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Abstract This paper reports on a preliminary study

aiming at investigating the eye gaze pattern and pupil size

variation to discriminate emotional states induced by

looking at pictures having different arousal content. A

wearable and wireless eye gaze tracking system, herein-

after called HATCAM, which was able to robustly detect

eye tracking and pupil area was used. A group of ten

volunteers was presented with a set of neutral and arousal

pictures extracted from the International Affective Picture

System according to an ad-hoc experimental protocol. A

set of features was extracted from eye gaze patterns and

pupil size variations and used to classify the two classes of

pictures. Although preliminary, results are very promising

for affective computing applications.

Keywords Eye gaze tracking � Wearable systems �
Affective computing � Emotions � Pattern recognition

1 Introduction

Emotions are psychological conditions that affect several

human behaviors, relations, process and results of actions.

They are present in all mental processes, and any human

activity manifestation is accompanied by emotional expe-

riences. Many works have shown that emotional processing

can have primacy over cognition (Zajonc 1984). The

famous naturalist Darwin stated that emotions emerged

during the course of evolution as the means by which living

creatures determine the significance of certain conditions to

meet their urgent needs (Darwin et al. 2002). Other works

have shown how emotion regulation is an essential feature

of the mental health. In particular, they highlighted how

emotion and its regulation have an important role in vari-

ous aspects of normal functioning. For example, emotions

become dysregulated in major depressive episodes, and

some theoretical views of depression are based on emotion

changes which have implications in assessment, treatment,

and prevention of the pathology (Gross and Muñoz 1995).

Moreover, it has been shown that there exists strong rela-

tionship between emotion and anxiety (Lazarus and Averill

1972) as well as brain damages of emotional processing

areas and decision-making process (Damasio 2000). In this

viewpoint, the importance of having an automatic emotion

recognition system becomes clear, which could be profit-

ably used in several domains such as human behavior

understanding, mental health investigation or social rela-

tions interpretation. Latest works on emotion recognition

are based on the study of physiological correlates of the

autonomic nervous system (ANS), e.g., heart rate vari-

ability, electrodermal activity (Picard 2000). The associa-

tions of emotions and physiological reactions controlled by

the ANS are complex, but anger, for example, has been

associated to a higher heart rate than happiness, and on the

other hand, anger has been associated to higher finger

temperature than fear (Ekman et al. 1983; Levenson 1992).

In this work we aim at investigating the relationship

between emotions and information coming from the eyes,

i.e. pupil size variation and eye gaze pattern. It is known

that pupil dilations and constrictions are governed by the

ANS (Andreassi 2006). This work is a preliminary study on

how eye tracking pattern and pupil area variation relate to

emotional stimulation using images form the International

Affective Picture System (IAPS). In other words, we want
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to explore the relationship between eye information and

emotional image categories. More specifically, by using a

head-mounted eye tracking system (named HATCAM) we

acquired pupil variation together with eye gaze trajectory

and time of fixation as well during the exposition of sub-

jects to affective images having different levels of arousal.

No familiar pictures were used and luminance was nor-

malized in order to keep it constant. A specific set of

features extracted from pupil size variation, eye gaze pat-

tern and time of fixation was used as input to different

classifiers in order to distinguish the neutral from arousal

levels.

2 Background

In the literature several works can be found reporting

emotional studies relating visual stimuli to eye gaze pat-

terns. Some of them argued that when experiencing emo-

tional events most of the attention is devoted to the

emotional information rather than to detail information

(Christianson et al. 1991; Bradley et al. 2003). Recently,

some works reported on how eye tracking information can

be related to selective attention to emotional pictorial

stimuli (Calvo and Lang 2004). They found out that pref-

erential attention depends on the affective valence of visual

stimuli, i.e. pleasant and unpleasant pictures. Nevertheless,

attention can be influenced by other emotional character-

istics of pictorial stimuli, such as arousal, as well as by

nonemotional characteristics, such as picture luminance,

complexity, familiarity, and filled area with details. Con-

cerning information provided by the pupil, previous studies

have suggested that pupil size variation is related to both

cognitive and affective information processing (Partala and

Surakka 2003). More specifically, Beatty and Lucero-

Wagoner (2000) pointed out that during cognitive tasks

such as recalling something from memory, paying close

attention, parsing a complicated sentence, or thinking hard,

the pupils dilate and return to previous size within a few

seconds of completing the mental work. Commonly, it is

referred to as Task-Evoked Pupillary Response (TEPR),

and even tough the dilation was small, it resulted an

involuntary act and reliably associated to a set of cognitive

processes defined as cognitive load. As a matter of fact,

previous works on affective elicitation and pupil size var-

iation have been somewhat controversial. Dated research

activity of Loewenfeld (1966) studied the effects of various

sensory and psychological stimuli to pupil size variation

and argued that none of them caused pupil constriction

except for increased light intensity. On the contrary, Hess

(1972) found out that there would be a continuum ranging

from extreme dilation due to interesting or pleasing stimuli

to extreme constriction due to unpleasant or distasteful

content. Almost in the same years, Janisse (1974) con-

tradicted this bi-directional view arguing that there is no

pupil constriction in response to negative stimuli, or it can

be limited to a few individuals and a small range of stimuli.

He proposed that pupil size should be linearly related to the

stimulation intensity. From this point of view, pupil size

variation seems to be sensitive to the valence scale,

resulting largest at the negative and positive ends of the

continuum and smallest at the center, that would represent

neutral affect. The latest work of Partala and Surakka

(2003) reported a study concerning on pupil size variation

during and after auditory emotional stimulation. Their

results showed that pupil size was significantly larger after

both negative and positive than neutral stimulation. These

results suggested that the autonomic nervous system is

sensitive to systematically chosen highly arousing emo-

tional stimulation. It is reasonable that the above contra-

dictory results and theories may be due to the variety of

stimuli used. Mostly, they have been limited sets of pic-

tures varying in content, and they have suffered from

methodological problems with color, luminance, and con-

trast (Hess and Petrovich 1987). Clearly, controlled stim-

ulus set is a fundamental precondition requirement for a

systematic study of the effects of emotions to pupil size

variation. Nowadays, eye-tracking technology develop-

ment (e.g. ease of use, improved accuracy, and enhanced

sampling rate), offers the possibility for an unobtrusive

monitoring of emotion-related reactions because no sensors

need to be attached to the user. In order to be able to

evaluate the possibilities of using pupil size measurement

as well as pupil tracking for detecting emotional responses,

we need to understand how emotions and eye features

relate to each other. Eye movements can provide detailed

estimates of what information an individual is considering

rather quickly (in less than 200 ms). Eye tracking is

becoming an increasing popular measure of cognitive and

affective information processing (Lohse and Johnson

2002). By gathering data on the location and duration of

eye fixations, many inferences about the cognition structure

could be done. The use of eye tracking in estimating

cognitive or affective states can be focused on two

assumptions: the immediacy (people process information

as it is seen) and the eye-mind (the eye remains fixated on

an object while the object is being processed). A variety of

eye-tracking methods exist. In terms of the data collected

from the eye, two popular methods are mostly used. The

first implies shining a light on the eye and detecting corneal

reflection, the latter implies simply taking visual images of

the eye and then locating the dark pupil area. Generally, the

choice of the best method depends upon the external

lighting conditions. To compute where a person is fixating,

there are three popular methods. The first method simplifies

the calculations by having fixed geometries by forcing the
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person to hold still by biting on a bar or putting the head in

a restraint, commonly these systems are referred to as

remote eye trackers they have the advantage of using high

sampling frequency camera to acquire the movements of

the eye. The most used systems based on this methodology

are EyeLink 1000 Ltd. (2010), ASL Model 504 L. (2009),

Tobii 1750 Technology (2011) and SMI RED I. (2011). In

the second method the person wears a head sensor that

tracks the head orientation and location in three dimensions

and then combines this information with eye-direction, this

technique is the less used. The third method, used in our

experiments, places the eye-tracking apparatus on the

person head along with a camera so that a visual image is

captured showing what the person is currently looking at,

commonly these system are referred to as head mounted

eye trackers, examples of systems using this technique are:

EyeLink II, ASL H6, Tobii Glasses system, Open-Eyes Li

et al. (2006), ISCAN Inc. (2007) and iVIEW HED, and our

HATCAM. The advantage in using a head mounted eye

tracker is of making the user free to move during the

stimulation. The HATCAM used in our experiments is

cheap, lightweight, wireless therefore based on a real-time

detection of the eye gaze point and pupil size; it exploits

brightness normalization algorithms and does not use

infrared illuminators. Brightness normalization allows us to

use the system in different light conditions, e.g. darkness or

sunlight. The absence of infrared illuminators offers sev-

eral advantages. Indeed, even though low-power infrared

LEDs are, generally, employed to avoid injuries, the use of

infrared illuminator systems, especially for high-sensitive

subjects (e.g. children), can produce reddening and lach-

rymation. Furthermore, in subjects with eye glasses the

lens disturb the infrared light thus showing very weak

pupils. Finally, a large variation of bright light sources can

produce a diminished image of the pupil or even its dis-

appearance. These limitations in eye tracking methods

using infrared illuminators impose stable lighting condi-

tions, and therefore a restriction of the fields of application.

A crucial issue is the methodology for eliciting different

emotional states. In this view, several works, e.g. Lang

et al. (1997), report a set of systematically studied affective

image stimuli belonging to the International Affective

Picture System (IAPS). These stimuli have been studied

using the Self-Assessment Manikin, which is a method to

study differences in affective experiences using nine-point

bipolar rating scales. In these works, subjects look at the

stimuli and ranked them on three bipolar dimensions:

emotional valence, arousal, and dominance. However,

valence and arousal are the most frequently used dimen-

sions to capture the nature of emotional information. The

valence dimension varies from negative to positive emo-

tional experience, and the arousal dimension varies from

calm to highly excited. This kind of elicitation is used in

our experiments.

3 HATCAM: wearable EGT system

The system used in this experiment, HATCAM, is a

wearable and wireless eye tracking system which can be

tailored to both adults and children. It is comprised of only

one lightweight camera which is able to capture, by means

of a mirror, the eyes of the subject and the scene in front of

him, simultaneously. The system configuration is shown in

Fig. 1. The system is comprised of a wireless CMOS

camera (CP294) having low weight (20 g), low size (2 9 2

9 2 cm), and an A/V transmitter. The camera has a reso-

lution of 628 9 586 pixels with F2.0, D45� optic, and 25

frames per second (f.p.s.). The original lens of the camera

was removed and substituted with a wide-angle-lens

without IR filter. This operation allows enlarging the view

angle and acquiring infrared components, which emphasize

the contrast between pupil and iris. This system is able to

capture simultaneously, without latency, the visual scene in

front of the subject and the position of his eyes. This is

achieved using a mirror (4 9 0.6 cm) placed on a shaft

linked to the head (see Fig. 1). Tilt and shaft of the mirror

and the camera orientation can be tailored to user forehead

profile (see Fig. 1).

4 Experimental protocol

Ten subjects, nine males and one female, volunteered to

participate in the experiment. All subjects did not suffer

from mental pathologies. Six subjects had dark eyes and

four had bright eyes. The average age was of 26.8 with a

standard deviation of 1.5. The experiment was performed

in a room with controlled illumination condition achieved

by white neon lighting equally distributed over the room

Fig. 1 HATCAM configuration

Eye gaze patterns in emotional pictures 707

123



with a power of 50 lumens. The HATCAM can work

allowing the subjects wearing it to move freely their head,

but in this specific experiment, in order to have a reliable

and accurate measurement of the pupil size variation

(which is more critical than eye gaze tracking) we decided

to use a chin-support. Subjects were asked to sit on a

comfortable chair 70 cm far from a screen. They were

presented with a sequence of images, gathered from the

IAPS database, while wearing headsets for acoustical

insulation. The slideshow was comprised of 5 sessions of

images N, A, N, A, N, where N was a session of 5 neutral

images, and A were sets of 5 images having maximum

level of arousal and the lowest valence, i.e. high negative

affective impact. During the experiments all the subjects

were asked to look at the picture which appeared on the

screen for 10 s. Each trial lasted about 25 min. Each image

was remapped in grey scale with constant histogram in

order to provide images with a similar level of luminance.

5 Pupillometry and gaze point

This section deals with the processing techniques used to

detect the center of the eye and how its movements were

mapped into the image plane, i.e. the plane corresponding

to image acquired by the camera. This technique is often

referred to as Video OculoGraphy (VOG) and involves

visible spectrum imaging. It is a passive approach that

captures ambient light reflected by the eye. The lens inside

the mounted camera was modified to acquire also the IR

components from the natural light. Since the natural light

spectrum comprises also the near-infrared region of the

electromagnetic spectrum, the system kept the advantages

of IR illumination of increasing the contrast between pupil

and iris, and at same time preventing any possible injuries

due to artificial IR illuminators, as no illuminators towards

the eyes were used. Figure 2 shows the block diagram of

the algorithmic process used to classify visual stimuli

having different affective arousal content. The upper block

implements the pupillometry and gaze point identification.

The output was then processed to extract a specific set of

features used for the classification. Specifically, the pupil-

lometry and gaze point block was comprised of a sub-chain

of blocks implementing the eye extraction algorithm,

photometric normalization algorithm of illumination, pupil

contour and mapping of the eye center into the image

scene. Hereinafter we will describe briefly how eye and

pictures were processed, but further details can be found in

Armato et al. (2011). Figure 3 shows how the HATCAM is

able to acquire simultaneously the eyes of the user and the

scene in front of him using the mirror. Eye extraction

procedure was constituted of visual inspection of the first

video frame, in which a rectangular area including the eye

was manually selected. This region is called Region Of

Interest (ROI). Since the system mounted on the head, the

ROI did not change throughout the experiment. In addition,

only the red-image-component was converted in grey scale

and used as input to the other processing blocks, as this

component was specifically helpful in enhancing the con-

trast between pupil and background. as shown in grey scale

and modified in terms of illumination normalization in

order to reduce or eliminate some variations in the captured

eyes due to different light conditions. In this work, we used

the Discrete Cosine Transform (DCT) already proposed

by Chen et al. (2006). This algorithm was already shown to

be the suitable illumination normalization technique for

Fig. 2 Block diagram showing all the algorithmic stages of the

processing of eyes and outside scene

Fig. 3 Example of a single frame captured by the camera. The

rectangular area marked up in red represents the ROI (color figure

online)
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123



realtime eye tracking processing in our previous work

(Armato et al. 2011). This approach is based on the Retinex

theory (from the words ‘‘retina’’ and ‘‘cortex’’, suggesting

that both eye and brain are involved in the processing)

developed by Land and McCann (1971). This theory is based

on the color constancy assumption which ensures that the

perceived color of objects remains relatively constant under

varying illumination conditions. Land and his colleagues

assume that the stimulus is not the result of the light source

and surface reflectivity only, but that the visual system pro-

cesses the stimulus, integrating the spectral radiance and

generating a ratio of integrated radiance of any region of the

scene with that of the brightest region.

A specific pupil tracking algorithm was applied to extract

the contour of the pupil exploiting the higher contrast of the

pupil than the background due to the IR components of the

natural light. Figure 4 shows the algorithm block diagram.

The first block binarized the image by means of a threshold.

After binarization, two sheafs of lines starting from the

middle points of the vertical sides of the image, with an

angular aperture of 30�, were drawn. As result of the bina-

rization process, the image borders were expected to belong

to the background, therefore the starting point of each line has

a value of 255 in terms of grey level. Analogously, the pupil

was expected to be placed roughly in the middle of the image

(this is assured by an accurate manual selection of the ROI).

When each line encounters, along its path, a dark pixel, this

latter can be thought to belong to the contour of the pupil.

Afterwards, the centroid of these points was calculated. After

removing all the outliers, being these points very far from the

centroid with respect to the large point density (pupil edge), a

large-grain approximation of the contour was obtained. Next,

a sheaf of lines started from the centroid with an angular

aperture of 360�, and detected all discontinuities, but this

time from black to white. Finally, outliers were again

removed. The result of this algorithm was a set of points

constituting the pupil edge (see Fig. 5). Afterwards, in order

to construct the pupil contour and detect the center of the eye a

specific ellipse fitting algorithm was implemented. Ellipse is

considered as the best geometrical figure approximating the

eye contour. In the literature, several ellipse fitting algorithms

can be found and usually they can be divided into two broad

techniques: the clustering/vot-ing (CV) and the least square

(LS) techniques. The first one uses two main approaches such

as RANSAC and Hough Transform which are extremely

robust but they are time-demanding or excessively resource

consuming for real time machine vision (Forsyth and Ponce

2002; Bennett et al. 2002). In this work, we used the LS

technique, i.e. a custom algorithm based on the algebraic

distance with a quadratic constraint (Fitzgibbon et al. 2002),

where a gaussian noise is added for the algorithm stabiliza-

tion, (Maini 2005), to calculate the center of the pupil (that

coincides with the ellipse center), the axes as well as the

eccentricity of the ellipse. After the eye center was identified,

a dedicated mapping procedure associated it to the image

plane of the scene, providing as result the gaze point.

5.1 Post-processing and feature extraction

Post-processing phase was applied to a set of features

extracted from the analysis of the eye gaze pattern matrix as

well as to features extracted from Recurrence Quantifica-

tion Analysis (RQA). This technique is usually used for

nonlinear data analysis applied to dynamical systems. More

specifically, it quantifies the number and duration of

recurrences of a dynamical system presented by its phase

space trajectory. The idea of using the latter technique,

which is completely new to this field, arose from the anal-

ogy between the recurrence matrix plots of RQA and the

matrices of eye gaze patterns. The features extracted from

eye gaze analysis provided information about pupil dilation,

max fixation time, length of eye gaze path, and most visited

area in the image. In addition we extracted a set of features

typical of the Recurrence Quantification Analysis (RQA).

More specifically, as described in the experimental proto-

col, each image of the sequence was watched by the sub-

jects for a time interval of 10 s. As the camera acquired with

25 frames per second, we obtained a grand total of 250

frames for each image. Each image can be represented as a

Fig. 4 Block diagram of the pupil tracking algorithm

Fig. 5 Pupil tracking algorithm. Sheafs of lines are in blue; black

points identify the eye including the outliers; yellow points highlight

the pupil contour which is interpolated by the ellipse marked up in red

(color figure online)
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matrix of 628 9 586 pixels. The gaze point was mapped into

a pixel in each frame. We constructed, therefore, a matrix of

628 rows and 586 column where each element corre-

sponding to the pixel coordinates of the gaze point is set to

1. In order to minimize errors due to eye blinking and to

instrumentation noise, only the pixels retained for at least

five consecutive frames (0.2 s) were set to 1. At the end of

this part we obtained a set of matrices of ones and zeros,

having the same dimensions of the images. If the element

(i, j) of a matrix, associated to a specific image, is one, it

means that the pixel (i, j) of that image was observed at

least for 0.2 s. In the next sections each feature is explained

in detail.

5.1.1 Recurrence quantification analysis

The RQA (Zbilut and Webber 1994) is an advanced tech-

nique of nonlinear data analysis which reveals all the times

when the phase space trajectory of the dynamical system

visits roughly the same area in the phase space. In this

work, we used the matrices of the gaze pattern as recur-

rence plot matrices, disregarding the multiple recurrences

of the same gaze point. Let GP be the Gaze Plot matrix. Let

Lij(x, y) be the set of eye-gaze points from the frame i of

the image j, where x and y are spatial coordinates. We

applied the RQA to the set Gm(x, y) defined as:

Gmðx; yÞ ¼
[

i

Lijðx; yÞ

For each image the following features were calculated:

Recurrence Rate (RR) is the percentage of gaze points in an

GP, it can be considered as the density of gaze points into

an image:

RR ¼ 1

N2

XN

x;y¼1

Gmðx; yÞ

where N is the number of points forming the image.

Determinism (DET) is the percentage of gaze points which

form diagonal lines:

DET ¼
PN

l¼lmin lPðlÞ
PN

i;j¼1 Ri;j

ð1Þ

where P(l) is the histogram of the lengths l of the diagonal

lines. Trapping Time (TT) is the average length of the

vertical lines:

TT ¼
PN

t¼tmin
tPðtÞ

PN

t¼tmin

PðtÞ
ð2Þ

Averaged diagonal line length (L) is the average length of

the diagonal lines:

L ¼
PN

l¼lmin
lPðlÞ

PN
l¼lmin

PðlÞ
ð3Þ

Entropy (ENTR) is the Shannon entropy of the probability

distribution of the diagonal line lengths p(l):

ENTR ¼ �
XN

l¼lmin

pðlÞ ln pðlÞ ð4Þ

Longest diagonal line (Lmax) The length of the longest

diagonal line:

Lmax ¼ max li; i ¼ 1; . . .;Nlf gð Þ ð5Þ

where Nl is the number of diagonal lines in the gaze plot.

5.1.2 Fixation time

While watching each image, subject eye can be caught by

specific details. We define as fixation time of each pixel,

the absolute time during which the subject is dwelling on

that pixel during the 10 s of presentation of each image. We

obtain a statistical distribution of fixation times over the

pixels, whose mode, which we define here as Tmax, is used

as feature. Tmax is calculated for each image and each

subject during both neutral and arousal elicitation as:

Tmax ¼ Max
N

i¼0
ðtðpiÞÞ ð6Þ

where N is the number of points of gaze in the image, Pi is

the ith point of gaze, t(Pi) is the fixation time of the ith

point of gaze, respectively.

5.1.3 Pupil area detection

The pupil was approximated as an ellipse whose area is

calculated. To increase the robustness of the algorithm an

averaged area of both eyes was considered:

Ap ¼
prl

arl
b þ prr

arr
b

2
ð7Þ

where Ap is the pupil area, ra
l and rb

l are the ellipse semi-

axes of the left eye, ra
r and rb

r are the ellipse semi-axes of

the right eye.

5.1.4 Most visited area in the image

While looking at an image, there are areas more fixated

than others. We define as Most Visited Area (MVA) in the

image, the area of each image on which each subject lin-

gered longer. Specifically, we defined an area of the image

of n x n (where n \ N) pixels, which was centered on the

most watched pixel, and the MVA was calculated as the

sum of the fixation times of all the pixels inside this area.
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This feature was calculated for all images. Let T(x, y) be

the time of fixation of the pixel whose coordinates are

x, y. Since Tmax(xc, yc) is the maximum time of fixation of

the image and (xc, yc) are the coordinates of the most

watched pixel. We calculated the MVA as:

MVA ¼
Xxcþn

2
;ycþn

2

x;y¼xc�n
2
;yc�n

2
;

Tðx; yÞ

where n is taken as forty pixels.

5.1.5 Length of the gaze path

The Length of the Gaze Path (LGP) of each image was

calculated as the total length of the gaze path while the

image was presented. We approximated the path between

two consecutive points of gaze as a straight line, as two

consecutive gaze points were obtained from two consecu-

tive frames, i.e. in a time interval of 1/25 s. The distance

between two points was calculated as Euclidean distance.

LGP ¼
XN

x;y¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xiþ1Þ2 þ ðyi � yiþ1Þ2

q
ð8Þ

5.2 Classification

The aim of this work was to classify two classes of images,

labeled as neutral and arousal. Generally, the choice of one

classifier rather than another depends on many factors,

among which the type of particular distribution of the

features considered into the analysis. The distribution can

be gaussian or non-gaussian thus suggesting to use a

parametric or non-parametric classifier, respectively. In

this work the sets of extracted features exhibited non-

parametric distributions, therefore non-parametric classifi-

ers (Duda et al. 2001), i.e. Linear Discriminant Classifier

(LDC), Quadratic Discriminant Classifier (QDC), Mixture

Of Gaussian (MOG), k-Nearest Neighbor (k-NN), Koho-

nen Self Organizing Map (KSOM), Multilayer Perceptron

(MLP), and Probabilistic Neural Network (PNN), were

used. Best results have been achieved by the MultiLayer

Perceptron (MLP) classifier (Vapnik 1998; Schlesinger and

Hlavac 2002; Heijden et al. 2004; Duda et al. 2001; Webb

2002; Friedman et al. 2000; Jain et al. 2000). It allowed us

to recognize arousal from neutral sessions of the experi-

mental protocol. More specifically, results were calculated

after twenty steps of cross validation, in particular the

training set was composed of 80 % of the whole dataset

randomly picked out.

5.2.1 The multi-layer perceptron (MLP)

The Multi-Layer Perceptron (MLP) (KinneBrock 1992) is

an artificial neural network model consisting of multiple

layers of nodes mapping sets of input data onto a set of

appropriate outputs. Except for the input nodes, each node

is a neuron with a nonlinear activation function. This type

of network was trained with the help of a supervised

learning method, i.e. input and output values were specified

and the relations between them learnt. The neural network

approximated every non-linear mapping of the form

y = f(x). Every data record consisted of input data and the

corresponding output data. The multilayer perceptron

learnt the input/output behavior of the system examined via

a training data set. In the training phase, for each data

record, each activation function of the artificial neurons

was calculated. The weight wij of a generic neuron i at the

time T, for the input vector f k
n ¼ f k

n1; . . .; f k
nF was modified

on the basis of a well established technique, the propaga-

tion of the resulting error between the input and the output

values. The response of the MLP is a boolean vector; each

element represents the activation function of an output

neuron. After the training process, the performance of the

classification task was evaluated using the confusion

matrix. The generic element rij of the confusion matrix

indicates how many times in percentage a pattern belong-

ing to the class i was classified as belonging to the class

j. A more diagonal confusion matrix corresponds to a

higher degree of classification. As each pattern may be

confused with more than one pattern, the sum on each row

and column may differ from the value of 100 %. In order to

check the generalization capability of the neural network, a

cross-validation process is carried out.

6 Experimental results

The International Affective Picture System includes a set

of static images based on a dimensional model of emotion.

Here we have chosen two classes of images. The first

image set included neutral images, such as rolling pin,

spoon, mug, trashcan, while the second one contained

various pictures depicting mutilations, attack scenes,

accidents, i.e. high arousal and negative valence. By way of

illustration we report in Fig. 6 an example of neutral image

also showing the eye gaze pattern. We do not report

intentionally any negatively valenced images because of

high visual impact. In Fig. 7 a 3D representation of the eye

gaze points over a neutral image is reported. The z-axis

represents how many times each pixel was fixated during

the presentation time of 10 s. On each image we reported

the gaze points. Already at glance, most of neutral images

showed a more sparse spatial distribution of the gaze points

than the images with arousal, in which gaze points were

mainly concentrated into confined areas. A more quanti-

tative analysis was done extracting the above described

features from the distribution of eye gaze patterns and

Eye gaze patterns in emotional pictures 711

123



using them as input of the MLP classifier. All the extracted

features were not normally distributed, as confirmed by the

Lilliefors test, (Lilliefors 1967), which returns a p-value

(p \ 0.05) rejecting the null hypothesis of normality.

Accordingly, we used the Kruskal-Wallis test, (Kruskal and

Wallis 1952), which is a non parametric one-way analysis

of variance by ranks for testing equality of population

medians. Kruskal-Wallis was performed on ranked data, so

the measurement observations were converted to their

ranks in the overall data set. This test did assume an

identically-shaped and scaled distribution for each group,

except for any difference in medians. The null hypothesis

was stated as the probability that the samples come from

identical populations, regardless their distributions. In

place of the mean of distributions we considered the

Fig. 6 Example of the points of

gaze detected during a neutral

elicitation. Gaze points are

marked up in red (color figure

online)

Fig. 7 3D Representation of

the gaze points over the image

across the recurrence times each

pixel was fixated

Table 1 Median and deviation of all the extracted features during the

visualization of neutral and arousal pictures

Features Neutral Arousal

RR* 0.0018 ± 0.0002 0.0019 ± 0.0002

DET** 0.7311 ± 0.0782 0.6373 ± 0.0798

TT** 2.5862 ± 0.9024 2.0345 ± 0.4368

L** 2.9184 ± 0.4564 2.6513 ± 0.3181

ENTR** 1.2592 ± 0.2306 1.0501 ± 0.2041

Lmax** 5.0000 ± 1.2800 5.0000 ± 1.0583

Tmax** 1.9600 ± 0.3509 1.5600 ± 0.3501

Pupil 195.39 ± 19.689 197.27 ± 17.106

LGP** 480.0000 ± 208.5236 331.5000 ± 174.1567

MVA** 33.0000 ± 8.8630 27.0000 ± 7.8800
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median as measure of location (Stavig and Gibbons 1977).

Having only two sets of features, i.e. neutral and arousal

classes, Kruskal-Wallis test returned the probability that the

two samples were not belonging to the same population, in

other words, if there was a statistical difference between the

two samples. Median and Median absolute deviation of all

the features are reported in Table 1 during the neutral and

arousal session. Statistical differences between neutral and

arousal elicitation was found (* p\0.01 and ** p\0.001),

except for the pupil area detection. We decided however to

include this feature in the classification stage, because we

verified that the successful recognition percentages

increased when using it. Several classifiers, indeed, are not

based on statistical rules in the cluster analysis. In the

Table 2, the confusion matrix obtained from MLP classifier

after twenty fold-cross-validation steps is shown.

7 Conclusions

In this work we investigated eye tracking and pupil size

variation in response to emotional elicitation induced by

IAPS images. In particular, the goal was to identify a set of

features from pupil size variation and eye tracking in order

to distinguish between neutral and arousal states. In detail,

we used a wearable and wireless head-mounted eye

tracking system (HATCAM) to acquire pupil variation

together with eye-gaze trajectory as well as time of fixa-

tion. In addition, we adopted a novel methodology to

characterize differences between neutral and arousal elic-

itation in eye-gaze acquisitions by means of features

extracted from eye gaze patterns using RQA along with

specific features extracted from eye gaze trajectory and

time of fixation. This choice of RQA, although not specific

for this field of application, is motivated by the analogy

between the bi-dimensional image containing eye-gaze

points and the matrix commonly used for Recurrence Plot

(Marwan et al. 2007). Moreover, it resulted to be an

effective way to investigate how eye gaze points are geo-

metrically distributed over the the image. More specifi-

cally, Recurrence Rate (RR) takes into account the density

of the gaze points in the images, while Determinism (DET),

Trapping Time (TT), Longest diagonal line (Lmax) and

Entropy (ENTR) can show possible and hidden geometrical

distributions of the gaze points. It is worthwhile noting that

some specific features, such as DET, TT, and Lmax, which

are related to some preferred lines, i.e. vertical or diagonal,

although apparently not significative, could give relevant

geometrical cues in the exploration strategy of the image

and, as a matter of fact, increase the successful recognition

rate of the classifiers. Our work relies on the conjecture that

density and distribution of the eye gaze points on the image

are strictly related to the affective content regardless of

how graphically the subject is depicted in the image. In this

view, we used images whose subject was highly variable in

terms of dimensions and form, bot across neutral and

arousal sets of pictures. This hypothesis was experimen-

tally confirmed by the significative statistical results

reported in Table 1. We tested several classifiers and the

best results have been provided by the MLP classifier.

After the MLP training process, the performance of the

classification task was evaluated by using the confusion

matrix. It was randomized for 20-fold cross-validation

steps to avoid bias. Results are reported in Table 2. The

percentage of successful recognition is higher than 90 %

for neutral images and about 80 % for images at high

arousal. As it can be seen, results are very satisfactory and

improving our previous work (Lanatà et al. 2011). It means

that eye gaze, both in terms of pupil tracking and size, can

be a viable means to discriminate affective states with

different arousal content. In that work we used the non

parametric K-Nearest Neighbor (K-NN) classifier that was

based on the ‘‘proximity’’ concept, i.e. an object was sup-

posed to belong to the closest class. The difference in

performance between K-NN and the MLP classifiers can be

found in the nature and size of the dataset and it is reduced

as the size is increased. In this study the results provided by

the MLP improved the previous work, moreover, MLP

does not require any previous assumption on the data and

being a nonlinear model, it can be applied to model real-

world complex relationships (Zhang 2000).

8 Discussions

Since the extracted eye information is regulated by the

autonomic nervous system, the results of this experiment

suggest that the autonomic nervous system responds dif-

ferently to emotionally arousing than to emotionally neu-

tral stimuli. Our results are in line with the our recent study

(Valenza et al. 2011), that showed changes in the auto-

nomic activity in terms of skin conductance responses,

respiration and heart rate variability behavior, during

exposition to IAPS images with different arousal content.

Even though our results showed a significative information

from eye gaze pattern, however, they did not show sig-

nificant pupil size differences among IAPS stimulation. In

Table 2 Confusion Matrix of MLP classifier by using the whole set

of features

Neutral Arousal

Neutral 93.9394 – 4.2855 20.4545 ± 3.2141

Arousal 6.0606 ± 4.2855 79.5455 – 3.2141

Bold values represent the correct recognition percentage of the clas-

sifier for each specific class
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the literature there are discordant works about the pupil

size variation upon affective stimuli. In the study of Loe-

wenfeld (1966) it is reported that pupil size may not be

sensitive enough to discriminate emotional responses, while

Hess (1972) and Partala and Surakka (2003) showed

experimental evidence about this affective-dependence

variation. In our study, pupil size does not seem to have a

relevant role, but it could also be explained in terms of low

resolution of the camera used in the HATCAM system,

which did not detect the fine pupil responses, or of a pos-

sible failure in providing right controlled stimuli, consid-

ering also that there are several factors affecting the

variation of pupil size. Hess and Petrovich (1987) listed

several different sources of pupil size variation, including,

for example, the light reflex, different stimulus parameters

(e.g. visual and chemical), and information-processing load.

However, besides the role of pupil size, our results are very

satisfactory and very promising for the use of eye infor-

mation pattern in the context of pervasive monitoring. This

would extend the perceptually intelligent abilities of an

engine to perceive and analyze human behavior. In human

behavior positive emotions have been argued to increase

creativity, to help in creating richer associations for mem-

orized material, and to realize more efficient decision-

making machines (Isen and Means 1983; Zhou 1998). In

addition, by using suitable emotion-related cues, it could be

also possible to modulate the user emotional reactions that

could be used also as possible therapy in mental disease

management. Future work will progress to exploit eye gaze

together with peripheral physiological signals in the field of

human behavior understanding and mental care.
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