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Abstract
1.	 Biodiversity experiments have identified both complementarity and selection as 

important drivers of the relationship between biodiversity and ecosystem func-
tioning. However, their relative importance in above- and below-ground ecosys-
tem compartments of mature forests remains yet to be explored.

2.	 We adopted a trait-based approach to partition biodiversity effects in above- and 
below-ground complementarity and selection. This approach was based on can-
opy and root traits measured in single- and mixed-species plots in mature forests 
across a European latitudinal gradient.

3.	 We assessed the relative importance of above- and below-ground selection and 
complementarity in driving the relationship between tree species diversity and 
above-ground wood production. We used the expected values (based on the 
values measured in monocultures) of leaf area index (LAI) and fine root biomass 
as proxies for above- and below-ground selection, whereas canopy packing and 
rooting depth variability were used as proxies for above- and below-ground 
complementarity.

4.	 Our results showed that tree species richness–wood production relationships 
were driven by above- and below-ground complementarity (i.e. canopy packing 
and rooting depth variability), rather than selection. The proxies for selection 
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1  | INTRODUC TION

Biodiversity–ecosystem functioning (BEF) relationships have been 
extensively studied for nearly three decades (Tilman et al., 2014; van 
der Plas,  2019). Much of the knowledge has been gained through 
biodiversity experiments using artificially designed short-lived sys-
tems, for example microcosms, mesocosms or synthetic grassland 
communities (Hooper et  al.,  2005; Schmid et  al.,  2002). The ex-
trapolation of their findings to real-world systems with long-lived 
plant species such as forests remains a major challenge (Baeten 
et  al.,  2013; Forrester & Bauhus,  2016; Mori,  2018; Paquette & 
Messier,  2011). However, much progress has been made during 
the last decade with the maturation of tree diversity experiments 
(Grossman et al., 2018; Huang et al., 2018; Verheyen et al., 2016), 
the development of exploratory platforms in mature forests (Baeten 
et al., 2013; Liu et al., 2018) and the use of large-scale inventory data 
(e.g. Fei et al., 2018; Liang et al., 2016; Mori, 2018). The results of 
these studies underpin the fundamental importance of tree species 
diversity for many ecosystem functions and services, from the pro-
vision of wood products to the resistance and resilience to climatic 
extremes, and other disturbances (Mensah et  al.,  2020; Scherer-
Lorenzen, 2014; Teben’Kova et al., 2020; Yuan et al., 2020).

In recent years, there has been an increased interest in under-
standing the mechanistic basis of biodiversity–productivity relation-
ships (Isbell et al., 2018; Loreau & Hector, 2019). Loreau and Hector 
(2001) developed the widely used additive partitioning approach, 
which provides a statistical method to partition net biodiversity ef-
fect into selection and complementarity in biodiversity experiments. 
However, such statistical selection and complementarity could be 
driven by different biological mechanisms. For example, selection ef-
fects can emerge from a stochastic component, that is, with increas-
ing species richness there is an increasing chance of a well-performing 
species to be included in the community (Huston, 1997), and a func-
tional component, that is, a well-performing species with a particular 
combination of trait values becomes dominant and thus positively 
affects productivity, which is defined as the ‘dominance effect’ by 
Fox (2005) since the functional component reflects the dominance 
of a mixture by plants with particular traits at the expense of others. 

In contrast, complementarity effects can have at least four different 
causes: (a) niche differentiation, resulting in increased resource use 
efficiency or an increased proportion of resources captured, (b) her-
bivore and pathogen dilution with increasing host diversity, which is 
particularly relevant for specialist species, (c) facilitation and mutu-
alism, with one species being positively affected by the presence of 
another species and (d) the reduction of interference competition or 
other negative species interactions (Ammer, 2019; Barry et al., 2019; 
Halliday et al., 2020; Jactel et al., 2017). Furthermore, these statis-
tical and biological mechanisms do not always correspond to each 
other. For example, Williams et  al.  (2017) found that the physi-
cal crown complementarity is correlated with statistical selection, 
rather than statistical complementarity.

To disentangle the biological mechanisms underlying BEF rela-
tionships, different variables characterizing the distribution of plant 
functional traits have been used (Díaz et al., 2007; Funk et al., 2017; 
Lavorel & Garnier,  2002; Roscher et  al.,  2012). Specifically, 
community-weighted means (CWMs) of traits have been proposed 
to identify the functional component of selection (Ali et al., 2017; 
Mouillot et al., 2011; Van de Peer et al., 2018) whereby a high weight 
is given to the trait values of well-performing, and hence dominant 
species. In this way, CWMs identify the effects of dominant trait val-
ues in a community, that is, the functional component of selection. 
Variation in trait values, on the other hand, captures complementary 
resource use and can be used as a proxy for the niche differentiation 
component of complementarity (Ali et al., 2017; Jucker et al., 2015; 
Morin et  al.,  2011). One caveat to this approach is that the trait 
values of species in polycultures used to calculate the CWMs are 
also affected by species interactions, and thus not only reflect the 
selection effect. Nevertheless, this trait-based approach has often 
been applied in forest ecosystems, with both complementarity and 
selection identified as driving components of diversity effects on 
ecosystem functioning (Ali et  al.,  2017; Huang et  al.,  2018; Morin 
et al., 2011; Ratcliffe et al., 2016; Ruiz-Benito et al., 2014; Tobner 
et al., 2016).

The majority of these studies have focused on above-ground 
plant traits, such as tissue chemistry (e.g. leaf nitrogen and phos-
phorus content), morphology (e.g. SLA) and physiological traits 

were found to have a positive effect on wood production but were not affected by 
tree species richness.

5.	 We concluded that above-ground- but also the largely neglected below-ground 
complementarity drives biodiversity–productivity relationships in mature forests. 
Our findings suggest that choosing tree species with complementary above- and 
below-ground traits should be considered in afforestation and forest management 
to promote tree diversity and productivity in European forests.
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(e.g. tolerance to shade; Ali et al., 2017; Mensah et al., 2018; Toïgo 
et  al.,  2018). Less understood is the role of below-ground plant 
traits in driving forest biodiversity–productivity relationships (but 
see, Bu et al., 2017; Li et al., 2019; Sun et al., 2017). This is par-
tially because of the difficulty of measuring below-ground plant 
traits (Jacob et  al.,  2013). However, there is increased evidence 
that below-ground plant traits influence many below-ground pro-
cesses (Bardgett,  2017). For example, variation in below-ground 
plant traits (e.g. rooting depth) can lead to a complementary col-
onization of below-ground space, and thus complementary use of 
resources, and eventually increases total resource uptake (Fahey 
et al., 2016; Jones et al., 2005; Nepstad et al., 1994). As a result, 
spatial resource partitioning, for example complementarity in 
rooting depth among species may enhance primary productivity 
(Barry et al., 2019), as has been observed in grassland biodiversity 
experiments (Verheyen et  al.,  2008; Yanai et  al.,  2008). In addi-
tion, although high fine root biomass could increase productivity 
through enhancing nutrient and water uptake (Hertel et al., 2013; 
Jackson et al., 1997), it is unknown whether this is driven by below-
ground selection or complementarity. The knowledge gaps in our 
understanding of the functioning of the below-ground subsystem 
hinder our ability to fully comprehend and predict BEF relation-
ships (Barry et al., 2019).

Here, we aimed to unravel the biological mechanisms rather 
than the statistical partitioning, in order to better understanding 
BEF relationships in forest ecosystems. Specifically, we focused 
on the physical selection and complementarity (i.e. the functional 
component of selection and niche partitioning; Table 1), but not the 

statistical selection and complementarity effects (sensu Loreau 
and Hector (2001)). Hereafter, we use the terms selection and 
complementarity to refer to the studied biological mechanisms. 
We adapted the trait-based approach to partition observed species 
richness effects on forest productivity, whereby the assessment 
of above- and below-ground selection in polycultures relies on the 
values of traits measured in the monocultures of the constituent 
species. Hereto, we used ecosystem traits, that is community-level 
organismal traits expressed as the intensity (or density) normal-
ized per unit land area (He et al., 2019), because they match the 
scale on which productivity is measured. We applied this approach 
to data generated by the FunDivEUROPE exploratory platform to 
study how above- and below-ground complementarity and selec-
tion drive above-ground wood production (AWP) in mature forests 
across Europe. We used the response variable AWP because it is 
a key forest ecosystem function, underpinning many ecosystem 
services (Gamfeldt et al., 2013), and because it is positively associ-
ated with tree species richness in this dataset (Jucker et al., 2014, 
2016). We additionally studied how simultaneous consideration 
of selection and complementarity in above- and below-ground 
ecosystem compartments adds to the understanding of forest 
ecosystem functioning compared to studies that have followed a 
narrower focus. We expect that in particular complementarity is 
a key driver of positive diversity–productivity relationships, and 
that complementarity is especially important for the acquisition of 
above- and below-ground resources because of the complemen-
tary resource use of different tree species in polycultures (Barry 
et al., 2019).

TA B L E  1   Tree structural variables to study above- and below-ground selection and complementarity on productivity

Community characteristics Targeted mechanism General description Relevance in forests

Expected value of 
leaf area index

Functional component 
of selection

Species-rich communities 
are more likely to include 
a species with above-
ground traits that have 
disproportionately large 
effects on productivity 
(Forrester & Bauhus, 2016)

Leaf area index is positively 
related to tree productivity 
(Arias et al., 2007; Bolstad 
et al., 2001; Jose & 
Gillespie, 1997; Morin 
et al., 2011)

Canopy packing Niche 
complementarity

Species-rich communities 
include species with 
complementary above-ground 
traits

Crown complementarity 
enhances above-ground 
resource partitioning (Jucker 
et al., 2015; Sapijanskas 
et al., 2014)

Expected value of 
fine root biomass

Functional component 
of selection

Species-rich communities are 
more likely to include species 
with below-ground traits 
that have disproportionately 
large effects on productivity 
(Chanteloup & Bonis, 2013)

More fine root biomass 
increases nutrient and water 
uptake (Hertel et al., 2013; 
Jackson et al., 1997)

Rooting depth 
variability

Niche 
complementarity

Species-rich communities 
include species with 
complementary below-ground 
traits (Oram et al., 2018)

Complementarity in rooting 
depth enhances below-
ground resource partitioning 
(Brassard et al., 2011, 2013; 
Fahey et al., 2016; Forrester 
& Bauhus, 2016; Jones 
et al., 2005)
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2  | MATERIAL S AND METHODS

2.1 | FunDivEUROPE exploratory platform

This study was conducted in the FunDivEUROPE exploratory plat-
form (http://www.fundi​veuro​pe.eu), extending over six regions 
in Europe, where the main vegetation types are boreal (Finland), 
hemiboreal (Poland), temperate deciduous (Germany), mountain-
ous deciduous (Romania), thermophilous deciduous (Italy) and 
Mediterranean mixed (Spain) forests. The study regions host many 
regionally common and economically important European broad-
leaved and coniferous tree species. Large climatic gradients are cov-
ered with a mean annual temperature ranging from 2.1°C in Finland 
to 13°C in Italy and a mean annual precipitation from 499  mm in 
Spain to 850 mm in Italy.

In 2011, a total of 209 plots (30 m × 30 m) with a total of 15 
tree species (i.e. Acer pseudoplatanus, Betula pendula/pubescens, 
Carpinus betulus, Castanea sativa, Fagus sylvatica, Fraxinus excelsior, 
Ostrya carpinifolia, Quercus cerris, Quercus faginea, Quercus ilex, 
Quercus robur/petraea, Abies alba, Picea abies, Pinus nigra and Pinus 
sylvestris) were selected across the six regions (number of plots: 
28 in Finland and Romania, 43 in Poland, 38 in Germany and 36 in 
Italy and Spain). Plots were carefully selected to minimize the cor-
relations between tree species richness and topography, and other 
confounding soil variables such as bedrock type, soil type, tex-
ture and depth (Baeten et al., 2013). In addition, the study design 
allowed age distribution to covary with the gradient of species 
richness to some degree (e.g. more uneven-aged and multi-layered 
plots at the higher species richness levels). Trees in Finland were 
planted after a clear-cut, while all other sites were naturally regen-
erated forest stands. The age of trees in Finland was 39–49 years, 
73–193 years in Poland, 65–100 years in Romania and 30–80 years 
in Italy (no age data available for Germany and Spain). More de-
tailed information about the FunDivEUROPE exploratory platform 
can be found in the study by Baeten et al. (2013).

2.2 | Tree species richness and above-ground 
wood production

The study plots varied in species richness, ranging from one (mono-
culture) to five (polyculture) tree species within regions. Above-
ground wood production was obtained from tree ring data covering 
a 5-year period between 2007 and 2011 (van der Plas, Manning, 
Soliveres, et  al.,  2016). Between March and October of 2012, a 
total of 3,138 wood cores (5 mm in diameter) were collected (Jucker 
et al., 2014). The number of cored trees was 12 per plot in monocul-
tures and six per species in polycultures except for Poland, where 
five cores per plot were taken. Air-dried wood cores were scanned 
by a flatbed scanner with 2,400 dpi optical resolution. AWP data 
were then estimated as described by Jucker et al. (2014) and Jucker 
et al. (2016). In brief, radial growth increments (mm/year) were meas-
ured from each scanned wood core. In this step, 188 cores were 

excluded due to poor quality compared to the standard species-level 
reference curves, and 2,950 tree ring chronologies were included. 
From this, annual diameter increments were calculated as the dif-
ference between the diameter of two consecutive years. The annual 
biomass growth was calculated from the diameter increments and 
was expressed in units of carbon (C) through dividing the above-
ground biomass data by 2 (kg C year−1). The individual tree biomass 
growth was modelled by linear mixed-effects models considering 
tree size, competition for light, species richness and a random plot 
term (Jucker et al., 2014, 2016). The fitted linear mixed-effects mod-
els were used to estimate the biomass growth for all trees that had 
not been cored. Finally, the annual biomass growth of all trees (stem 
≥7.5 cm in diameter) in a plot was summed to get the plot-level AWP 
(Mg C ha−1 year−1).

2.3 | Quantifying above- and below-ground 
selection and complementarity

We compiled data on the following ecosystem traits: leaf area index 
(LAI), canopy packing, fine root biomass and rooting depth variabil-
ity (Table S1). Data were selected based on their relevance to for-
est productivity (Table 1) and their availability. Apart from rooting 
depth, LAI, canopy packing and fine root biomass were obtained 
from in situ measurements. Details of the measurements of these 
traits can be found in Appendix S1.

To assess above- and below-ground selection on forest produc-
tivity, we used two ecosystem traits (He et al., 2019), that is, LAI and 
fine root biomass respectively (Table 1; Figure 1). To be able to iso-
late the functional component of selection from other effects (i.e. 
complementarity), we did not use the observed trait values in poly-
cultures, as the observed values of the individual species are likely 
to be influenced by interspecific interactions. Instead, we calculated 
the expected values based on the values measured in the monocul-
tures of the constituent species. Because the expected trait values 
reflect the dominance of a mixture by plants with particular traits at 
the expense of others (the ‘dominance effect’ as described by Fox 
(2005) and remove any influence of complementarity), they could 
be used to identify the functional component of selection (van der 
Plas, Manning, Allan, et al., 2016). We first calculated the mean trait 
values of all monoculture plots of a species within a region. Then, 
the proportional basal area for a given species was used to weight 
the monoculture trait values and calculate the expected value of 
every polyculture plot j of a region as follows (Enquist et al., 2015):

where nj represents the number of species in plot j; Ak,j represents the 
relative basal area of species k in plot j; and zk represents the mean trait 
values of species k that is calculated from the monocultures.

To quantify the complementarity in below-ground resource use, 
rooting depth variability was used (Table 1; Figure 1) and calculated 

(1)Expectedvaluej =

nj
∑

k=1

Ak,j × zk,

http://www.fundiveurope.eu
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as the basal area-weighted squared differences from the mean 
of rooting depth in a plot. It can be written as follows (Enquist 
et al., 2015):

In addition, we used the observed canopy packing to represent the 
complementarity in above-ground resource use (Jucker et al., 2015).

2.4 | Statistical analyses

All statistical analyses were conducted in R version 3.6.1 (R 
Development Core Team, 2019). Data were inspected for distribu-
tional properties. Above-ground wood production, tree species rich-
ness, expected LAI, expected fine root biomass and rooting depth 
variability were log-transformed because of this evaluation. Canopy 
packing was logit-transformed (Jucker et al., 2015).

To determine the effects of tree species richness through above- 
and below-ground selection and complementarity on above-ground 
wood production, we conducted path analysis (a special case of 
structural equation models with latent variables) using the lavaan 
package (Rosseel, 2012). It is a multivariate statistical analysis tech-
nique that can be used to analyse the covariances between observed 
variables. It is a powerful tool to integrate different models to un-
cover the underlying mechanisms between biodiversity and ecosys-
tem functioning (Grace et al., 2007, 2016). Because the number of 
groups was too low for a multilevel path analysis, and the number of 
plots too low for a multigroup path analysis, the hierarchical struc-
ture of the data (i.e. plots within six study regions) was removed 
by regressing wood production and the predictor variables on the 
identity of study regions (variable ~ study region; Desie et al., 2020). 
We used the residuals of the regression models as input data in the 
following analyses. Note that the use of residuals of the regression 
models serves to remove the influences of the confounding factors 
at the region level (between region/site variation; Desie et al., 2020), 
for example, climate and water availability (Jucker et  al.,  2016; 
Ratcliffe et al., 2017).

We firstly tested the different above- and below-ground effects 
separately by fitting separate path models for each biodiversity ef-
fect, corresponding to one of the tree structural variables (i.e. ex-
pected LAI, canopy packing, expected fine root biomass and rooting 
depth variability). Secondly, we analysed how above- and below-
ground complementarity and selection jointly affect the relationship 
between tree species richness and AWP by including all pathways in 
the path models. We also added a direct effect of species richness 
on productivity to assess whether there is a remaining part of the 
species richness effect that could not be explained by the consid-
ered effects (i.e. selection and/or complementarity in the above- 
and/or below-ground ecosystem compartment). Importantly, only 
when both the effect of tree species richness on the ecosystem trait 
and the effect of that ecosystem trait on AWP are found to be sig-
nificant, we can conclude that there is a significant complementarity 
or selection effect (see Table 1 and Table S2 for more details on the 
justification of existing theory and evidence). The goodness-of-fit 
values of the models were evaluated using chi-squared tests and 
comparative fit indices (CFI). A p-value of the chi-squared test >0.05 
indicated a good fit of a model. For all the models, we scaled the 
path coefficients by the standard deviation of each variable to make 
them comparable. We additionally explored bivariate correlations 
between tree species richness and ecosystem traits, and their asso-
ciations with AWP. The results of bivariate correlations (Figures S1 
and S2; Tables S3 and S4) were in line with the results of path models 
(Figures 2 and 3) and thus not reported.

3  | RESULTS

In the separate models of above- and below-ground complementa-
rity and selection, we found that tree species richness was always 
positively associated with AWP (Figure  2). The direct effects of 

(2)Rootingdepthvariabilityj =

nj
∑

k=1

Ak,j × (zk − CWMj)
2.

F I G U R E  1   Conceptual framework illustrating the estimation 
of above- and below-ground selection and complementarity. 
The positive effects of species richness on productivity can be 
explained by both complementarity and selection. That is, species 
richness can increase productivity by enhancing above- and 
below-ground niche complementarity or by influencing mean trait 
values in a community. The framework aims at unravelling the 
relative importance of these two effects on observed positive 
biodiversity–productivity relationships in forests. Specifically, 
selection in polycultures is calculated by using the weighted 
mean values of leaf area index (LAI) and fine root biomass (RB) 
in monocultures of the constituent species using the relative 
abundance of the species as weighting factor. Above-ground 
complementarity is directly estimated by the observed canopy 
packing in a community, while below-ground complementary is 
estimated by rooting depth variability, calculated as the variance 
of rooting depth weighted by the relative abundance of species in 
a community

Leaf area index sp1

Leaf area index sp2

Leaf area index sp3

Selection

Complementarity

Expected LAI/RB
community 1

Expected LAI/RB
community 2

Expected LAI/RB
community 3

Canopy packing
community 1

Rooting depth variability
community 1

Canopy packing
community 3

Rooting depth variability
community 3

Root biomass sp1

Root biomass sp2

Root biomass sp3
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F I G U R E  2   Individual path 
models of above- and below-ground 
complementarity and selection. (a) 
Expected leaf area index (LAI), (b) canopy 
packing, (c) expected fine root biomass 
and (d) rooting depth variability. Solid-line 
rectangles indicate selection (a and c) 
and the dashed-line rectangles indicate 
complementarity (b and d). Standardized 
path coefficients are shown next to each 
arrow. Blue and grey arrows indicate 
significantly positive and non-significant 
path coefficients respectively. Because 
these path models are saturated models, 
the goodness-of-fit cannot be given. R2 
indicates the total variance in above-
ground wood production that is explained 
by tree species richness and plant traits. 
***p < 0.001, **p < 0.01, *p < 0.05, 
†p < 0.10

Tree species richness

Expected leaf area index

Above-ground wood production

Tree species richness

Canopy packing

Above-ground wood production

Tree species richness

Expected fine root biomass

Above-ground wood production

Tree species richness

Rooting depth variability

Above-ground wood production

(a) (b)

(c) (d)
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*
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R2 = 0.09 R2 = 0.03

0.
00

4

0.
17

*
–0

.0
3

F I G U R E  3   Mediation of above- and below-ground ecosystem traits on the relationship between tree species richness and above-
ground wood production. Dashed-line rectangles indicate complementarity and the other rectangles indicate selection. Standardized path 
coefficients are shown next to each arrow. Blue, red and grey arrows indicate significantly positive, significantly negative and non-significant 
path coefficients respectively; doubled arrows indicate residual correlations. R2 indicates the total variance of a dependent variable that is 
explained by predictor variables. ***p < 0.001, **p < 0.01, *p < 0.05, †p < 0.10

Above-ground 
wood production

      Expected
fine root biomass

Rooting depth 
variability

Canopy packing

      Expected
leaf area index

Tree species richness

0.23**

–0
.2

2*
*

Model fit test statistic: 1.718
Degrees of freedom: 2
p-value (chi-square): 0.424
Comparative fit index (CFI): 1.00

R2 = 0.23

R2 = 0.64

R2 = 0.01

0.20†

0.24***

0.19**

0.27***

0.80***

0.17*

R2 < 0.001

R2 = 0.029

–0.26***–0.04

0.10

0.004

0.
26

**
*
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tree species richness on AWP ranged from 0.13 to 0.21 (standard-
ized path coefficient, hereafter βstd; Figure 2; Table S5). In addition, 
canopy packing (i.e. above-ground complementarity; βstd = 0.32) 
had a greater impact on AWP than expected LAI (βstd = 0.28), ex-
pected fine root biomass (βstd = 0.24) and rooting depth variability 
(βstd = ‒0.03; Figure 2; Table S5). Canopy packing accounted for 13% 
of the variance in AWP in combination with tree species richness 
(Figure 2b), which was greater than other tree structural variables 
(Figure 2a,c and d). We found that tree species richness was posi-
tively associated with canopy packing (βstd = 0.17) and rooting depth 
variability (βstd = 0.80; Figure 2b,d). We did not find significant asso-
ciations between tree species richness and expected LAI, between 
tree species richness and expected fine root biomass and between 
rooting depth variability and AWP (Figure 2a,c and d).

In the full model, tree species richness and the four tree struc-
tural variables accounted for 23% of variance in AWP (Figure 3). We 
found that tree species richness was not significantly associated 
with AWP (βstd = ‒0.04), expected LAI (βstd = 0.004) and expected 
fine root biomass (βstd = 0.10; Figure 3; Table S6). In addition, AWP 
was significantly positively correlated with expected LAI, canopy 
packing and expected fine root biomass and marginally significantly 
with rooting depth variability (p < 0.10; Figure 3; Table S6). We found 
significantly negative correlations between rooting depth variability 
and canopy packing (r = ‒0.26), and between rooting depth variabil-
ity and expected LAI (r = ‒0.20) and a positive correlation between 
canopy packing and expected fine root biomass (r = 0.27; Figure 3).

4  | DISCUSSION

Our results provide insight into the processes that drive biodiversity–
productivity relationships in mature forests. When considering 
tree structural variables individually, we found a consistent direct 
effect of tree species richness on AWP and evidence for above-
ground complementarity via canopy packing. However, in the full 
model with all pathways considered, the direct effect of tree spe-
cies richness disappeared. In addition, a second significant effect, 
that is below-ground complementarity via rooting depth variability 
emerged in the full model, indicating that it is important to take into 
account both the above- and below-ground aspects of selection and 
complementarity to fully understand the mechanisms that underlie 
how tree diversity promotes forest productivity.

In the full model (Figure  3), below-ground complementar-
ity in rooting depth was found to be the main driver of positive 
biodiversity–productivity relationships. Despite we did not measure 
rooting depth in the field, several studies confirmed that interspe-
cific differences in rooting depth and fine root biomass promote 
below-ground niche differentiation and result in an increased 
proportion of below-ground resources captured by extracting 
water and nutrients from different depths (Barry et  al.,  2019; Bu 
et  al.,  2017; Fahey et  al.,  2016; Forrester & Bauhus,  2016; Jones 
et al., 2005; Sun et al., 2017). An earlier study on the same plots, 
Ratcliffe et  al.  (2017), used volumetric stone content in the upper 

30 cm of mineral soil layer as a physical proxy for available rooting 
space and found minor effects of volumetric stone content on mul-
tiple ecosystem functions including AWP. Interestingly, we found a 
negative correlation between below-ground complementarity and 
above-ground components (Figure 3), suggesting that complemen-
tarity in resource use in polycultures manifests itself in either the 
below- or the above-ground compartment.

We further found evidence for species richness effects on AWP 
via above-ground complementarity. Specifically, we found significant 
effects of tree species richness on canopy packing, and significant 
effects of canopy packing on AWP. Higher canopy packing in poly-
cultures can result from complementary vertical distributions of leaf 
area, different crown shapes between species or intraspecific vari-
ability in crown morphology (i.e. crown plasticity). The positive effect 
of tree species richness on canopy packing in the FunDivEUROPE 
sites was largely driven by crown plasticity (Jucker et al., 2015). This 
allows trees to adjust the shape and size of their crown morphology 
to surrounding trees (Kunz et al., 2019; Pretzsch, 2014; Pretzsch & 
Dieler, 2012). For example, a 38% increase in crown volumes has been 
observed in the mixed-species forest stands of the FunDivEUROPE 
exploratory platform because of longer lateral branches and deeper 
crowns (Jucker et al., 2015). Increased canopy packing can promote 
light interception and thereby AWP (Binkley et  al.,  2013; Morin 
et al., 2011; Pretzsch, 2014). Indeed, we found that canopy packing 
was positively associated with expected LAI, a light interception-
related variable (Jonckheere et al., 2004). Moreover, a positive ef-
fect of expected LAI on AWP was also observed (Figures 2 and 3). 
Kunz et al. (2019) showed that these tree diversity effects on AWP 
via canopy packing increased with time. Our results are consistent 
with those of forest succession models (Morin et al., 2011) and stud-
ies of forest inventories (Mori, 2018), which found that biodiversity 
effects on productivity were mainly driven by complementary forest 
stand structure and light interception. Increased canopy packing in 
diverse plots can, however, have a negative impact on the resistance 
to droughts by increasing the rainwater interception capacity of the 
canopy and thus decreasing the water availability in the soil (André 
et al., 2008; Grossiord et al., 2014).

It has been shown that the effects of species diversity on tree 
growth vary during forest succession (Taylor et  al.,  2020) with 
biodiversity effects on productivity strengthening from young to 
middle-aged forests (Huang et al., 2018; Jucker et al., 2020; Zhang 
et al., 2012). Time is needed for plant species assemblages in diverse 
communities to realize the potential niche differentiation in order to 
optimize the use of limiting resources (Reich et al., 2012; Zuppinger-
Dingley et al., 2014). In young forest plantations, the complemen-
tarity between species may not have reached its full potential. In 
ageing forests, gap phase dynamics increase the availability of light 
and soil resources, reducing the importance of complementarity 
again (Hume et al., 2016; Kumar et al., 2018).

In contrast to studies in young plantation forests (de Peer 
et al., 2018; Van Chen et al., 2020), we found no evidence for tree 
species richness effects on AWP through effects of selection. One 
explanation for the lack of effects of selection could be that the 
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forest plots of the FunDivEUROPE exploratory platform were se-
lected to maximize the evenness of stand composition (at least 
60% of maximum evenness, see Baeten et  al.,  2013), minimizing 
the influence of the functional components of selection on AWP. 
Further, by having all species at all levels of species richness, as 
is the case in this study, there is less chance of selection effects 
because the most (or least) productive species will occur at all 
levels of species richness (Forrester & Bauhus, 2016). However, it 
should be noted that the expected values of ecosystem traits only 
represent the functional component of selection, and do not ac-
count for the stochastic component. Nevertheless, strong species 
identity effects have been found in the same forest plots for other 
ecosystem functions (Baeten et  al.,  2019; Ratcliffe et  al.,  2017). 
Species traits other than those studied here could also be import-
ant for plant growth (e.g. SLA, horizontal root segregation; Ali 
et al., 2017; von Felten & Schmid, 2008), and hence account for 
additional variation in biodiversity–ecosystem functioning rela-
tionships (Cadotte et al., 2011; Flynn et al., 2011; Fotis et al., 2018; 
Lavorel & Garnier, 2002).

5  | CONCLUSIONS

We proposed a trait-based framework to partition the diversity 
effects into the physical/functional components of selection and 
complementarity in both the above- and below-ground compart-
ment of the ecosystem. Applying this framework to data from the 
FunDivEUROPE exploratory platform, we found that complemen-
tary in above- and below-ground resource use is more important 
than selection in explaining diversity effects on productivity in 
European mature forests. Complementarity is expressed by high 
canopy packing and large variation in interspecific rooting depth. 
Therefore, maintaining variation in both above- and below-ground 
tree characteristics is crucial to promote AWP in mature forests. 
We further show that a comprehensive study of both above- and 
below-ground processes is necessary to fully disentangle the 
mechanisms underlying tree diversity–productivity relationships 
in forest.
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