a feasible way, i.e.,

The dissipativity assumption of Theorem 1 implies that fdir @  y\ .= {z € X: v s.t. 2(0) = z, 2" = f(z,0), 2(N) = 2,
(z,u) € Z° ~(x,u) > 0 in case of dissipativity and(z,u) >
af|lx — z*|) for somea € K in case of strict dissipativity. In (2(k), v(k)) € Z Vk € Ijo,n -1 }- (14)
Section IV, in some places we will use a slightly strongevasstion  Next, let Ry be the set of states which can be reached from the

than strict dissipativity, namely that:*, «*) is a uniqgue minimizer optimal steady-state* in N steps in a feasible way, i.e.,
of v(z,u) on Z, i.e., there exists a functionn € K such that

v(z,u) > a(|(x — z*,u —u")|) for all (z,u) € Z. Ry :={r € X:stz(0) =z 2" = f(z,v),2(N) = z,
In .the following, we will more (?Iosely exami.ne the dissipva'aflg'r. (2(k),v(k)) € ZVk € Ig y_11}- (15)
condition of Theorem 1. In Section Ill, we discuss whetheisit
not only sufficient, but also necessary for steady-statémagity, Note thatXny N Ry # 0, as by definitionz* is contained in both
before examining robustness properties with respect togdsmin Xy and Ry. Now define the seZy as the set of state/input pairs
the constraint sets (and hence in the supply st Section IV. which are part of a feasible state/input sequence (@air) which is
such thatz(-) stays in the intersection ofy and Ry for all times:

Il1. NECESSITY OF DISSIPATIVITY FOR OPTIMAL STEADYSTATE
OPERATION

In this section, we examine under what conditions the dédisiy (z(k),v(k)) € Z, z(k) € Xn NRn Yk € I>o, } cz’
condition in Theorem 1 is not only sufficient, but also neaegdor (16)
optimal operation of system (2) at steady-state. In the rgeseral
case, it turns out that this is not true, as we showed in ourique ~Finally, denote the projection ¢ty on X by Xy, i.e.,
work [17] by means of two counterexamples, in which a systeas w
optimally operated at steady-state but not dissipativé wespect to
the supply rates(z, u) = £(x, u) — £(z”, u”). Nevertheless, under an Note thatXy C Xy MRy C Xan, where the first inequality directly
additional controllability assumption on the system, ia tbllowing {5 10ws from the definition ofZy and the second follows from the
we obtain two (partial) converse results of Theorem 1 camogr faci that for eachy € Xy NRy, there exist a feasible state sequence
necessity of dissipativity for optimal steady-state ofiera and iih 2(0) = 2%, 2(N) = y, andz(2N) = z*, which implies that
uniform suboptimal operation off steady-state, respegtiWve first - x, . We can now state the following result concerning necessity
recall the definition of available storage from [15, Defimiti3] and ¢ dissipativity for optimal steady-state operation.
slightly adapt it to our setting with state and input coristsa

Definition 4: For a given supply rate : Z° — R and eachs €
XY, the available storage S, of system (2) subject to state and inpu
constraints(z,u) € Z° is defined as

Zn ::{(x,u) €7Z:3v st (2(0),0(0) = (z,u), 2" = f(z,0v),

Xy ={zeX:ueUst (z,u) € Zn}. 17)

Theorem 3: Suppose that system (2) is optimally operated at
steady-state. Then, for eadh € I, system (2) is dissipative dhy
Wwith respect to the supply ratdz, ) := £(z,u) — £(z",v*). O

Proof: Fix an arbitraryN € I>;. For simplicity and without loss
of generality, in the following we assume thdt:*, v*) = 0. Assume

H
~

Sa(z) = sup > —s(z(k),v(k))  (13) for contradiction that the system is optimally operatecteady-state,
)=z, 2(bi D (k) (k) =0 but it is not dissipative o . Applying Theorem 2 witZ° and X°
(2(k),v(k))€Z0 VkElsq replaced byZ x andXy, respectively, it follows that this is equivalent

Note thatS, () is nonnegative for alt € X°, asT = 0 is allowed to the fact that the available storage (see Definition 4 @itmeplaced
in (13) and by convention the empty sum is zero. In [15], it waby Zx) is unbounded oXn, and hence for each > 0 there exists



at steady-state, but uniformly suboptimally operated t#hdy-state,
then this reversibility condition is not needed in order stablish

somey € Xy such that

S Ua(k), 0(k)) < .

2(k+1)=f(2(k),0(k))
(2(k),v(k))€ZN VEl>q

inf (18) necessity of dissipativity of°, but alocal controllability condition
27;))2:01/ o is enough. To this end, we assume that the functforls once

continuously differentiable iz, v) at (z*, "), i.e., the linearization
of f at (z*,u") exists.

Theorem 4: Suppose that system (2) is uniformly suboptimally
operated off steady-state, that the linearization of (Zhatoptimal
steady-state{z*, u*) is controllable, and thatz*,u") € int(Z).
Then, system (2) is dissipative dA’ with respect to the supply
rate s(z,u) := l(x,u) — l(z*,u"). O

Proof: The proof of Theorem 4 can be found in Section | of the
technical report [14]. ]
Now fix somer > 1+ 2N max,..)cz £(x, u). By definition ofZy, Remark 6 The prqof of Theorem 4 reveals that the obtained
we havez,(T,) € Ry N Xx. Hence there exists a state/inputres“” is still correcf[ if we assume tht_a system tq be Ic_)cabyl-c
sequence pair’(-), /(- satisfyinga’(0) = a,(T}), «'(N) = 2™, trollable at_ the optimal _steady-state |_nstead of |mpos!t_1g _(ln
2/ (2N) = 2,(0) = y and (' (t), ' (t)) € Z for all £ € o o). general stricter [18, Section 3.7]) requwement_ that tlmeérl_z_atlon

Now define the following input sequence: is coln.trollablle. However, n.ote. that the latter is an easéyifiable

condition while the former is, in general, not. O
ur(2) In summary, the results of Section Il reveal that dissipgtiwith
/(i)

respect to the supply ratgz, u) = £(z,u) — £(z*,u") is not only
sufficient, but also necessary for optimal steady-stateatios if

which results in a cyclic state sequence witk (7. +2N)) = y for

all £ € I>o. This state/input sequence pair fulfil$(¢), a(t)) € Z

a certain controllability condition is satisfied, and heracdack of
for all ¢ € I>o by construction, and furthermore we obtain for alexamples in [17] can only occur if the system exhibits someonn

This means that for each > 0, there exist somg) € Xy and
a state/input sequence pair.(-), u,(-) together with a time instant
T, € I, such thate,.(0) = vy, (zr(k),ur(k)) € Zn forall k € I>¢
and

Tr—1

> U (k) ur (k) < = (19)
k=0

ke Hzo,i S I[[()’Trfl]

. (20)
k €l>o0,i € lir, 1 42n-1]

W(k(Tr +2N) +1i) = {

dissipativity despite optimal steady-state operationhses in the

k € I>o: trollable behavior. Furthermore, we note that the resutesented
T.4+2N—1 in this section are also of importance in the context of &tgbi
E(:ﬁ(k(Tr +2N) + 1), a(k(T- + 2N) +i)) and convergence analysis of economic MPC, for which the same
i=0 (strict) dissipativity condition as in Theorem 1 is typigaused [4,
(20) r—1 R . 2N-1 , 10, 11, 13]. Namely, while for linear systems with convex stoaints
> @), a6) + Y ' (@), u' (1)) and cost function, methods exist how a storage functiocan be
=0 =0

determined [10, 19], for general nonlinear systems withcoomex
constraints and cost function this can be a difficult task, andhe
best of the authors’ knowledge, no systematic procedurssexyet,
in the above references, existence of a storage funatisrsufficient
for the stability analysis of the closed-loop system, hutloes not
have to be known for implementing the economic MPC algorjthm

(19
< —r+2N max {(z,u) < —1.
(z,u)EZ

But this implies that

lim inf 9 Ua(k), u(k))

T—oo 4= T and Theorems 3 and 4 guarantee the existence of such a storage
) Tht2N—1 . function A based on certain dynamic properties (controllability and
(20) AN Afe i » i H
9 2 E / Vi <= < optimal steady-state operation) of the considered system.
T, +2N 4 (@), 20) < — =95 <

IV. ROBUSTNESS OF DISSIPATIVITY UNDER CHANGING

contradicting (6), i.e., optimal steady-state operatibtfence we
CONSTRAINT SETS

conclude that the system (2) is dissipative By with respect to
the supply rates(x, u) := f(x,u) — €(x*,u"). O
Combining Theorems 1 and 3, we arrive at the following camgll

The supply rate of interest in economic MPL g, u) = £(z,u) —
£(z*,u"), depends on the state and input constraints which act on

Corollary 1: Suppose thaZy = Z° for some N ¢ I;. Then
system (2) is optimally operated at steady-state if and @iy is
dissipative onz°. O

the system, namely through the optimal steady-stateu™). In this
section, we examine what happens if the constraints aregelan
and hence also the supply rate is altered. In general, dissty of

Remark 5: The results of Theorem 3 are still valid for a slightlySystem (2) with respect to the above supply rate may be lest for

different definition ofZx. Namely, in (16), the set&8’y and Ry can

arbitrarily small changes in the constraint set (see [1ti&edll] for

also be defined by replacing* in (14) and (15), respectively, with & simple example of this fact). In the following, we give caiwhs

any other state) € X.

B. Necessity of dissipativity under a local controllability condition
It is easy to show thaZy = Z° for someN ¢ I, if and only

under which such a situation cannot occur. In particular, firgt
provide a robustness analysis of the considered dissityagikoperty
with respect to small changes in the constraints, and themv sh
that further results are possible if a certain convexityuagstion is
satisfied. To this end, in the following we consider seveifieent

if Xy = X for someN € I, which means that the system iSoptimization problemsP(y, fo, h, g) of the form

weakly reversible (see [18, Section 4.3]) ¥f, i.e., eachz € X°
can be reached from and controlled to the optimal steadg-stain
a finite number of steps. In case that this reversibility dtonl is
not satisfied, Theorem 3 only provides a partial conversaltresthe
sense that dissipativity can only be ensured on a subsgt.dh the
following, we show that if a system is not only optimally operd

minimize fo(y) (21)
Y
subject toh(y) = 0, g(y) <0,

with y € R™¥ and some functiongyp : R"™ — R, h : R"™v — R"»
andg : R"v — R"9.



A. Robustness of dissipativity with respect to changing supply rate  given assumptions, the minimizer of probléPa[e] is continuous ire

In this section, we establish robustness of the consideissi-d for smallle|. Then, itis shown that the storage functibfu; <) can be
pativity property with respect small changes in constaifib this Medified continuously ir such that the minimizer of problef, [c]
end, in the following we assume that the state and input cainst Coincides with the minimizer of probler®[e]. In particular, the
setZ is given in the form of inequality constraints, which depemd (N general nonlinear) storage function can be modified by an

additional parameters € R®, i.e. additional linear term\(¢)Tx in order to still serve as a storage
function for the system under changing constraints.
Ze = {(z,u) : g(x,u;€) < 0} (22) Remark 7: Inview of Theorem 1, with the help of Theorem 5 one

can ensure that system (2) is robustly optimally operatestestdy-

for some functiong : R" x R™ x R* — R". We assume that there . : . .
state with respect to small changes in the state and inpstreonts.

exists somesmax > 0 and some compact sé...x such that for
all 0 < |e] € emax, the setZ. is non-empty andZ. C Zmax-
The sets of feasible and optimal steady-states can now beedefi
analogously to Section II-B, i.eS: := {(z,u) € Z. : x = f(z,u)}
and

Remark 8: The results of Theorem 5 can be extended in a
straightforward way to the case where also the stage costifuy
and the system dynamick depend on the additional parameters
i.e., robustness of dissipativity with respect to smallnges in the
S i={(y,w) € Sc : {(y,w) = min £(z,u)}. cost function and the system dynamics can be establishethefu
(@u)€Se more, the results of Theorem 5 can also be extended to an méono
We assume tha$. (and hence als®;) are non-empty for ald < MPC setting including average constraints, i.e., constsain average
le] < emax. As above, in the following(z*(¢),u"(¢)) denotes quantities of input and state variables. For such a seitingis shown
an arbitrary element ofS7. Note that(z*(g),u*(¢)) is a global in [4, Section V.B] that a relaxed dissipativity conditiamolving an
minimizer of problem additional free multiplier in the supply rate is sufficietr foptimal
steady-state operation. Similar to the proof of Theoremrig can
Pele] =Pz ul, b2 = f(z,u), 9) (23)  show that both the storage function and this multiplier can be
as defined in (21). The question we are interested in is undiat wmodified continuously i such that dissipativity is maintained under
circumstances there exists a storage functhgm;e) such that, if small changes irz. Finally, we note that the presented robustness

system (2) is dissipative with respect to the supply te u;e) = results can be extended to the case of general parametenddepe
0(z,u) — £(z*(e),u*(e)) for e = 0, it remains dissipative ofi. for Supply ratess(z,u;e), different from the specific one considered
changinge. This means that the function above, and hence might be of interest also beyond an ecordR(@
context. This is shown in more detail in Section Ill of thefteical
V(@ u;e) = Lz, u) — L(a"(e),u () + Aw;e) = A(f(=, “);(3)4) report [14]. O

satisfiesy(z,u; ¢) > 0 for all (z,u) € Z, i.e., (z"(e),u"(€)) iISa B Convex case

global minimizer of problem ) .
In this section, we show that further results beyond the sbimss

Pyle] :=P([z ul,7,0,9) (25) analysis of Section IV-A can be obtained if a certain conexi
. . . . .y _ . assumption is satisfied. Namely, instead of consideringlgpegur-
as defined in (21) withy(z (6)’9.(6)’5) = 0. The folloyvlpg bations in the constraint set as in Section IV-A (which weqeressed
Theorem shows under what conditions robustness of thepdibsty by the parameter), we now look at additional constraings which
property with respect to small changescirtan be guaranteed. !

. T A are imposed on the system and can alter the optimal steatdy{st
Theorem 5.-Suppose that the f_ollowmg. IS Sat'Sf'e_d' _ ~ a large extend. Hence in the following, we drop the depengleric
(i) The functionsf, £ andg are twice continuously differentiable in the various functions and optimization problems gnbut instead

(z,u). Furthermoreg as well as its first and second derivativegjefine the set,; := {(z,u) : g(z,u) < 0,gaa(z,u) < 0},
) with respect tc_)(a:,u)_ are cont_inuous in. _ _ Sad i= {(x,u) € Zga : z = f(z,u)} and S’y := {(y,w) € Saa :
(i) For e =0, S5 is a singleton, i.e.(z"(0),u"(0)) is the unique ¢(y w) = min ¢(x,u)}. Analogous to above, letz”,, u’,)
optimal steady-state. Furthermo(e,"(0), »*(0)) is the unique (z,u)€84q

denote an arbitrary element df;;, and define the optimization
problemsP; .q := P([z u],l,x — f(z,u),[9 gad]) @nd P, , =
P([z ul,Yad, 0,[g gaa]) with

global minimizer of problenP,[0], i.e., system (2) is dissipative
on Zo with respect to the supply ratgx, u;0) = ¢(z,u) —
£(z*(0),u*(0)), and the corresponding storage functidir; 0)
is twice_ continuously differentiable im._ C aalm,u) = 0w, u) — L@k, wha) + Aaa(®) — Aaa(f(x, 1)) (26)
(iii) The optimal steady-statéz*(0), " (0)) is regular and satisfies
the strong second order sufficiency condition (see [20, #1]) for some storage functiok,(x). The following Theorem shows that
problems?P,[0] and P [0]. if v as defined in (12) is convex, then for each feasible steatg-st
Then there exists with 0 < & < emax Such that for allle| < & (¥,w) € 5 there exists a functiop.q such that(y, w) is an optimal
the system (2) is dissipative dB. with respect to the supply rate Steady-state under the additional constraints, {gw) € Saq, and
s(z,uie) = L(z,u) — 6(z*(e),u*(c)) and with storage function dissipativity with respect to the new supply ratg(z, u) = ¢(z, u)—
Azse) == A3 0) + S\(E)Tx’ wherei(a) is continuous ine with  £(Taas uaq) is Mmaintained with the same storage functibyy(z) =
3(0) — A(z).
A(0) = 0. O o
Theorem 5 means that the storage functign:; ) can be mod- Theorem 6: Suppose that the following is satisfied:
ified continuously with changing parametersuch that the system (i) The functionsf, g and¢ are continuously differentiable ifx, u)

remains dissipative with respect to the supply rate,u;e) = andg is convex.
L(z,u) — £(z"(),u"(e)). The proof of Theorem 5, which can be (ii) There exist a continuously differentiable storagediion A\(z)
found in Section II.A of the technical report [14], uses tleastivity such that system (2) without additional constraints isipés/e

analysis in nonlinear programming [20—-22] to conclude thmater the on Z with respect to the supply rate(z,u) = 4(z,u) —



£(z*,u"), and the corresponding functiondefined in (12) is [4] D. Angeli, R. Amrit, and J. B. Rawlings, “On average perfance and
convex onZ. stability of economic model predictive controlEEE Transactions on
. . Automatic Control, vol. 57, no. 7, pp. 1615-1626, 2012.
Then, for each feasible steady-statg w) € S, there exists an [5] T. G. Hovgaard, L. F. S. Larsen, and J. B. Jogrgensen, flexand

additional constraint functiog,q which is convex and continuously cost efficient power consumption using economic MPC - a supeket
differentiable in(z, ) such that(y,w) € S, and the system (2) refrigeration benchmark,” ifProceedings of the 50th IEEE Conference
is dissipative onZ,q with respect to the supply rate,q(z,u) = 328'3_2050” and Control and European Control Conference, 2011, pp.
Uz, u) — (Tq4, uaq) @Nd with storage functionqq(z) = A(x). [6] R. Huang, E. Harinath, and L. T. Biegler, “Lyapunov stibi of

Conversely, if for a given convex and continuously diffdiable economically oriented NMPC for cyclic processedgurnal of Process
additional constraint functiop.q, a steady-statéy, w) € S together Contral, vol. 21, no. 4, pp. 501-509, 2011.

with somer = [ygTd VgT]T satisfies the Karush-Kuhn-Tucker (KKT) [7] W.-J. Ma and V. Gupta, “Desynchronization of thermatigtpled first-

" a . o order systems using economic model predictive controlPrioceedings
conditions (see, e.g., [23]) for problem, .a With Asa(z) = A(x), of the 51st IEEE Conference on Decision and Control, 2012, pp. 278—

then (y, w) € S}, and system (2) is dissipative ¢f,4 with respect 283.
to the supply rate,q(z,u) = £(x,u) — €(x}, 4, u,y) and with storage [8] J. B. Rawlings, D. Bonng, J. B. Jgrgensen, A. N. Venkat &. B.
function Aga(z) = A(z). O Jargensen, “Unreachable setpoints in model predictivéraidn| EEE
Proof: The proof of Theorem 6 can be found in Section II.B of Transactions on Automatic Control, vol. 53, no. 9, pp. 2209-2215, 2008.
. : [9] D. Angeli and J. B. Rawlings, “Receding horizon cost op#iation and
the technical report [14]. g control for nonlinear plants,” ifProceedings of the 8th IFAC Symposium
Remark 9: The convexity assumption or in (ii) is always on Nonlinear Control Systems, 2010, pp. 1217-1223.

satisfied if¢ is strictly convex and system (2) is linear. In this casdl0] M. Diehl, R. Amrit, and J. B. Rawlings, "A Lyapunov furioh for

; , PP o : economic optimizing model predictive controlEEE Transactions on
if Slater’s condition is satisfied, strong duality holds ghd storage Automatic Control, vol. 56, no. 3, pp. 703-707, 2011.

function X in (12) can be chosen as a linear function [10]. Howevef11] R. Amrit, J. B. Rawlings, and D. Angeli, “Economic opiization

note that fory to be convex, neithef has to be convex nor the using model predictive control with a terminal cosinual Reviews
system (2) has to be linear. O in Control, vol. 35, no. 2, pp. 178-186, 2011. _ _
Remark 10: If ~ is not convex, the statements of Theorem 6 stift2] M- Heidarinejad, J. Liu, and P. D. Christofides, "Ecoriomodel predic-
tive control of nonlinear process systems using Lyapunchrigues,
hold for each steady-statg;,w) € S such thaty can be lower AIChE Journal, vol. 58, no. 3, pp. 855-870, 2012.
bounded or¥ by a convex and continuously differentiable functipn [13] L. Griine, “Economic receding horizon control withotgrminal con-
satisfying 4(y,w) = ~(y,w). Namely, as4 is convex, one can straints,” Automatica, vol. 49, no. 3, pp. 725-734, 2013.

establish as in the proof of Theorem 6 tl’(aj, w) minimizes 4 [14] M. A. Muller, D. Angeli, and F. Allgdwer, “Additionalmaterial to the

. paper 'On necessity and robustness of dissipativity in escoa model
overZaq. But then, asy is a lower bound fory onZ and furthermore predictive control’,” University of Stuttgart, Tech. Ref2014, available

F(y,w) = ~(y,w), it follows that (y, w) also minimizesy (and online: www.simtech.uni-stuttgart.de/publikationenvfs.php?ID=903.
hence alsoy.q) overZ,aq, i.€., the system is again dissipative 8p;  [15] J. C. Willems, “Dissipative dynamical systems - parGeneral theory,”
with respect to the supply rateq(x, u) = (x,u) —(x} 4, us,) and Archive for Rational Mechanics and Analysis, vol. 45, no. 5, pp. 321-

351, 1972.

[16] C. I. Byrnes and W. Lin, “Losslessness, feedback edgemee, and the
global stabilization of discrete-time nonlinear systémEEE Transac-
tions on Automatic Control, vol. 39, no. 1, pp. 83-98, 1994.

[17] M. A. Muller, D. Angeli, and F. Allgdéwer, “On convergee of av-

In this paper, we investigated a dissipativity condition iakh eragely constrained economic MPC and necessity of dissityafor
was recently used in several papers on economic MPC in ogder t  OPtimal steady-state operation,” #roceedings of the American Control

. . . Conference, 2013, pp. 3147-3152.
establish optimal steady-state operation as well as cgemee and [18] E. D. Sontag,Mathematical Control Theory - Deterministic Finite

with storage functiom,q(z) = A(z).

V. CONCLUSIONS

stability of the closed-loop system. As a first main conttiitm, we Dimensional Systems, 2nd ed. New York: Springer, 1998.
established two (partial) converse theorems showing tisatpétivity [19] T. Damm, L. Grine, M. Stieler, and K. Worthmann, "An exential
is in fact necessary for optimal steady-state operatiovergithat turnpike theorem for dissipative discrete time optimaltoaiproblems,”

a certain controllability condition is satisfied, which meathat ifg\g 320(;’{261 on Control and Optimization, vol. 52, no. 3, pp. 1935~

dissipativity is a precise characterization of optimalasestate [20] K. Jittorntrum, “Solution point differentiability whout strict com-
operation and not only a rather conservative sufficient itmmdfor plementarity in nonlinear programming,” iBensitivity, Sability and
it. Furthermore, the obtained results are also of impogaincthe E?fa”ﬁrl';cj Angjysfsv Seg l\fl_aﬂ;eryaat;gal P&%ngmmllngls%;'eﬁéé’* V.
T : ; : iacco, Ed. Springer Berlin Heidelberg, , vol. 21, .

contex_t of stability analysis of ef:on.omlc M.PC' as there agly [21] S. M. Robinson, “Strongly regular generalized equaid Mathematics
the existence of a storage functldn_ls sufficient but\ does not of Operations Research, vol. 5, no. 1, pp. 43-62, 1980.
have to be known. Second, we provided a robustness analyie 0 [22] A. V. Fiacco and Y. Ishizuka, “Sensitivity and stahjlimnalysis for
dissipativity property with respect to changes in the cast set. nonlinear programmingAnnals of Operations Research, vol. 27, no. 1,
We showed that under a certain regularity assumption, tobss pp. 215-235, 1990. !

ith tt I ch in th traint b [23] D. P. BertsekasNonlinear Programming.  Belmont, Massachusetts:
with respect to small changes in the constraints can be (o[l 0 8 Athena Scientific, 1995.
Furtermore, stronger results on maintaining the dissifiatproperty
under possibly large changes in the constraints were datagiven
that a certain convexity assumption is satisfied.
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