
Inference on Markov chains parameters via Large
Deviations ABC
Inferenza sui parametri di Catene di Markov mediante Large
Deviations ABC

Abstract We propose a method for Bayesian inference on the parameters governing the
transition probabilities of finite state Markov chains. We address the difficulty of deriv-
ing the parameters’ posterior distribution when the likelihood function is unavailable or
computationally demanding to evaluate. The approach is an extension of the Large De-
viations Approximate Bayesian Computation already proposed for i.i.d random variables.
The method is developed by accommodating an information theoretic formulation of the
Large Deviations Theory into Approximate Bayesian Computation (ABC). By contrast to
the customary ABC, this approach avoids discarding parameter values having an (expo-
nentially) small probability of producing simulation outcomes close to the observed data.
We experimentally evaluate our method through a toy example.
Abstract Proponiamo un metodo di inferenza Bayesiana per l’apprendimento dei
parametri che governano le probabilità di transizione in catene di Markov a stati finiti
qualora la funzione di verosimiglianza non è derivabile analiticamente ed una sua valu-
tazione è computazionalmente costosa. In particolare, estendiamo alle catene di Markov
un metodo di Approximate Bayesian Computation (ABC) basato sulla teoria delle Grandi
Deviazioni proposto per variabili discrete i.i.d.. Il risultato è ottenuto integrando la teoria
delle grandi deviazioni entro ABC. Questo metodo consente di non scartare le proposte di
parametri che hanno una (esponenzialmente) piccola probabilità di produrre dati simulati
simili a quelli osservati. Il metodo è illustrato attroverso un semplice esempio.

Key words: ABC, Large deviations, Parametric Markov chains, Sample degeneracy,
Method of Types.

1 Introduction and preliminary concepts

Parametric Markov chains (pMC) are discrete time Markov chains whose transitions prob-
abilities are expressed as polynomials of real-valued parameters [4, 6]. Statistical methods
for inferring the parameters governing such transition probabilities have been proposed,
both from a classical and Bayesian viewpoint. Here we propose a method for deriving the
parameters’ posterior distributions when the evaluation of the joint probability function
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of the Markovian sequence given the parameters is infeasible. In particular, we extend
to finite state pMC the Large Deviations Approximate Bayesian Computation (LD-ABC)
proposed in [13, 11] for i.i.d. discrete data. Generally speaking, Approximate Bayesian
Computation (ABC) [9] is a class of likelihood-free methods allowing Bayesian inference
when the likelihood function is intractable and only requiring the ability of simulating
pseudo-data from a simulator, i.e., a probabilistic program reproducing the stochastic data
generating process. The LD-ABC method represents a novel proposal for improving the
ABC performances by mitigating the sample degeneracy problem in ABC. The method
enhance the ABC likelihood resorting to an information theoretic formulation of Large
Deviations Theory (LDT) based on the Method of Types [3].

Preliminary concepts
Let {Xt} be a stationary parametric Markov process taking values in a finite set A △

=
{a1, ...,ak} with cardinality k. For simplicity the elements of A will be hereafter denoted
by their labels {1, ...,k}. The Markov process can be characterized by its doublet prob-
ability distribution (dpd), Pθ , defined as a non-negative matrix of order k× k inducing a
probability measure Pr{·, ·|θ} over A2 △

=A×A. Thus, denoted by Pθ (i j), the entries of Pθ
are

Pθ (i j) △
= Pr{Xt = i,Xt+1 = j|θ} ∀(i, j) ∈ A2

and sum to 1. The subscript θ indicates the dependence from the parameter (or vector of
parameters) θ , object of our inference.

Let us denote by ∆ k2−1 the (k2 −1)-simplex, i.e., the set of possible dpd over A2, and
by M (A2) ⊂ ∆ k2−1 the set of the stationary dpd. Each Pθ ∈ M (A2) is characterized by
entries such that ∑

j∈A
Pθ (i j) = ∑

j∈A
Pθ ( ji), ∀i ∈ A. This implies that the probability distri-

bution over A, pθ
△
= {pθ (i) = ∑

j∈A
Pθ (i j), ∀ j ∈ A}, is invariant along the process and Pθ

captures all the relevant information about it. In fact, the state transition matrix of the
pMC, Qθ , is the stochastic matrix of order k× k composed by entries retrieved from Pθ

qθ (i j) △
= Pr{Xt+1 = j|Xt = i,θ}= Pθ (i j)

pθ (i)
∀(i, j) ∈ A2

and pθ is a (normalized) row eigenvector of Qθ corresponding to eigenvalue 1:

(pθ Qθ ) j = ∑
i∈A

pθ (i)qθ (i j) = ∑
i∈A

Pθ (i j) = pθ ( j) ∀ j ∈ A.

2 The Method of Types for Markov chains and LDT

The Method of Types (MoT)[3] is a powerful tool shifting the focus from a vector of ran-
dom variables to a lower dimensional vector: the type. Originally, MoT has been proposed
for i.i.d. random variables and the 1st order type was defined as the empirical distribution
of a sequence of random variables. Here we consider an extension: the 2nd order type
which is suitable for observations modelled as Markov chains.

Given a Markov process {Xt} with dpd Pθ and an observed sample path xn = x1, ...,xn
from the Markov process, the 2nd order type [3] is defined by
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T (2)
xn (i, j) △

=
1

n−1

n−1

∑
t=1

{xt = i,xt+1 = j} ∀(i, j) ∈ A2.

This type can be thought as a matrix of order k× k representing an empirical estimate of
Pθ . An alternative definition is based on the cyclic convention that poses the (n+ 1)-th
element of the path equal to x1 and ensures the stationarity of the 2nd order type obtained
from the n terms. This definition allows for establishing the MoT formulation of the Large
Deviations principle for Markov chains.

LDT is concerned with probabilities of rare events going to zero with an exponential
decay. A well-known result is the Sanov’s Theorem (see[2, Th. 11.4.1]) which establishes
the rate function, i.e., the function quantifying the probability of rare events, for sequences
of i.i.d. random variables. Its analog for Markov chains can be found in the Donsker and
Varadhan Theorem [5] and has been presented as an application of the MoT by Csiszár [3].
In what follows we let Dc(·||·) be the conditional relative entropy (see [2] for a definition)
and log be the logarithm to base 2.

Theorem 1. Let {Xt} be a Markov process taking values in the finite set A, with stationary
doublet probability distribution Pθ ∈ M (A2) and let Xn = X1, ...,Xn. If E ⊆ M (A2), then
for each θ ∈Θ

lim
n→∞

1
n

logPr{T (2)
Xn ∈ E|θ}=− inf

P∈E
Dc(P||Pθ ) =−Dc(E||Pθ ). (1)

Proof. See [8] for a proof based on an easy counting approach.

3 ABC for finite state Markov Chains

Let xn be an observed sequence from a Markov process {Xt} taking values in A with
stationary dpd Pθ . In Bayesian framework one is interested in computing the posterior
distribution of θ ∈Θ given the data xn and a prior distribution π(·) over Θ :

π(θ |xn) ∝ π(θ)Pr{Xn = xn|θ}

where Pr{Xn = xn|θ}= pθ (x1)
n−1
∏

t=1
Pθ (xt+1,xt)/pθ (xt).

In many statistical applications (e.g. network analysis, epidemiological or genetic mod-
els) this probability is analytically intractable or computationally demanding to evaluate.
In such cases one should resort to ABC whose key idea is to provide a conversion of sam-
ples from the prior distribution into samples from the posterior by rejecting those parame-
ters that, given as input to the simulator, produce simulated observations, yn, different from
the observed data. Rejection ABC (R-ABC) displayed in Algorithm 1 produces samples
form an approximate posterior distribution introducing three sources of approximation by
1) resorting to an arbitrary distance function d(·, ·); 2) introducing a positive tolerance pa-
rameter ε; 3) summarizing the observed and the simulated data through summary statistics
sx = s(xn) and sy = s(yn) with s : An →S . The output of the algorithm is a sample of pairs
(θ (s),s(s)y ) from the following ABC joint posterior distribution

π̃(θ ,sy|sx) ∝ π(θ) Pr{sY = sy|θ} {d(sy,sx)≤ ε} (2)

which, marginalising out sy, i.e., simply discarding the simulates summaries, leads to the
marginal approximate posterior distribution:
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Algorithm 1 Rejection ABC (R-ABC)
for s = 1, ...,S do

Draw θ (s) ∼ π
Generate y ∼ P(·|θ (s)) from the simulator
Accept the pair (θ (s),s(s)y ) if d(s(s)y ,sx)≤ ε

end for

π̃(θ |sx) ∝ π(θ)∑
S

Pr{sY = sy|θ} {d(sy,sx)≤ ε}dsy = π(θ) ·Pr{d(sy,sx)≤ ε|θ
}
.(3)

The indicator function in (3) does not enable to discriminate between pseudo-data equal
to simulated data and pseudo-data just close enough. Thus, it is often replaced by a ker-
nel function, which is a positive function of the distance d(sy,sx), defined on a compact
support and decaying continuously from 1 to 0.

Looking at (3), it is apparent that the probability Pr{d(sy,sx)≤ ε|θ} represents the ap-
proximate likelihood. At each iteration s, Pr{d(sy,sx) ≤ ε|θ} is approximated pointwise
by the indicator function or another kernel function defined on a compact support. This
crude approximation causes a very large number of rejections leading to one of the major
drawbacks of the ABC methods: the sample degeneracy (see [10, Ch. 4] for a discussion
of the problem of sample degeneracy in ABC). This typically implies that ABC sampling
schemes require a very large number of iterations to get a good approximation of the pos-
terior distribution, especially in the tail area where Pr{d(sy,sx) ≤ ε|θ} is exponentially
small. Here, we speculate that an improvement can be achieved employing a kernel func-
tion based on LDT, thus taking into account the exponential decay of Pr{d(sy,sx)≤ ε|θ}.

4 LD-ABC for Markov Chains

Let us consider the set Γε
△
= {P ∈ ∆ k2−1 : Dc(P||T (2)

x ) ≤ ε}. Letting ym = y1, ...,ym be a
sample path from a pMC with dpd Pθ , from Theorem 1 follows that

Pr{T (2)
ym ∈ Γε |θ}≈ 2−mDc(Γε ||Pθ ) · c. (4)

The following Theorem proves that Dc(Γε ||T (2)
ym )≈ Dc(Γε ||Pθ ), as m → ∞.

Theorem 2. Let {Yt} be a Markov process taking values in the finite set A whose sta-
tionary dpd is Pθ ∈ M (A2) and let Y m = Y1, ...,Ym. Then, under the measure induced by
Pθ

lim
m→∞

Dc(Γε ||T (2)
ym ) = Dc(Γε ||Pθ ) a.s. (5)

Proof. See [11, Appendix D].

From (4) and Th. 2 follows that by setting the 2nd order type as summary statistics and
the conditional relative entropy as divergence measure, the probability Pr{d(sy,sx)≤ ε|θ}
can be e approximated by 2−mDc(Γε ||Pθ ). Meaning that, the indicator function in (2) may be
replaced by the following kernel:

Kε(T
(2)

ym )
△
=

⎧
⎨

⎩
1 if Dc(T

(2)
ym ||T (2)

xn )≤ ε

2−mDc(Γε ||T
(2)
ym ) if Dc(T

(2)
ym ||T (2)

xn )> ε
. (6)

Hence, the joint and the marginal ABC approximate posterior distributions become:
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π̃(θ ,T (2)
ym |T (2)

xn ) ∝ π(θ)Pθ (T
(2)

y )Kε(T
(2)

ym ) (7)

π̃(θ |T (2)
xn ) ∝ π(θ) ∑

T (2)
ym ∈T (m,2)

Pθ (T
(2)

ym )Kε(T
(2)

ym ) (8)

where T (m,2) is the set of the 2nd order types of sequences of length m from Markov
processes taking values in A.

In order to sample from (7) we present both an Importance Sampling (IS) and a MCMC
scheme displayed in Alg.2 and Alg.3, respectively. Both the algorithms draw parameter
values from a proposal distribution on the parametric space, q(·), and avoid implicit rejec-
tions involving the proposed kernel in the evaluation of the importance weights or of the
acceptance ratio. We refer the reader to [10, Ch. 4] for the a description of the standard
IS-ABC and MCMC-ABC algorithms.

Algorithm 2 LD-IS-ABC
for s = 1, ...,S do

Draw θ (s) ∼ q
Draw y(s) ∼ P(·|θ (s)) and compute T (2)

y(s)

if Dc(T
(2)

y(s)
||T (2)

x )≤ ε then

Set ωs =
π(θ (s))

q(θ (s))
else

ωs = 2
−nD(Γε ||T

(2)
y(s)

) π(θ (s))

q(θ (s))
end if

end for

Algorithm 3 LD-MCMC-ABC
for s = 1, ...,S do

Draw θ ∗ ∼ q
(
θ (s−1),θ ∗)

Draw y∗ ∼ P(·|θ ∗) and compute T (2)
y∗

Draw u ∼ Unif[0,1]

if u < min
{

1,
π(θ ∗)Kε (T

(2)
y∗ )q

(
θ ∗,θ (s−1))

π(θ (s−1))Kε (T
(2)

y(s−1) )q
(
θ (s−1),θ ∗

)
}

then
Assign (θ (s),T (2)

y(s)
)← (θ ∗,T (2)

y∗ )

else
Assign (θ (s),T (2)

y(s)
)← (θ (s−1),T (2)

y(s−1) )

end if
end for

5 Toy example

We consider a time series X60 = X1, ....,X60 from an AR(1) process taking values in A =
{1,2,3}. Specifically, we consider the AR(1) process dealt with in [1], where

Xt =

{
Xt−1 with probability λ
δt with probability 1−λ

with mixing weight λ ∈ [0,1]. δt is a discrete random variable taking values in A with

probabilities θ △
= (θ1,θ2,θ3)∈ ∆ 2. Our aim is approximating the posterior distributions of

the four parameters θ1,θ2,θ3 and λ . We assume that (θ1,θ2,θ3) is a priori distributed as a
Dirichlet(1,1,1) and λ as a Beta(1,1). In such a case, despite the complexity of the like-
lihood function, samples from the true posterior distributions can be obtained through the
Importance Sampling scheme, here taken as a benchmark (see [1] for a detailed discussion
of the likelihood evaluation and sampling schemes). We ran both R-ABC and LD-ABC
with m = 120, ε = 0.005 and S = 100,000. Figure 1 shows the posterior distributions ap-
proximated by the two algorithms and Table 1 displays the M̂SE and M̂ISE, computed by
averaging the squared errors for the posterior mean and the integrated squared errors over
100 reruns for both the algorithms. We can see that the LD-ABC outperforms the standard
ABC both in terms of point estimates and of posterior distributions approximation. Finally,
we evaluate the effects on sample degeneracy looking at the Effective Sample Size (ESS)
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(see e.g. [7]): LD-ABC achieves an ESS of 4619 versus the 1

Fig. 1 Posterior distributions with m = 120 and ε = 0.005. The red li
proximated via R-ABC and the blue lines via LD-ABC. The dashed gr
by IS.

1 values accepted by R-ABC.

nes are the posterior densities ap-
rey lines are benchmarks obtained

M

TTaable 1 Squared errors and integrated squared errors averaged over 100 runs.

m = 120, ε = 0.005
θ1 θ2 θ3 λ

M̂SSE
LD 4.56 ·10−4 0.76 ·10−4 1.66 ·10−4 1.54 ·10−4

R 13.59 ·10−4 16.35 ·10−4 8.99 ·10−4 6.63 ·10−4

M̂ISE
LD 0.0780 0.028 0.0274 0.1922
R 0.2575 0.3162 0.3679 1.0681
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