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1 Introduction15

The literature on structural vector autoregressions (Svar) is vast. Popular identifi-16

cation schemes include short- and long-run homogenous restrictions [see, e.g. Sims17

(1980), Blanchard and Quah (1989)], sign restrictions [see, e.g. Faust (1998), Uhlig18

(2005)], time-varying heteroskedasticity (Sentana and Fiorentini 2001) or external19

instruments [see, e.g. Mertens and Ravn (2012), Stock and Watson (2018) or Dolado20

et al. (2020)]. Recently, identification through independent non-Gaussian shocks has21

become increasingly popular after Lanne et al. (2017) and Gouriéroux et al. (2017). The22

signal processing literature on independent component analysis (Ica) popularised by23

Comon (1994) shares the same identification scheme. Specifically, if in a static model24

the N × 1 observed random vector y—the so-called signals or sensors—is the result25

of an affine combination of N unobserved shocks ε∗—the so-called components or26

sources—whose mean and variance we can set to 0 and I N without loss of generality,27

namely28

y = µ + Cε∗, (1)29

then the matrix C of loadings of the observed variables on the latent ones can be30

identified (up to column permutations and sign changes) from an i .i .d. sample of31

observations on y provided the following assumption holds:132

Assumption 1 :Identification33

(1) the N shocks in (1) are cross-sectionally independent,34

(2) at least N − 1 of them follow a non-Gaussian distribution, and35

(3) C is invertible.36

Failure of any of the three conditions in Assumption 1 results in an underidentified37

model. The best known counterexample is a multivariate Gaussian model for ε∗, in38

which we can identify V ( y) = CC ′ but not C without additional structural restrictions39

despite the fact that the elements of ε∗ are cross-sectionally independent. Intuitively,40

the problem is that any rotation of the structural shocks ε∗∗ = Qε∗, where Q is41

an orthogonal matrix, generates another set of N observationally equivalent, cross-42

sectionally independent shocks with standard normal marginal distributions. A less43

well-known counterexample would be a non-Gaussian spherical distribution for ε∗,44

such as the standardised multivariate Student t . In this case, the lack of identifiability of45

C is due to the fact that ε∗ and ε∗∗ share not only their mean vector (0) and covariance46

matrix (I), but also the same nonlinear dependence structure.47

The purpose of our paper is to propose simple to implement and interpret spec-48

ification tests that check the normality of a single element of ε∗ and the potential49

cross-sectional dependence among several of them. In very simple terms, our tests50

compare the integer (product) moments of the shocks in the sample with their popu-51

lation counterparts. Specifically, in the Gaussian tests we compare the marginal third52

and fourth moments of a single shock to 0 and 3, respectively. In turn, in the case53

1 The same result applies to situations in which dim(ε∗) ≤ dim( y) provided that C has full column rank.
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of two or more shocks, we assess the statistical significance of their second, third54

and fourth cross-moments, which should be equal to the product of the corresponding55

marginal moments under independence. Many of these moments tests can be formally56

justified as Lagrange multiplier tests against specific parametric alternatives [see, e.g.57

Mencía and Sentana (2012)], but in this paper we do not pursue this interpretation. Like58

Almuzara et al. (2019), though, we focus on the latent shocks rather than the observed59

variables in view of the fact that identifying Assumption 1 is written in terms of ε∗
60

rather than y.61

If we knew the true values of µ and C, µ0 and C0 say, with rank(C0) = N , our62

tests would be straightforward, as we could trivially recover the latent shocks from63

the observed signals without error. In practice, though, both µ and C are unknown, so64

we need to estimate them before computing our tests.65

Although many estimation procedures for those parameters have been proposed in66

the literature [see, e.g. Moneta and Pallante (2020) and the references therein], in this67

paper we consider the discrete mixtures of normals-based pseudo-maximum likelihood68

estimators (PMLEs) in Fiorentini and Sentana (2020) for three main reasons. First,69

they are consistent for the model parameters under standard regularity conditions70

provided that Assumption 1 holds regardless of the true marginal distributions of71

the shocks. Second, they seem to be rather efficient, the rationale being that finite72

normal mixtures can provide good approximations to many univariate distributions.73

And third, the influence functions on which they are based are the scores of the pseudo-74

log-likelihood, which we can easily compute in closed form. As we shall see, these75

influence functions play a very important role in adjusting the asymptotic variances76

of the different tests we propose so that they reflect the sampling variability resulting77

from computing the shocks with consistent but noisy parameter estimators.78

In this respect, we derive computationally simple closed-form expressions for the79

asymptotic covariance matrices of the sample moments underlying our tests under the80

relevant null adjusted for parameter uncertainty. Importantly, we do so not only for81

static Ica model (1) but also for a Svar, which is far more relevant in economics.82

In many empirical finance applications of Svars, the number of observations is83

sufficiently large for asymptotic approximations to be reliable. In contrast, the limiting84

distributions of our tests may be a poor guide for the smaller samples typically used in85

macroeconomic applications. For that reason, we thoroughly study the finite sample86

size of our tests in several Monte Carlo exercises. We also discuss some bootstrap87

procedures that seem to improve their reliability. Finally, we show that our tests have88

non-negligible power against a variety of empirically plausible alternatives in which89

the cross-sectional independence of the shocks no longer holds.90

The rest of the paper is organised as follows. Section 2 discusses the model and91

the estimation procedure. Then, we present our general moment tests in Sect. 3 and92

particularise them to assess normality and independence in Sect. 4. Next, Sect. 593

contains the results of our Monte Carlo experiments. We present our conclusions and94

suggestions for further research in Sect. 6 and relegate some technical material and95

additional simulations to several appendices.96
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2 Structural vector autoregressions97

2.1 Model specification98

Consider the following N -variate Svar process of order p:99

yt = τ +
∑p

j=1 A j yt− j + Cε∗
t , ε∗

t |It−1 ∼ i .i .d. (0, I N ), (2)100

where It−1 is the information set, C the matrix of impact multipliers and ε∗
t the “101

structural” shocks, which are normalised to have zero means, unit variances and zero102

covariances.103

Let εt = Cε∗
t denote the reduced form innovations, so that εt |It−1 ∼ i .i .d. (0,�)104

with � = CC ′. As we mentioned in introduction, a Gaussian (pseudo) log-likelihood105

is only able to identify � , which means the structural shocks ε∗
t and their loadings in C106

are only identified up to an orthogonal transformation. Specifically, we can use the so-107

called L Q matrix decomposition2to relate the matrix C to the Cholesky decomposition108

of � = �L�′
L as109

C = �L Q, (3)110

where Q is an N × N orthogonal matrix, which we can model as a function of111

N (N − 1)/2 parameters ω by assuming that | Q| = 1.3Notice that if | Q| = −1112

instead, we can change the sign of the i th structural shock and its impact multipliers113

in the i th column of the matrix C without loss of generality as long as we also modify114

the shape parameters of the distribution of ε∗
i t to alter the sign of all its nonzero odd115

moments.116

In this context, Lanne et al. (2017) show that statistical identification of both the117

structural shocks and C (up to column permutations and sign changes) is possible118

under Ica identification Assumption 1, which we maintain in what follows. Popular119

examples of univariate non-normal distributions are the Student t and the generalised120

error (or Gaussian) distribution, which includes normal, Laplace and uniform as special121

cases, as well as symmetric and asymmetric finite normal mixtures.122

2.2 Pseudo-maximum likelihood estimators123

2.2.1 The criterion function124

Let θ = [τ ′, vec′(A1), . . . , vec′(Ap), vec′(C)]′ = (τ ′, a′
1, . . . , a′

p, c′) = (τ ′, a′, c′)125

denote the structural parameters characterising the first two conditional moments of126

2 The L Q decomposition is intimately related to the Q R decomposition. Specifically, Q′�′
L

provides the

Q R decomposition of the matrix C ′, which is uniquely defined if we restrict the diagonal elements of �L

to be positive [see, e.g. Golub and van Loan (2013) for further details].

3 See section 10 of Magnus et al. (2021) for a detailed discussion of three ways of explicitly parametrising

a rotation (or special orthogonal) matrix: (i) as the product of Givens matrices that depend on N (N − 1)/2

Tait-Bryan angles, one for each of the strict upper diagonal elements; (ii) by using the so-called Cayley

transform of a skew-symmetric matrix; and (c) by exponentiating a skew-symmetric matrix.
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yt . In addition, we assume ε∗
i t |It−1 ∼ i .i .d. D(0, 1, ̺i ), where ̺i is a qi × 1 vector127

of variation-free shape parameters, so that in principle different shocks could follow128

different distributions. For simplicity of notation, though, we maintain that the uni-129

variate distributions of the shocks belong to the same family. We can then collect all130

the shape parameters in the q × 1 vector ̺ = (̺′
1, . . . ,̺

′
N )′, with q =

∑N
i=1 qi , so131

that φ = (θ ′, ̺′)′ is the [N + (p + 1)N 2 + q] × 1 vector containing all the model132

parameters.133

Given the linear mapping between structural shocks and reduced form innovations,134

the contribution to the conditional log-likelihood function from observation yt (t =135

1, . . . , T ) for those parameter configurations for which C has full rank will be given136

by137

l( yt ;φ) = − ln |C| + ln f [ε∗
t (θ); ̺] = − ln |C| + ln f [ε∗

1t (θ); ̺1] + · · ·138

+ ln f [ε∗
Nt (θ); ̺N ] = lt (φ), (4)139

where f [ε∗
i t (θ); ̺i ] is the univariate log-likelihood function for the i th structural shock,140

ε∗
t (θ) = C−1εt (θ), and εt (θ) = yt − τ − A1 yt−1 − · · · − Ap yt−p are the reduced-141

form innovations.142

2.2.2 The score vector143

Let st (φ) denote the score function ∂lt (φ)/∂φ and partition it into two blocks, sθ t (φ)144

and s̺t (φ), whose dimensions conform to those of θ and ̺, respectively. Fiorentini145

and Sentana (2021) show that the scores can be written as146

sθ t (φ) = [Zlt (θ), Zst (θ)]
[

elt (φ)

est (φ)

]

= Zdt (θ)edt (φ), (5)147

s̺t (φ) = er t (φ), (6)148

where149

Zlt (θ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I N

yt−1 ⊗ I N

...

yt−p ⊗ I N

0N 2×N

⎞

⎟
⎟
⎟
⎟
⎟
⎠

C−1′, (7)150

Zst (θ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0N×N 2

0N 2×N 2

...

0N 2×N 2

I N 2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(I N ⊗ C−1′), (8)151
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elt (φ) = −∂ ln f [ε∗
t (θ); ̺]

∂ε∗ = −

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

∂ f [ε∗
1t (θ);̺1]

∂ε∗
1

...
∂ f [ε∗

Nt (θ);̺N ]

∂ε∗
N

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

, (9)152

est (φ) = −vec

{

I N + ∂ ln f [ε∗
t (θ); ̺]

∂ε∗ · ε∗′
t (θ)

}

153

= −vec

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

1 + ∂ ln f [ε∗
1t (θ);̺1]

∂ε∗
1

ε∗
1t (θ) . . .

∂ ln f [ε∗
1t (θ);̺1]

∂ε∗
1

ε∗
Nt (θ)

...
. . .

...
∂ ln f [ε∗

Nt (θ);̺N ]

∂ε∗
N

ε∗
1t (θ) . . . 1 + ∂ ln f [ε∗

Nt (θ);̺N ]

∂ε∗
N

ε∗
Nt (θ)

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

154

(10)155

and156

er t (φ) = ∂ ln f [ε∗
t (θ); ̺]

∂̺
=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

∂ ln f [ε∗
1t (θ);̺1]

∂̺1

...
∂ ln f [ε∗

Nt (θ);̺N ]

∂̺N

⎫

⎪
⎪
⎬

⎪
⎪
⎭

=

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

er1t (φ)

er2t (φ)
...

erN t (φ)

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

(11)157

by virtue of the cross-sectional independence of the shocks, so that the derivatives158

involved correspond to the underlying univariate densities.159

2.2.3 The asymptotic distribution160

For simplicity, we assume henceforth that Svar model ( 2) generates a covariance161

stationary process.4Consider the reparametrisation C = J
, where 
 is a diagonal162

matrix whose elements contain the scale of the structural shocks, while the columns163

of J , whose diagonal elements are normalised to 1, measure the relative impact of164

each of the structural shocks on all the remaining variables. Proposition 3 in Fiorentini165

and Sentana (2020) shows that the parameters ai = vec(Ai ) and j = veco(J) are166

consistently estimated regardless of the true distribution.5As a result, the pseudo-167

true values of those parameters will coincide with the true ones, i.e. ai∞ = ai0 and168

j∞ = j0. In contrast, τ and ψ = vecd(
) will generally be inconsistently estimated,169

so τ∞ �= τ 0 and ψ∞ �= ψ0.170

Nevertheless, Fiorentini and Sentana (2020) prove that the unrestricted PMLEs of171

τ and ψ which simultaneously estimate ̺ will be consistent too when the univariate172

distributions used for estimation purposes are discrete mixtures of normals, in which173

4 If the autoregressive polynomial (I N − A1 L − . . . − Ap L p) had some unit roots, yt would be a

(co-) integrated process, and the estimators of the conditional mean parameters would have non-standard

asymptotic distributions, as some of them would converge at the faster rate T . In contrast, the distribution

of the ML estimators of the conditional variance parameters would remain standard [see, e.g. Phillips and

Durlauf (1986)].

5 See Magnus and Sentana (2020) for some useful properties of the veco(.) and vecd(.) operators.
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case θ∞ = θ0 and ε∗
t (θ0) = ε∗

t . For that reason, in what follows we focus on the174

finite normal mixtures-based PMLEs of the original parameters θ = (τ ′, a′, c′).175

Still, the potential misspecification of this distributional assumption implies that176

the asymptotic covariance matrix of the corresponding PMLEs must be based on the177

usual sandwich formula. Let178

A(φ∞;ϕ0) = −E[∂sφt (φ∞)/∂φ′)|ϕ0] (12)179

and180

B(φ∞;ϕ0) = V [sφt (φ∞)|ϕ0] (13)181

denote the (-) expected value of the log-likelihood Hessian and the variance of the182

score, respectively, where ̺∞ are the pseudo-true values of the shape parameters of the183

distributions of the shocks assumed for estimation purposes, υ contains the potentially184

infinite-dimensional shape parameters of the true distributions of the shocks, and185

ϕ = (θ ,υ) . The asymptotic distribution of the pseudo-ML estimators of φ , φ̂T ,186

under standard regularity conditions will be given by187

√
T (φ̂T − φ∞) → N [0,A−1(φ∞;ϕ0)B(φ∞;ϕ0)A

−1(φ∞;ϕ0)].188

In what follows, we shall make extensive use of the detailed expressions for the189

conditional expected value of the Hessian and covariance matrix of the score for finite190

normal mixtures-based PMLEs in Amengual et al. (2021b).191

3 Specification tests based on integer product moments192

3.1 The influence functions193

As we have stressed earlier, the parametric identification of the structural shocks194

ε∗
t (θ) and their impact coefficients C that appear in Svar (2) critically hinges on the195

validity of identifying Assumption 1. As a consequence, it would be desirable that196

empirical researchers estimating those models reported specification tests that would197

check those assumptions. Given that rank failures in C will be inextricably linked198

to singular dynamic systems,6we focus on testing that at most one of the structural199

shocks is Gaussian and that all the structural shocks are indeed independent of each200

other.201

As is well known, stochastic independence between the elements of a random vector202

is equivalent to the joint distribution being the product of the marginal ones. In turn,203

this factorisation implies lack of correlation between not only the levels but also any204

set of single-variable measurable transformations of those elements. Thus, a rather205

6 The rationale is as follows. If rank(C0) < N , then rank[V ( yt )] < N , and the same will be true

of the sample covariance matrix. Therefore, sampling variability plays no role in determining whether

rank(C0) = N in model (1). Exactly the same argument applies to dynamic system (2).
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intuitive way of testing for independence without considering any specific parametric206

alternative can be based on individual moment conditions of the form207

mh[ε∗
t (θ)] =

N
∏

i=1

ε
∗hi

i t (θ) −
N
∏

i=1

E[ε∗hi

i t (θ0)], (14)208

where h = {h1, ..., hN }, with hi ∈ Z0+, denotes the index vector characterising a209

specific product moment. While the influence function in (14) will generally require the210

estimation of E[ε∗hi

i t (θ0)] for some of the shocks, the constant term
∏N

i=1 E[ε∗hi

i t (θ0)]211

is either 0 or 1 for the second, third and fourth cross-moments we study in this paper212

in view of the standardised nature of the shocks, so we do not need to worry about213

it. Amengual et al. (2021b) discuss in detail how to deal with the estimation of the214

required E[ε∗hi

i t (θ0)] in the general case.215

Although we have motivated (14) as the basis for our tests of independence, by216

setting all the elements of h but one to 0, we can also use this expression to look at the217

marginal moments of a single shock. In this paper, we focus on hi = 3 and 4 because218

most common departures from normality of the shocks will be reflected in coefficients219

of skewness or kurtosis different from 0 and 3, respectively.220

3.2 Themoment tests221

Let m[ε∗
t (θ)] denote a K × 1 vector containing a collection of influence functions222

mhk [ε∗
t (θ)] of form (14) for different index vectors h1, . . . , hk, , . . . , hK . The follow-223

ing result, which specialises the general expressions in Newey (1985) and Tauchen224

(1985) to our context, derives the asymptotic distribution of the scaled sample average225

of m[ε∗
t (θ)] when we evaluate the structural shocks at the PMLEs θ̂T rather than at226

θ0:227

Proposition 1 Under Assumption 1 and standard regularity conditions228

√
T

T

∑T

t=1
m[ε∗

t (θ̂T )] → N [0,W(φ∞;ϕ0)],229

where230

W(φ∞;ϕ0) = V(φ∞;ϕ0) + J (φ∞;ϕ0)A
−1(φ∞;ϕ0)B(φ∞;ϕ0)A

−1(φ∞;ϕ0)231

J ′(φ∞;ϕ0)232

+F(φ∞;ϕ0)A
−1(φ∞, υ0)J

′(φ∞;ϕ0) + J (φ∞;ϕ0)233

A−1(φ∞;ϕ0)F
′(φ∞;ϕ0),234

V(φ;ϕ) = V
{

m[ε∗
t (θ)]

∣
∣ϕ
}

,235

J (φ;ϕ) = E

{
∂m[ε∗

t (θ)]
∂φ′

∣
∣
∣
∣
ϕ

}

,236

F(φ;ϕ) = cov

{
∂m[ε∗

t (θ)]
∂φ′ , sφt (φ)

∣
∣
∣
∣
ϕ

}

237
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and A(φ∞;ϕ0) and B(φ∞;ϕ0) are defined in (12) and (13), respectively.238

In the next subsections, we provide detailed expressions for V(φ;ϕ), J (φ;ϕ)239

and F(φ;ϕ) which exploit that the true shocks are cross-sectionally and serially240

independent under the null hypothesis of correct specification of static Ica model (1)241

or dynamic Svar model (2).242

3.2.1 Covariance across influence functions243

Consider a generic element of the matrix cov{m[ε∗
t (θ)], m′[ε∗

t (θ)]|ϕ}, say244

cov{mh[ε∗
t (θ)], mh′ [ε∗

t (θ)]|ϕ} = E{mh[ε∗
t (θ)]mh′ [ε∗

t (θ)]|ϕ}245

−E{mh[ε∗
t (θ)]|ϕ}E{mh′ [ε∗

t (θ)]|ϕ}.246

If we exploit the cross-sectional independence of the shocks under the null hypoth-247

esis, which implies that at the true values248

E

(
∏N

i=1
ε
∗hi

i t

)

=
∏N

i=1
E(ε∗hi

i t ),249

obtain250

cov{mh[ε∗
t (θ0)], mh′ [ε∗

t (θ0)]|ϕ0} =
∏N

i=1
E
[

ε
∗(hi +h′

i )

i t

]

−
∏N

i=1
E(ε

∗hi

i t )E(ε
∗h′

i

i t ).251

(15)252

3.2.2 The expected Jacobian253

Straightforward application of the chain rule implies that254

∂mh[ε∗
t (θ)]

∂φ
= ∂mh[ε∗

t (θ)]
∂ε′

∂εt (θ)

∂φ
.255

On this basis, the following proposition characterises the expected Jacobian matrix256

for any h:257

Proposition 2 Suppose that model (2) satisfies Assumption 1. Then, the expected Jaco-258

bian matrix of mh[ε∗
t (θ)] evaluated at the true values is given by259

jhτ (̺i∞,ϕ0) = E

[
∂mh[ε∗

t (θ0)]
∂ε∗′

∂ε∗
t (θ0)

∂τ ′

∣
∣
∣
∣
ϕ0

]

260

= −E

[
∂mh[ε∗

t (θ0)]
∂ε∗′

∣
∣
∣
∣
ϕ0

]

C−1
0 ,261

jhai
(̺i∞,ϕ0) = E

[
∂mh[ε∗

t (θ0)]
∂ε∗′

∂ε∗
t (θ0)

∂a′
i

∣
∣
∣
∣
ϕ0

]

262
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= −E

[
∂mh[ε∗

t (θ0)]
∂ε∗′

∣
∣
∣
∣
ϕ0

]
[

E( y′
t−i

∣
∣ϕ0) ⊗ C−1

0

]

263

and264

jhc(̺i∞,ϕ0) = E

[
∂mh[ε∗

t (θ0)]
∂ε∗′

∂ε∗
t (θ0)

∂c′

∣
∣
∣
∣
ϕ0

]

265

= −E

{
∂mh[ε∗

t (θ0)]
∂ε∗′

[

εt (θ0) ⊗ C−1
0

]
∣
∣
∣
∣
ϕ0

}

.266

As for ∂mh[ε∗
t (θ)]/∂ε∗′, if we denote all the distinct second, third and fourth267

moments by268

m[ε∗
t (θ)] =

⎛

⎝

mcv[ε∗
t (θ)]

mcs[ε∗
t (θ)]

mck[ε∗
t (θ)]

⎞

⎠ =

⎛

⎝

DN [ε∗
t (θ) ⊗ ε∗

t (θ)]

T N [ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ ε∗
t (θ)]

QN [ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ ε∗
t (θ) ⊗ ε∗

t (θ)]

⎞

⎠ ,269

(16)270

where DN , T N and QN are the duplication, triplication and quadruplication matrices,271

respectively [see Meijer (2005) for details], the results we derive in “Appendix B.1”272

provide an easy way to compute all those derivatives recursively.273

3.2.3 The covariance with the score274

Let ℓN denote a vector of N ones and I (.) the usual indicator function. The fol-275

lowing proposition provides the last ingredient of the adjusted covariance matrix in276

Proposition 1.277

Proposition 3 Suppose that model (2) satisfies Assumption 1. Then, the covariance278

between the influence function mh(·) and the pseudo-log-likelihood scores evaluated279

at the (pseudo) true values is given by280

cov{mh[ε∗
t (θ0)], sφt (φ∞)|ϕ0} = Fh(φ∞,ϕ0) = E[Fht (φ∞,ϕ0)], (17)281

where282

Fht (φ∞,ϕ0) =

⎡

⎣

Fhl(̺∞,υ0)

Fhs(̺∞,υ0)

Fhr (̺∞,υ0)

⎤

⎦

⎡

⎣

Z′
lt (θ0) 0

Z′
s(θ0) 0

0 Iq

⎤

⎦ ,283

Fhl(̺∞,ϕ0) is a 1 × N vector whose entries are such that for any i with hi > 0,284

fhs(i,i ′)(̺∞,ϕ0) = −cov

{

mh[ε∗
t (θ0)], I (i = i ′) +

∂ ln f [ε∗
i t (θ0); ̺i∞]
∂ε∗

i

ε∗
i ′t (θ0)

∣
∣
∣
∣
ϕ0

}

285
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and zero otherwise, Fhs(̺∞,ϕ0) is a 1 × N 2 vector whose entries are such that for286

any i with hi > 0 and i ′ with hi ′ > 0287

fhs(i,i ′)(̺∞,ϕ0) = −cov

{

mh[ε∗
t (θ0)], I (i = i ′) +

∂ ln f [ε∗
i t (θ0); ̺i∞]
∂ε∗

i

ε∗
i ′t (θ0)

∣
∣
∣
∣
ϕ0

}

288

and zero otherwise, and finally289

Fhr (̺∞,ϕ0) = F′
hr (φ∞,ϕ0)ℓN ,290

with Fhr (̺∞,ϕ0) another block diagonal matrix of order N × q with typical block of291

size 1 × qi ,292

fhr(i)(̺∞,υ0) = cov

{

mh[ε∗
t (θ0)],

∂ ln f [ε∗
i t (θ0); ̺i∞]
∂̺′

i

∣
∣
∣
∣
ϕ0

}

293

and zero otherwise.294

4 Particular cases295

4.1 Testing normality296

As we have mentioned before, we can use (14) to test the null hypothesis that a single297

structural shock is Gaussian by comparing its third and fourth sample moments with 0298

and 3, respectively, which are the population values of those moments under the null299

of normality. Nevertheless, many authors [see, e.g. Bontemps and Meddahi (2005)300

and the references therein] convincingly argue that it is generally more appropriate to301

look at the sample averages of the third and fourth Hermite polynomials instead. In302

particular, one should consider H3(ε
∗
i t ) = ε∗3

i t − 3ε∗
i t and H4(ε

∗
i t ) = ε∗4

i t − 6ε∗2
i t + 3303

rather than ε∗3
i t and ε∗4

i t only. The reason is that Hermite polynomials have two main304

advantages. First, given that305

∂ H3(ε
∗
i t )

∂ε∗
i

= 3H2(ε
∗
i t ) and

∂ H4(ε
∗
i t )

∂ε∗
i

= 4H3(ε
∗
i t ),306

the results in Proposition 2 immediately imply that their expected Jacobians will be 0307

under the null of normality, so they are immune to the sampling uncertainty resulting308

from using estimated shocks. Second, H3(ε
∗
i t ) and H4(ε

∗
i t ) are orthogonal under the309

Gaussian null, which means that the joint test is simply the sum of two asymptotically310

independent components: one for skewness and another one for kurtosis.311

The properties of the estimators that we use, though, mean that the usual implemen-312

tation of the Jarque and Bera (1980) test, which simply looks at the sample averages313

of ε∗3
i t (θ̂T ) and ε∗4

i t (θ̂T ), yields numerically the same statistics as the tests based on the314

Hermite polynomials despite the fact that it ignores the terms involving ε∗
i t and ε∗2

i t .315

The intuition is as follows. Proposition 1 in Fiorentini and Sentana (2020) states that316
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the PMLEs of the unconditional mean and variance of a univariate finite mixture of317

normals numerically coincide with the sample mean and variance (with denominator318

T ) of the observed series. Given that log-likelihood function (4) for any given values319

of a and j is effectively the sum of N such univariate log-likelihoods with parameters320

that are variation-free, the estimated shocks will be such that321

1

T

∑T

t=1
ε∗

i t (θ̂T ) = 0 and
1

T

∑T

t=1
ε∗2

i t (θ̂T ) − 1 = 0 ∀i (18)322

regardless of the sample size. This property also has interesting implications for the323

independence tests that we will consider in the next section because, in effect, each324

estimated shock will be standardised in the sample.325

Finally, it is important to emphasise that the non-normality of a single shock does not326

guarantee the identification of the model parameters, in the same way as its normality327

does not imply they are underidentified. As we shall see in the Monte Carlo section,328

though, researchers can get an informative guide to the validity of Assumption 1 by329

looking at the normality tests for all the individual shocks.330

4.2 Testing independence331

At first sight, the arguments in the previous section might suggest that the sample332

covariances between the estimated shocks will also be 0 by construction. However,333

this is not generally true. The finite normal mixture PMLEs guarantee the univariate334

standardisation of each shock, but it does not imply their orthogonality in any given335

sample, unlike what would happen with a Gaussian likelihood function in which336

enough a priori restrictions were imposed on C to render the model exactly identified.337

Intuitively, the parameter values that maximise (4) are trying to make the estimated338

shocks stochastically independent, not merely orthogonal [see Herwartz (2018)].339

For that reason, the first test for independence that we consider will be based on340

the second cross-moment condition341

E(ε∗
i tε

∗
i ′t ) = 0, i �= i ′ (19)342

In other words, we are simply assessing if the sample correlation between the i th and343

i ′th estimated shocks is significantly different from zero in the usual statistical sense.344

Nevertheless, we can also go beyond linear dependence and look at moments that345

characterise the co-skewness across the structural shocks. These can be of two types:346

E(ε∗2
i t ε∗

i ′t ) − E(ε∗2
i t )E(ε∗

i ′t ) = E(ε∗2
i t ε∗

i ′t ) = 0, i �= i ′, (20)347

and348

E(ε∗
i tε

∗
i ′tε

∗
i ′′t ) − E(ε∗

i t )E(ε∗
i ′t )E(ε∗

i ′′t ) = E(ε∗
i tε

∗
i ′tε

∗
i ′′t ) = 0, i �= i ′ �= i ′′, (21)349

depending on whether they involve two or three different shocks.350
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Finally, we can also look at the different co-kurtosis among the shocks, which may351

involve a pair of shocks, namely352

E(ε∗2
i t ε∗2

i ′t ) − E(ε∗2
i t )E(ε∗2

i ′t ) = E(ε∗2
i t ε∗2

i ′t ) − 1 = 0, i �= i ′, (22)353

and354

E(ε∗3
i t ε∗

i ′t ) − E(ε∗3
i t )E(ε∗

i ′t ) = E(ε∗3
i t ε∗

i ′t ) = 0, i �= i ′, (23)355

three shocks356

E(ε∗2
i t ε∗

i ′tε
∗
i ′′t ) − E(ε∗2

i t )E(ε∗
i ′t )E(ε∗

i ′′t ) = E(ε∗2
i t ε∗

i ′tε
∗
i ′′t ) = 0, i �= i ′ �= i ′′, (24)357

and even four shocks358

E(ε∗
i tε

∗
i ′tε

∗
i ′′tε

∗
i ′′′t ) − E(ε∗

i t )E(ε∗
i ′t )E(ε∗

i ′′t )E(ε∗
i ′′′t ) = E(ε∗

i tε
∗
i ′tε

∗
i ′′tε

∗
i ′′′t ) = 0,359

i �= i ′ �= i ′′ �= i ′′′. (25)360

Thus, we substantially expand the set of moments researchers can use to test for the361

independence of the components relative to Hyvärinen (2013), who only suggested362

looking at the co-kurtosis terms in (22). The above moment conditions also augment363

those considered by Lanne and Luoto (2021), who focus on (19), (22) and (23), together364

with E(ε∗
i t ) = 0 and E(ε∗2

i t ) = 1.365

4.2.1 Covariance across influence functions366

Next, we derive in detail the nonzero elements of the covariance matrix of the second,367

third and fourth moments in (16).368

It is easy to see that under the null hypothesis of independence, the only nonzero369

elements of the covariance matrix of mcv[ε∗
t (θ)] are370

V (ε∗
i tε

∗
i ′t ) = 1.371

In turn, in the case of mcs[ε∗
t (θ)] and mck[ε∗

t (θ)], the nonzero elements are372

V (ε∗
i tε

∗
i ′tε

∗
i ′′t ) = 1,373

V (ε∗2
i t ε∗

i ′t ) = E(ε∗4
i t ),374

cov(ε∗2
i t ε∗

i ′t , ε
∗2
i ′t ε

∗
i t ) = E(ε∗3

i t )E(ε∗3
i ′t ),375

and376

V (ε∗
i tε

∗
i ′tε

∗
i ′′tε

∗
i ′′′t ) = 1,377

V (ε∗2
i t ε∗

i ′tε
∗
i ′′t ) = E(ε∗4

i t ),378

V (ε∗3
i t ε∗

i ′t ) = E(ε∗6
i t ),379
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V (ε∗2
i t ε∗2

i ′t ) = E(ε∗4
i t )E(ε∗4

i ′t ) − 1,380

cov(ε∗2
i t ε∗

i ′tε
∗
i ′′t , ε

∗2
i ′t ε

∗
i tε

∗
i ′′t ) = E(ε∗3

i t )E(ε∗3
i ′t ),381

cov(ε∗3
i t ε∗

i ′t , ε
∗2
i t ε∗2

i ′t ) = E(ε∗5
i t )E(ε∗3

i ′t ),382

cov(ε∗3
i t ε∗

i ′t , ε
∗2
i t ε∗2

i ′t ) = E(ε∗5
i t )E(ε∗3

i ′t ),383

cov(ε∗2
i t ε∗

i ′tε
∗
i ′′t , ε

∗2
i ′t ε

∗
i tε

∗
i ′′t ) = E(ε∗3

i t )E(ε∗3
i ′t ),384

cov(ε∗2
i t ε∗2

i ′t , ε
∗2
i t ε∗2

i ′′t ) = E(ε∗4
i t ) − 1,385

cov(ε∗2
i t ε∗

i ′′t , ε
∗2
i ′t ε

∗
i ′′t ) = 1,386

respectively, which can be consistently estimated from ε∗
t (θ̂T ) under standard regu-387

larity conditions.388

Finally, the nonzero covariance terms across the different elements of mcv(ε∗
t ),389

mcs(ε∗
t ) and mck(ε∗

t ) are390

cov(ε∗
i tε

∗
i ′t , ε

∗2
i t ε∗

i ′t ) = E(ε∗3
i t ),391

cov(ε∗
i tε

∗
i ′t , ε

∗3
i t ε∗

i ′t ) = E(ε∗4
i t ),392

cov(ε∗
i tε

∗
i ′t , ε

∗2
i t ε∗2

i ′t ) = E(ε∗3
i t )E(ε∗3

i ′t ),393

cov(ε∗2
i t ε∗

i ′t , ε
∗3
i t ε∗

i ′t ) = E(ε∗5
i t ),394

cov(ε∗2
i t ε∗

i ′t , ε
∗3
i ′t ε

∗
i t ) = E(ε∗3

i t )E(ε∗4
i ′t ), and395

cov(ε∗2
i t ε∗

i ′t , ε
∗2
i t ε∗2

i ′t ) = E(ε∗4
i t )E(ε∗3

i t ).396

4.2.2 The expected Jacobian397

Straightforward calculations allow us to show that the expected Jacobian of the covari-398

ances across shocks in (19) will be given by399

jhτ (̺i∞,ϕ0) = 0, jhak
(̺i∞,ϕ0) = 0 andjhc(̺i∞,ϕ0) = −(e′

i ′ ⊗ ci .
0 ) − (e′

i ⊗ ci ′.
0 ),400

where ei is the i th canonical vector and ci . denotes the i th row of C−1.401

Analogously, for the third cross-moments in (20), we will have402

jhτ (̺i∞,ϕ0) = −ci ′.
0 , jhak

(̺i∞,ϕ0) = −[E( y′
t−k |ϕ0) ⊗ ci ′.

0 ] andjhc(̺i∞,ϕ0)403

= −E(ε∗3
i t )(e′

i ⊗ ci ′.
0 ),404

while for those in (21) we get405

jhτ (̺i∞,ϕ0) = 0,jhak
(̺i∞,ϕ0) = 0 andjhc(̺i∞,ϕ0) = 0.406

In turn, for the fourth moments in (22), we will have407

jhτ (̺i∞,ϕ0) = 0, jhak
(̺i∞,ϕ0) = 0 andjhc(̺i∞,ϕ0) = −2(e′

i ⊗ ci .
0 + e′

i ′ ⊗ ci ′.
0 ),408
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while for (23) we get409

jhτ (̺i∞,ϕ0) = −E(ε∗3
i t )ci ′.

0 , jhak
(̺i∞,ϕ0) = −E(ε∗3

i t )[E( y′
t−k |ϕ0) ⊗ ci ′.

0 ]410

and411

jhc(̺i∞,ϕ0) = −3(e′
i ′ ⊗ ci .

0 ) − E(ε∗4
i t )(e′

i ⊗ ci ′.
0 ).412

Similarly, the expected Jacobian of (24) involves413

jhτ (̺i∞,ϕ0) = 0, jhak
(̺i∞,ϕ0) = 0 andjhc(̺i∞,ϕ0) = −(e′

i ′ ⊗ ci ′′.
0 ) − (e′

i ′′ ⊗ ci ′.
0 ).414

Finally, when we look at (25), we unsurprisingly end up with415

jhτ (̺i∞,ϕ0) = 0,jhak
(̺i∞,ϕ0) = 0 andjhc(̺i∞,ϕ0) = 0.416

4.2.3 The covariance with the score417

As we have seen before, we need to explicitly compute the expressions in Proposition418

3 to obtain (17). Fortunately, some of those expressions simplify considerably for419

the cross-moments we use to test independence. Intuitively, the reason is that the420

independence of the shocks implies that when h is such that hi = 1, we will have421

E

[
∂ ln f (ε∗

i t ; ̺i∞)

∂ε∗
i

ε
∗hi ′
i ′t ε

∗hi ′′
i ′′t

]

= 0422

and423

E

[
∂ ln f (ε∗

i t ; ̺i∞)

∂ε∗
i

ε∗
i tε

∗hi ′
i ′t ε

∗hi ′′
i ′′t

]

= −E(ε
∗hi ′
i ′t )E(ε

∗hi ′′
i ′′t )424

for i �= i ′, i ′′.425

As a result, (17) will be zero for the second moments E(ε∗
i tε

∗
i ′t ), except for426

fhs(i,i ′)(̺i∞,ϕ0), which will be 1 when i ′ �= i .427

In addition, if we exploit the independence between i and i ′ and the fact that428

E(ε∗2
i ′t ) = 1, we can easily prove that the only nonzero covariance elements for the429

co-skewness influence functions E(ε∗2
i t ε∗

i ′t ) will be430

fhl(i ′)(̺∞,ϕ0) = 1, fhs(i,i ′)(̺∞,ϕ0) = −E

[
∂ ln f (ε∗

i t ; ̺i∞)

∂ε∗
i

ε∗2
i t

]

,431

fhs(i ′,i)(̺∞,ϕ0) = E(ε∗3
i t ),432
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fhs(i ′,i ′)(̺∞,ϕ0) = −E

[
∂ ln f (ε∗

i ′t ; ̺i∞)

∂ε∗
i ′

ε∗2
i ′t

]

andfhr(i ′)(̺∞,υ0)433

= E

[
∂ ln f (ε∗

i t ; ̺i∞)

∂̺′
i

ε∗
i t

]

,434

while all of them are zero for E(ε∗
i tε

∗
i ′tε

∗
i ′′t ).435

Similarly, we can also prove that for the co-kurtosis influence functions E(ε∗2
i t ε∗2

i ′t ),436

the only nonzero terms are437

fhl(i)(̺∞,ϕ0) = −E

[
∂ ln f (ε∗

i t ; ̺i∞)

∂ε∗
i

ε∗2
i t

]

, fhs(i,i)(̺∞,ϕ0) = −1 − E

[
∂ ln f (ε∗

i t ; ̺i∞)

∂ε∗
i

ε∗3
i t

]

,438

fhs(i,i ′)(̺∞,ϕ0) = −E(ε∗3
i ′t )E

[
∂ ln f (ε∗

i t ; ̺i∞)

∂ε∗
i

ε∗2
i t

]

and fhr(i ′)(̺∞,υ0) = E

[
∂ ln f (ε∗

i t ; ̺i∞)

∂̺′
i

ε∗
i t

]

.439

In turn, we end up with440

fhl(i ′)(̺∞,ϕ0) = E(ε∗3
i t ), fhs(i,i ′)(̺∞,ϕ0) = −E

[
∂ ln f (ε∗

i t ; ̺i∞)

∂ε∗
i

ε∗3
i t

]

,441

fhs(i ′,i)(̺∞,ϕ0 = E(ε∗4
i t ), fhs(i ′,i ′)(̺∞,ϕ0) = −E[ε∗3

i t ]E

[
∂ ln f (ε∗

i ′t ; ̺i ′∞)

∂ε∗
i ′

ε∗2
i ′t

]

442

and443

fhr(i ′)(̺∞,υ0) = E(ε∗3
i t )E

[
∂ ln f (ε∗

i ′t ; ̺i ′∞)

∂̺′
i ′

ε∗
i ′t

]

444

for the covariances of the co-kurtosis terms E(ε∗3
i t ε∗

i ′t ) with the scores.445

In contrast, the only nonzero covariance of the co-kurtosis influence functions446

E(ε∗
i tε

∗
i ′tε

∗2
i ′′t ) with the scores will be fhs(i,i ′)(̺∞,ϕ0) = 1 when i ′ �= i .447

Finally, all the covariances of the scores with E(ε∗
i tε

∗
i ′tε

∗
i ′′tε

∗
i ′′′t ) will be 0 too.448

4.3 Combining our tests449

Interestingly, we can use the expressions previously derived to prove that under450

the joint null hypothesis of mutually independent shocks and the normality of one of451

them, the two separate tests that we have discussed in Sects. 4.1 and 4.2 are asymp-452

totically independent, so effectively the joint test would simply be the sum of those453

two components.454

In addition, we can also prove that a test that jointly assessed the independence455

and normality of all the shocks would be asymptotically equivalent under the null456

to a multivariate Hermite-based test of multivariate normality [see Amengual et al.457

(2021a)] applied to the reduced form residuals once one eliminates the moment condi-458

tion related to the covariance of the shocks, whose asymptotic variance when evaluated459

at the PMLEs would be zero under the null.460
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5 Monte Carlo analysis461

In this section, we assess the finite sample size and power of the normality and indepen-462

dence tests discussed in Sects. 4.1 and 4.2 by means of several Monte Carlo simulation463

exercises. In addition, we provide some evidence on the effects that dependence across464

shocks induces on the estimators of the impact multipliers.465

5.1 Design and computational details466

For the sake of brevity, we focus on the bivariate case in the main text.7Specifically,467

we generate samples of size T from the following bivariate static process468

(

y1t

y2t

)

=
(

τ1

τ2

)

+
(

c11 c12

c21 c22

)(

ε∗
1t

ε∗
2t

)

(26)469

with τ1 = 1, τ2 = −1, c11 = 1, c12 = .5, c21 = 0 and c22 = 2. However, our PML470

estimation procedure does not exploit the restriction that the loading matrix of the471

shocks is upper triangular. Importantly, given that we can easily prove from (4) that472

the estimated shocks are numerically invariant to affine transformations of the y’s, and473

that the same is true of the different test statistics, the results that we report below do474

not depend on our choice of τ and C .475

We consider both T = 250, which is realistic in most macroapplications with476

monthly or quarterly data, and T = 1000, which is representative of financial appli-477

cations with daily data. The precise DGPs we consider for the shocks are described in478

Sect. 5.1.2.479

5.1.1 Estimation details480

To estimate the parameters of the model above, we assume that ε∗
1t and ε∗

2t follow481

two serially and cross-sectionally independent standardised discrete mixture of two482

normals, or ε∗
i t ∼ DM N (δi , κi , λi ) for short, so that483

ε∗
i t =

{

N [µ∗
1(̺i ), σ

∗2
1 (̺i )] with probability λi

N [µ∗
2(̺i ), σ

∗2
2 (̺i )] with probability 1 − λi

(27)484

with485

µ∗
1(̺i ) = δi (1 − λi ),486

µ∗
2(̺i ) = −δiλi ,487

σ ∗2
1 (̺i ) =

1 − λi (1 − λi )δ
2
i

λi + (1 − λi )κi

,488

σ ∗2
2 (̺i ) = κiσ

∗2
1 (̺i ),489

7 Nevertheless, we include simulation results for a trivariate model in “Appendix C”.
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and ̺i = (δi , κi , λi )
′. Hence, we can interpret κi as the ratio of the two variances and490

δi as the parameter that regulates the distance between the means of the two underlying491

components.8492

As a consequence, the contribution of observation t to pseudo-log-likelihood func-493

tion (4) will be494

l[ε∗
i t (θ); ̺i ] = ln{λi · φ[ε∗

i t (θ);µ∗
1(̺i ), σ

∗2
1 (̺i )] + (1 − λi ) · φ[ε∗

i t (θ);495

µ∗
2(̺i ), σ

∗2
2 (̺i )]},496

where φ(ε;µ, σ 2) denotes the probability density function of a Gaussian random497

variable with mean µ and variance σ 2 evaluated at ε. Importantly, we maximise the498

log-likelihood with respect to the two elements of τ , the four elements of C and the499

six shape parameters subject to the nonlinear constraint δ2
i < λ−1

i (1 − λi )
−1 , which500

we impose to guarantee the strict positivity of σ ∗2
1 (̺i ). Without loss of generality, we501

also restrict κi ∈ (0, 1] as a way of labelling the components, which in turn ensures502

the strict positivity of σ ∗2
2 (̺i ). Finally, we impose λi ∈ (0, 1) to avoid degenerate503

mixtures.9504

We maximise the log-likelihood subject to these three constraints on the shape505

parameters using a derivative-based quasi-Newton algorithm, which converges506

quadratically in the neighbourhood of the optimum. To exploit this property, we start507

the iterations by obtaining consistent initial estimators of τ and C , τ F I C A and C F I C A508

say, using the FastICA algorithm of G ävert, Hurri, Särelä, and Hyvärinen.10In addi-509

tion, we obtain initial values of the shape parameters of each shock by performing 20510

iterations11of the expectation maximisation (EM) algorithm in Dempster et al. (1977)511

on each of the elements of ε∗
t,F I C A = C

−1

F I C A

(

yt − τ̄ F I C A

)

.512

As we mentioned in Sect. 2.2, Assumption 1 only guarantees the identification of513

C up to sign changes and column permutations. Although in empirical applications514

a researcher would carefully chose the appropriate ordering and interpretation of the515

structural shocks, this leeway may have severe consequences when analysing Monte516

Carlo results. For that reason, we systematically choose a unique global maximum517

from the different observationally equivalent permutations and sign changes of the518

columns of the matrix C using the selection procedure suggested by Ilmonen and519

Paindaveine (2011) and adopted by Lanne et al. (2017). In addition, we impose that520

diag(C) is positive by simply changing the sign of all the elements of the relevant521

columns. Naturally, we apply the same changes to the shape parameters estimates and522

the sign of δi .523

8 We can trivially extend this procedure to three or more components if we replace the normal random

variable in the first branch of (27 ) by a k-component normal mixture with mean and variance given by

µ∗
1(̺) and σ∗2

1 (̺), respectively, so that the resulting random variable will be a (k +1) -component Gaussian

mixture with zero mean and unit variance.

9 Specifically, we impose κi ∈ [κ, 1] with κ = .0001, and λi ∈ [λ, λ] with λ = 2/T and λ = 1 − 2/T .

10 See Hyvärinen (1999) and https://research.ics.aalto.fi/ica/fastica/ for details on the FastICA package.

11 As is well known, the EM algorithm progresses very quickly in early iterations but tends to slow down

significantly as it gets close to the optimum. After some experimentation, we found that 20 iterations achieve

the right balance between CPU time and convergence of the parameters.
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5.1.2 DGPs under the null and the alternative524

The four bivariate DGPs for the standardised shocks that we consider under the null525

of independence are:526

dgp 1: A normal distribution and a discrete mixture of two normals with kurtosis527

coefficient 4 and skewness coefficients equal to −.5, i.e. ε∗
1t ∼ N (0, 1) and528

ε∗
2t ∼ DM N (−.859, .386, 1/5).529

dgp 1d: The Var(1) model530

(

y1t

y2t

)

=
(

τ1

τ2

)

+
(

1/2 1/4

0 1/3

)(

y1t−1

y2t−1

)

+
(

c11 c12

c21 c22

)(

ε∗
1t

ε∗
2t

)

531

with exactly the same shocks and values of τ and C as in dgp 1.12
532

dgp 2: Independent discrete mixtures of two normals with kurtosis coefficient 4533

and skewness coefficients equal to .5 and −.5, respectively. In other words,534

ε∗
1t ∼ DM N (−.859, .386, 1/5) and ε∗

2t ∼ DM N (.859, .386, 1/5).535

dgp 3: A Student t with 10 degrees of freedom (and kurtosis coefficient equal to 4),536

and an asymmetric t with kurtosis and skewness coefficients equal to 4 and537

−.5, respectively, so that β = −1.354 and ν = 18.718 in the notation of538

Mencía and Sentana (2012).539

The left panels of Fig. 1a–c display the density functions of these distributions over540

a range of ±4 standard deviations with the standard normal as a benchmark, while the541

right panels zoom in on the left-tail.542

In turn, under the alternative of cross-sectionally dependent shocks we simulate543

from the following three standardised joint distributions:544

dgp 4: Bivariate Student t with 6 degrees of freedom.545

dgp 5: Bivariate asymmetric t with skewness vector β = −5ℓ2 and degrees of free-546

dom parameter ν = 16 [see Mencía and Sentana (2012) for details].547

dgp 6: Bivariate mixture of two zero-mean normal vectors with covariance matrices548

�1 =
(

1/[λ + κ1(1 − λ)] 0

0 1/[λ + κ2(1 − λ)]

)

,549

�2 =
(

κ1/[λ + κ1(1 − λ)] 0

0 κ2/[λ + κ2(1 − λ)]

)

,550

which we denote by DM NL L(κ1, κ2, λ) [see Lanne and Lütkepohl (2010)551

for details]. Specifically, we set κ1 = 0.1, κ2 = 0.2 and λ = 1/5.552

The left panels of Fig. 2 display the joint densities for these distributions, while553

their contours are presented in the right panels.554

To gauge the finite sample size and power of our proposed independence tests, we555

generate 20, 000 samples for each of the designs under the null and 5000 for those556

12 Given that Monte Carlo simulations involving a regular bootstrap are very costly in terms of CPU time,

we have only compared the results of a Var(1) with those of a static model for dgp 1.
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Fig. 1 Univariate densities of the independent shocks. Notes: dashed lines represent the standard normal

distribution. a Plots a standardised discrete mixture of two normals with skewness and kurtosis coefficients

of −.5 and 4, respectively (with parameters δ = −.859, κ = .386 and λ = 1/5); b Plots a standardised

symmetric Student t with the same kurtosis (i.e. 10 degrees of freedom), while c plots a standardised

asymmetric t with skewness and kurtosis as the one in (a) [i.e. with β = −1.354 and ν = 18.718, see

Mencía and Sentana (2012) for details]
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Fig. 2 Densities and contours of the bivariate distributions under the alternative hypotheses. Notes: a, b plot

a bivariate Student t with 6 degrees of freedom; c, d a standardised bivariate asymmetric t with β = −5ℓN

and ν = 16 [see Mencía and Sentana (2012) for details], while e, f plot a standardised mixture of two

bivariate normals with joint mixing Bernoulli with λ = 1/5 and scale parameters κ1 = .1 and κ2 = .2

[see Sect. 5.1.2 and Lanne and Lütkepohl (2010) for details]

under the alternative. Additionally, we evaluate the small sample size and power of557

the normality tests presented in Sect. 4.1 using the results from the simulation designs558

dgp 1 and 1d (null), and dgp 2 and dgp 3 (alternative).559
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5.1.3 Bootstrap procedures560

The theoretical results in Beran (1988) imply that if the usual Gaussian asymptotic561

approximation provides a reliable guide to the finite sample distribution of the sample562

version of the moments being tested, the bootstrapped critical values should not only563

be valid, but also their errors should be of a lower order of magnitude under additional564

regularity conditions that guarantee the validity of a higher-order Edgeworth expan-565

sion. 13For that reason, we also analyse the performance of applying the bootstrap to566

the testing procedures we have described in Sects. 4.1 and 4.2.567

In the case of our tests for independence, for each Monte Carlo sample, we can568

easily generate another Nboot bootstrap samples of size T that impose the null with569

probability approaching 1 as T increases as follows. 14First, we generate N T draws570

Ris from a discrete uniform distribution between 1 and T , which we then use to571

construct572

ỹs = τ̂ T + ĈT ε̃∗
s ,573

where ε̃∗
is = ε̂∗

i Ris
and ε̂

∗
t = ε∗

t (θ̂T ) = Ĉ
−1

T

(

yt − τ̂ T

)

are the estimated residuals in574

any given sample.575

As for the normality tests, whose null hypothesis is that a single shock ε∗
i t is Gaus-576

sian, we adopt a partially parametric resampling scheme in which the draws of the i th
577

shock ε̃∗
is are independently simulated from a N (0, 1) distribution, while the draws for578

the remaining shocks ε̃∗
ks (k �= i) are obtained nonparametrically as in the previous579

paragraph.580

Although these bootstrap procedures are simple and fast for any given sample, they581

quickly become prohibitively expensive in a Monte Carlo exercise as T increases.582

For this reason, for the designs with T = 1000 we rely on the warp-speed method of583

Giacomini et al. (2013).584

13 Therefore, if the true shocks had unbounded variance, the bootstrap would not work, but neither would

the asymptotic approximation.

14 To see this, notice that under the null,

E

(
∏N

i=1
ε̃
∗ ji
is

)

=
∏N

i=1
E(ε∗ ji

is ),

while under the alternative,

E

(
∏N

i=1
ε̃
∗ ji
is

)

= T − 1

T

∏N

i=1
E(ε∗ ji

is ) + 1

T
E

(
∏N

i=1
ε
∗ ji
is

)

where the second term in the right-hand side accounts for the probability of sampling contemporaneous

residuals in a sample of size T . Clearly, the second expression converges to the first one as T goes to infinity.
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5.2 Simulation results585

5.2.1 Testing normality586

Table 1 reports Monte Carlo rejection rates of the normality tests proposed in Sect. 4.1587

for dgp 1, 1d, 2 and 3. As can be seen, the null of normality is correctly rejected a588

large number of times when it does not hold, even in samples of length 250. The only589

possible exception is the skewness component of the Jarque-Bera test when applied590

to the symmetric Student t shock in dgp 3. Given that the population third moment is591

zero in this case, the only source of power is the fact that the sample variability of H3592

is larger for this shock than its theoretical value under Gaussianity.593

On the other hand, the first three rows of the panels dgp 1 and 1d, which are the594

ones with a Gaussian shock, show that the normality tests tend to be oversized at595

the usual nominal levels, especially for samples of length 250.15For that reason, we596

generate NBoot = 399 bootstrap samples at each Monte Carlo replication, as described597

in Sect. 5.1.3. Table 2 shows that the standard bootstrap version of our tests is pretty598

accurate for both the third and fourth moment tests. Unlike what we observed in599

Table 1, though, the size-adjusted power is slightly lower for dgp 1d than for dgp 1.600

However, as mentioned at the end of Sect. 4.1, researches may only get a reliable601

guide to the validity of Assumption 1 by looking at the normality tests for all the602

individual shocks, the objective being to get at least N − 1 rejections. To shed some603

light on this issue, in Table 3 we report contingency tables which fully characterise604

the extent to which simultaneous rejections of the individual normality tests occur. As605

can be seen, our proposed normality tests tend to be rather informative when used in606

this way.607

5.2.2 Testing independence608

In Tables 4 (T = 250) and 5 (T = 1000) we report the Monte Carlo rejection rates of609

the tests we have proposed in Sect. 4.2 under the null of independence. Specifically, we610

look at the second, third and fourth moment individual tests in mcv[ε∗
t (θ)], mcs[ε∗

t (θ)]611

and mck[ε∗
t (θ)], and also at the joint tests for the two co-skewness moments, the612

three co-kurtosis moments and the combined six moments, including the correlation613

between the shocks. The left panels of those tables report rejection rates using asymp-614

totic critical values, while the right panels show the bootstrap-based ones for T = 250615

and the warp-speed bootstrap-based ones for T = 1000.16
616

We can see in Table 4 some small to moderate finite sample size distortion when617

T = 250, although in several cases they are corrected by the bootstrap. The only618

exceptions seem to be dgp 1 and 1d, in which some small distortions remain even619

with this procedure. Given that in these designs there is only one non-Gaussian shock,620

a plausible explanation is that the identification of C may be weaker, a conjecture we621

15 Given 20,000 Monte Carlo replications, the 95% asymptotic confidence intervals for the Monte Carlo

rejection probabilities under the null are (.86,1.14), (4.70,5.30) and (9.58,10.42) at the 1, 5 and 10% levels,

respectively.

16 All our i .i .d. designs are such that the individual moment tests converge in distribution to a χ2
1 random

variable, and the joint ones to χ2
2 , χ2

3 and χ2
6 variables, respectively.
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Table 1 Monte Carlo size and power of normality tests

Nominal size Asymptotic critical values

Sample size T = 250 Sample size T = 1000

10% 5% 1% 10% 5% 1%

dgp 1—Shocks: ε∗
1t normal & ε∗

2t DMN

H3(ε∗
1t

) 13.58 7.70 2.45 11.03 5.96 1.32

H4(ε∗
1t

) 12.37 6.86 2.85 10.38 5.32 1.38

H3(ε∗
1t ) & H4(ε∗

1t ) 13.03 8.17 3.67 10.56 5.76 1.67

H3(ε∗
2t ) 83.40 77.93 64.27 99.93 99.88 99.50

H4(ε∗
2t ) 70.78 64.44 51.80 99.26 98.79 96.80

H3(ε∗
2t ) & H4(ε∗

2t ) 85.73 81.33 71.52 99.95 99.94 99.90

dgp 1d Var(1)—Shocks: ε∗
1t normal & ε∗

2t DMN

H3(ε∗
1t

) 15.08 8.83 2.78 11.15 5.65 1.19

H4(ε∗
1t ) 13.28 7.47 2.94 10.82 5.62 1.50

H3(ε∗
1t ) & H4(ε∗

1t ) 14.72 8.96 4.07 11.02 5.91 1.71

H3(ε∗
2t ) 82.51 77.12 63.70 99.91 99.86 99.60

H4(ε∗
2t ) 70.17 63.90 51.70 99.29 98.73 96.84

H3(ε∗
2t ) & H4(ε∗

2t ) 85.33 80.75 70.99 99.96 99.94 99.89

dgp 2—Shocks: ε∗
1t DMN & ε∗

2t DMN

H3(ε∗
1t ) 84.36 78.73 64.33 99.88 99.81 99.39

H4(ε∗
1t ) 70.53 64.07 51.13 99.22 98.63 95.84

H3(ε∗
1t ) & H4(ε∗

1t ) 86.54 81.92 71.58 99.98 99.95 99.77

H3(ε∗
2t ) 85.14 79.63 65.82 99.92 99.84 99.50

H4(ε∗
2t ) 70.86 64.31 51.46 99.41 98.81 95.97

H3(ε∗
2t

) & H4(ε∗
2t

) 87.34 82.88 72.26 100.00 99.98 99.82

dgp 3—Shocks: ε∗
1t asymmetric t & ε∗

2t Student t

H3(ε∗
1t ) 84.93 79.50 65.37 99.98 99.92 99.76

H4(ε∗
1t ) 58.58 52.38 42.24 95.10 93.04 87.73

H3(ε∗
1t ) & H4(ε∗

1t ) 82.72 77.21 65.27 99.97 99.91 99.69

H3(ε∗
2t ) 33.97 25.62 14.52 36.43 28.41 16.68

H4(ε∗
2t ) 60.68 54.21 42.13 96.98 95.35 90.70

H3(ε∗
2t

) & H4(ε∗
2t

) 60.83 54.14 42.38 95.77 93.85 88.56

Monte Carlo empirical rejection rates of normality tests; 20,000 replications. DMN denotes discrete mixture

of two normals. Details on the data generating processes: dgp 1 and 1d, ε∗
1t ∼ N (0, 1) and ε∗

2t ∼
DM N (−.859, .386, 1/5); dgp 2, ε∗

1t ∼ DM N (−.859, .386, 1/5) and ε∗
2t ∼ DM N (.859, .386, 1/5);

and dgp 3, ε∗
1t

∼ At(−1.354, 18.718) and ε∗
2t

∼ t(10) [see Mencía and Sentana (2012) for details].

Asymptotic critical values: H3(·) ∼ χ2
1 , H4(·) ∼ χ2

1 and H3(·) & H4(·) ∼ χ2
2

will revisit in the next section. For the other DGPs, the results in Table 4 clearly show622

that the usual bootstrap version of the tests, which is the relevant one in empirical623

applications, has much better size properties.624
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Table 3 Contingency tables of the normality test based on H3(ε∗
i t

) & H4(ε∗
i t

)

Sample Size T = 250 Sample Size T = 1000

Bootstrap (399 samples) Warp-speed bootstrap

dgp 1—Shocks: ε∗
1t normal & ε∗

2t DMN

ε∗
2t

(Alt.) ε∗
2t

(Alt.)

Yes No Yes No

ε∗
1t Yes 2.62 2.08 4.70 ε∗

1t Yes 5.01 0.04 5.05

(Null) No 73.19 22.11 95.30 (Null) No 94.92 0.03 94.95

75.81 24.19 99.93 0.07

dgp 1d Var(1)—Shocks: ε∗
1t

normal & ε∗
2t

DMN

ε∗
2t (Alt.) ε∗

2t (Alt.)

Yes No Yes No

ε∗
1t

Yes 2.27 2.04 4.31 ε∗
1t

Yes 4.43 0.05 4.48

(Null) No 70.47 25.23 95.69 (Null) No 95.48 0.04 95.52

72.73 27.27 99.91 0.09

dgp 2—Shocks: ε∗
1t DMN & ε∗

2t DMN

ε∗
2t

(Alt.) ε∗
2t

(Alt.)

Yes No Yes No

ε∗
1t Yes 55.89 18.40 74.29 ε∗

1t Yes 99.94 0.02 99.96

(Alt.) No 18.97 6.74 25.71 (Alt.) No 0.04 0.00 0.04

74.86 25.14 99.98 0.02

dgp 3—Shocks: ε∗
1t

asymmetric t & ε∗
2t

Student t

ε∗
2t (Alt.) ε∗

2t (Alt.)

Yes No Yes No

ε∗
1t Yes 28.07 34.51 62.58 ε∗

1t Yes 92.97 6.69 99.66

(Alt.) No 17.74 19.68 37.42 (Alt.) No 0.33 0.01 0.34

45.81 54.19 93.30 6.70

Monte Carlo empirical rejection rates of normality tests; 20,000 replications. Yes/No refers to rejections of

the Gaussian null. DMN denotes discrete mixture of two normals. Details on the data generating processes:

dgp 1 and 1d, ε∗
1t ∼ N (0, 1) and ε∗

2t ∼ DM N (−.859, .386, 1/5); dgp 2, ε∗
1t ∼ DM N (−.859, .386, 1/5)

and ε∗
2t

∼ DM N (.859, .386, 1/5); and dgp 3, ε∗
1t

∼ At(−1.354, 18.718) and ε∗
2t

∼ t(10) [see Mencía

and Sentana (2012) for details]. We describe the sampling procedure we use to implement both the standard

bootstrap and Giacomini et al. (2013)’s warp-speed bootstrap in Sect. 5.1.3

As can be seen in Table 5, finite sample sizes improve considerably for T =625

1000. Indeed, the bootstrap versions of the tests seem unnecessary for this sample626

size because the empirical rejection rates based on asymptotic critical values become627

generally very close to the nominal ones, though the warp-speed version performs628

comparably well.629

123

SPI Journal: 13209 Article No.: 0247 TYPESET DISK LE CP Disp.:2021/10/30 Pages: 46 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

SERIEs

T
a
b
le
4

M
o
n
te

C
ar

lo
si

ze
o
f

in
d
ep

en
d
en

ce
m

o
m

en
t

te
st

s:
sa

m
p
le

si
ze

T
=

2
5

0

A
sy

m
p
to

ti
c

cr
it

ic
al

v
al

u
es

B
o
o
ts

tr
ap

(3
9
9

sa
m

p
le

s)
cr

it
ic

al
v
al

u
es

A
sy

m
p
to

ti
c

cr
it

ic
al

v
al

u
es

B
o
o
ts

tr
ap

(3
9
9

sa
m

p
le

s)
cr

it
ic

al
v
al

u
es

N
o

m
in

al
si

ze
1

0
%

5
%

1
%

1
0

%
5

%
1

%
1

0
%

5
%

1
%

1
0

%
5

%
1

%

d
g

p
1

—
S

h
o

ck
s:

ε
∗ 1
t

n
o

rm
al

&
ε
∗ 2
t

D
M

N
d

g
p

1
d

V
a

r
(1

)—
S

h
o

ck
s:

ε
∗ 1
t

n
o

rm
al

&
ε
∗ 2
t

D
M

N

E
(ε

∗ 1
tε

∗ 2
t)

7
.1

2
3

.1
6

0
.4

7
1

0
.1

1
4

.8
3

0
.8

9
6

.8
2

3
.2

0
0

.4
0

9
.1

3
4

.6
8

0
.8

7

E
(ε

∗2 1
t
ε
∗ 2
t)

7
.8

1
3

.4
9

0
.5

5
8

.0
9

3
.8

5
0

.6
5

7
.5

5
3

.4
9

0
.4

6
9

.1
2

4
.3

8
0

.7
2

E
(ε

∗ 1
tε

∗2 2
t
)

1
0

.0
8

4
.9

5
0

.8
6

1
0

.0
2

4
.9

2
0

.9
7

1
0

.3
9

5
.1

8
1

.0
3

1
1

.2
0

5
.7

9
1

.3
9

E
(ε

∗3 1
t
ε
∗ 2
t)

6
.2

6
2

.9
4

0
.5

5
8

.4
3

4
.0

8
0

.8
1

6
.4

6
2

.8
8

0
.5

3
8

.5
1

4
.0

5
0

.8
2

E
(ε

∗ 1
tε

∗3 2
t
)

8
.4

5
3

.9
4

0
.6

7
1

0
.1

5
4

.9
8

0
.8

8
7

.0
4

3
.1

1
0

.6
7

9
.5

3
4

.8
1

0
.9

2

E
(ε

∗2 1
t
ε
∗2 2
t
)

6
.5

5
2

.7
2

0
.7

6
9

.3
5

4
.4

4
0

.8
7

8
.5

2
4

.0
2

0
.6

7
1

0
.4

1
5

.2
9

0
.9

8

C
o

-s
k
ew

n
es

s
8

.0
5

3
.7

4
0

.7
2

8
.4

5
3

.8
9

0
.7

3
8

.3
0

3
.9

8
0

.7
4

1
0

.0
5

4
.8

7
1

.0
5

C
o
-k

u
rt

o
si

s
5

.8
2

2
.8

6
0

.9
2

8
.4

2
3

.9
9

0
.8

9
5

.8
8

3
.0

9
0

.9
1

9
.1

2
4

.5
0

0
.9

9

Jo
in

t
te

st
5

.5
8

3
.0

6
0

.9
2

7
.5

0
3

.7
1

0
.8

3
5

.7
2

3
.0

5
0

.7
8

8
.1

5
4

.0
6

0
.8

0

d
g

p
2

—
S

h
o

ck
s:

ε
∗ 1
t

D
M

N
&

ε
∗ 2
t

D
M

N
d

g
p

3
—

S
h

o
ck

s:
ε
∗ 1
tas

y
m

m
et

ri
c

t
&

ε
∗ 2
t

S
tu

d
en

t
t

E
(ε

∗ 1
tε

∗ 2
t)

7
.5

1
3

.4
0

0
.6

0
1

0
.1

8
5

.1
3

0
.9

5
6

.5
1

2
.9

6
0

.4
8

9
.7

4
4

.6
7

0
.8

1

E
(ε

∗2 1
t
ε
∗ 2
t)

9
.5

5
5

.1
1

1
.3

1
1

0
.1

0
5

.1
8

1
.3

0
9

.8
1

5
.1

5
1

.1
1

1
0

.2
3

5
.3

8
1

.2
7

E
(ε

∗ 1
tε

∗2 2
t
)

9
.1

3
4

.3
2

0
.8

2
9

.9
6

4
.8

4
0

.8
6

8
.3

8
3

.9
6

0
.7

6
9

.0
5

4
.3

0
0

.7
9

E
(ε

∗3 1
t
ε
∗ 2
t)

7
.5

2
3

.7
5

0
.8

8
9

.6
2

4
.8

6
0

.9
8

6
.6

9
3

.4
3

0
.8

4
9

.5
2

4
.7

8
1

.0
5

E
(ε

∗ 1
tε

∗3 2
t
)

7
.7

6
3

.8
5

0
.8

7
9

.8
9

4
.9

2
1

.0
0

7
.0

7
3

.3
0

0
.7

0
9

.3
5

4
.5

4
0

.8
7

E
(ε

∗2 1
t
ε
∗2 2
t
)

7
.4

8
3

.7
1

1
.2

3
9

.8
6

5
.0

8
1

.1
8

7
.0

8
3

.5
2

1
.2

9
1

0
.0

6
5

.1
3

1
.4

0

C
o

-s
k
ew

n
es

s
9

.5
8

5
.1

7
1

.4
6

1
0

.1
1

5
.2

9
1

.3
1

8
.8

7
4

.4
7

1
.0

4
9

.5
5

4
.7

6
1

.0
3

C
o

-k
u

rt
o

si
s

7
.1

3
4

.1
6

1
.5

5
1

0
.0

3
5

.1
6

1
.1

6
6

.2
9

3
.6

9
1

.4
7

9
.1

6
4

.7
2

1
.2

1

Jo
in

t
te

st
7

.7
1

4
.5

4
1

.8
1

9
.6

3
4

.7
8

1
.2

3
7

.0
7

4
.0

7
1

.5
7

9
.0

7
4

.7
3

1
.2

0

M
o
n
te

C
ar

lo
em

p
ir

ic
al

re
je

ct
io

n
ra

te
s

o
f

in
d
ep

en
d
en

ce
te

st
s;

2
0
,0

0
0

re
p
li

ca
ti

o
n
s.

D
M

N
d
en

o
te

s
d
is

cr
et

e
m

ix
tu

re
o

f
tw

o
n
o
rm

al
s.

D
et

ai
ls

o
n

th
e

d
at

a
g

en
er

at
in

g
p

ro
ce

ss
es

:
d

g
p

1
,
ε
∗ 1
t

∼
D

M
N

(−
.8

5
9
,
.3

8
6
,
1
/
5
)

an
d

ε
∗ 2
t

∼
D

M
N

(.
8

5
9
,
.3

8
6
,
1
/
5
);

d
g

p
2

,
ε
∗ 1
t

∼
N

(0
,
1
)

an
d

ε
∗ 2
t

∼
D

M
N

(−
.8

5
9
,
.3

8
6
,
1
/
5
);

an
d

d
g

p
3

,
ε
∗ 1
t

∼
A

t(
−

1
.3

5
4
,
1

8
.7

1
8
)

an
d

ε
∗ 2
t

∼
t(

1
0
)

[s
ee

M
en

cí
a

an
d

S
en

ta
n
a

( 2
0

1
2

)
fo

r
d
et

ai
ls

].
W

e
p
re

se
n
t

th
e

as
y
m

p
to

ti
c

d
is

tr
ib

u
ti

o
n

o
f

th
e

te
st

st
at

is
ti

cs
in

S
ec

t.
5
.2

.2
an

d
d

es
cr

ib
e

th
e

sa
m

p
li

n
g

p
ro

ce
d

u
re

w
e

u
se

to
im

p
le

m
en

t
th

e
b
o
o
ts

tr
ap

in
S

ec
t.

5
.1

.3

123

SPI Journal: 13209 Article No.: 0247 TYPESET DISK LE CP Disp.:2021/10/30 Pages: 46 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

SERIEs

T
a
b
le
5

M
o
n
te

C
ar

lo
si

ze
o
f

in
d
ep

en
d
en

ce
m

o
m

en
t

te
st

s:
sa

m
p
le

si
ze

T
=

1
0

0
0

A
sy

m
p
to

ti
c

cr
it

ic
al

v
al

u
es

W
ar

p
-s

p
ee

d
b
o
o
ts

tr
ap

cr
it

ic
al

v
al

u
es

A
sy

m
p
to

ti
c

cr
it

ic
al

v
al

u
es

W
ar

p
-s

p
ee

d
b
o
o
ts

tr
ap

cr
it

ic
al

v
al

u
es

N
o

m
in

al
si

ze
1

0
%

5
%

1
%

1
0

%
5

%
1

%
1

0
%

5
%

1
%

1
0

%
5

%
1

%

d
g

p
1

—
S

h
o

ck
s:

ε
∗ 1
t

n
o

rm
al

&
ε
∗ 2
t

D
M

N
d

g
p

1
d

V
a

r
(1

)—
S

h
o

ck
s:

ε
∗ 1
t

n
o

rm
al

&
ε
∗ 2
t

D
M

N

E
(ε

∗ 1
tε

∗ 2
t)

9
.5

2
4

.5
2

0
.9

4
1

1
.1

3
5

.3
0

0
.8

3
9

.2
1

4
.4

4
0

.9
3

1
0

.0
0

5
.0

2
1

.0
6

E
(ε

∗2 1
t
ε
∗ 2
t)

9
.8

0
4

.7
7

0
.9

0
1

0
.0

6
4

.9
6

0
.7

8
9

.4
1

4
.5

6
0

.8
9

9
.9

5
5

.0
1

1
.0

1

E
(ε

∗ 1
tε

∗2 2
t
)

1
0

.6
3

5
.4

9
1

.0
6

1
0

.7
4

5
.3

3
0

.7
0

1
0

.3
4

5
.2

9
1

.2
1

1
0

.3
1

5
.3

8
1

.3
2

E
(ε

∗3 1
t
ε
∗ 2
t)

8
.9

5
4

.2
8

0
.7

7
9

.7
1

4
.9

6
0

.7
8

9
.0

8
4

.4
7

0
.9

2
1

0
.4

5
5

.3
1

1
.1

6

E
(ε

∗ 1
tε

∗3 2
t
)

1
0

.0
2

4
.9

8
1

.0
6

1
1

.1
2

5
.6

1
1

.0
7

9
.6

5
4

.4
3

0
.8

1
1

0
.8

3
4

.9
9

0
.9

7

E
(ε

∗2 1
t
ε
∗2 2
t
)

8
.8

8
4

.4
2

0
.8

8
9

.4
1

4
.7

2
0

.9
2

9
.8

9
4

.8
9

0
.9

7
1

0
.4

3
5

.2
5

1
.0

9

C
o

-s
k
ew

n
es

s
9

.9
0

4
.9

0
0

.9
3

1
0

.3
3

4
.8

3
0

.5
3

9
.6

0
5

.1
1

1
.0

6
1

0
.0

3
5

.6
1

1
.1

6

C
o

-k
u

rt
o

si
s

8
.6

5
4

.4
0

1
.1

0
1

0
.1

5
4

.9
3

0
.9

6
8

.7
0

4
.4

0
1

.0
7

1
0

.4
0

5
.3

7
1

.1
7

Jo
in

t
te

st
8

.4
3

4
.2

6
1

.0
7

1
0

.0
1

4
.6

7
0

.7
2

8
.4

6
4

.3
3

1
.1

1
1

0
.3

7
5

.2
6

1
.0

7

d
g

p
2

—
S

h
o

ck
s:

ε
∗ 1
t

D
M

N
&

ε
∗ 2
t

D
M

N
d

g
p

3
—

S
h

o
ck

s:
ε
∗ 1
tas

y
m

m
et

ri
c

t
&

ε
∗ 2
t

S
tu

d
en

t
t

E
(ε

∗ 1
tε

∗ 2
t)

9
.4

1
4

.7
8

0
.9

4
1

0
.1

6
5

.0
4

0
.9

8
9

.2
8

4
.5

0
0

.9
0

1
0

.8
4

5
.5

4
1

.1
8

E
(ε

∗2 1
t
ε
∗ 2
t)

9
.6

5
4

.6
9

0
.9

4
1

0
.2

7
5

.1
2

1
.1

4
1

0
.2

0
5

.1
5

1
.2

6
1

0
.9

4
5

.5
2

1
.2

1

E
(ε

∗ 1
tε

∗2 2
t
)

9
.5

8
4

.5
5

0
.9

3
1

0
.4

9
4

.9
4

1
.1

6
9

.7
8

5
.0

6
0

.9
7

1
0

.3
6

5
.1

6
0

.8
9

E
(ε

∗3 1
t
ε
∗ 2
t)

9
.1

0
4

.8
7

1
.1

1
9

.9
3

5
.0

5
1

.0
0

9
.1

6
4

.7
1

1
.1

4
1

0
.8

9
5

.2
6

1
.2

3

E
(ε

∗ 1
tε

∗3 2
t
)

9
.4

6
4

.8
1

1
.1

8
1

0
.4

4
5

.2
4

1
.1

4
9

.4
1

5
.1

0
1

.1
9

1
0

.5
4

5
.5

8
1

.1
2

E
(ε

∗2 1
t
ε
∗2 2
t
)

9
.0

1
4

.2
6

1
.0

5
1

0
.0

8
5

.0
7

0
.8

1
8

.2
9

4
.1

1
1

.2
7

9
.6

2
4

.7
2

1
.1

8

C
o

-s
k
ew

n
es

s
9

.3
4

4
.6

9
0

.9
7

1
0

.2
3

5
.2

3
1

.1
5

9
.7

6
5

.0
7

1
.2

9
1

0
.4

0
5

.2
9

1
.2

6

C
o

-k
u

rt
o

si
s

8
.9

6
4

.8
7

1
.5

1
1

0
.4

0
5

.0
1

1
.0

1
8

.6
6

4
.8

9
1

.7
3

1
0

.6
0

5
.6

2
1

.2
4

Jo
in

t
te

st
9

.0
5

5
.0

3
1

.5
8

1
0

.6
3

5
.3

0
1

.3
3

9
.1

8
5

.2
2

1
.7

4
1

1
.7

1
6

.0
2

1
.3

3

M
o
n
te

C
ar

lo
em

p
ir

ic
al

re
je

ct
io

n
ra

te
s

o
f

in
d
ep

en
d
en

ce
te

st
s;

2
0
,0

0
0

re
p
li

ca
ti

o
n
s.

D
M

N
d
en

o
te

s
d
is

cr
et

e
m

ix
tu

re
o

f
tw

o
n
o
rm

al
s.

D
et

ai
ls

o
n

th
e

d
at

a
g

en
er

at
in

g
p

ro
ce

ss
es

:
d

g
p

1
,
ε
∗ 1
t

∼
D

M
N

(−
.8

5
9
,
.3

8
6
,
1
/
5
)

an
d

ε
∗ 2
t

∼
D

M
N

(.
8

5
9
,
.3

8
6
,
1
/
5
);

d
g

p
2

,
ε
∗ 1
t

∼
N

(0
,
1
)

an
d

ε
∗ 2
t

∼
D

M
N

(−
.8

5
9
,
.3

8
6
,
1
/
5
);

an
d

d
g

p
3

,
ε
∗ 1
t

∼
A

t(
−

1
.3

5
4
,
1

8
.7

1
8
)

an
d

ε
∗ 2
t

∼
t(

1
0
)

[s
ee

M
en

cí
a

an
d

S
en

ta
n
a

( 2
0

1
2

)
fo

r
d
et

ai
ls

].
W

e
p
re

se
n
t

th
e

as
y
m

p
to

ti
c

d
is

tr
ib

u
ti

o
n

o
f

th
e

te
st

st
at

is
ti

cs
in

S
ec

t.
5
.2

.2
an

d
d

es
cr

ib
e

th
e

sa
m

p
li

n
g

p
ro

ce
d

u
re

w
e

u
se

to
im

p
le

m
en

t
G

ia
co

m
in

i
et

al
.

( 2
0

1
3

)’
s

w
ar

p
-s

p
ee

d
b
o
o
ts

tr
ap

in
S

ec
t.

5
.1

.3

123

SPI Journal: 13209 Article No.: 0247 TYPESET DISK LE CP Disp.:2021/10/30 Pages: 46 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

SERIEs

Table 6 Monte Carlo power of independence moment tests: sample size T = 250

Asymptotic critical values Bootstrap (399 samples) critical values

Nominal size 10% 5% 1% 10% 5% 1%

dgp 4—Joint Student t

E(ε∗
1t ε

∗
2t ) 6.90 3.32 0.68 10.80 5.36 1.28

E(ε∗2
1t ε∗

2t ) 9.80 5.10 1.10 11.42 6.16 1.22

E(ε∗
1t ε

∗2
2t ) 10.02 5.12 1.04 10.94 5.88 1.12

E(ε∗3
1t ε∗

2t ) 8.50 4.84 1.40 11.86 6.00 1.50

E(ε∗
1t ε

∗3
2t ) 8.92 5.18 1.70 11.80 6.66 1.84

E(ε∗2
1t ε∗2

2t ) 12.04 8.18 3.64 15.02 11.26 3.68

Co-skewness 9.98 5.06 1.26 11.64 5.60 1.38

Co-kurtosis 11.82 7.84 4.10 16.22 9.66 3.20

Joint test 11.80 8.08 4.44 15.12 9.32 3.34

dgp 5—Joint asymmetric t

E(ε∗
1t

ε∗
2t

) 16.00 9.18 3.44 19.90 12.60 4.58

E(ε∗2
1t

ε∗
2t

) 25.38 16.34 6.54 25.12 16.06 4.56

E(ε∗
1t

ε∗2
2t

) 19.64 12.54 4.58 20.54 12.80 4.56

E(ε∗3
1t ε∗

2t ) 14.46 9.68 3.52 16.94 11.02 3.56

E(ε∗
1t ε

∗3
2t ) 14.14 9.02 3.52 17.90 11.44 4.88

E(ε∗2
1t ε∗2

2t ) 15.42 10.84 5.60 18.80 13.16 5.12

Co-skewness 23.80 16.08 6.16 23.90 15.06 3.94

Co-kurtosis 16.56 11.82 5.98 21.20 13.70 5.50

Joint test 17.92 11.88 5.80 20.22 11.88 4.28

dgp 6—Lanne and Lütkepohl (2010)’s mixture

E(ε∗
1t

ε∗
2t

) 37.12 28.50 15.64 39.78 29.00 14.76

E(ε∗2
1t

ε∗
2t

) 25.26 17.34 7.80 26.44 18.16 6.50

E(ε∗
1t

ε∗2
2t

) 28.00 20.26 9.50 29.44 20.22 7.54

E(ε∗3
1t

ε∗
2t

) 28.48 21.00 10.92 30.90 20.48 7.46

E(ε∗
1t

ε∗3
2t

) 34.60 26.26 15.26 36.22 25.14 9.14

E(ε∗2
1t

ε∗2
2t

) 64.14 54.88 38.18 70.82 61.12 26.42

Co-skewness 33.16 24.48 13.32 35.06 23.58 7.72

Co-kurtosis 62.02 53.98 39.84 64.72 49.34 20.26

Joint test 67.02 58.78 43.84 67.02 52.42 22.28

Monte Carlo empirical rejection rates of independence tests; 5000 replications. Details on the data

generating processes: dgp 4, joint (standardised) Student t : (ε∗
1t , ε

∗
2t ) ∼ t(0, I2, 6); dgp 5,

(ε∗
1t , ε

∗
2t ) ∼ At(0, I2,−5ℓ2, 16) [see Mencía and Sentana (2012) for details]; and dgp 6, (ε∗

1t , ε
∗
2t ) ∼

DM NL L (.1, .2, 1/5) (see Sect. 5.1.2 for details). We present the asymptotic distribution of the test statis-

tics in Sect. 5.2.2 and describe the sampling procedure we use to implement Giacomini et al. (2013)’s

warp-speed bootstrap in Sect. 5.1.3
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Table 7 Monte Carlo power of independence moment tests: sample size T = 1000

Nominal size Asymptotic critical values Warp-speed bootstrap critical values

10% 5% 1% 10% 5% 1%

dgp 4—Joint Student t

E(ε∗
1t ε

∗
2t ) 15.72 10.04 2.82 17.36 11.26 3.30

E(ε∗2
1t ε∗

2t ) 16.02 9.10 2.86 16.32 9.82 2.86

E(ε∗
1t ε

∗2
2t ) 15.74 9.44 2.90 15.98 9.74 3.18

E(ε∗3
1t ε∗

2t ) 18.68 12.44 5.42 20.94 13.02 4.96

E(ε∗
1t ε

∗3
2t ) 19.30 12.42 4.94 20.14 12.78 4.48

E(ε∗2
1t ε∗2

2t ) 54.78 44.52 27.08 57.74 46.76 26.12

Co-skewness 18.26 11.22 3.76 18.82 11.34 3.72

Co-kurtosis 46.92 38.26 23.36 50.08 40.38 18.28

Joint test 44.50 35.36 21.40 48.50 37.06 16.22

dgp 5—Joint asymmetric t

E(ε∗
1t

ε∗
2t

) 84.52 81.52 75.24 84.94 81.72 74.14

E(ε∗2
1t

ε∗
2t

) 69.28 64.76 56.38 69.78 65.38 55.58

E(ε∗
1t

ε∗2
2t

) 98.72 98.28 96.98 98.72 98.24 96.62

E(ε∗3
1t ε∗

2t ) 56.36 50.28 40.08 57.54 50.08 39.96

E(ε∗
1t ε

∗3
2t ) 65.62 59.52 48.36 66.02 59.62 45.64

E(ε∗2
1t ε∗2

2t ) 88.42 84.16 74.32 90.48 85.66 67.64

Co-skewness 100.00 100.00 99.90 100.00 100.00 99.78

Co-kurtosis 87.32 83.16 74.40 88.00 82.36 66.22

Joint test 100.00 99.94 99.58 100.00 99.94 98.42

dgp 6—Lanne and Lütkepohl (2010)’s mixture

E(ε∗
1t

ε∗
2t

) 58.22 51.60 39.84 59.78 52.52 39.84

E(ε∗2
1t

ε∗
2t

) 29.00 20.16 9.72 29.88 20.50 9.12

E(ε∗
1t

ε∗2
2t

) 33.28 24.64 12.68 32.74 23.92 12.02

E(ε∗3
1t

ε∗
2t

) 46.70 38.44 26.34 47.42 37.76 23.24

E(ε∗
1t

ε∗3
2t

) 55.76 48.12 34.64 57.80 48.02 28.78

E(ε∗2
1t

ε∗2
2t

) 99.98 99.86 99.28 99.98 99.88 98.52

Co-skewness 40.46 30.70 16.82 40.76 29.68 14.82

Co-kurtosis 99.80 99.58 98.22 99.80 99.36 94.46

Joint test 99.48 99.08 97.64 99.42 98.68 92.22

Monte Carlo empirical rejection rates of independence tests; 5000 replications. Details on the data

generating processes: dgp 4, joint (standardised) Student t : (ε∗
1t , ε

∗
2t ) ∼ t(0, I2, 6); dgp 5,

(ε∗
1t , ε

∗
2t ) ∼ At(0, I2,−5ℓ2, 16) [see Mencía and Sentana (2012) for details]; and dgp 6, (ε∗

1t , ε
∗
2t ) ∼

DM NL L (.1, .2, 1/5) (see Sect. 5.1.2 for details). We present the asymptotic distribution of the test statis-

tics in Sect. 5.2.2 and describe the sampling procedure we use to implement Giacomini et al. (2013)’s

warp-speed bootstrap in Sect. 5.1.3
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Next, we assess the power of the independence tests for T = 250 and T = 1000630

in Tables 6 and 7, respectively. In this respect, we find that the power of our tests631

against dgp 4 is disappointingly low. A possible explanation is that when the true632

joint distribution is a symmetric Student t , the dependence between the components633

is mostly visible in the tails of the distribution. On the other hand, power is mostly634

coming from co-skewness component (20) in the case of the joint asymmetric t . Still,635

the test based on the covariance of shocks (19) is also very powerful. Finally, the co-636

kurtosis test based on (22) is the most powerful single moment test under the Lanne and637

Lütkepohl (2010) alternative in dgp 6, with the joint tests that include this moment638

inheriting its power. Nevertheless, the test based on second moment (19) also has639

non-negligible power for this design.640

In summary, although the rejection rates naturally depend on the type of departure641

from the null and the specific influence function used for testing, the joint test that642

considers all moments at once seems to be a winner regardless of the sample size.643

5.3 Structural parameters estimates644

Table 8 reports summary statistics for the Monte Carlo distribution of the PMLEs of645

the structural parameters. The first thing we would like to highlight is when one of the646

shocks is Gaussian, the sampling variability and the finite sample bias are noticeably647

larger than when both shocks are non-Gaussian but independent, which is in line with648

the conjecture we expressed in the previous section. Still, even in that case the biases649

are usually small and often negligible. In addition, the Monte Carlo standard deviations650

of the estimators in Panel B are roughly half those in Panel A, as one would expect.651

The situation is completely different when the true shocks are cross-sectionally652

dependent. Failure of condition 2 in Assumption 1 results into significant biases,653

mostly in the off-diagonal terms of the impact multiplier matrix. In fact, the Monte654

Carlo variance of these estimators seems to increase with the sample size. In this655

respect, it is important to remember that the elements of the C matrix are no longer656

point identified when the joint distribution of the true shocks is either a symmetric657

or asymmetric Student t . This is confirmed by the fact that the bias of the estimators658

is lower for dgp 6, in which the rotations of the shocks are not observationally659

equivalent [see Lanne and Lütkepohl (2010)].660

6 Conclusions and directions for further research661

Given that the parametric identification of the structural shocks and their impact coef-662

ficients C in Svar (2) critically hinges on the validity of the identifying restrictions663

in Assumption 1, it would be desirable that empirical researchers estimating those664

models reported specification tests that checked those assumptions to increase the665

empirical credibility of their findings. For that reason, in this paper we propose simple666

specification tests for independent component analysis and structural vector autore-667

gressions with non-Gaussian shocks that check the normality of a single shock and the668

potential cross-sectional dependence among several of them. Our tests compare the669
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integer (product) moments of the shocks in the sample with their population counter-670

parts. Importantly, we explicitly consider the sampling variability resulting from using671

shocks computed with consistent parameter estimators. We study the finite sample size672

of our tests in several simulation exercises and discuss some bootstrap procedures. We673

also show that our tests have non-negligible power against a variety of empirically674

plausible alternatives.675

As we mentioned in introduction, there are many estimators for the parameters of676

static Ica model (1) in addition to the discrete mixture of normals-based PMLEs we677

have considered in this paper. For example, even within the same likelihood frame-678

work, Fiorentini and Sentana (2020) discuss two other consistent estimators of the679

conditional mean and variance parameters of the Svar in (2 ):680

1. The two-step procedure of Gouriéroux et al. (2017), which first estimates the681

reduced form parameters τ , a and σ L = vec(�L) by equation-by-equation OLS,682

and then the N (N −1)/2 free elements ω of the orthogonal rotation matrix Q in (3)683

mapping structural shocks and reduced form innovations by non-Gaussian PML.684

2. The two-step estimator in Fiorentini and Sentana (2019), which replaces the incon-685

sistent non-Gaussian PMLEs of τ and ψ by the sample means and standard686

deviations of pseudo-standardised shocks computed using âT and ĵT .687

Although the specifications tests that we have proposed in this paper could also be688

applied to shocks computed on the basis of these alternative estimators, the asymptotic689

covariance matrices that take into account their sampling variability will differ from the690

ones we have derived in this paper. Given that some researchers may prefer to use one691

of those two-step estimation methods, obtaining computationally simple expressions692

for the adjusted covariance matrix would provide a valuable addition to our results.693

In fact, the moment conditions that we consider for testing independence could694

form the basis of a GMM estimation procedure for the model parameters θ along695

the lines of Lanne and Luoto (2021), although with a larger set of third and fourth696

cross-moments. The overidentification restrictions tests obtained as a by-product of2 697

this procedure could be used as a specification test of the assumed independence-like698

restrictions.699

Our tests for normality tackle a single shock at a time. Although we could in700

principle simultaneously test the normality of two or more shocks by combining the701

corresponding normality tests, the implicit joint null hypothesis would violate the702

second identification condition in Assumption 1. The asymptotic distribution of such703

joint tests constitutes a very interesting topic for further research. In addition, we could704

formally study the limiting probability of finding N − 1 rejections of the univariate705

normality tests in those circumstances.706

Another important research topic would be the limiting behaviour of the PMLEs707

of θ when Assumption 1 does not hold, either because two or more of the shocks are708

Gaussian or because they are not independent.709

Finally, while the integer product moment tests for independence that we have710

considered are very intuitive, they may have little power against alternatives in which711

the dependence is mostly visible in certain regions of the domain of the random shocks.3 712

With this in mind, in Amengual et al. (2021b) we study moment tests that look at the713

product of nonlinear transformations of the shocks, such as I (qαi ≤ εi t ≤ qωi ), where714
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qαi and qωi are the α and ω quantiles of the marginal distribution of the i th shock (with715

0 ≤ α < ω ≤ 1), or I (kli ≤ εi t ≤ kui ), where kli < kui are some fixed values, or716

indeed εi t I (kli ≤ εi t ≤ kui ). Extending this approach in such a way that it leads to a717

consistent test of independence constitutes another promising research avenue.718

719

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which720

permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give721

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,722

and indicate if changes were made. The images or other third party material in this article are included723

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If724

material is not included in the article’s Creative Commons licence and your intended use is not permitted725

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the726

copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.727

A Proofs728

Proposition 1729

Under standard regularity conditions [see, e.g. Newey and McFadden (1994)], we can730

linearise the vector of influence functions underlying our tests around θ0 so that731

√
T

1

T

T
∑

t=1

m[ε∗
t (θ̂T )] =

√
T

1

T

T
∑

t=1

m[ε∗
t (θ0)] + 1

T

T
∑

t=1

∂m[ε∗
t (θ0)]

∂θ

√
T (θ̂T −θ0)732

+op(1)733

=
√

T
1

T

T
∑

t=1

m[ε∗
t (θ0)] + J (φ∞;ϕ0)

√
T (θ̂T −θ0) + op(1).734

But since735

√
T (θ̂T −θ0) = A−1(φ∞;ϕ0)

√
T

1

T

T
∑

t=1

sφt (φ0) + op(1),736

we can combine both expressions to write737

√
T

1

T

T
∑

t=1

m[ε∗
t (θ̂T )] =

√
T

1

T

T
∑

t=1

m[ε∗
t (θ0)] + J (φ∞;ϕ0)A

−1(φ∞;ϕ0)
√

T
1

T
738

×
T
∑

t=1

sφt (φ0) + op(1),739

whence the asymptotic distribution in the proposition follows. ⊓⊔740
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Proposition 2741

Fiorentini and Sentana (2021) prove in their “Appendix D” that742

∂ε∗
t (θ)

∂θ ′ = −{Z′
lt (θ) + [ε∗′

t (θ) ⊗ I N ]Z′
st (θ)},743

which in our case reduces to744

∂ε∗
t (θ)

∂θ ′ = −C−1
(

I N y′
t−1 ⊗ I N . . . y′

t−p ⊗ I N 0N×N 2

)

745

−[ε∗′
t (θ) ⊗ I N ](I N ⊗ C−1)

(

0N 2×N 0N 2×N 2 . . . 0N 2×N 2 I N 2

)

746

in view of (7) and (8). Therefore, it immediately follows that747

∂ε∗
t (θ)

∂τ ′ = −C−1and
∂ε∗

i t (θ)

∂τ ′ = −ci .,748

where749

C−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

c1.

...

ci .

...

cN .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.750

Similarly,751

∂ε∗
t (θ)

∂a′
j

= −( y′
t− j ⊗ C−1)and

∂ε∗
i t (θ)

∂a′
j

= −( y′
t− j ⊗ ci .) for j = 1, ..., p.752

Finally,753

∂ε∗
t (θ)

∂c′ = −[ε∗′
t (θ) ⊗ C−1] and

∂ε∗
i t (θ)

∂c′ = −[ε∗′
t (θ) ⊗ ci .].754

If we combine these expressions with the fact that755

∂mh[ε∗
t (θ)]

∂ε∗
i

= I (hi > 0)
hi

ε∗
i t

N
∏

i ′=1

ε
∗hi ′
i t ,756

we obtain the desired results. ⊓⊔757
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Proposition 3758

General expression (17) follows directly from the definition of the scores for θ and759

̺ in (5) and (6) and the law of iterated expectations after exploiting the fact that760

mh[ε∗
t (θ0)], elt (φ∞), elt (φ∞) and er t (φ∞) are i .i .d. processes with zero mean under761

our assumptions.762

In turn, the more detailed expressions exploit the cross-sectional independence of763

the shocks. For example, consider764

Fhl(̺∞,υ0) = cov

⎧

⎪
⎨

⎪
⎩

mh(ε∗
t ),

⎡

⎢
⎣

∂ ln f (ε∗
1t ; ̺∞)/∂ε∗

1
...

∂ ln f (ε∗
Nt ; ̺∞)/∂ε∗

N

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

θ0,υ0

⎫

⎪
⎬

⎪
⎭

.765

It is clear that row i will be zero if hi = 0 because of the cross-sectional independence766

of the shocks and the fact that E[∂ ln f (ε∗
i t ; ̺∞)/∂ε∗

i |θ0,υ0] = 0.767

The same argument applies to the remaining blocks. ⊓⊔768

B Additional material769

B.1 Some useful results770

As mentioned in Sect. 3, the following lemma provides an easy way to recursively771

compute some of the ingredients of the independence tests:772

Lemma 1 Let [ε∗
t (θ)]⊗k = ε∗

t (θ) ⊗ ε∗
t (θ) ⊗ ... ⊗ ε∗

t (θ)
︸ ︷︷ ︸

k times

denote the kth-order Kro-773

necker power of the N × 1 vector ε∗
t (θ). Then, for any k ≥ 2774

d{[ε∗
t (θ)]⊗k} = {I N ⊗ [ε∗

t (θ)]⊗k−1}dε∗
t (θ) + [ε∗

t (θ) ⊗ I N K−1 ]d{[ε∗
t (θ)]⊗k−1}.775

Proof The result follows immediately from the product rule for differentials [see sec-776

tion 9.14 in Magnus and Neudecker (2019)] after exploiting the fact that K 1N =777

K N1 = I N and778

vec(Am×n ⊗ B p×q) = (In ⊗ K qm ⊗ I p)[vec(Am×n) ⊗ vec(B p×q)]779

= {In ⊗ [(K qm ⊗ I p)[Im ⊗ vec(B p×q)]}vec(Am×n)780

= {[(In ⊗ K qm)[vec(Am×n) ⊗ Iq ] ⊗ I p}vec(B p×q),(B1)781

[see section 3.7 in Magnus and Neudecker (2019)]. ⊓⊔782

A trivial—but useful—consequence of Lemma 1 that we make extensively use in783

this paper is:784
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Corollary 1 The differentials of the second, third and fourth powers of the structural785

shocks will be786

d[ε∗
t (θ) ⊗ ε∗

t (θ)] = [I N ⊗ ε∗
t (θ)]dε∗

t (θ) + [ε∗
t (θ) ⊗ I N ]dε∗

t (θ),787

d[ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ ε∗
t (θ)] = [I N ⊗ ε∗

t (θ) ⊗ ε∗
t (θ)]dε∗

t (θ)788

+{[I N 2 ⊗ ε∗
t (θ)][ε∗

t (θ) ⊗ I N ]}dε∗
t (θ)789

+[ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ I N ]dε∗
t (θ),790

and791

d[ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ ε∗
t (θ) ⊗ ε∗

t (θ)] = [I N ⊗ ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ ε∗
t (θ)]dε∗

t792

+{[I2
N ⊗ ε∗

t (θ) ⊗ ε∗
t (θ)][ε∗

t (θ) ⊗ I N ]}dε∗
t (θ)793

+{[ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ I N 2 ][I N ⊗ ε∗
t (θ)]}dε∗

t (θ)794

+[ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ ε∗
t (θ) ⊗ I N ]dε∗

t (θ).795

Proof To save space, let ε∗
t = ε∗

t (θ). The differential of mcv(ε∗
t ), d(ε∗

t ⊗ ε∗
t ), follows796

directly from Lemma 1.797

This lemma also implies that the differential of mcs(ε∗
t ) will be798

d(ε∗
t ⊗ ε∗

t ⊗ ε∗
t ) = [d(ε∗

t ⊗ ε∗
t ) ⊗ ε∗

t ] + (ε∗
t ⊗ ε∗

t ⊗ dε∗
t )799

= (dε∗
t ⊗ ε∗

t ⊗ ε∗
t ) + (ε∗

t ⊗ dε∗
t ⊗ ε∗

t ) + (ε∗
t ⊗ ε∗

t ⊗ dε∗
t )800

Expression (B1) then yields801

(dε∗
t ⊗ ε∗

t ⊗ ε∗
t ) = {(K 1N ⊗ I N 2)[I N ⊗ vec

(

ε∗
t ⊗ ε∗

t

)

]}vec(dε∗
t )802

= (I N ⊗ ε∗
t ⊗ ε∗

t )dε∗
t ,803

(ε∗
t ⊗ dε∗

t ⊗ ε∗
t ) = {(K 1N 2 ⊗ I N )[I N 2 ⊗ vec(ε∗

t )]vec(ε∗
t ⊗ dε∗

t )804

= [I N 2 ⊗ vec(ε∗
t )]vec(ε∗

t ⊗ dε∗
t )805

= [I N 2 ⊗ vec(ε∗
t )]{(1 ⊗ K 1N )[vec(ε∗

t ) ⊗ 1]vec(dε∗
t )806

= [(I N 2 ⊗ ε∗
t )(ε

∗
t ⊗ I N )]dε∗

t807

and808

(ε∗
t ⊗ ε∗

t ⊗ dε∗
t ) = {(1 ⊗ K 1N 2)[vec

(

ε∗
t ⊗ ε∗

t

)

⊗ 1] ⊗ I N }vec(dε∗
t )809

= (ε∗
t ⊗ ε∗

t ⊗ I N )dε∗
t810

because K 1N = K N1 = I N .811

Finally, Lemma 1 implies that the differential of mck(ε∗
t ) will be812

d
(

ε∗
t ⊗ ε∗

t ⊗ ε∗
t ⊗ ε∗

t

)

= [d(ε∗
t ⊗ ε∗

t ⊗ ε∗
t ) ⊗ ε∗

t ] + (ε∗
t ⊗ ε∗

t ⊗ ε∗
t ⊗ dε∗

t )813

= (dε∗
t ⊗ ε∗

t ⊗ ε∗
t ⊗ ε∗

t ) + (ε∗
t ⊗ dε∗

t ⊗ ε∗
t ⊗ ε∗

t )814

+(ε∗
t ⊗ ε∗

t ⊗ dε∗
t ⊗ ε∗

t ) + (ε∗
t ⊗ ε∗

t ⊗ ε∗
t ⊗ dε∗

t ).815
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Once again, expression (B1) yields816

(dε∗
t ⊗ ε∗

t ⊗ ε∗
t ⊗ ε∗

t ) = {1 ⊗ (K 1N ⊗ I N 3 )[I N ⊗ vec(ε∗
t ⊗ ε∗

t ⊗ ε∗
t )]vec(dε∗

t )817

= (I N ⊗ ε∗
t ⊗ ε∗

t ⊗ ε∗
t )dε∗

t ,818

(ε∗
t ⊗ dε∗

t ⊗ ε∗
t ⊗ ε∗

t ) = {1 ⊗ (K 1N 2 ⊗ I N 2 )[I N 2 ⊗ vec(ε∗
t ⊗ ε∗

t )]vec(ε∗
t ⊗ dε∗

t )819

= (I2
N ⊗ ε∗

t ⊗ ε∗
t )(ε

∗
t ⊗ I N )dε∗

t ,820

(ε∗
t ⊗ ε∗

t ⊗ dε∗
t ⊗ ε∗

t ) = [{(1 ⊗ K 1N 2 )[vec(ε∗
t ⊗ ε∗

t ) ⊗ 1]} ⊗ I2
N ]vec(dε∗

t ⊗ ε∗
t )821

= (ε∗
t ⊗ ε∗

t ⊗ I N 2 )[1 ⊗ {(K 1N ⊗ I N )[I N ⊗ vec(ε∗
t )]}]vec(dε∗

t )822

= (ε∗
t ⊗ ε∗

t ⊗ I N 2 )(I N ⊗ ε∗
t )dε∗

t823

and824

(ε∗
t ⊗ ε∗

t ⊗ ε∗
t ⊗ dε∗

t ) = [{(1 ⊗ K1N 3)[vec
(

ε∗
t ⊗ ε∗

t ⊗ ε∗
t

)

⊗ 1]} ⊗ I N ]vec(dε∗
t )825

= (ε∗
t ⊗ ε∗

t ⊗ ε∗
t ⊗ I N )dε∗

t ,826

as desired. ⊓⊔827

B.2 Univariate discrete mixtures of normals828

B.2.1 Moments829

The parameters δ, κ and λ of the two-component Gaussian mixture we consider in830

Sect. 5 determine the higher-order moments of ε∗
t through the relationship831

E(ε
∗ j
t |̺) = λE(ε

∗ j
t |st = 1; ̺) + (1 − λ)E(ε

∗ j
t |st = 2; ̺),832

where st ∈ {1, 2} is a Bernoulli random variable with Pr(st = 1) = λ. Specifically,833

E(ε∗
t |st = k; ̺) = µ∗

k(̺),834

E(ε∗2
t |st = k; ̺) = µ∗2

k (̺) + σ ∗2
k (̺),835

E(ε∗3
t |st = k; ̺) = µ∗3

k (̺) + 3µ∗
k(̺)σ ∗2

k (̺),836

E(ε∗4
t |st = k; ̺) = µ∗4

k (̺) + 6µ∗2
k (̺)σ ∗2

k (̺) + 3σ ∗4
k (̺).837

Given that E(ε∗
t |̺) = 0 and E(ε∗2

t |̺) = 1 by construction, straightforward algebra838

shows that the skewness and kurtosis coefficients will be given by839

E(ε∗3
i t |̺) = −δ(λ − 1)λ[δ2{λ[2 + λ(κ − 1)] − κ} + 3(κ − 1)]

κ + (1 − λ)κ
840

and841

E(ε∗4
i t |̺) = 3λ − 2δ2(3 + δ2)λ3 + (6δ2 + 8δ4)λ4 − 9δ4λ5 + 3δ4λ6

[λ + (1 − λ)κ]2
842
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+2δ2(1 − λ)λ[3 − (1 − λ)λ{6 + δ2[2 − 3(1 − λ)λ]}]κ
[λ + (1 − λ)κ]2

843

+ (1 − λ){3 − δ2(λ − 1)2λ[6 + δ2(−1 + 3λ2)]}κ2

[λ + (1 − λ)κ]2
.844

B.2.2 Score with respect to%845

Regarding the specific elements that appear in (9) and (10), we have846

∂ ln f [ε∗
i t (θ); ̺i ]

∂ε∗
i t

= − 1

f [ε∗
i t (θ); ̺i ]

{

λi

φ1i t [ε∗
i t (θ) − µ∗

1(̺i )]
σ ∗2

1 (̺i )
847

+(1 − λi )
φ2i t [ε∗

i t (θ) − µ∗
2(̺i )]

σ ∗2
2 (̺i )

}

848

= −
{

λiw1i t

[ε∗
i t (θ) − µ∗

1(̺i )]
σ ∗2

1 (̺i )
+ (1 − λi )w2i t

[ε∗
i t (θ) − µ∗

2(̺i )]
σ ∗2

2 (̺i )

}

,849

where we have defined the posterior probabilities of shock i being drawn from com-850

ponent k at time t as wki t = φ[ε∗
i t (θ);µ∗

k(̺i ), σ
∗2
k (̺i )]/ f [ε∗

i t (θ); ̺i ] to shorten the851

expressions [see Boldea and Magnus (2009)].852

As for the derivatives with respect to the shape parameters in (11), we have853

eri t (φ) =
[
∂ ln f [ε∗

i t (θ); ̺i ]
∂δi

,
∂ ln f [ε∗

i t (θ); ̺i ]
∂κi

,
∂ ln f [ε∗

i t (θ); ̺i ]
∂λi

]′
,854

with855

∂ ln f [ε∗
i t (θ); ̺i ]

∂δi

= λi (1 − λi )856

×
{

w1i t

(

δiλi

σ ∗2
1 (̺i )[κi + (1 − λi )κi ]

− [1 + δi (1 − λi )εi t ]
1 − δ2

i λi (1 − λi )

[εi t − µ∗
1(̺i )]

σ ∗2
1 (̺i )

)

857

+ w2i t

(

δi (1 − λi )κi

σ ∗2
2 (̺i )[κi + (1 − λi )κi ]

− [1 + δi (1 − λi )εi t ]
1 − δ2

i λi (1 − λi )

[ε2t − µ∗
2(̺i )]

σ ∗2
2 (̺i )

)}

,858

∂ ln f [ε∗
i t (θ); ̺i ]

∂κi

= λi (1 − λi )

2[κi + (1 − λi )κi ]
859

×
[{

−w1i t

{

[εi t − µ∗
1(̺i )]2

σ ∗2
1 (̺i )

− 1

}

+ w2i t

[κi + (1 − λi )κi ]κi

860

{

[εi t − µ∗
2(̺i )]2

σ ∗2
2 (̺i )

− 1

}]

,861
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and862

∂ ln f [ε∗
i t (θ); ̺i ]

∂λi

= w1i t

(

1 + λ{1 − κ + δ2[λ2(κ − 1) + κ − 2λκ]}
2[1 − δ(1 − λ)λ}[λ(1 − κ) + κ]

)

863

−w2i t

(

1 − (1 − λ){1 − κ + δ2[λ2(κ − 1) + κ − 2λκ]}
2[1 − δ2(1 − λ)λ][λ(1 − κ) + κ]

)

864

+w1i t

[εi t − µ∗
1(̺i )]λ

2[1 − δ2(1 − λ)λ]2
× {δ[1 + 3λ(−1 + κ) − 3κ]865

−δ3(λ − 1)[λ(κ − 1) − κ] + εi t (κ − 1) + εi tδ
2[λ2(1 − κ)866

−κ + 2λκ]}867

+w2i t

[εi t − µ∗
2(̺i )](1 − λ)

2[1 − δ2(1 − λ)λ]2κ
{εi t (κ − 1 + δ2[λ2 − κ868

+2λκ − λ2
κ)]869

+(δ[2δ2λ2(1 − κ) + δ2λ3(κ − 1) − 2κ + λ(3 + δ2)κ − 3λ]}.870

The second derivatives of the log-density with respect to the shape parameters can871

be derived using the chain rule for second derivatives from the expressions in Boldea872

and Magnus (2009), who obtain them in terms of λ, µ∗
k(̺i ) and σ ∗2

k (̺i ) (k = 1, 2).873

The precise expressions are available on request.874

C Monte Carlo results for a trivariate static model875

In this appendix, we report finite sample results for a trivariate extension of our bench-876

mark dgp 1, which we denote by dgp 1t . Specifically, we generate samples of size877

T from878

⎛

⎝

y1t

y2t

y3t

⎞

⎠ =

⎛

⎝

1

−1

0

⎞

⎠+

⎛

⎝

1 1/2 0

0 1 0

0 0 1

⎞

⎠

⎛

⎝

ε∗
1t

ε∗
2t

ε∗
3t

⎞

⎠ (C2)879

As for the shocks, we choose ε∗
1t ∼ N (0, 1), ε∗

2t ∼ DM N (−.859, .386, 1/5) and880

ε∗
2t ∼ DM N (.859, .386, 1/5), so that ε∗

2t and ε∗
3t follow discrete mixtures of two881

normals with kurtosis coefficients 4 and skewness coefficients equal to −.5 and .5,882

respectively.883

Table 9 reports Monte Carlo rejection rates of the normality tests proposed in884

Sect. 4.1 for samples of size T = 250 (top panel) and T = 1000 (bottom panel).885

The first three columns of those panels report rejection rates using asymptotic critical886

values, while the last three columns show the bootstrap-based ones for T = 250 and887

the warp-speed bootstrap-based ones for T = 1000. Once again, the normality tests888

tend to be oversized at the usual nominal levels, especially for samples of length 250,889

while the standard bootstrap version of our tests is much more reliable for both the890

third and fourth moment tests. More importantly, the null of normality is correctly891

rejected a large number of times when it does not hold, even in samples of length892
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Table 9 Monte Carlo size and power of normality tests: trivariate static model

Nominal size T = 250

Asymptotic critical values Bootstrap (399 samples) critical values

10% 5% 1% 10% 5% 1%

Size (ε∗
1t normal)

H3(ε∗
1t

) 18.32 11.47 4.32 8.52 3.97 0.68

H4(ε∗
1t

) 17.58 10.30 4.50 8.67 4.22 1.02

H3(ε∗
1t ) & H4(ε∗

1t ) 19.25 12.48 6.21 8.36 4.00 0.96

Power (ε∗
2t

DMN with negative skewness)

H3(ε∗
2t ) 81.73 76.37 63.77 73.58 65.53 45.71

H4(ε∗
2t

) 71.22 64.85 52.56 62.86 53.88 30.68

H3(ε∗
2t

) & H4(ε∗
3t

) 85.61 81.26 71.70 77.09 68.14 42.89

Power (ε∗
3t DMN with positive skewness)

H3(ε∗
3t ) 82.25 77.25 64.50 73.94 65.78 45.16

H4(ε∗
3t ) 71.33 64.97 53.06 63.22 53.85 29.73

H3(ε∗
3t ) & H4(ε∗

3t ) 86.00 81.67 71.81 76.97 67.89 41.66

T = 1000

Asymptotic critical values Warp-speed bootstrap critical values

Nominal size 10% 5% 1% 10% 5% 1%

Size (ε∗
1t normal)

H3(ε∗
1t ) 12.32 6.61 1.61 9.69 4.76 0.77

H4(ε∗
1t ) 12.22 6.56 1.84 9.71 4.71 0.93

H3(ε∗
1t ) & H4(ε∗

1t ) 12.73 6.91 2.10 9.38 4.83 0.81

Power (ε∗
2t DMN with negative skewness)

H3(ε∗
2t

) 99.84 99.79 99.50 99.80 99.67 98.84

H4(ε∗
2t ) 99.32 98.84 97.06 98.75 97.80 92.56

H3(ε∗
2t ) & H4(ε∗

3t ) 99.95 99.91 99.83 99.89 99.83 99.39

Power (ε∗
3t

DMN with positive skewness)

H3(ε∗
3t

) 99.91 99.86 99.53 99.87 99.75 98.90

H4(ε∗
3t

) 99.25 98.69 96.77 98.63 97.64 92.98

H3(ε∗
3t

) & H4(ε∗
3t

) 99.98 99.95 99.86 99.94 99.89 99.42

Monte Carlo empirical rejection rates of normality tests; 20,000 replications. dgp 1t—Shocks: ε∗
1t normal,

and ε∗
2t and ε∗

2t discrete mixture of two normals. See “Appendix C” for details on the data generating

process. Asymptotic critical values: H3(·) ∼ χ2
1 , H4(·) ∼ χ2

1 and H3(·) & H4(·) ∼ χ2
2 . We describe the

sampling procedure we use to implement the bootstrap in Sect. 5.1.3
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250. Nevertheless, there is a moderate loss of power relative to Table 2, which may893

reflect the need to estimate almost twice as many parameters as in the bivariate case.894

In larger dimensions, one might expect a similar pattern, although in general, the895

main determinants of the power of our normality test will be the non-normality of the896

structural shock under consideration and how precisely identified it is.897

Finally, in Table 10 we report the Monte Carlo rejection rates of the tests we have898

proposed in Sect. 4.2 under the null of independence for samples of size T = 250899

(left panel) and T = 1000 (right panel). As in Table 9, the first (last) three columns900

of those panels report rejection rates using asymptotic (bootstrapped) critical values.901

As in the bivariate case (cf. Table 4), we can see some small to moderate finite sample902

size distortion when T = 250, although in almost all cases they are corrected by the903

bootstrap. Finite sample sizes improve considerably for samples of length 1000, as904

expected.905
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